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Abstract: The presented poster shows a pilot development of a robot ‘task programming method’. In this 

method, the user programs the robot task by demonstrating it (Programming by Demonstration, PbD). PbD is 

applied on a robotic arm with 2 degrees-of-freedom shown in Figure 1 for programming a constrained motion 

task.

Introduction 

In our daily lives, many time-consuming and tedious household tasks are partially or entirely done by machines, 

such as the laundry, dishes, vacuuming, etc. Nevertheless, there are still many time-consuming household tasks 

that are (partially) done by humans. Examples of such tasks are laundry ironing and folding, loading the dish 

washer, cooking, etc. An important limitation to the application of robots to such tasks is the combinatorial 

explosion of number of situations the robot may enter, due to large number of sub-tasks, states, possible 

environments in which the robot must be able to operate, and possible exceptions that can occur during 

execution. 

 

To execute such tasks, a certain level of autonomy is required. In theory it is possible to develop software that 

takes care of the execution, using a ‘regular’ programming language such as C++. Unfortunately, this is a tedious 

job, since each of many different situations mentioned above must be detected, and for each of these a functional 

strategy must be defined. Furthermore, the developed software must be general enough to program robot 

operation in many different environments, covering numerous and diverse sub-tasks. 

 

Alternatively, programming of the robot tasks can be left to the end-user. In this case, there is less uncertainty 

about the environment, and the set of possible situations is likely to be smaller. A drawback is that the end-user 

needs knowledge on the robot-specific technologies, such as programming, coordinate systems, mechanics, 

control design and implementation, etc. 
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Figure 1: 2 d.o.f. robot with base frame 

Programming by demonstration can be an efficient and intuitive method for unskilled end-users to teach skills to 

robots. The objective is that after a human demonstrates a task, the robot reproduces the essential aspects of this 

task correctly. The essential aspects might be for example, bringing the robot into contact, applying force on a 

surface, etc. This poster focuses on PbD of ‘blind’ tasks, i.e. tasks that can be re-played by making use of only 

position and force sensors, and without vision equipment (i.e. cameras). It is assumed that easy programming can 

be achieved by imitation learning, where the user demonstrates a new task by means of e.g. a haptic interface, 

and the robot “learns” how to repeat it. This poster illustrates an implementation of imitation learning based on 

“segmented replay”. The idea is to use the measured position and force data in order to characterize atomic tasks 

in different segments and transitions between these tasks (or segments). The robot imitation consists of a replay 

of these segments and the associated transitions. We can distinguish two phases in this problem: in the first 

phase, the necessary data is collected during the task demonstration; in the second phase, this data is processed 

offline so that the essential aspects of the task can be executed correctly by the robot.

Solution method 

 

A task will typically consist of a sequence of interactions of the robot with the environment. One example is 

shown in Figure 2: move to the object (segment I), then grip it (segment II), and finally release it (segment III). 

 

 
 

Figure 2: Manipulation sequence example 

 

The desired control strategy within different segments is likely to be different. For example: 

 

• Segment I : move to the object � position control 

• Segment II : grip it � force control 

 

To implement this framework, it is important to generate different control policies in different segments and to 

have the ability of switching between these control policies. At this point, we assume that two important policies 

need to be implemented: position control and force control. 

 

The challenge of imitation learning consists of distilling from the traced data the sequence of control policy 

segments, the associated force and/or position setpoints, and the switching conditions for going from one 

segment to another. Estimating (or perceiving) the mechanical impedance that the environment exhibits during 

interaction with the manipulator allows intuitive selection of the correct control policies in different segments. 

The solution method is summarized by a diagram shown in Figure 3. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Demonstration—Analysis—Execution block diagram 

 

The offline impedance estimation is done by fitting the following dynamic equation by using weighted least 

squares 

 

f(t) = c + K*p(t) + B*p'(t) + M*p''(t) 

 

to forces (f(t)) and positions (p(t)) that were recorded during demonstrations [1]. The interacted environment can 

be characterized by stiffness (K), damping (B), and inertia forces (M). The estimated stiffness reveals physical 

(also called natural) constraints of the environment (in this case, orthogonal contacts). Singular Value 

Decomposition (SVD) is used to calculate the principal directions of the stiffness matrix that reveal the natural 

constraints. These constraints can be used for proper selection of the aforementioned control policies. 

Controller design 

A Cartesian impedance controller [2] and negative joint torque feedback are used for execution of the task, as 

illustrated by the block diagram shown in Figure 4. The negative joint torque feedback has two important roles: 

reducing the apparent inertia of the motor (rotor) and reducing the disturbances on the motor dynamics (e.g. 

friction) [2, 3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Cartesian Impedance Control block diagram 

 

In this figure, the term B*Bθ

-1 represents the product of motor’s apparent inertia (B) and a scaling coefficient 

(Bθ), and the term I represents the identity matrix. For transitions between unconstrained and constrained 

motions, hysteresis was used based on the measured force signal [4]. High stiffness is selected for the 
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unconstrained directions (position control) and low stiffness is selected for the constrained directions (force 

control). In the future, it is intended to use the joint torques for triggering the transitions. 

Experimental results 

In the experiment carried out on the robotic arm shown in Figure 1, the demonstrated task has consisted of three 

phases: 1) guiding the arm from it's initial posture through free space until it’s tip makes a contact with a 

horizontally placed stiff object (which was parallel to the X-Y plane indicated in Figure 1), 2) making a wiping 

motion with the arm tip over the surface of this object, and, finally, 3) bringing the arm back to it’s initial 

posture. During the task demonstration, end-effector forces and positions shown in Figure 5 were recorded. 
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Figure 5: Position and force traces in demonstration phase 

 

From these traces, time-varying stiffness matrix has been estimated as shown in Figure 6. 
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Figure 6: Calculated environment stiffness components for demonstration phase 

 



If we exclude the transient effects, from Figure 6 we can notice that the estimated stiffness in the normal 

direction (Kzz) dominates both the stiffness along the surface (Kxx) and the off-diagonal stiffness terms. The end-

effector forces and positions recorded during execution of the task by the robot are given in Figure 7. Here, we 

show only the constrained motion part of this task. 
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Figure 7: Position and force traces in replay phase 

Conclusions 

The considered robot ‘task programming method’ can identify essentials of the demonstrated task. The controller 

does not suffer from transition instabilities that might be encountered during transition between free and 

constrained motions, especially under rigid contact conditions. 

 

Pilot experiments show that the constraint identification facilitates discriminating between segments of the 

demonstrated task. In turn, the segmented replay of the demonstrated sub-tasks becomes possible. The transient 

behavior of the estimation, however, causes some undesirable effects. An example is the initial misestimation of 

the constraint directions. In the future, we need to improve detection of transitions between the task segments, in 

order to reduce the undesirable transient effects and determine the triggering events for the transitions. 

Furthermore, we need to reduce influence of friction on the constraint identification. Finally, the method should 

be tested in situations that involve more degrees-of-freedom and different types of constraints, such as opening a 

door, driving a screw, etc. 
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