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ABSTRACT Interest in agricultural automation has increased considerably in recent decades due to

benefits such as improving productivity or reducing the labor force. However, there are some current

problems associated with unstructured environments make developing a robotic harvester a challenge. This

article presents a dual-arm aubergine harvesting robot consisting of two robotic arms configured in an

anthropomorphic manner to optimize the dual workspace. To detect and locate the aubergines automatically,

we implemented an algorithm based on a support vector machine (SVM) classifier and designed a planning

algorithm for scheduling efficient fruit harvesting that coordinates the two arms throughout the harvesting

process. Finally, we propose a novel algorithm for dealing with occlusions using the capabilities of the

dual-arm robot for coordinate work. Therefore, the main contribution of this study is the implementation

and validation of a dual-arm harvesting robot with planning and control algorithms, which, depending on the

locations of the fruits and the configuration of the arms, enables the following: (i) the simultaneous harvesting

of two aubergines; (ii) the harvesting of a single aubergine with a single arm; or (iii) a collaborative behavior

between the arms to solve occlusions. This cooperative operationmimics complex human harvestingmotions

such as using one arm to push leaves aside while the other arm picks the fruit. The performance of

the proposed harvester is evaluated through laboratory tests that simulate the most common real-world

scenarios. The results show that the robotic harvester has a success rate of 91.67% and an average cycle

time of 26 s/fruit.

INDEX TERMS Aubergines, dual-arm robot manipulation, eggplants, intelligent perception, machine

vision, occlusions, precision agriculture, robotic harvesting.

I. INTRODUCTION

In recent decades, there has been a growing interest in

automating the harvesting of fruits and vegetables. This inter-

est stems from the benefits that advanced agricultural automa-

tion can provide. Robotic harvesting can improve produc-

tivity many-fold by reducing manual labor and production

costs, increasing yield and quality, and enabling better control

over environmental implications. However, the complexity of

agricultural environments combined with the intensity of pro-

duction demands requires robust systems capable of adapting

to high crop variability. Two critical aspects for achieving a
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successful automation of harvesting tasks are detecting fruits

and vegetables in natural conditions and the proper grasping

and manipulation of the detected target products.

There are countless challenges associated with the ability

to process, analyze and interpret visual inputs in unstructured

environments. In agricultural settings, scenes exhibit a large

degree of uncertainty; they contain objects with various col-

ors, shapes, sizes, textures, and reflectance properties that

change continuously due to illumination and shadow condi-

tions [1], [2]. A broad overview of the development of vision

technology applied in precision agriculture applications was

compiled by [2]–[5]. Severe occlusion of fruits or vegetables,

which may be partially shadowed by other fruits, stems and

leaves, is another common problem in real-world scenarios.
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Several strategies have been proposed to address these occlu-

sions. One popular method is the circular Hough transform,

which is effective for round objects such as oranges, apples

and tomatoes [6]. However, the results show that this method

is not only prone to false positives produced by the contours

of other objects such as leaves, but is also computationally

time-consuming, which makes real-time applications chal-

lenging. Another strategy proposed the use of an air-blowing

device to avoid leaf occlusion and move adjacent fruits

aside [7]. However, this solution increases the weight of the

end-effector and may not be applicable to all types of crops.

After the 3D position of the fruit to be harvested has been

obtained, its coordinates can be further utilized to instruct

the movement of a robotic arm. Numerous harvesting robots

based on this approach have been proposed in the literature

for different kinds of crops [8], [9]. In [9], a 4 DoF manipula-

tor guided by a 3-D vision system was proposed for picking

cherries, while [8] proposed a single shot multibox detector

to discriminate apples and a stereo camera to determine their

three-dimensional positions. The arm harvests the apples by

twisting the hand axis. The experimental results showed that

this system detects more than 90.0% of the fruits and that the

robot could harvest a fruit in 16 s.

However, in recent years, harvester robots based on mul-

tiarm configurations have gained attention. The idea is to

improve the poor efficiency achievable with autonomous

one-arm robotic harvesters by mounting multiple manipula-

tors on a robotic platform and assigning a specific workspace

to each manipulator to harvest [10]. For instance, the stud-

ies presented in [11], [12] focused on improving harvesting

efficiency by developing algorithms that achieve the best

distribution of fruits among the arms. In [12], the authors

presented a four-armed kiwi harvester robot designed to

operate autonomously in pergola-like orchards. The vision

system uses deep neural networks and stereo matching to

detect and locate kiwifruit in real-world lighting conditions.

The proposal included a dynamic fruit scheduling system to

coordinate the arms throughout the harvesting process. The

performance evaluation results showed that the system was

capable of successfully harvesting 51.0%of the total kiwifruit

within the orchard with an average cycle time of 5 s/fruit.

In [13], the authors proposed a dual-armed cooperative

approach for a tomato harvesting robot using a binocu-

lar vision sensor. The tomato detection algorithm com-

bined the AdaBoost classifier and color analysis. The

three-dimensional scene reconstruction was obtained in a

simulation environment by using the point clouds acquired

from a stereo camera. The achieved harvest success rate

was 87.5%; meanwhile, the harvesting cycle time excluding

cruise time, was less than 30 s.

A robotic harvesting system that performed recognition,

approach, and picking tasks for aubergines was presented

in [14]. The proposed machine vision algorithm combined a

color segmentation process and a vertical dividing operation.

To actuate the manipulator, they designed a visual feedback

fuzzy control model that enables themanipulator end-effector

to approach the fruit from a distance of 0.3 m. The sys-

tem achieved a successful harvesting rate of 62.5% and an

aubergine-harvesting execution time of 64 s.

The aforementioned studies used more than one arm work-

ing independently; however, coordinating their behavior was

not among the considered objectives. To fill this gap in

robotic harvesting, this study proposes and validates planning

and control algorithms for a dual-arm aubergine harvesting

robot whose end-effectors operate cooperatively allowing it

to reproduce complex human movements during harvest-

ing tasks, e.g., with one arm pushing leave sideways while

the second arm picks the fruit.

Vegetables such as aubergines must be harvested care-

fully to avoid damage, which is important for maintain-

ing fresh-market quality and increasing product desirability.

In recent years, the production trend for aubergines has under-

gone a significant increase within the European Union; Spain

is the current leader in aubergine exports, although countries

such as China and India are also notable in aubergine cultiva-

tion [15]. This increase shows the importance of aubergines

agriculturally and economically. However, research studies

that address the development of robotic harvesting systems

targeting aubergines are scarce [14], [16]; the successful

harvesting performance rates are low, and the harvesting time

per fruit is high. These conditions motivated our interest in

selecting this crop and the future possibilities that aubergine

harvest automation can offer.

The remainder of this article is organized as follows.

Section 2 describes the materials and methods used for

the design and implementation of the proposed robotic

harvesting system. Section 3 presents the image segmen-

tation algorithm for detecting and localizing aubergines.

Section 4 explains the planning algorithm that calculates the

sequence of movements required to grasp and detach the

aubergines. Section 5 discusses the design and implementa-

tion of the proposed dual-arm manipulation strategy when a

fruit is occluded. Section 6 presents the results obtained from

the experimental tests, and finally, Section 7 summarizes the

main conclusions.

II. MATERIALS AND METHODS

This section describes the implemented dual-arm robotic

platform and the proposed algorithms that reproduce complex

human movements during harvesting tasks.

A. DUAL-ARM HARVESTER ROBOT

The hardware of the proposed harvester robot consists of a

dual-arm robotic system and a sensor rig. The selected robotic

arms are two Kinova MICOTM endowed with the Kinova

Gripper KG-3 [17]. These arms are lightweight and feature

low power consumption. Each robotic arm is composed of

six interlinked segments providing 6 DoF with a maximum

payload of 2.1 kg in mid-range continuous operation, which

is an adequate load capacity for the gripper and for harvesting

aubergines [18]. The grippers are underactuated with a set of

three flexible fingers. The opening and closing movements
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of the fingers are driven by three linear actuators, one for

each finger, allowing objects to be grasped with a force of

40 N. The upper parts of the grippers can be equipped with a

custom-made tool for cutting aubergine peduncles.

To exploit the capabilities of the dual-arm platform dur-

ing precision harvesting tasks, the torso of the robot fol-

lows an anthropomorphic design [19]. Moreover, to achieve

good robotic arm performances during dual manipulation,

they are configured with right and left-handed configurations

(see Fig. 1).

FIGURE 1. Prototype of the dual-arm harvester robot. a) lateral view
b) front view.

The vision system consists of two cameras, a Prosilica

GC2450C, which provides a high-resolution color image, and

a Mesa SwissRanger SR4000, which provides a point cloud

of the scene. The Prosilica GC2450C has a 5.0 megapixel

resolution, is GigE Vision compliant [20], and incorporates

a high quality sensor that provides superior image quality,

excellent sensitivity, low noise, and a full-resolution frame

rate of 32 fps. The Mesa SwissRanger SR4000 camera is a

measurement device that captures 3D data of infrared (IR)

light-reflective objects in the surrounding scene [21]. The dis-

tance measurement capability is based on the time-of-flight

(TOF) principle. In nominal operation mode, an absolute

accuracy of less than 0.01m is achievable within awork range

of 10 m at an acquisition rate of 50 frames per second.

Both cameras use a software triggeringmode, whichmeans

that they wait for an ‘‘acquire’’ command before starting

synchronized image capture. Both cameras communicate via

Ethernet.

The software architecture system is implemented in the

robot operating system (ROS) and formed by four modules,

which are responsible for (i) image acquisitions from both

cameras, (ii) detecting and localizing the aubergines in the

robot’s coordinate space, (iii) motion planning and (iv) con-

trol of the dual-arm robot [22]. At the heart of the architecture

is the ROSmaster running on localhost, whichmakes it possi-

ble for nodes to find each other and exchange data. Each node

has its own topics that can be used to publish or subscribe to

messages. A node publishes data in a common space under

a topic. Other nodes can use these data simultaneously by

subscribing to that topic. As shown in Fig. 2, the system has

six programmed nodes:

• Two nodes within the image acquisition module for

running both cameras (TOF and RGB) synchronously

FIGURE 2. Overview of the proposed software architecture.

and registering the color and range data in the same

reference frame.

• The MATLAB-ROS node of the spatial localization

module for recognizing the target objects, estimating

their centroid positions, and calculating the inverse kine-

matics of the robotic arms.

• The Move Group node of the simulation and planning

module, which is responsible for computing the neces-

sary control inputs and sending the corresponding com-

mands to the control module.

• Finally, the two PID nodes of the control module for run-

ning the joint of each arm according to the commanded

control inputs.

B. METHOD

Fig. 3 summarizes the various steps of the designed

and implemented decision-making strategy for automatic

aubergine harvesting. Before starting, a reference model of

the aubergine variety to be harvested is defined that includes

the minimum size (minimum number of pixels in the image

plane) that the fruit must occupy to fulfill the desired quality

standards. Then, all the systems are initialized. The sensor rig

proceeds with the synchronized acquisition of data from the

effective field of view. The acquired color image and the point

cloud data are registered due to the different pixel resolutions

and the different camera fields of view. In this case, to reduce

the computational load, the color data are mapped into the

coordinate frame of the range data. Next, the registered color

image and the point cloud are used as input to an image

segmentation algorithm that detects aubergines based on four

aspects: (i) reflectance measurements in the scene, (ii) the

3D positions of the candidate pixels in space, (iii) the sizes
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FIGURE 3. Overview of the main steps involved in the proposed aubergine harvesting cycle.

of the regions of interest, and (iv) interactions with blocking

leaves. The point clouds of detected fruits that have a high

visibility percentage and that meet the standards required for

harvest are then used as input by a planning algorithm which,

based on theworkspace, determines the locations of the fruits,

the arm configurations, and the movements necessary to

grasp and detach aubergines. These movements may involve

the simultaneous harvesting of two pieces of fruits, or harvest-

ing with a single arm. In contrast, the point clouds of the fruits

that have a low visibility percentage are further processed by

the proposed occlusion algorithm, which plans collaborative

arm behaviors to solve occlusion problems and implement

dual-arm harvesting. The main algorithms involved in the

proposed decision-making strategy are described below in

more detail.

III. IMAGE SEGMENTATION

Image segmentation is a computer vision process that parti-

tions a digital image intomultiple regions to facilitate its anal-

ysis. Image segmentation is typically used to locate objects

and boundaries in images. This process is trivial for humans;

nevertheless, achieving robust image segmentation is still a

challenge in computer vision applications because noise, low

contrast, poor illumination and object boundary irregularities

can lead to inaccurate results [23], [24].

The techniques commonly used in image segmenta-

tion are thresholding-based, gradient-based, region-based,

edge-based, and classification-based [25]. Within the

classification-based techniques, machine learning and deep

learning algorithms play a relevant role by establishing

relationships among multiple features to improve system

efficiency. Each instance in every dataset used by the learn-

ing algorithms is represented by the same set of features.

If instances are provided with known labels that represent the

corresponding correct outputs, the learning process is called

supervised. In contrast, in unsupervised learning, the training

instances are unlabeled [26].

A number of surveys and reviews gathering the main

advances on semantic segmentation have been presented in

recent years. For instance, [27] provides an overview of

broad segmentation topics including unsupervised and fully

supervised methods as well as existing influential dataset

and evaluation metrics. In [28] the strengths, weaknesses and

major challenges of top image segmentation approaches are

described. Deep learning for semantic segmentation is com-

prehensively reviewed in [29]–[31]. In [32] three categories

ofmethods are reviewed and compared, including those based

on hand-engineered features, learned features and weakly

supervised learning. Last, weakly supervised image semantic

segmentation is also reviewed in [33], [34].

In this study, the inputs and the desired outputs of the

classification model are known; consequently, the selected

learning method is supervised. The first step in supervised

learning is to collect the dataset and determine which features
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are the most informative. In this study, the dataset consists

of 1, 753 aubergine samples acquired under different light-

ing conditions, and the feature used is the colors of the

different scene elements. Color is a popular visual cue in

machine vision tasks, and it is an appropriate choice for a

discriminative feature because vegetables tend to have differ-

ent reflectance properties than do the foliage and branches

around them.

However, instead of using the original R, G, and B values

directly, we introduce color transformations before applying

the segmentation algorithm to reduce its sensitivity to chang-

ing illumination conditions. These transformations quantify

the intensity differences between the red and green channels

(R-G) in the RGB color model and the hues in the HSV

(hue saturation value) color model [35]. These images are

then used as inputs for the segmentation process. The pro-

posed image segmentation algorithm consists of three parts:

a support vector machine (SVM) (which is a pixel-based

classifier), a watershed transformation and the corresponding

point cloud extraction.

To design the pixel-based classifier, and considering the

agricultural scenario of interest, we designed four classes:

aubergines, leaves, branches and the scene background.

We tested different algorithms to find the model that best

fits the data. A dataset was randomly selected for training

these algorithms. Table 1 lists the obtained results. Clearly,

the algorithm that best suits the data is the SVM cubic algo-

rithm, which achieved a success rate of 97.4%. Consequently,

this algorithm was selected for the segmentation process.

TABLE 1. Accuracy scores of some of the tested models.

SVM is a supervised machine learning algorithm widely

used in classification and pattern recognition tasks. An SVM

chooses the decision boundary that minimizes the general-

ization error by selecting the hyperplane that provides the

maximum separation or margin between the classes [36].

SVMs are well suited to learning tasks where the number

of features is large with respect to the number of training

instances, and they tend to performmuch better when dealing

with multiple dimensions and continuous features. Therefore,

a large sample size is required to train an SVM to achieve

its maximum prediction accuracy. SVMs also perform well

when multicollinearity is presented and when a nonlinear

relationship exists between the input and output features [26].

After the pixel classification (see Fig. 4), the aubergines

can be discriminated from the remaining elements in the

scene (leaves, branches and background). Next, to separate

adjacent aubergines that appear as a single blob, we apply a

procedure based on the watershed transform and the minima

imposition technique [37], [38]. The watershed transforma-

tion is an effective morphological tool that treats an image

as a topographic surface, providing catchment basins and

watershed ridge lines by assuming that objects are character-

ized by a homogeneous texture (and hence a weak gradient).

First, noise should be removed to eliminate small dots that

should be in the aubergine class. Then, the watershed trans-

form of the image is computed. The watershed transform is

known for its tendency to oversegment an image because each

local minimum becomes a catchment basin. One solution to

avoid this problem is to filter out tiny local minima and then

modify the distance transform: this process is called minima

imposition [39]. After these steps, the watershed transform is

computed again, and the resulting watershed ridge lines are

utilized to separate the adjacent aubergine blobs. Based on

these blobs, the point clouds of the detected aubergines are

extracted, and their corresponding centroids are estimated.

However, because this process is performed with the cam-

era provided data, a transformation must be performed from

the camera coordinate system to the robot base, as follows:

pixelcoord · T campixel · T
end
cam · T baseend = pbase (1)

As shown in (1), first, the pixel coordinates (x, z) are

transformed into the camera coordinates, using the camera

projection matrix. After obtaining the planar projective coor-

dinates, the y axis distance provided by the TOF camera

is added. Using the camera-robot calibration proposed by

Taylor [40] the transformationmatrix between the camera and

the end-effector robot is extracted. Finally, by applying the

transformation of the end-effector robot to its base, the 3D

localization of each aubergine with respect to the end-effector

is procured.

At this point, the planning algorithm discards any

aubergine that is outside the workspace of both arms. Then,

a new decision criterion based on the average fruit size is

introduced into the process. It is well known that vegetables

must fulfill various requirements to reach the quality level

required by fresh markets. One such requirement is average

size. All aubergines should be approximately the same size

when harvested.

Because the cameras are fixed on the robot’s torso, the visi-

ble area of the aubergines is estimated by counting the number

of pixels in each separate blob. Nevertheless, the area of a

region in an image changes according to the distance from

the camera to the object. Consequently, we apply a correction

distance factor to all the aubergine blobs. This correction is

applied according to the field of view of the camera, which

is the part of the world visible to the camera at a particu-

lar spatial position and orientation. This view is most often

expressed as the angular size of the view cone, that is, as a

view angle. From its technical specifications, the TOF camera

has a field of view of 69◦
× 56◦ (see Fig.5-(a)).

Using the cone of the field of view and trigonometric rules,

the real area of each aubergine can be calculated indepen-

dently of its distance to the camera. To calculate the true
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FIGURE 4. Segmentation process: (a) captured image; (b) classification of all the scene elements; (c) aubergine classification; (d) leaf classification.

area, the length values of the major and minor axes of the

aubergine regions are also necessary. Then, the tangent of α

(see Fig. 5-(b)) is given by:

tan(α/2) =
H/2

dz
(2)

where α is the angle corresponding to the vertical field of

view (56◦); dz is the z-component of the distance from the

extracted object to the optical center of the TOF camera; and

H is the height of the complete image at that distance. The

latter term is an unknown value.

After calculating the height of the entire image (in meters),

the proportional factor between that height in meters and the

total height of the image in pixels (144 px) can be obtained.

Next, some manipulations are conducted. For simplification

purposes, the shapes of the aubergines are approximated to

an ellipse; this approach is beneficial because it requires

less processing time and well matches the overall aubergine

shape. In addition, it can be generalized that aubergines hang

upright due to their weight. Therefore, the major axis of the

ellipse corresponds to the length of the aubergine. Conse-

quently, by applying a proportional factor, the length of the

aubergine in meters can be calculated.

In addition, the width of the aubergine is needed to cal-

culate the area of the ellipse. Following the same process

described above for the height, but with the trigonometry

obtained from Fig. 5-(c), the width is obtained as follows:

tan(β/2) =
W/2

dz
(3)

After calculating the height and width, the real area of the

aubergine can be extracted using the equation of the area of

an ellipse; this result is independent of the distance.

As mentioned above, aubergines are harvested when they

have reached an optimal size. Because of this, the optimal size

is used to discriminate aubergines with the quality required

by fresh market, from those that do not fulfill the require-

ments. Thus, the estimated size of the detected aubergines is

compared with a predefined template to calculate the percent-

age of visibility of each fruit. Depending on the percentage

of visibility, the aubergines are categorized as either whole

or partially occluded (those whose visibility percentage is

FIGURE 5. Camera views: (a) camera field of view; (b) obtaining the
aubergine major axis; and (c) obtaining the aubergine minor axis.

below 80% of the template model), which imply different

manipulation strategies.

IV. PLANNING ALGORITHM

This section is devoted to the manipulation of aubergines that

lie within the dual-arm workspace and fulfill the visibility

criteria. Fig. 6 shows a visualization of the workspace of

both arms in 3D. The idea is that each robotic arm should

be assigned to specific aubergines to harvest them in a col-

laborative manner. The decision-making process is based on

the 3D position of the aubergine centroid, which is its center

of mass.

To fully exploit the capabilities of the dual-arm con-

figuration, the robot can grasp two aubergines using both

arms simultaneously. However, one of the objectives for this

robotic system is to achieve effective cooperation between

the arms to increase picking efficiency while avoiding arm

collisions. To solve this problem, a harvesting schedule is

calculated that minimizes the collision opportunities for the
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FIGURE 6. Workspace of the robotics arms (blue and red colors represent the workspaces for the left and right arms, respectively): (a) workspace in 3D
and; (b) workspace in the x-y-axes.

robotic arms. In the harvester, as illustrated in Fig. 6-(b),

based on the x axis, the picking area in the camera views is

divided equally into a right arm section (section 1, in red) and

a left arm section (section 2, in blue). Because the gripper is

designed to pick aubergines in parallel with the x − y plane
(see Fig. 6-(b)), one requirement is that the robot should pick

aubergines from the right to the left in section 1. In addition,

because the robot’s torso is designed following an anthropo-

morphic configuration, the arms should grasp the aubergines

in a human-like fashion. Therefore, the right gripper is given

a favorite orientation parallel to the y axis; if this orientation
cannot be reached for the aubergine position, the orientation

is changed according to variations of π/4 until it achieves

an orientation parallel to the x axis, where the right gripper

opening faces the positive direction. With every change in

orientation, the final position of the arm is recalculated until

a feasible position is found. The process is the same for the

left arm; however, in this case, the left arm will start picking

aubergines from the left part of section 2 to the right part, and

the final calculated orientation will be parallel to the x axis

but with the left gripper facing the negative direction.

Following this procedure prevents the grippers and arms

from touching or frommoving the central aubergines. During

the process of inputting the detected aubergines into the

algorithm, the first goal is to determine the picking sequence

for the arms to maximize the simultaneous picking period

and avoid possible collisions. The default picking sequence

for both arms flows from the extremes to the middle of the

workspace. However, when the number of aubergines in the

section 1 is equal to or less than in section 2, it is better for

both arms to pick aubergines simultaneously. With the excep-

tion of the aubergines that are in the dual-arm workspace,

in this section, it is necessary to check the distances among

the selected aubergines to avoid collision between the two

arms. To maintain a safe distance, the aubergines must be

at least 0.16 m apart. When aubergines are closer than this

safety distance, they will be picked only with one arm - the

arm for whichmore aubergines are available. If the number of

aubergines that can be picked simultaneously is equal for both

arms, the central aubergines can be harvested with either arm.

Algorithm 1 summarizes the different steps described above.

After an aubergine is collected, the arm must move to a

release position; therefore, the initial positions of the arms

are always the same.

Once the picking sequence is set, it is necessary to perform

the planning of the trajectories to avoid collisions. For this

purpose, a virtual scene is created, which is used to represent

the world around the robot, as well as the state of the robot

itself. In the scene, obstacles such as the structure of the robot

and the floor, are included and considered by the motion

planner to avoid collisions of the robotic arms with elements

in the real world. To keep the virtual scene as similar as

possible to the real world, aubergines are also introduced

by using the point cloud of their corresponding regions of

interest. Fig. 7 shows an example of a manipulation scene

captured during the experimental tests.

This planning scene is developed in MoveIt!, an open

source robotics manipulation platform [41], which works

with motion planners from multiple libraries through a plu-

gin interface. In this case, the motion planner is config-

ured using the Stochastic Trajectory Optimization for Motion

Planning (STOMP), which is a probabilistic optimization

framework [42]. STOMP produces smooth well-behaved col-

lision free paths within reasonable times. The motion plan-

ning generates noisy trajectories, which are then combined

to produce an updated trajectory with a lower cost. This cost

function combines the cost of the obstacles and the smooth-

ness and it is optimized in each iteration. The trajectory is

then generated in response to the motion plan request using

the robot’s current state and the target, but also checking

collisions with the obstacles, including self-collisions.

The resulting trajectory is formed by several waypoints and

each of them contains the position, velocity, and acceleration

for all of the joints of both arms, as well as the start time
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Algorithm 1 Algorithm to Address the Motion Planning for

the Arms
Input: List of the detected aubergine(s) det
Output: Lists of picking dualArm, leftArm, rightArm
1: for each aubergine i in det do
2: Extract the centroid Ci
3: if Ci(x) > 0 then

4: Aubergine added to leftArm
5: else

6: Aubergine added to rightArm
7: end if

8: end for

9: Sort leftArm acording to C(x) from major to minor

10: Sort rightArm acording to C(x) from minor to major

11: for i = 1 to min(size(leftArm), size(rightArm)) do
12: Pair (leftArmi, rightArmi) added to dualArms
13: Remove leftArmi from leftArm
14: Remove rightArmi from rightArm
15: end for

16: for each pair of aubergines ∩ dual-arm workspace in

dualArm do

17: if distance between them < safe distance then

18: if leftArm is empty then

19: Both aubergines added to rightArm
20: else

21: Both aubergines added to leftArm
22: end if

23: Remove pair of aubergines from dualArm
24: end if

25: end for

26: return dualArm, rightArm, leftArm

FIGURE 7. A virtual manipulation scene captured during the experimental
tests.

of the next trajectory waypoint. Finally, the waypoint posi-

tions of the trajectory are used for the proportional–integral–

derivative (PID) controllers to provide the motion execution

command to the robot

V. OCCLUSION ALGORITHM

If an aubergine is not marked as a candidate to be harvested,

the next step is to check whether it is occluded by leaves or

is too small to fulfil the area criteria.

To determinate whether an occlusion exists, the algorithm

checks whether leaves are located in a space that a ready-

to-harvest aubergine would occupy by constructing an over-

lapped area. To accomplish this task, the aubergine template

model is placed by matching its centroid with that of the

visible area extracted in the previous step. In addition, the ori-

entation is also considered for overlapping in the template

model.

After overlaying the aubergine template model, a new

image processing procedure begins. The next step is to cal-

culate the intersection between the template model and the

leaves within its area. This process is performed from the

2D image. The goal is to achieve a high compute speed.

Although cases exist in which overlapped leaves may be

located far from the aubergines, the algorithm still finds an

intersection with them. The solution for these cases is to

include the distance from the centroid of these intersections to

the camera. In this way, the algorithm can discriminate among

leaves that could be an occlusion source and those that are far

from the aubergine.

At this point, the target aubergine will be ignored by

the harvesting process if no leaf-aubergine intersection is

detected based on the idea that this aubergine does not meet

the criterion of area because it is too small to be harvested.

Some aubergines may have several sources of occlusion.

In this situation, the criterion used is that the larger intersec-

tion causes the biggest occlusion problem; therefore, it is the

occlusion addressed by the system.

The next problem that arises is to schedule the arms. The

robot’s bimanual capabilities can be employed to manage

leaves with one arm while the other grasps the aubergine.

Therefore, in this process, both arms are used in the same

workspace; the system functions only for occlusions localized

to the workspace area shared by both arms.

In addition, to avoid occlusions that may be generated

during movements of the arm assigned to move the leaves

aside, we have considered several possible conditions. First,

the direction of the vector that joins the centroid of the visible

part of the aubergine and the centroid of the intersection

must be calculated. The direction of this vector in the x axis

will determine the arm used to move the leaves. In this way,

the system ensures that the aubergine will not be occluded

by the arm. The final step is to calculate the distance that

the arm should move the leaves to obtain a clear view of the

entire aubergine. Thus, the algorithm calculates another point

along the line that joins these two points. This point must be

separated from the intersection centroid by at least 0.15 m to

ensure that the entire aubergine is visible and avoid gripper

occlusions.

The different steps of the proposed algorithm are visualized

in Fig. 8 and summarized in Algorithm 2. In Fig. 8, the cyan

irregular line shows the contour of the detected aubergine
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FIGURE 8. Image processing performed for aubergines that do not fulfill
the area criteria; (a) Overlay of the standard aubergine (red) using the
centroid and orientation of the partially occluded aubergine (cyan);
(b) calculating the intersection area between the standard aubergine and
the leaves block (yellow); (c) calculating the vector that joins the centroid
of the aubergine with the intersection (cyan); (d) calculating the final
position where the arm pushes the leaves to move them apart (green).

blob; the red asterisk represents the centroid estimated from

the detected aubergine blob; the white irregular lines corre-

spond to the contours of the detected leave blobs; the red

ellipse corresponds to the model template overlapping over

the occluded blob; and the green line represents the direction

vector along which the robotic armmoves to sweep the leaves

aside and remove the occlusion.

Another consideration is the orientation of the arm that will

move the leaves. In an experimental phase, we determined

that the best way to move the leaves is to proceed with

the arm parallel to the y axis and with the gripper closed.

Consequently, the arm simply pushes the leaves away. In this

way, the system avoids having to grasp the leaves with the

gripper, which reduces the complexity of the movement.

After displacing the leaves, a new centroid is calculated for

the entire aubergine so that the peduncle can be cut correctly

to prevent damage to the vegetable.

Finally, it is important to note that the proposed strategy

is the same in all cases with occlusions because the point

of contact with the aubergine is the same, regardless of the

distance with the block of leaves. Therefore, since only a

displacement of the leaves is performed and the aubergines

are not manipulated in the process, they are not damaged.

In addition, the fingertips of robot grippers have a deformable

Algorithm 2 Algorithm to Address Possible Occlusions

Input: List of the aubergine(s) that not fulfil the area criteria

oc, list of all the leaves block l
Output: The displacement vector dir
1: for each aubergine i in oc do
2: Extract the centroid Ci
3: Extract the orientation Oi
4: Standard aubergine overlapping Si, with the same Ci

and Oi
5: for each leaves block j in l do
6: if ∃ Si ∩ lj and lj(z) < Ci(z) then
7: Occlusion of oci with lj
8: Calculate the area of Si ∩ lj, Aij
9: else

10: Classify oci as discarded aubergine

11: break

12: end if

13: end for

14: Extract the centroid Cij of max(Aij)
15: Calculate dir = Ci(x) − Cij(x)
16: end for

17: return dir

rubber that prevents possible damage to the aubergines during

contact events.

VI. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

The experiments were conducted under laboratory conditions

at the Centre for Automation and Robotics using the dual-arm

robotic platform and the software architecture described in

Section II. Aubergines (Solanum melongena) of the vari-

ety named ‘‘Thelma’’ distributed over a plant model were

selected for the experimental tests. These aubergines were

sourced from a greenhouse in Almería, Spain.’’

To validate the different algorithms that comprise the pro-

posed decision-making strategy, we conducted 90 experi-

ments to demonstrate the performance of the robotic harvester

in the most common real-world situations. The experimental

results provide valuable information on the advantages of the

system and on the challenges we face in improving the robotic

harvester. To perform an exhaustive analysis of the extracted

data, the results are separated into the achievements of the

sensor rig, the bimanual capacities of the robot provided by

the planning algorithm and the results of the novel occlu-

sion algorithm presented in this article. Finally, we present

achievements of the complete system.

B. EVALUATION OF THE IMAGE SEGMENTATION

ALGORITHM

To evaluate the output of the image segmentation algorithm,

the ground-truth data were carefully produced by manually

labeling the pixels that belonged to the visible areas of the

aubergines. Then, the aubergines detected by the algorithm
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were compared with the ground truth data, and the detection

performance was evaluated at the pixel level in terms of

the true-positive rate (TPR), false-positive rate (FPR) and

false-negative rate (FNR) [35]. The mean values obtained

from all the analyzed scenes as well as the minimum and

maximum values are presented in Table 2.

TABLE 2. Performance assessment at the pixel level of the proposed
detection algorithm.

The performance evaluation results at the pixel level show

that the proposed detection algorithm exhibits a high hit

rate of 85.32%, a low FPR of 0.05% and an acceptable

FNR of 14.68%. The poor FNR values generally occur at the

edges of the aubergines; the system identifies these pixels as

a different class due to the high contrast between the color of

the aubergines and the background.

In addition, the proposed detection algorithm is evaluated

at the aubergine level in terms of recall, precision and F-score

(the weighted harmonic mean of the test’s precision and

recall). In this case, instead of counting pixels, the aubergines

are counted as units. The results of this analysis can be seen

in Table 3.

TABLE 3. Performance evaluation at the aubergine level.

At the fruit level, the TPR of aubergines detected (Recall)

by the proposed algorithm is 88.10%, which indicates that

the algorithm fails to detect only a small number of targets.

From the results, most of the errors in undetected aubergines

are caused by the watershed transformation, which in some

cases does not separate the blobs into a correct number of

available aubergines due to lighting conditions. In addition,

the average precision provided by the detection algorithm

was 88.35%,which indicates a slightly higher number of false

positives compared to the number of false negatives. Such

misclassifications typically occur due to shadows produced

by the leaves.

Furthermore, the proposed algorithm achieves an F-score

of 0.878, which is a competitive value compared with meth-

ods used for harvesting other fruits. For example, [43] pre-

sented a system for detecting mangoes and obtained an

F-score of 0.881, while [44] achieved an F-score of 0.838

when detecting sweet peppers and rock melons. Considering

these scores, the F-score obtained by the proposed algo-

rithm for aubergine detection has a competitive advantage

over the other promising approaches; the competitors require

more computation but do not differ substantially in terms of

accuracy.

In the following, we present two tests that illustrate the

operation of the image segmentation algorithm.

The first test represents a simple case in which the

scene is composed of isolated aubergines without no occlu-

sions. Fig. 9 shows (a) the registered RGB image, (b) the

pixel-based classification map provided by the algorithm,

(c) the ground truth image and (d) the detected aubergines.

The output of the segmentation algorithm is quite similar

to the ground truth image; the correct classifications of the

four aubergines are visible in the image along with some

inaccuracies in the pixels at the edges of the aubergines.

In the second test (see Fig. 10), we tested the ability of the

system to address a common situation in image segmentation:

two overlapping targets. The overlapping aubergines may be

at the same distance or one may be in front of the other,

causing them to appear connected in the image. As explained

above, to address this type of situation, the system incorpo-

rates the watershed transformation to separate the blobs of

different aubergines. Fig. 10-(d) shows a correct performance

of the proposed algorithm, which is capable of separating the

detected blobs and thus discriminating between two different

aubergines.

C. EVALUATION OF THE PLANNING ALGORITHM

To assess the performance of single and dual-arm harvesting,

three cases are studied in this subsection. First, harvesting

with a single arm, which grasps the only aubergine available

in the scene. Second, harvesting by capitalizing on the move-

ment capabilities of both arms to pick two aubergines using

both arms simultaneously. The final case involves harvesting

two aubergines with the same arm. Table 4 lists the collected

times for these three cases. These results were obtained by

executing the image-processing algorithm and the inverse

kinematic calculations in MATLAB and using MoveIt! to

plan the trajectories and the execution of the real movements

of the robot. The computer used was equipped with an Intel

i7-4790 processor running at a clock speed of 3.6 GHz and

8 GB of RAM. The times shown were the averages of exe-

cuting ten trials for each case.

The image processing time includes the time spent to regis-

ter the RGB image, obtain the pixel-based classification map,

segment the aubergines that appear in the scene, and obtain

their locations in 3D space, as well as the time dedicated

to arm allocation in the dual-arm manipulation case. The

inverse kinematic was calculated using the Robotics System

Toolbox in MATLAB. Finally, the action time includes the

time required for robot movements; this also includes the

time for calculating the trajectories. The motion sequence

involves four actions: movement to the pregrasp position,

grasping, postgrasping and release to place the aubergines in

the collection box.

The results in Table 4 show that the time dedicated to image

processing is similar in all three cases. Nevertheless, in cases

where there are two aubergines, the time is longer because

the planning algorithm must assign the correct arm for each

aubergine.
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FIGURE 9. Experimental result - isolated aubergine scene: (a) registered RGB image (b) pixel-based classification map (c) pixel labeling (d) output of the
aubergine class.

FIGURE 10. Experimental result - connected aubergine scene: (a) registered RGB image (b) pixel-based classification map (c) pixel labeling (d) output of
the aubergine class.

TABLE 4. Comparison of one arm and dual-arm performance.

Now, focusing on the time corresponding to the compu-

tation of the inverse kinematics, this is clearly highest in

the two-aubergine cases, approximately double that of the

single-aubergine cases. This outcome is logical because these

cases require two different positions of the end-effector to be

calculated.

Finally, considering the time spent on the movement of the

harvester robot, which includes the trajectory planning using

the STOMP method [42], it can be found that an increase

occurs for the dual-arm manipulation compared to the single

arm manipulation for one aubergine. This is because the

system needs to calculate two paths to produce a cooperative

movement and check for possible collisions between the

two arms. These conditions increase the complexity of the

trajectory estimations, resulting in a greater computational

load. However, because the proposed algorithm avoids col-

lision by dividing the workspace for each arm at the middle,

the time spent checking for collisions is essentially negligible.

This minimal time increase is noteworthy because the robot’s

productivity is doubled when using both arms for picking.

Moreover, in comparison to the time required by a single

arm to pick two aubergines, the results are plainly more

advantageous for dual-arm manipulation.

Overall, the dual-arm configuration represents a signifi-

cant improvement to the system that increases productivity

because it can collect a larger number of fruits in a shorter

period compared using only a single arm.

D. EVALUATION OF THE OCCLUSION ALGORITHM

This section is considered the most important aspect of this

study because it assesses the performance of the algorithm

that enables the dual-arm robot to reproduce complex human

movements during harvesting tasks.

For the occlusion algorithm to perform correctly, image

segmentation is a significant step. The results obtained from

the image segmentation algorithm for the aubergine and leaf

classes are presented below.

The assessment is performed at the pixel level by

comparing the images obtained from the segmentation algo-

rithm with the ground truth data produced by the manu-

ally labeled pixels. To analyze this case, the labeling of the

leaves for the ground truth data correspond to those respon-

sible for generating the occlusion and the leaves adjacent to

the occluded aubergine; an example of the segmentation is

shown in Fig. 11. The metrics used to evaluate the detection

algorithm performance include TPR, FPR and FNR. The

mean, minimum and maximum values obtained from 16 ana-

lyzed scenes containing one occluded aubergine are presented
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FIGURE 11. Experimental results - occluded aubergine scene:
(a) registered RGB image (b) pixel-based classification map (c) pixel
labeling of the aubergines (ground truth data) (d) output of the aubergine
class (e) pixel labeling of the leaves (ground truth data) (f) output of the
leaf class.

in Table 5 for the aubergine class and in Table 6 for the leaf

class.

TABLE 5. Performance assessment at the pixel level of the proposed
detection algorithm for occluded aubergines.

The average TPR obtained for the aubergines is quite

satisfactory, considering that only occluded aubergines were

considered in the estimations. Generally, these occluded

aubergines are affected the most by shadows. The TPR for

leaves is high because the leaves are more visible than are

the aubergines in these cases. Therefore, the detection rates

obtained are sufficient for the proposed algorithm to operate

correctly.

From the execution times presented in Table 7, it can be

observed that the time spent on the occlusion algorithm is

small compared to the rest of the times. In contrast, the time

dedicated to calculating the inverse kinematics is greater

because the systemmust perform the calculations required for

the movements that enable the robot to move the leaves aside

TABLE 6. Performance assessment at the pixel level of the proposed
detection algorithm for leaves that create occlusion.

TABLE 7. Average times for scenes with occlusions.

and pick the exposed aubergines. However, to reduce the time

dedicated to these calculations, we limited the ranges of the

joint angles to find solutions most similar to those imple-

mented by humans during harvesting. Therefore, notably,

the computing time of the inverse kinematics is similar to that

required for the dual-arm manipulation.

In this case, because the robot manipulates the leaves,

we divided the success rates into the correct harvesting of an

aubergine and the correct movement to move the leaves aside.

The success rate for harvesting an aubergine is 93.75%, while

the success rate for moving the leaves aside is 81.25%. After

studying various scenes, most of the leaf-movement failures

occur due to the inability of the gripper to contact them

appropriately, causing the leaves to return to their original

positions. Other errors stemmed from incorrect scheduling of

the arms, producing a similar failure, in which the leaves slide

off the gripper. This is because the image detection system

does not consider the point where the leaves are attached to

the aubergine plant. Consequently, the leaves are scheduled

to be moved with one arm to eliminate the occlusion but that

movement is not sufficient to keep the leaves from occluding

the aubergine. Therefore, this problem can be addressed by

improving the image segmentation algorithm.

E. COMPLETE SYSTEM EVALUATION

To evaluate the performance of the complete system, we

executed 10 complete scenarios with the different cases pre-

sented above. Fig. 12 shows a scenario containing three iso-

lated aubergines that must be grasped with one arm, and a

partially occluded aubergine that uses the dual-arm manip-

ulation capabilities. In addition, the scenario includes one

aubergine that is not ready to be harvested due to its size. The

twomain metrics were used to test the harvester robot include

the success rate and the picking cycle time; these represent

the harvesting accuracy and speed, respectively. Failure cases

were recorded and analyzed to identify challenges to be

addressed in future versions of the system.

Table 8 shows the harvesting success rates for the three

types of proposed manipulations. The average success rate

is 91.67%. The table shows that cases with more unpicked
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FIGURE 12. Experimental results - Test 4: a) registered RGB image; b) pixel-based classification map; c) ground truth data; d) output of the aubergine
class. The red asterisks represent the centroids estimated from the detected aubergine blobs, the irregular colored lines show the contours of the
detected aubergine blobs, the white irregular lines correspond to the contours of the detected leaf blobs, the red ellipse indicates the model template
superimposed over the occluded blob, and the green line represents the direction vector that the robotic arm follows to brush the leaves aside and
remove the occlusion.

TABLE 8. Success rate of the harvesting robot.

aubergines correspond to the scenarios with occlusions. The

failure cases are caused by the vision system, which does

not recognize some aubergines due to the low visibility

percentages they present. The success rate for isolated

aubergines is very high; only one failure case occurred when

the gripper grasped the aubergine only with the fingertips,

and the fruit fell to the ground before the arm reached the

release position. A special case in these scenes is the treat-

ment of small aubergines. These aubergines were identified

as occluded in two events because they were surrounded by

leaves. This problem can be addressed by taking a second

image after the leaves have been moved aside. To evalu-

ate the cycle picking time, we carried out a review using

time measurements that other agricultural research studies

have included; we found different configurations were used
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depending on the considered crop. For example, [45] focused

on strawberry harvesting and divided the cycle into percep-

tion time and harvesting time but without including in the

latter the manipulator configuration time required to drop the

individual fruits. Others, dedicated to collecting tomatoes,

included the complete working procedure, including the time

required to place the fruit into the collection box [46], [47].

For our system, the cycle picking time includes the release

time because due to the weight of the aubergines, the arm

must deposit grasped aubergines into a collection box before

starting a new grasping motion.

Most of our harvesting robot’s time is spent in the manipu-

lation process. The average time for the perception process is

0.81 s, including image registration, segmentation, 3D loca-

tion, planning algorithm and dealing with occlusions. This

time can vary depending on the number of targets included

in the captured image as well as on the scene complexity.

The harvesting time, including the time required for the arm

to travel to the aubergine, the picking time and the release

time, is 26.2 s on average. This time was obtained in a scene

containing five aubergines with the characteristics previously

discussed.

This average harvest time is considered satisfactory; to the

best of the authors’ knowledge, this study is the first time

that a harvesting process has been proposed that uses two

arms cooperatively in an unstructured environment similar to

a human being.

VII. CONCLUSION

This article presented a dual-arm robotic system and pro-

posed a decision-making strategy designed and implemented

for automatic aubergine harvesting in unstructured environ-

ments. The proposed strategy combines an image segmen-

tation algorithm with a dynamic planning algorithm and an

occlusion algorithm, which increases the picking success rate

of the harvester. The image segmentation algorithm (based on

an SVM pixel classifier, a watershed transform and a point

cloud registration) is responsible for detecting and localizing

aubergines. Depending on the workspace, the locations of

the fruits, and the arm configurations, the planning algorithm

determines the movement sequence needed to grasp and

detach the aubergines. These movements may involve either

the simultaneous harvesting of two pieces of fruit or harvest-

ing a single fruit with a single arm. Finally, the occlusion

algorithm addresses aubergines that have low visibility due to

leaf occlusions by planning a collaborative behavior between

the arms to solve the occlusion and proceed with dual-arm

harvesting. This cooperative operation mimics the complex

human harvesting motion of using one arm to push leaves

aside while the other arm picks the fruit.

The efficiency of the harvester was confirmed through lab-

oratory tests. The experimental results show that the harvester

can pick 91.67% of the total number of aubergines in the pro-

posed common scenarios. Therefore, the robotic aubergine

harvesting system shows a substantial level of validity.

Moreover, we analyzed the failed scenarios and obtained

interesting findings; for example, most of the failures were

related to changing lighting conditions. Thus, future work to

enhance the harvester robot should prioritize improvements

to image acquisition.
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