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Abstract— We present a locally reactive algorithm to con- algorithm: first, an algorithm where robots have global
struct arbitrary shapes with amorphous materials. The goal positioning, and second an algorithm where robots can only
is to provide methods for robust robotic construction in locally sense terrain. With global positioning, the ungled
unstructured, cluttered terrain, where deliberative approaches ramp building algorithm guarantees access to active sites
with pre-fabricated construction elements are difficult toapply.  throughout the construction process and its adaptive @atur
Amorphous materials provide a simple way to interface with enables the final shape to be built over irregular terrain.
existing obstacles, as well as irregularly shaped previoudeposi- ~ Without global positioning, we design a compiler that takes
tions. The local reactive nature of these algorithms allowsobots ~ an arbitrary goal structure;, and generatesiarkers in the
to recover from disturbances, operate in dynamic environmats,  environment such that when robots react to this marked up
and provides a way to work with scalable robot teams. environment they build the desired shape, Fig. 1.

We envision these type of construction algorithms and
o robots to be useful in preparing hazardous cluttered sitis w
A. Motivation loose rubble for people or other robots, either by building

Robots are well suited to perform tasks that put people stabilizing layer over loose material or providing sugpor
in harm’'s way or need to be performed faster and morstructures and roughly level surfaces for more accurate
consistently that humans can. The long-term goal of thitypes of construction. By exploring the tradeoff between
project is to enable robots to do the type of constructioh théocomotion and construction capabilities of a robot adains
is particularly useful in emergency situations, where sevethe allowable approximation error and construction speed,
time constraints and hazardous, poorly prepared conggruct this theoretical work can serve as a guide when designing
environments are the norm, for example building suppoguch systems. The contribution of this paper is to provide
structures, levies, or access ramps. The focus of this papera compiler for arbitrary target structures into an set of
to enable one or more mobile robots to reliably build approxenvironmental markings that reproduce a target structure
imations to pre-specified structures with amorphous buidi to within a pre-specified accuracy when robots respond to
materials. The target shape is assumed to be much largewith a known locally reactive behavior. In addition, the
than the robots, so they need to navigate and move on toplay technical contribution is a lower bound for terminating
the partially completed structure. Amorphous materidtsnal  structures of the ramp building [11] in terms £ continuity.
pre-specified structures to be built on or around irregularlThis bound allows us to prove compiler works and provides
shaped obstacles—something that is difficult to achievk witmore tools for reasoning about amorphous construction in
deliberative approaches and pre-fabricated construeien general.
ments. In contrast to most of the related work on robotic Section Il sets up the mathematical notation provides
construction and assembly, that focusses on building witheeded results. Procedures for building arbitrary strestu

I. INTRODUCTION

discrete lattice-like elements, we use a continuous probleare described in Sec. lll, where Sec. IllI-A summarizes
formulation and exploit the additional mathematical toolprevious work on building ramps, and Sec. IlI-C presents
that come with it. our main result. Simulations and a detailed error analykis o

Our algorithmic approach relies on reactive robot behaviothe resulting procedure are given in Sec. IV.
which means robots use current local information to make
decisions as opposed to following a fixed construction plaﬁ' Related Work
or maintaining a world model to execute such a plan. This Since construction is generally difficult, dirty, and often
approach provides feedback during the construction pspceslangerous work there has been much interest in automating
which allows us to work with amorphous materials that deit. This brief literature survey mostly focuses on related
form after deposition and operate in poorly characterizetl a algorithmic problems instead of mechanism design or low-
dynamic environments. In previous work we demonstratelével control problems.
a locally reactive algorithm to adaptively build ramps over Previous work on autonomous construction often focuses
arbitrary unknown terrain. Here we extend the work on rampn the case where robots (or building blocks) have good
building by approximating arbitrary target structures as astimates of their global position and all share the same
series of ramps. We present two flavors of the shape buildirngnsistent target shape [2][7][12][16][19] or compileatdd
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Fig. 1. (a) Irregular unnavigable terrain (black) and a dée-target structure (gray). (b) Ramp building executeé@roterrain with no knowledge of
target structure. Note that material is only added to mow peep features, i.e. to make terrain navigable. (c) Shajging with global knowledge. In
addition to ramp building, robots make a deposition whenévey within the target shape and more thaftom the shape’s boundary. (d) Shape built by
executing ramp building in an marked up environment. Roblotsiot know about the final target shape, but respond to nsd@npiled according to
Alg. 1 in Sec. IlI-C to approximate the target shape.

rules to create it [3][6]. Some approaches either abstiaya carefully designed) robot behavior represents the growth
motion constraints [16][21], or are developed for physicalynamics.

systems that do not have complicated motion constraints tha

restrict acceptable intermediate structures [2, pp130}fZb II. THE AMORPHOUSCONSTRUCTIONMODEL
Approaches based on additive manufacturing, e.g. [4] also

fall into this category of algorithms. This classificatioaded . -ll—hg f(;)llloowr:ng notha_ltlon IS S|Irfnllar to_ oudr earlier wc_)rk ang
on specification approach can be further broken down infgcluded both to achieve a seli-contained presentationt@n

how much information about the global state individuaFonCIsely state th? pervious results. This sections d“”‘_’"”
robots have during runtime. Some algorithms assume glob%llState and deposition model for amorphqus construction, a
knowledge of the state of the construction progress [2], | °‘?'e' for structures which robots can ngwgate, and a glqbal
while others use only local observations of the constructio rojection operato_r on structures .that Is used fo_r proving
state [12], [6], [16], [3]. The latter approaches often el correctness for building strategies in the next section.

the local nature to gain speedup though parallelism [12k »

[18], [21] and fault tolerance through reactive behavigi [ /~ Sate and Deposition Model

[20]. When we assume that robots have global position We model theconstruction area ) as a convex, compact,
estimates, the presented amorphous construction nedifly faand finite subset aR (or R?) and the domain of a bounded,
into this line of research. Robots share the same coordinaien-negative height functioh : @ — RT which describes
system and goal, but have only local knowledge of the structure. Robots move on structures and modify them.
building progress and use local rules to satisfy global amti While building specific structures, thgoal structure is
constraints. denoted byg. Given a goal structure and initial structue

. , the support of g is the set of points where the goal structure
The problem of specifying a target structure in a systefitars from the initial environment, and is denoted By—

with known gr_ovvth Qynamics is spe<_:ia| case of programme{ix € Q | h(z) < g(z)}, which we assume is a connected
self-assembly, in which a system of interacting components; pset ofQ. Given two structures, and g, ¢ is said to
is programmed/designed in such a way that the interactioqyminate 4 whenh < g = h(z) < g(x) Vz € Q. In general

dynamics result in a desired final shape. The extensive prigjj rg|ational symbols for functions should be interpreted

work in this area typically assumes that individual pieces dpointwise. Function spaces are denoted by scripted letters
not have good estimates of their global position or any dlobg, example, letQ be the space of real-valued, bounded

k_nowledge, such as the number of interacting componenis,, -tions onQ, and O+ C Q the subset of non-negative
size of the assembly volume, assembly state, etc. Instegfles Fynction application to points and operator apptioat
the gIQbaI behavior is encoded by specifying purely Ioc_qlo functions are denoted k) and [-] respectively.

behaviors [5], [9]. This general approach has been applied Robots can deposit amorphous construction material and

toa W.'de variety of systems, ranging fer DNA [13], MICTO- ¢ ontrol its volume and position. The free (top) surface afea
machined components where interactions are controlled @éposition is modeled by a parameterizaape function d €

lcarelfu_lly engineering enerkgy Ia;dscapes [1]’ :]O robotgdrwh ? while the bottom conforms to the structure. As a simple,
ocal interactions can take advantage of the considerag, sufficiently general, family of shape functions we use

storage and computational power of micro-processors [14]) < Given an apex-position pdi T
; . ) . - ,0) € @ xR and
The idea of using feedback on the whole self-assembli eepness, € R+ Iept P pdip, o) € @

system has also been explored by a number of groups. The
interactions are still local, but external global knowledg d(p.o) (@) = 0 — kal$ — |- (1)

of the assembly state is used to tune them [8][10][15].

The proposed markup procedure in Sec. IlI-C most closeljhe deposition operatoD : Q x QF — QT models
resembles patterned self-assembly or seeded growth [lifjteractions of depositions with the environment, hergogym
where global knowledge is used to compile environmentalovering it as construction with materials like mud, expand
markings that encode the target shape. Purely reactive (bog foam, or sand would. Given a structukec QT with



h(¢) < o, the new structure after depositialy, . is given
by
Dld(4,oy, h](x) = max{(d(z), h(z)}. 2

Given an initial structuréy, € Qt a structure is built b*
a sequence of depositions characterized by their shape pa-
rameters(¢1, o1), (¢2, 02), (¢3,03), .... The height function -
h,, aftern depositions is defined recursively by =

R* Q
hy, (95) = D[d(qbn.,an)a hn—l](f)- (3) Fig. 2. (a) Example functions fof —continuity. The functions: and &’

. . describe Lipschitz continuity with different parametei& The functions
After the n-th deposition, the local reactive rules of each, andn’ are navigability functions with different parametersande. (b)

robot direct it to move ork,, and possibly make a deposition Different f—con_tinuou/s projectilons of the same a sample function dfille
resulting in a new structurg,,,,. For example, in the case 9Y) Using usinde, &, n andn” for specifying continuity.
where robots have global knowledge, they deposit whenever

they are inside the goal shape. Theorem 1. The operatorPy : Q — Q in Eqn. (7) has

B. Navigable Structures and f-continuity the following properties:

1) P¢[h|(z) is the smallestf—continuous function that
dominatesh.

2) f < f' = Pslh] > Py [h] (i.e. steeperf = add less)

See Fig. 2(b) for examples and Sec. VI for proof.

Theorem 2: The function

Building ramps requires a concise description of nav-
igable structures. This section recasts the definition
from [11][Eqn.(5)], where the primary aim was tractability
as type of continuity conditionf(—continuity).

We use three parameters to describe robot specific motion
constraints: X € R*, to model the maximum steepness n(z) = [ﬂ e+ Kz (8)
robots can drive up or down, € R*, to model the largest r
discontinuity robots can freely move past, aticc R+, to  fulfills the conditions in Eqgn. (6) ane—continuous func-
limit the amount of discontinuity in a small area, such as th#ons are exactly the set of navigable ones.

robot length. A structure is calleshvigable if and only if it Proof: (n-continuous= navigable) For a given con-
is locally (parameter) close (parameted) to K —Lipschitz, tinuous functionh, restricting the definition of:-continuity
ie.Vz,y € Q and|z —y| < r: in Eqn. (5) to point pairs;, 2’ s.t. | — 2’| < r results in the
navigability condition|h(x) — h(z')] < e + K|z — 2’|
[h(z) = h(y)] < €+ Klz —y]. (4)  (navigable= n-continuous) Given an arbitrary point pair

We show here how to recast this definition as a continuitf>© € @, the line is also inQ by assumption. Along
constraint where a single function, Eqn. (8 which depenes tihis line letzo, z; ... zx be N +1/ points spaced long
three navigability parameters, is used to weigh the digtandh® line with zp = = and zy = 2/, where the firstV

between two points. points are spaced apart and the last pair possibly less,
A function h € Q is called f-continuous iff [y — xn-1| < 7. For each pairr;_1,z; by navigability
() — h(@i1)| < e+|a; —as_1|. There areN = [@
ve,yeQ  |h(z) = hy)l < f(lz —yl), ®)  such point pairs and summing the incremental differences
where f : R* — R* is a monotone function that is zero atimplies n-continuity
zero and sub-additive i.e. , |z — 2’|
K|z —2'| + {7-‘
f(0) =0
+ N N
<y = [flz)<[fly) Yo,y eRT, = KY |wi—zia|+Nxe> Y |h(z;) — h(zi1)|
fle+y) < fl@)+fly) Yo,y eR. (6) i=1 i=1
For example, whenk(z) = Kz then a function is 2 [A(zo) ~ Man)| = [A(z) ~ h(a')] ©)
f—continuous with functiork (written ask-continuous) iff ]
it is K—Lipschitz, see Fig. 2(a) for example functions. Navigability is defined for structures and checked for

To reason about global guarantees of our local algorithmgpint pairs. Using the equivalence betweegontinuity and
we define the projection operatéy in Eqn.(7), which maps navigability allows a direct definition of navigable poirits
any structure to thelosest f-continuous function that can be a structure. A point: € Q in structureh is called navigable
built by only adding material. At point € @, Py takes the iff P,[h](x) = h(x).
maximum value of any needed additions so all other points

fulfill condition (5), [1l. BUILDING ARBITRARY STRUCTURES
This section describes increasingly complex examples of
Pylh](z) = ?eag{h(y) = flz = 9D} @) building structures: (1) a summary of pervious results on

building ramps that make arbitrary terrain naviagable;q?2)



strategy for building a goal structureg, on arbitrary, po-
tentially unnavigable terrain, when robots can estimagir th
global position in a consistent reference frame, i.e. haR8G
and (3) a compilation procedure for producing markers ths
allow robots to build structures to within a pre-specifieber
e using only local knowledge. As presented, all algorithm
in this section requiré) C R to get an ordering of points in Lobor
Q. One simple way of applying these algorithmsidoc R? A

is to fix a path and directly use the results. Alternativel _E:lldzf
these results could be extended to higher dimensions Dy

ordering points via a different scheme, for example, theig. 3. (a) Schematic of adaptive ramp building. Cone likpatitions are
estimated effort it takes to make them navigable or Oth(_ghown in red. The accessible region reaches form the srplbst in the

d ffici . | . omain to the current positian. When ramp building is complete (Fig. 1b)
procedures to create efficient implementations. the whole domain is navigable. (b) Schematic of robot spegéometric

limits on navigability parameters. The lengthg ,osition aNdl,qpo Place
A Building Ramps Adaptively limits on the maximum deposition height and

Our previous work on adaptive ramp building [11] guaran-
tees the construction of a final structure structure, over  Within these ranges the parameters can be chosen freely and
initial terrain, hg, that is navigable everywhere between different combinations will result in different final struces:
starting point;zo, and a goal positior,.. One or more robots all navigable according to Eqn. (4).
can build ramps using only local knowledge of the current Theorem 3: Settingzy = min(Q)+2r andz, = max(Q)
terrain and the heading direction towarg. and running the ramp building algorithm on an initial struc-

The ramp building algorithms works by maintaining ature ko where points up to the initial position; < z,, are
navigable area around,, called accessible region, and navigable results in a final structuke with upper and lower
extending it towardz, until the goal is reached, Fig. 3(a). bounds given by
Stpecifically, a robot repeats the following sequence of -oper Pylho] < ha < Pilho). (10)
ations:

Accessible Region
Zo xT

Proof: The choice ofzy and x, imply that A, is

1) Move toward goal until reached or finding non-navigable everywhere. The upper bouRdis proved in [11,
navigable feature, i.e. a point pdit — y| < r» with  Sec. 4.1]. Theorem 2 implies th#t,[ho] is navigable, and
|h(z) — h(y)] > K|z —y| +e. Thm. 1.1 implies it is the smallest navigable function that

2) Deposit on lower point of non-navigable point pairdominateshy. Sincehg < h., P,[ho] is a lower bound for
(minimum deposition height and maximum height h,. ]
given by robot geometry). Note that [11] assumes a continudusin order to ensure

3) Backup by2r. progress—a restriction we would like to relax to allow

As depositions made in response to non-navigable featur‘é@cominuit_ie‘S at markers in the next section. _
might themselves be non-navigable features, backing uplemma 4: Adaptive ramp building works over discontin-
guarantees that robots maintain the accessible region ti@us structures with a countable number discontinuities of
extends fromz,. This region might temporarily shrink, e.g. the from hOJ(rx_) + 22, 2ib(x — z;), where$(0) = 1, a; > 0,
when a robot is moving uphill, encounters an obstacle, arfl'd/0 € Q IS continuous. o ,
makes a deposition that is too steep to move past. By backing Proof: Since they have measure zero and finite height,
up and repeating the procedure new depositions are checkBt§ type of discontinuity does not change any of the vol-
for navagability. ume computations in the progress proofs. The restriction
How the navigability parameter&’, ¢, and r relate to % > O ensures that the discqntir_wuous poi@tsare only .
a robot's geometry is illustrated in Fig. 3(b). We assumgepogltlon locations (Iowgr point in no_n.-naV|gabIe pafr) i
that they can be chosen conservatively for a given robd}S neighborhood (responsible for deposition volume) eesu
In fact, since they influence the built structure one mighprogress [11, Sec. 3.1]. u
choose these va!ues to fulfill both robot motion constraintg, Building With Global Positioning
and produce desirable results. F_or exampl_e_, one couldecreat s, global positioning,
a smoother structure by choosing an artificially low Valu‘frary goal structurg
of e. The following considerations place limits on theseOuilding robots exe
parameters:

the problem of building an arbi-
(z) is easy to solve. In addition to ramp
cute the following behavior: they make a
deposition (of a maximum heigh(x) + 5) whenever they

Deposition resolution < e < Motion constraints. are in the supporty, of g and

Deposition paramteres ho(z) < g(z) — € (11)
0 <K< (e.g.K,) or motion 2
constraints. For these depositions, they follow the same sizing and

Robot length < r» < Sensing range. backing up strategy as in adaptive ramp building. Following



Fig. 4. (a) Diagram of compilation procedure and error baurihe original environment is shown in black, the structiarde built build, g, in grey,
and the markers as black dots. TheLipschitz approximation of the shape is shown in solid red ¢he +er bounds of acceptable final structures,
and!, as dashed red lines. The upper and lower bouRdsand P,, induced by the marker are shows as in blue lines. The corigpilatrocedure results in
markers that have a height equal to the uppes bound and are spaced so the lower bounds induced by eachrnrggtsect at points (shown in green)
on the—e7 bound of the structure. Markers are only placed on the sapplbown in green, of the grey structure, i.e. points in thgimal environment
on which the structure should be built. (b) Final structuodthin response to markers.

this strategy essentially treats the interiorgodis an obstacle C. Building Without Global Positioning
and the ramp building algorithm adaptively builds a ramp \ujithout global positioning individual robots do not know

over it. where they are with respect to the target shape. Local sgnsin

Robots might need to additional material to ensure thafjios them to assess the navigability of their immediate
the structures they are moving on are navigable. Where agflondings. Yet, while this restriction limits the atyiliof

how much they add is determined hyx) andi(z), UPPer jqividual robots to make decisions about where to build,
and lower approximations of that take navigability into  4rqnning the need of sharing in a consistent global referenc
consideration. They are defined in terms of, potentially-non4 e also makes this approach interesting to study in yheor
navigable, auxiliary functiong, andg;: and robust to position and progress uncertainty in practice

g(x)+er ,x€S Secifying Sructures: The particular strategy we pursue
gu(®) = ho(x) , otherwise here is to design a set df discrete markings» of the form
w(x) = Prlgu](x 12 N
(2) = Pilgu](x) (12) (o) = 3 (e ) 1)
=1
gi(x) = max(g(z) — er,ho) ,x €S so that ramp building otk + m results in the final target
oz , otherwise shapeg to within a pre-specified errot;. We tackle this
! ho(x) th h h fied We tackle th

. problem by designing a compilation procedure that takes
@) = Pelg](). (13) an arbitrary initial environmeniy(x), goal shapeg(z), and
In terms of the navigable upper and lower bounds thigrrorer to produce initial markings: on hg S.t. the system

strategy results in the following structure. dynamics of ramp building have a steady statéx) with
Theorem 5: When robots execute the ramp building al-|h.(z) — g(z)| < er on S, subject tog being navigable.
gorithm and additionally deposit on points € S when Compiling Markers

condition Egn. (11) with the maximum deposition height Each marker above a certain height makes a structure non-
constraintg(z) + § as outlined above, the resulting structurenavigable, so that robots will build a ramp in response. Give
he <uVx € Q andl < h, for all navigable points inS  the upper bound: and lower bound for acceptable final
with er = 5. structures the compilation procedure in Alg. 1 generates
Proof: The deposition height is limited by, on navi- of the form Eqgn. (14), such that ramp building ép + m,
gable points of;. Since any additional depositions to ensuregesult is a navigable structure that is bound betwieand«
navigability the are made by the ramp building algorithmfor every point in the supporf, and bounded above hy
the upper bound from Thm. 3 i8%[g,] = u. Robots will outside of the support.
deposit on points inS with h,, < g(z) — § < [ and can Marker placements are computed iteratively by choosing
make these depositions without violating the upper boungositions such that when their heightiig(x)+m(x) = u(x)
since the maximum deposition height is as leadtvhereg then the lower bounds of the resulting ramps intersect,on
is navigable, i.e. points that are not covered by a ramp,teobd=ig. 1(a). The points, where the lower bounds intersect, are

will keep adding to the target structure until the h,,. B called crossing pointg; € S. The compilation algorithm



Alg. 1 starts with a crossing pointy = min(S) and
alternates between computing the next larger marker loeati
21, which in turn determines the next crossing point
wherecy < x1 < ¢1... .

Algorithm 1 Compiling Markers.
1: ¢p = min(S)

O
height= 3rg

cm(x) = SO0 u(wi) — ho(:)d(z — ;).

2N=0
3: while ¢; < max(S) do . 00— 10
4: z; =max{z € S | [u(z) — n(|lx —¢;]) > l(c;)} . 5§ o
5: civ1 =max{c € S | |u(z;) — n(lz; — ¢]) > l(c)} =t
6:  incrementN = ’
7. end while v, o .
8 £

2

Theorem 6: Given an initial structuréhy and goal struc-
ture g > hy and target erroer > ¢, the compilation proce- o e or
dure in Alg. 1 terminates and generates a final marking " ©
_such_that executing adaptlve ramp buildingen+m results Fig. 5. Adaptive Ramp Building. (a) Schematic of test geayndor
in a final structurér, with the property thah.—Py[g]| < er  quantifying error (grey area). All quantities are normetfizto somer,
on the support off andh, < u outside the support. so this geometry represents building a ramp over a markerishthree

. . — . . imes a high as the robot is long.(b) Error volume of sampiecsiire as a

Proof:  This pI’OOf proceeds in three steps. F'rSt théunction of varyingr, ande and a constani = 0.5. Since all variables are
global upper bound, then the lower bound $pand finally  normalized toro, a value ofr = 2 represents increasing the characteristic
termination. length of a robot by2 ,either by physically increasing the robot size or

The upper bound s t-continuous. By construction S he sensig range The e = eri) e of e
ho +m < w and the upper bound for the final structurechanginger and keeping all other parameters the same. The inset shows
h. of adaptive ramp building othg + m is P; [ho + m] that aseq- grows only a small number of markers are needed, and the same
Since Py, [ho +m] is the smallest-continuous function that g;’mglreZlnla;kgzsaﬁzzfridfgi Eg;;]eré'qﬂi'f:f'g ;ﬁ:’:r': otiracy. For
dominateshy + m, v must be at least as large ahd < u
globally. Sinceu — Px[g] < er the other limit to ensure that
|h« — Pi[g]] < er on S is a lower bound for.. on S. shapey this approach to designing markers has three distinct

We prover the lower bound by induction and show thagqrces of error in the final structure
the marker between two crossing pointsandc;; induces
the lower bound onh, between the two points. Since
adding markers can only increase the sizehgf adding
more markers can only make the bound tighter. Assume that
| (2) — Pilg](2)| < er for all z < ¢;. By Line 4 in Alg. 1,
the smallestn-continuous function built in response to the
marker atz; is larger thanl at ¢; and the points between
¢; andz;. By Line 5 the nextc;; is close enough that at
the smallestz—continouse function built in response to the
marker atz; at lest as larger asat ¢;1; and the points in
betweenz; andc;, 1.

Since the magnitude of the derivative loAndu are both

1) If the goal shapey is not K-Lipschitz it is approxi-
mated byPy[g].

2) The difference betweefPy[ho + m] — Px[g]| which
result from approximating the shape by a finite number
of markers.

3) The uncertainty in the exact shape lof of where
the ramp building algorithm will stop, i.e. the bounds

The first type of error is due to a robot's motion con-

straints. If robots cannot move over steep features, then th

the final shape cannot have any. This error can be reduced by

bounded byk, the minimum separation betweenand z; using robots with navigability constraints that have a darg

is at least—<. Thus each pass through the loop ensure@lue of K. This type of error is bounded by — Pi[g]|.
progress. Termination requires thatis at leasts, otherwise The second type of error is related to marker density. Since

¢; = #; = ¢;41 and iterations through the loop (Line 3_6)it is controlled by the compilation parameter, the (L)
do not result in progress. error itself is easy to quantifyter from Py [g]. Figure 5(c)

Once the compiler has used global information to compuf&0Ws the number of markers needed to compile the target

maker height and locations, adaptive ramp building cardbuiftructure in Fig 4(a) as function ofr where all other
the structure by locally responding to them, see Fig. 4(b). parameters are constant. Since the navigability funetibas
a discontinuity, choosing the smallest for a given number

IV. SIMULATION EXPERIMENTS AND PARAMETER of markers makes sense. For some values the error can be
SENSITIVITY ANALYSIS decreased essentially for free (no additional markersjs Th
This section focuses on the quantifying different typesype of error 1) is bounded byer|S|, i.e. target epsilon
of errors when building arbitrary structures. Given a targdimes the size of the support. From the proof of Thm. 6,



an upper bound for the number of markers is given by thabstraction that works, it would be much better to look
minimum speparation between markers and the diameter for good deposition mechanisms and then adjust the theory
S, i.e. for a given target error and parameter combinatioaccordingly.

the number of needed markers is bound Ay 5L And
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VI. PROOFS

Proof: 1 (Smallest dominating —continuous function):

The proof proceeds in three steps, first we show H)gb]
is f-continuous, second that it is dominating, and third that
it is the smallest such function.

To prove f-continuity, assume to the contrary that
Ps[h](x) is not f—continuous. Therd z,2’ € @ s.t.
|Pr[h](z) — Pr[p](2")] > f(lz — 2'[). Without loss of
generality, assume thdt;[h|(z’) < Py[h](x). Dropping the
absolute value and rearranging terms gives:

Pr[h)(x) — f(lz —2']) > Pg[h](a")
or
gleag{h(y)—f(lx—yl}—f(lzr—:c’l)
> glgg{h(y’)—f(lw’—y’l)}- (15)

Choosing, the possibly sub-optimal valug, = y for the
smaller term yields

h(y) = f(lz = yl) = f(lz = 2']) > h(y) = f(|2" = y]).

Sub-additivity and monotonicity of lead to the following
contradiction

Flz" =yl > f(le—yl) + f(lz = 27])
> flz—yl+]z—2) = f(l2" =yl

Thus, P¢[h](z) is f—continuous.

To show thatPs [h] dominates:, note that in the definition
in Egn. 7 the maximization is over all elements @, since
x € @ and f(0) = 0, the value of the new functioR;[h](z)
atz is at least as large dgz).

Finally, to show P;[h] is the smallest dominating
f—continuous function, lety,h € QT be two functions
whereg > h andg is f—continuous. Assume to the contrary
that3x € @ s.t. Pr[h](z) > g(z). By the definition ofP;[h]
dz’ € Q s.t.

ha') = f(l2" = =[) > g(x).

Sinceg > h,

g9(z) <h(@) — f(j2’ —2]) < g(2') = f(|2" — 2|)
leads to a contradiction about thfe-continuity of ¢

f(z" —x]) < g(a’) — g(z) <g(z") — g(=)|.

Thus Py[h] is the smalles)f —continuous function that dom-
inatesh.
[
Proof: 2 (Preserved order of): Given two functions
f,f’ € Rt — RT that fulfill condition (6) wheref < f’
and an arbitrary structure € Q, then P.[h] < Py[h].
The proof follows directly from the definition Eqn. (7), sic
every point inPy. [h] is smaller (subtracts more) thafy [h].
[



