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Robotic Emotional Expression Generation Based on
Mood Transition and Personality Model

Meng-Ju Han, Chia-How Lin, and Kai-Tai Song, Member, IEEE

Abstract—This paper presents a method of mood transition
design of a robot for autonomous emotional interaction with
humans. A 2-D emotional model is proposed to combine robot
emotion, mood, and personality in order to generate emotional
expressions. In this design, the robot personality is programmed
by adjusting the factors of the five factor model proposed by
psychologists. From Big Five personality traits, the influence fac-
tors of robot mood transition are determined. Furthermore, a
method to fuse basic robotic emotional behaviors is proposed in
order to manifest robotic emotional states via continuous facial
expressions. An artificial face on a screen is a way to provide a
robot with a humanlike appearance, which might be useful for
human–robot interaction. An artificial face simulator has been
implemented to show the effectiveness of the proposed methods.
Questionnaire surveys have been carried out to evaluate the effec-
tiveness of the proposed method by observing robotic responses to
a user’s emotional expressions. Preliminary experimental results
on a robotic head show that the proposed mood state transition
scheme appropriately responds to a user’s emotional changes in a
continuous manner.

Index Terms—Emotional model, facial expression generation,
facial expression recognition, robotic behavior fusion, robotic
emotional interactions, robotic mood state transition.

I. INTRODUCTION

THE DEVELOPMENT of domestic and service robots has

gained increasing attention in recent years. The market of

service robots is forecasted to grow fast in the future. One of

the most interesting features of intelligent service robots is their

human-centered functions. Intelligent interaction with a user is

a key feature for service robots in health-care, companion, and

entertainment applications. For a robot to engage in friendly

interaction, the function of emotional expression will play an

important role in many real-life application scenarios. However,

it is known that to make a robot behave humanlike emotional

expressions is still a challenge in robot design.

Methodologies for developing emotional robotic behaviors

have drawn much attention in the robotic research community

[1]. Breazeal et al. [2] presented the sociable robot Leonardo,

which has an expressive face capable of near-human-level
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expression and possesses a binocular vision system to rec-

ognize human facial features. The humanoid robot Nexi [3]

demonstrated a wide range of facial expressions to communi-

cate with people. Wu et al. [4] explored the process of self-

guided learning of realistic facial expression by a robotic head.

Mavridis et al. [5], [6] developed the Arabic-language conver-

sational android robot; it can become an exciting educational

or persuasive robot in practical use. Hashimoto et al. [7], [8]

developed a reception robot, SAYA, to realize realistic speaking

and natural interactive behaviors with six typical facial expres-

sions. In [9], a singer robot, EveR-2, is able to acquire visual

and speech information while expressing facial emotion during

performing robotic singing. For some application scenarios

such as persuasive robotics [10] or longer term human–robot

interaction [11], interactive facial expression has been demon-

strated to be very useful.

There have been increasing interests in the study of robotic

emotion generation schemes in order to give a robot more

humanlike behaviors. Reported approaches to emotional robot

design often adopted results from psychology in order to design

robot behaviors to mimic human beings. Miwa et al. proposed

a mental model to build the robotic emotional state from

external sensory inputs [12], [13]. Duhaut [14] presented a

computational model which includes emotion and personality

in the robotic behaviors. The Traits, Attributes, Moods, and

Emotions framework proposed by Moshkina et al. gives a

model of time-varying affective response for humanoid robots

[15]. Itoh et al. [16] proposed an emotion generation model

which can assess the robot’s individuality and internal state

through mood transitions. Their experiments showed that the

robot could provide more humanlike communications to users

based on the emotional model. Banik et al. [17] demonstrated

an emotion-based task sharing approach to a cooperative multi-

agent robotic system. Their approach can give a robot a kind of

personality through the accumulation of past emotional expe-

rience. Park et al. [18] developed a hybrid emotion generation

architecture. They proposed a robot personality model based

on human personality factors to generate robotic interactions.

Kim et al. [19] utilized the probability-based computational

algorithm to develop the cognitive appraisal theory for design-

ing artificial emotion generation systems. Their method was

applied to a sample of interactive tasks and led to a more

positive human–robot interaction experience. In order to allow

a robot to express complex emotion, Lee et al. [20] proposed

a general behavior generation procedure for emotional robots.

It features behavior combination functions to express complex

and gradational emotions. In the authors’ previous work [21],

a design of autonomous robotic facial expression generation is

presented.

2168-2267/$31.00 © 2012 IEEE
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Fig. 1. Block diagram of the AEIS for an artificial face.

Previous related works show abundant powerful tools for de-

signing emotional robots. It is observed that a proper mood state

transition plays an important role in robotic emotional behavior

generation. Robotic mood transition from the current to the next

mood state directly influences the interaction behavior of the

robot and also a user’s feeling to the robot. However, most

existing models treat mood transition by simple and intuitive

representations. These representations lack a theoretical basis

to support the assumptions in their mood state transition design.

This motivated us to investigate a humanlike mood transition

model for a robot by adopting well-studied mood state conver-

sion criteria from psychological findings. The transition among

mood states would become smoother and thus might enable

a robot to respond with more natural emotional expressions.

We further combine personality into the robotic mood model to

represent the trait of the individual robot.

On the other hand, responsive interaction behaviors need to

be designed to manifest the emotional intelligence of a robot.

The relationship between mood states and responding behavior

of a robot should not be a fixed one-to-one relation. A contin-

uous robotic facial expression would be more interesting and

natural to manifest the mood state transition. Instead of being

arbitrarily defined, the relationships between robot emotional

behaviors (e.g., in a form of facial expression) and mood state

can be modeled from psychological analysis and utilized to

build the interaction patterns in the design of expressive be-

haviors. Finally, in order to demonstrate the effectiveness of the

proposed method, a 16-degree-of-freedom robotic head, as well

as a comiclike face simulator [22], was utilized to demonstrate

facial expressions generated by the proposed mood transition

method. Questionnaire surveys were performed to examine the

effectiveness of the design.

II. AUTONOMOUS EMOTIONAL INTERACTION SYSTEM

Fig. 1 shows the block diagram of the proposed autonomous

emotional interaction system (AEIS). Taking the robotic facial

expression as an example, the robotic interaction is expected

not only to react to the user’s emotional state but also to

reflect the mood transition of the robot itself. Responsive facial

expressions should combine several basic facial expressions

with varying emotional intensities. To do so, we attempt to

integrate three modules to construct the AEIS, namely, user

emotional state recognizer, robotic mood state generator, and

emotional behavior decision maker. An artificial face is em-

ployed to demonstrate the effectiveness of the design. A camera

is provided to capture the user’s face in front of the robot.

The acquired images are sent to the image processing stage

for emotional state recognition [23]. The user emotional state

recognizer is responsible for obtaining the user’s emotional

state and its intensity. In this design, the user’s emotional state

at instant k(UEn
k ) is recognized and represented as a vector

of four emotional intensities: neutral(uenN,k), happy(ue
n
H,k),

angry(uenA,k), and sad(uenS,k). Several existent emotional in-

tensity estimation methods [24]–[27] provide effective tools

to recognize the intensity of a human’s emotional state. Their

results can be applied and combined into the AEIS. In this pa-

per, an image-based emotional intensity recognition module has

been designed and implemented for the current design of AEIS.

The recognized emotional intensity consists of basic emotional

categories at each sampling instant and is represented by a value

between 0 and 1. These intensities are sent to the robotic mood

state generator. Moreover, other emotion recognition modalities

and methods (e.g., emotional speech recognition) can also be

input to AEIS, and only the recognized emotional states contain

intensity values between 0 and 1.

In the robotic mood state generator, the recognized

user’s emotional intensities are transformed into interactive

robotic mood variables represented by (∆αk,∆βk) (refer to

Section III-A for detailed description). These two variables

represent the way that a user’s emotional state influences

the robotic mood state transition. Furthermore, the robotic

emotional behavior depends not only on the user’s emotional

state but also on the robot personality and previous mood

state. Therefore, the proposed method takes into account

the interactive robotic mood variables (∆αk,∆βk), previous

robotic mood state (RMk−1), and robot personality parameters

(Pα, Pβ) to compute the current robotic mood state (RMk)
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(see Section III-D). In this paper, the current robotic mood state

is represented as a point in the 2-D emotional plane. Further-

more, robotic personality parameters are created to describe

the distinct humanlike personality of a robot. Based on the

current robotic mood state, the emotional behavior decision unit

autonomously generates suitable robot behavior in response to

the user’s emotion state.

For robotic emotional behavior generation, in response to the

recognized user’s emotional intensities, a set of fusion weights

(FWi, i = 0 ∼ 6) corresponding to each basic emotional be-

havior is generated by using a fuzzy Kohonen clustering net-

work (FKCN) (see Section IV) [28]. Similar to human beings,

the facial expression of a robotic face is very complex and is

difficult to be classified by a limited number of categories. In

order to demonstrate interaction behaviors similar to that of

humans, FKCN is adopted to generate an unlimited number of

emotional expressions by fusing seven basic facial expressions.

The outputs of FKCN are sent to the artificial face simulator

to generate the interactive behaviors (facial expressions in this

paper). An artificial face has been designed exploiting the

method in [22] to demonstrate the facial expressions generated

in human–robot interaction. Seven basic facial expressions are

simulated, including neutral, happiness, surprise, fear, sadness,

disgust, and anger. The facial expressions are depicted by

moving control points determined from Ekman’s model [29].

In the practical interaction scenario, each expression can be

generated with different proportions of the seven basic facial

expressions. The actual facial expression of the robot is gen-

erated by the summation of each behavior output multiplied

by its corresponding fusion weight. Therefore, more subtle

emotional expressions can be generated as desired. The detailed

design of the proposed user emotional state recognition, robotic

mood model, and interactive emotional behavior decision will

be described in the following sections.

III. ROBOTIC MOOD TRANSITION MODEL

Emotion is a complex psychological experience of an

individual’s state of mind as interacting with people or environ-

mental influences. For humans, emotion involves “physiolog-

ical arousal, expressive behaviors, and conscious experience”

[30]. Emotional interaction behavior is associated with mood,

temperament, personality, disposition, and motivation. In this

paper, the emotion for robotic behavior is simplified to as-

sociation with mood and personality. We apply the concept

that emotional behavior is controlled by the current emotional

state and mood, while the mood is influenced by personality.

In this paper, a novel robotic mood state transition method

is proposed for a given humanlike personality. Furthermore,

the corresponding interaction behavior will be generated au-

tonomously for a determined mood state.

A. Responding to User’s Emotional State

A simple way to develop robotic emotional behaviors that

can interact with people is to allow a robot to respond to

emotional behaviors by mimicking humans. In human–robot

emotional interaction, users’ emotional expressions can be

treated as trigger inputs to drive the robotic mood transition.

Furthermore, the transition of robotic mood depends not only

on the user’s emotional states but also on the robot mood

and personality of itself. For a robot to interact with several

individuals or a group of people, users’ current (at instant k)

emotional intensities (UEn
k ) are sampled and transformed into

interactive mood variables ∆αk and ∆βk to represent how the

user’s emotional state influences the variation of robotic mood

state transition.

From the experience of emotional interaction of human

beings, a user’s neutral intensity, for instance, usually affects

the arousal and sleepiness mood variation directly. Thus, the

robotic mood state tends to arousal while the user’s neutral

intensity is low. Similarly, the user’s happiness, anger, and

sadness intensities affect the pleasure–displeasure axes. Thus,

the user’s happy intensity will lead the robotic mood into plea-

sure. On the other hand, the robotic mood state behaves more

displeasure while the user’s angry and sad intensities are high.

Based on the aforementioned observations, a straightforward

case is designed for the interactive robotic mood variables

(∆αk,∆βk), which represent the reaction from current users’

emotional intensities on the pleasure–arousal plane, such that

∆αk =
1

Ns

Ns
∑

n=1

[

uenH,k −
(

uenA,k + uenS,k
)

/2
]

(1)

∆βk =
1

Ns

Ns
∑

n=1

2 ·
(

0.5− uenN,k

)

(2)

UEn
k =

⎡

⎢

⎣

uenN,k

uenH,k

uenA,k

uenS,k

⎤

⎥

⎦

=

⎡

⎢

⎣

kth neutral intensity for user n

kth happiness intensity for user n

kth anger intensity for user n

kth sadness intensity for user n

⎤

⎥

⎦
(3)

where Ns denotes the number of users and UEn
k represents four

kinds of the nth user’s emotional intensities. By using (1)–(3),

the effect on robotic mood from multiple users’ emotional

inputs is represented. However, in this paper, only one user

is considered for better concentration on the illustration of the

proposed model, i.e., Ns = 1 in the following discussion. It is

worth to extend the number of users in the next stage of this

study such that a scenario like the Massachusetts Institute of

Technology mood meter [31] can be investigated. Furthermore,

the mapping between facial expressions of interacting human

and robotic internal states may be modeled in a more sophis-

ticated way. For example, ∆αk can be designed as (ueiA,k +

ueiS,k)/2− ueiH,k such that alternative (opposite) responses to

a user can be obtained.

B. Big Five Model

McCrae et al. [32] proposed the Big Five factors (five factor

model) to describe the traits of human personality. The Big Five

model is an empirically based result, not a theory of person-

ality. The Big Five factors were created through a statistical

procedure, which was used to analyze how ratings of various

personality traits are correlated for general humans. Table I
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TABLE I
BIG FIVE MODEL OF PERSONALITY

lists the Big Five factors and their descriptions [33]. Moreover,

Mehrabian [34] utilized the Big Five factors to represent the

pleasure–arousability–dominance (PAD) temperament model.

Through linear regression analysis, the scale of each PAD value

is estimated by using the Big Five factors [35]. These results are

summarized as three equations of temperament, which includes

pleasure, arousability, and dominance.

In this paper, we adopted the Big Five model to represent the

robot personality and determine the mood state transition on a

2-D pleasure–arousal plane. Hence, only two equations are uti-

lized to represent the relationship between the robot personality

and pleasure–arousal plane. Here, the elements of the Big Five

factors are assigned based on a reasonable realization of Table I.

Referring to [34], the robot personality parameters (Pα, Pβ) are

adopted such that

Pα =0.21E + 0.59A+ 0.19N (4)

Pβ =0.15O + 0.3A− 0.57N (5)

where O, E, A, and N represent the Big Five factors of

openness, extraversion, agreeableness, and neuroticism, respec-

tively. Therefore, the robot personality parameters (Pα, Pβ) are

given as the robot personality is known, i.e., O, E, A, and N are

determined constants. Later, we will show that (Pα, Pβ) works

as the mood transition weightings on the pleasure (α axis) and

arousal (β axis) plane.

Note that the conscientiousness of the Big Five factors was

not used in this design because this factor only influences

the dominance axis of the 3-D PAD model. In this paper,

the pleasure–arousal plane of the 2-D emotional model was

applied, so only four out of five parameters are used to translate

the mood transition weighting from the Big Five factors.

C. Two-Dimensional Mood Space

The relationship between mood states and emotional be-

haviors has been studied by psychologists. Russell et al.

[36] proposed a 2-D scaling on the pleasure–displeasure and

arousal–sleepiness axes to model the relationships between the

facial expressions and mood state. In this paper, the result refer-

enced from Russell et al. is employed to model the relationship

between the mood state and output emotional behavior. Fig. 2

shows a 2-D scaling result for the general adult’s facial ex-

pressions based on pleasure–displeasure and arousal–sleepiness

ratings. As shown in Fig. 2, axes α and β represent the amounts

of pleasure and arousal, respectively. Eleven facial expressions

are analyzed and located on the plane. The location of each

facial expression is represented by a square along with its coor-

dinates. The coordinates of each facial expression are obtained

by measuring the location in the figure (interested readers are

Fig. 2. Two-dimensional scaling for facial expressions based on
pleasure–displeasure and arousal–sleepiness ratings.

referred to [36]). The relationship between robotic mood and

output behavior, facial expression in this case, is determined.

D. Robotic Mood State Generation

As mentioned in Section III-A, both the user’s current emo-

tional intensity and robot personality affect the robotic mood

transition. The way that robot personality affects the mood tran-

sition is described by robot personality parameters (Pα, Pβ). As

given in Section III-B, these two parameters act as weighting

factors on the α and β axes, respectively. When Pα and Pβ vary,

the speed of mood transition in the direction of the α and β axes

is affected. On the other hand, the interactive mood variables

(∆αk,∆βk) give the influence of the user’s emotional intensity

on the variation of robotic mood state transition. To reveal

the relationship between robot personality and mood transition,

we suggest to multiply robot personality parameters (Pα, Pβ)
with interactive mood variables (∆αk,∆βk). This indicates the

influence of robotic mood transition from the current user’s

emotional intensity as well as robot personality.

Furthermore, the manifested emotional state is determined

not only by the current robotic emotional variable but also by

the previous robotic emotional states. The manifested robotic

mood state at sample instant k (RMk) is calculated such that

RMk ≡ (αk, βk) = RMk−1 + (Pα ·∆αk, Pβ ·∆βk) (6)

where (αk, βk) ∈ [−1, 1] represents the coordinates of the

robotic mood state at sample instant k on the pleasure–arousal

plane. By using (6), the current robotic mood state is deter-

mined and located on the emotional plane. Moreover, the mood

transition is influenced by personality, which is reflected by the

Big Five factors. After obtaining the manifested robotic mood

state (RMk), the coordinate of (αk, βk) will be mapped onto

the pleasure–arousal plane, and a suitable corresponding facial

expression can be determined, as shown in Fig. 2.

IV. INTERACTIVE EMOTIONAL BEHAVIOR GENERATION

After the robotic mood state is determined by using (6), a

suitable emotional behavior is expected to respond to the user.

In this paper, we propose a design based on FKCN to generate
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Fig. 3. Fuzzy-neuro network for fusion-weight generation.

smooth variation of interaction behaviors (facial expressions)

as the mood state transits gradually.

A. Proposed Expression-Fusion Design Based on FKCN

In this approach, pattern recognition techniques were

adopted to generate interactive robotic behaviors [21], [28]. By

adopting FKCN, the robotic mood state, obtained from (6), is

mapped to fusion weights of basic robotic emotional behaviors.

The output will be a linear combination of weighted basic

behaviors. In the current design, the basic facial expression be-

haviors are neutral, happiness, surprise, fear, sadness, disgust,

and anger, as shown in Fig. 1. FKCN is employed to determine

the fusion weight of each basic emotional behavior based on the

current robotic mood. Fig. 3 shows the structure of the fuzzy-

neuro network for fusion-weight generation. In the input layer

of the network, the robotic mood state (αk, βk) is regarded as

inputs of FKCN. In the distance layer, the distance between the

input pattern and each prototype pattern is calculated such that

dij = ‖Xi − Pj‖
2 = (Xi − Pj)

T (Xi − Pj) (7)

where Xi denotes the input pattern and Pj denotes the jth

prototype pattern (see Section IV-B). In this layer, the degree

of difference between the current robotic mood state and the

prototype pattern is calculated. If the robotic mood state is not

similar to the built-in prototype patterns, then the distance will

reflect the dissimilarity. The membership layer is provided to

map the distance dij to membership values uij , and it calculates

the similarity degree between the input pattern and the proto-

type patterns. If an input pattern does not match any prototype

pattern, then the similarity between the input pattern and each

individual prototype pattern is represented by a membership

value from 0 to 1. The determination of the membership value

is given such that

uij =

{

1 if dij = 0
0 if dik = 0 (k > 0, j ≤ c− 1)

(8)

where c denotes the number of prototype patterns; otherwise

uij =

[

c−1
∑

l=0

dij
dil

]−1

. (9)

Note that the sum of the outputs of the membership layer

equals 1. Using the rule table (see later) and the obtained

membership values, the current fusion weights (FWi, i = 0 ∼
6) are determined such that

FWi =

c−1
∑

j=0

wjiuij (10)

where wji represents the prototype-pattern weight of the ith
output behavior. The prototype-pattern weights are designed in

a rule table to define the basic primitive emotional behaviors

corresponding to carefully chosen input states.

B. Rule Table

In the current design, several representative input emotional

states were selected from the 2-D model in Fig. 2, which gives

the relationship between facial expressions and mood states.

Each location of facial expression on the mood plane in Fig. 2

is used as a prototype pattern for FKCN. Thus, a rule table is

constructed accordingly following the structure of FKCN. As

shown in Table II, seven basic facial expressions were selected

to build the rule table. The IF part of the rule table is the

emotional state of αk and βk of the pleasure–arousal space,

and the THEN part is the prototype-pattern weight (wji) of

seven basic expressions. For example, the neutral expression

in Fig. 2 occurs at (0.61, −0.47), which forms the IF part of

the first rule and the prototype pattern for neutral behavior. The

THEN part of this rule is the neutral behavior expressed by a

vector of prototype-pattern weights (1, 0, 0, 0, 0, 0, 0). The

other rules and prototype patterns are set up similarly following

the values in Fig. 2. Some facial expressions are located at

two distinct points on the mood space, both locations are em-

ployed, and two rules are set up following the analysis results

from psychologists. There are altogether 13 rules as shown in

Table II. Note that Table II gives us suitable rules to mimic the

behavior of humans since the content of Fig. 2 is referenced

from psychology results. However, other alternatives and more

general rules can also be employed. FKCN works to generalize

from these prototype patterns all possible situations (robotic

mood state in this case) that may happen to the robot. In the

FKCN generalization process, proper fusion weights for the

corresponding pattern are calculated. After obtaining the fusion

weights of output behaviors from FKCN, the robot’s behavior

is determined from seven basic facial expressions weighted by

their corresponding fusion weights such that

Artifical facial expression

= RBN × FW0 + RBH × FW1 + RBSur × FW2

+ RBF × FW3 + RBSad × FW4

+ RBD × FW5 + RBA × FW6 (11)

where RBN, RBH, RBSur, RBF, RBSad, RBD, and RBA repre-

sent the behavior control vectors of neutral, happiness, surprise,

fear, sadness, disgust, and anger, respectively. It is seen that (11)

gives us a method to generate facial expressions by combining

and weighting the seven basic expressions.

The linear combination of basic facial expressions gives a

straightforward yet effective way to express various emotional
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TABLE II
RULE TABLE FOR INTERACTIVE EMOTIONAL BEHAVIOR DECISION

behaviors. In order to make the combined facial expression to

be more consistent with human experience, an evaluation and

adjusting procedure was carried out by a panel of students in

the laboratory. The features of the seven basic facial expressions

were adjusted as distinguished as possible to approach human

perception experience. Some results of linear combination are

demonstrated using a face expression simulator (please refer to

Section IV-D).

In fact, human emotional expressions are difficult to be

represented by a mathematical model or several typical rules.

On the other hand, FKCN is very suitable for building up the

emotional expressions. The merit of FKCN is its capacity to

generalize the results using limited assigned rules (prototypes).

Furthermore, dissimilar emotional types can be designed by

adjusting the rules. For the artificial face, facial expressions are

defined as the variation of control points, which are positions of

the eyebrow, eye, lips, and wrinkles of the artificial face.

C. Evaluation of FKCN Fusion-Weight Generation

In order to verify the result of fusion-weight generation using

FKCN, we applied the rules in Table II and simulated the results

of weight distribution for various emotional states. The purpose

is to evaluate how the proposed FKCN works to generalize any

input emotional state (αk, βk) and gives a set of output fusion

weights corresponding to the input. Fig. 4 shows a simulation

result of the weight distribution of a basic expression versus

robotic mood variation on the pleasure–arousal plane. Here,

only one simulation output for neutral emotional expression

is illustrated. The black squares in Fig. 4 indicate the robotic

mood transition from (αk−1, βk−1) to (αk, βk). Fig. 4 shows

the weight distribution of neutral expression for the whole

robotic mood space. The same contour color in the figure has

the identical neutral weight. The maximum weight (1) occurs

at (0.61,−0.47) in the pleasure–arousal plane. It is seen that the

neutral weight decreases while the robotic mood state moves

away from (0.61, −0.47). These results coincide with the 2-D

emotional state of facial expressions in Fig. 2. Furthermore,

the correlation among seven basic emotional behaviors is also

checked in the simulation. It is seen that a point on the mood

Fig. 4. Fusion-weight distribution for neutral facial expressions.

plane will map to a corresponding fusion weight for each of the

seven basic emotional expressions.

D. Animation of Artificial Face Simulator

To evaluate the effectiveness of the FKCN-based behavior

fusion on actual emotional expressions, we developed an artifi-

cial face simulator exploiting the method in [22] to examine

robotic facial expressions. The artificial face illustrates the

expression based on the contraction of facial muscles. It can

also dynamically generate features such as wrinkles [22]. In this

simulation, seven basic facial expressions, neutral, happiness,

surprise, fear, sadness, disgust, and anger, are first designed by

specifying the muscle tensions of each expression composed of

seven different fusion weights. Table III shows some examples

of the basic facial expressions generated by the simulator

with different weights. One observes that the facial expression

changes from smiling to laughing as the weight of happiness

increases and from gloomy to crying as the weight of sadness

increases. Finally, fused emotional expressions are depicted by

the linear combination of weighted basic facial expressions.

Table IV shows some examples of facial expressions generated

by linear combination.
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TABLE III
BASIC FACIAL EXPRESSIONS WITH VARIOUS WEIGHTS EXECUTED

IN THE SIMULATOR

TABLE IV
LINEAR COMBINED FACIAL EXPRESSIONS WITH VARIOUS WEIGHTS

ON THE SIMULATOR

V. USER EMOTIONAL STATE RECOGNITION

In this design, the user’s emotional state, i.e., UEn
k , is used

as input to the system. In order to obtain UEn
k , an image-

based facial expression recognition module has been designed

and implemented. The facial expression recognition module

consists of the face detection stage, feature extraction stage,

and emotional intensity analyzer. The first step of the facial

expression recognition module is to detect a human face in the

acquired image frame. When an image frame is captured from

the camera, skin color is utilized to segment possible human

face areas in the image. The morphology closing procedure is

applied to reduce the noise in the image frame. Then, human

face candidates are obtained by using color region mapping

techniques. Finally, the attentional cascade method [37] is used

to determine which candidate is indeed a human face.

Fig. 5. Definition of the facial feature points and feature values.

After a face is detected and segmented, the feature extraction

stage is employed to locate the eyes, eyebrows, and lip region

in the human face area. The feature extraction module finds

feature points from the detected frontal face image. Fig. 5 shows

the definition of facial feature points and the feature values.

Here, Ei (i = 1 ∼ 12) indicates the distance among the feature

points. The system employs integral optical density (IOD) [38]

to find the area of the eyes and eyebrows. IOD works on binary

images and gives reliable position information of both eyes.

In order to increase the robustness of feature point extraction,

this method further combines the IOD result and edge features.

Through an AND operation of two successive binary images,

the contours of the eyes and eyebrows can be extracted. After

obtaining the facial feature points, 12 significant feature values,

which are distances between two selected feature points. In

order to reduce the influence of distance between a user and

the camera, these feature values are normalized for emotion

recognition. Thus, every facial expression is presented as a

feature set. For more detailed design steps of face detection and

feature extraction processing, readers are referred to [39].

To recognize the user’s emotional states, we further devel-

oped an image-based method to extract facial expression inten-

sity. Four feature vectors, namely,
⇀

FNeu,
⇀

FHa,
⇀

FAng, and
⇀

FSad,

are defined to represent the standard neutral, happy, angry,

and sad expressions. Dissimilarities between the current feature

set of a user (
⇀

FUser,k) and the standard facial expressions are

calculated such that

dN,k = ‖
⇀

FUser,k −
⇀

FNeu‖ (12)

dH,k = ‖
⇀

FUser,k −
⇀

FHa‖ (13)

dA,k = ‖
⇀

FUser,k −
⇀

FAng‖ (14)

dS,k = ‖
⇀

FUser,k −
⇀

FSad‖ (15)



HAN et al.: ROBOTIC EMOTIONAL EXPRESSION GENERATION 1297

TABLE V
TEST RESULT OF EMOTION STATE RECOGNITION

where dN,K , dH,K , dA,K , and dS,K represent respectively

the dissimilarities between the feature set of the user and the

defined standard neutral, happy, angry, and sad expressions at

sampling instant k. ‖ ‖ represents the Euclidean distance. In

our design, the intensity of the user’s emotion is recognized as

the standard facial expression while the dissimilarities between

the current feature set and standard facial expression are small.

Therefore, the user’s emotional intensities UEn
k are calculated

such that

uenN,k =
d−1

N,k

d−1

N,k + d−1

H,k + d−1

A,k + d−1

S,k

(16)

uenH,k =
d−1

H,k

d−1

N,k + d−1

H,k + d−1

A,k + d−1

S,k

(17)

uenA,k =
d−1

A,k

d−1

N,k + d−1

H,k + d−1

A,k + d−1

S,k

(18)

uenS,k =
d−1

S,k

d−1

N,k + d−1

H,k + d−1

A,k + d−1

S,k

(19)

where uenN,k, uenH,k, uenA,k, and uenS,k represent respectively

the nth user’s emotional intensities at sampling instant k for

neutral, happy, angry, and sad expressions. By using this pro-

cedure, the user’s emotional state is represented as a set of four

emotional intensities.

In this paper, the Cohn-Kanade AU-Coded Facial Expression

Database [40] is used to verify the proposed method of emo-

tional state recognition. Twenty-four sets of facial images of

different basic facial expressions were selected as training data.

Each set contains seven facial images of a particular emotion

with various facial expressions. Sixty face images of different

basic facial expressions were selected as test data. To compare

the system with the ground truth, we choose the strongest

emotion as recognition results. The result of this experiment

is shown in Table V. The average recognition rate is 90%.

Fig. 6 shows an example of emotional state recognition. In

this example, neutral, happy, angry, and sad facial expressions

are used as testing samples. In Fig. 6(a), 14 dot marks represent

the extracted feature points for facial expression recognition.

The emotional intensities are obtained using (16)–(19). As

shown in Fig. 6(a), the ratio of the neutral component amounts

to 54%, which dominates the facial expression, although the

other emotion components also contribute to the facial expres-

sion. Similar results are obtained as shown in Fig. 6(b)–(d).

Fig. 6. Examples of user emotional state recognition.

Fig. 7. Architecture of the self-built anthropomorphic robotic head.

VI. EXPERIMENTAL RESULTS

The complete system has been tested and evaluated for

autonomous emotional interaction. We first implemented the

proposed AEIS on a self-constructed anthropomorphic robotic

head for experimental validation. The robotic head, however,

has some hardware limitations in completing the evaluation

experiments of emotion transition system. The face simula-

tor was adopted for testing the effectiveness of the proposed

human–robot interaction design. Both results are presented

hereinafter.

A. Experiments on an Anthropomorphic Robotic Head

In order to verify the developed algorithms for emotional

human–robot interaction, an embedded robotic vision system

[41] has been integrated with an anthropomorphic robotic head

with 16 degrees of freedom. The DSP-based vision system was

installed at the back of the robotic head, and the CMOS image

sensor was put on the right eye to capture facial images. The

system architecture of the robotic head is shown in Fig. 7.

A Qwerk platform [42] works as an embedded controller. It

receives the estimated emotional intensity of a user from the

vision system and outputs the corresponding pulse width mod-

ulation signals to 16 RC servo to generate the corresponding

robotic facial expression. Fig. 8 shows several basic facial

expressions of the robotic head.
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Fig. 8. Examples of facial expressions of the robotic head. (a) Happiness.
(b) Disgust. (c) Sadness. (d) Surprise. (e) Fear. (f) Anger.

Fig. 9. Interaction scenario of a user and a robotic head.

Fig. 10. Experiment setup: Interaction scenario with an artificial face.

In the experiment, a user presented his facial expressions

in front of the robotic head as shown in Fig. 9. The robot

responded to the user with different degrees of wondering as

the user presented various intensities of surprise. A video clip

of this experiment can be found in [43].

B. Experimental Setup for the Artificial Face Simulator

A virtual-conversation scenario was set up for testing the

effectiveness of the proposed human–robot interaction design.

As shown in Fig. 10(a), in the virtual-conversation test, a

TABLE VI
LIST OF THE CONVERSATION DIALOGUE AND CORRESPONDING SUBJECT

FACIAL EXPRESSIONS

TABLE VII
REGULATED USER EMOTION INTENSITY OF CONVERSION

SENTENCES 1 AND 2

subject spoke to the artificial face (on the screen) while the

talker’s facial expression was detected by a web camera. The

subject in the experiment is a student of the authors’ institute.

Table VI lists the conversation dialogue and corresponding

subject facial expressions during the test. In the dialogue, the

subject complained about her job with sad and angry facial

expressions in the beginning. Then, the subject talked about the

coming Christmas vacation. Her mood varied from an angry to

a happy state. After acquiring facial images, the user emotional

state recognizer transferred the user’s facial expressions into

sets of emotional intensity every 0.5 s. The duration of this

conversation is around 36 s. There are 73 sets of emotional

intensity values detected from the user in this conversation

scenario. In order to observe the robotic emotional behavior

purely due to individual personality and mood transition and

avoid undesirable effect caused by error from user emotional

state recognition, the detected user emotional intensities are

regulated to more reasonable ones manually. Table VII shows

part of the regulated user emotional intensities when the subject

uttered sentences 1 and 2. These sets of emotional intensity are

utilized again as input to test the response of the artificial face

with different robot personalities and moods.

C. Evaluation of Robotic Mood Transition Due to

Individual Personality

It is desirable that a robot behaves differently in different

interaction scenarios. For example, to keep attention from
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TABLE VIII
DEFINITION OF PERSONALITY SCALES USING BIG FIVE FACTORS

students in education applications, the robot needs to behave

more friendly and funny. Hence, the openness and agreeable-

ness scales are designed higher. One can design the desired

personality by adjusting the corresponding Big Five factors. In

this experiment, two opposite robotic individual personalities

were designed respectively for RobotA (with more active trait)

and RobotB (with more passive trait). The Big Five factors were

applied to model these two personalities. Table VIII lists the

assigned scales corresponding to both opposite personalities.

As we know, people belonging to the active trait are usually

open-minded and interact with others more frequently. Hence,

the openness and agreeableness scales of RobotA are higher

than those of RobotB, and these two higher scales lead the

personality parameters (Pα, Pβ) to more positive tendency.

Furthermore, a more passive pessimist has the tendency to

experience negative thinking in general. Therefore, the neu-

roticism factor of RobotB is higher than that of RobotA. The

higher neuroticism factor of RobotB leads its personality to

more negative tendency on arousal (β axis). After trait values

have been identified, the robot personality parameters (Pα, Pβ)
are determined by using (4) and (5). Moreover, the proposed

robotic mood transition model is built accordingly.

To evaluate the effectiveness of the proposed emotional

expression generation scheme based on individual personality,

we conducted two sessions of experiments by using the artificial

face as shown in Fig. 10(b). In the experiments, the same input

sets were presented to RobotA and RobotB with the regulated

user emotional intensities, respectively with the aforementioned

conversation. The robotic mood states were observed as the

same user spoke to RobotA and RobotB. Accordingly, the

artificial face reacted with different facial expressions resulting

from mood state transition. Video clips of this experimental can

be found in [44].

Fig. 11 shows the mood transition of RobotA as the afore-

mentioned conversation was performed. The initial mood state

of RobotA was set at neutral state (0.61, −0.47), referring to

Fig. 2. The mood transition trajectories moved from the fourth

quadrant to the third, the second, and the first quadrant in the

end. The corresponding facial expressions varied from neutral

(#1) to boredom (#2), sadness (#3), anger (#4), surprise (#5),

happiness (#6), and excitement (#7) in the end. The sharp

turning point (#5) in Fig. 11 indicates that RobotA recognized

that the subject’s emotional state varied rapidly from anger to

happiness. Fig. 12 shows the mood transition of RobotB as the

same emotional conversation was performed. The initial mood

state of RobotB was also set on neutral state. The corresponding

Fig. 11. Robotic mood transition of RobotA.

Fig. 12. Robotic mood transition of RobotB.

facial expressions varied from neutral (#1) to sleepiness (#2

and #3), boredom (#4), sadness (#5), boredom (#6), and then

near neutral in the end. Compared with Fig. 11, the robotic

mood transition of the passive trait is basically in the regions of

boredom, sad, and neutral emotion. It stayed almost destructive

no matter what kind of subject emotional states came into play.

On the contrary, the robotic mood transition of the active trait

scattered in the whole emotional space. These features manifest

the difference in characters between the active and passive

traits. This experiment reveals that the proposed mood transi-

tion scheme is able to realize robotic emotional behavior with

different personality traits. Video clips of the mood transition

for RobotA and RobotB can be found in [45].

Fig. 13 shows the variation of seven fusion weights while the

subject uttered to RobotA. In the emotional conversation, the

subject spoke seven dialogues as shown in Table VI. The corre-

sponding fusion-weight variations of these seven dialogues are

shown by seven sectors in Fig. 13. In dialogue #1, the neutral

facial expressions dominate the output behavior; this is reason-

able since the subject’s emotional state is neutral. In dialogues

#2 and #3, the weights of sadness gradually increase while the

transitions of the subject’s emotional states are from neutral to

sad. Next, the sad weight decreases, and the surprise weight

increases as the subject feels angry progressively (dialogue #4).
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Fig. 13. Weight variation for RobotA (active trait).

Fig. 14. Weight variation for RobotB (passive trait).

In the meantime, the fear weight also increases to respond to

the subject’s angry expression. After the subject turned to be

happy, the surprise and fear weights decrease (dialogue #5), and

the happy weight increases to dominate the output behavior.

Fig. 14 shows the variation of the seven fusion weights as

the subject uttered to RobotB with the same emotional conver-

sation. In dialogues #3 and #4, the weights of sadness grad-

ually increase while the transitions of the subject’s emotional

states are from neutral to sad and angry. After the subject’s

emotional states become happiness, the sad weight decreases

(dialogue #5), and the neutral weight increases to dominate

the output behavior. Compared with RobotA in Fig. 13, the

personality of the passive trait leads to less behavior variations

and gets into the sadness emotion easily, although the subject’s

emotional states become happiness. These features match the

emotional tendency for both the active and passive traits.

D. Evaluation of Emotional Interaction Scheme

In this experiment, questionnaire evaluation for the robot

mood transition design was conducted for the emotional con-

Fig. 15. Questionary result of psychological impact.

versation performed by the same subject with RobotA, RobotB,

and RobotC, respectively. Here, the emotional response of

RobotC was designed such that it is irrelevant to the pro-

posed emotional interaction method. RobotC just follows facial

expressions as recognized from the subject. The emotional

conversation with RobotA, RobotB, and RobotC were recorded

on three video clips [44] for questionnaire evaluation. We used

the Big Five factors to evaluate the effectiveness of the proposed

robotic emotional expression generation system.

Twenty subjects of age 20–40 were invited to watch the

videos of virtual conversation with RobotA, RobotB, and

RobotC. The invited subjects were asked to answer question-

naires after watching the aforementioned videos. In the ques-

tionnaire, a subject is asked to give scores from agreeing to

disagreeing about the emotional interactions in the videos. We

then average the scores using scales (0–1) for the RobotA,

RobotB, and RobotC, respectively. The summary of the exper-

imental results is shown in Fig. 15. In the current design, the

facial expressions of the animation simulator are presented by

the direct control of pure mood transition. Unlike wording wis-

dom of humans, the readability of facial expressions is related

to very different underlying semantics [46]–[48]. Although the

difference between the designed facial animation and human fa-

cial expression is obvious, the current design allows an observer

to answer the questionnaires more straightforwardly. The major

characteristics of the designed robotic trait (active and passive)

are openness, agreeableness, and neuroticism. By observing the

openness and agreeableness factors in Fig. 15, both factors are

evaluated higher for RobotA than those of RobotB. It reveals

that RobotA is recognized to have more tendencies to react and

interact with humans than RobotB. Moreover, the neuroticism

factor of RobotB is evaluated to be higher than that of RobotA.
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Fig. 16. Questionary result of natural versus artificial.

TABLE IX
ESTIMATION OF PERSONALITY PARAMETERS

BY QUESTIONNAIRE SURVEY

It indicates that the passive pessimist is indeed more inclined to

experience negative thoughts than the active trait. These results

conform to the designed personality in Table VIII.

As mentioned, RobotC only copies the subject’s facial ex-

pressions without any mood transition discussed in this work.

In other words, the detected Big Five factors of RobotC only

show the subject’s personality. In order to verify the difference

between robots with the proposed mood transition scheme

(RobotA and RobotB) and without it (RobotC), the same

20 subjects answered the questionnaire after watching the

videos in [44]. In the questionnaire, a subject is asked to give

scores from agreeing to disagreeing about the degree of natural

or artificial interactions in the videos. The summary of the

experimental results is shown in Fig. 16. Based on the item of

natural versus artificial in Fig. 16, RobotA and RobotB both

behave more naturally than RobotC. It shows that the proposed

mood transition method enables the robot to behave in a human-

like manner.

Table IX shows the average values of 20 questionnaire

surveys. The personality parameters of RobotA and RobotB

are estimated as (0.68, 0.19) and (0.43, −0.22), respectively.

By comparing with the designed personality in Table VIII,

we see that the personality parameters of RobotA and RobotB

are (0.34, 0.24) and (0.20, −0.07), respectively. It is seen that

both Pα values (0.34 and 0.20) of the designed RobotA and

RobotB are proportional to the estimated Pα values (0.68 and

0.43) in Table IX, respectively. It reveals that both the designed

and estimated mood transition velocities of RobotA are about

1.6 times (0.68/0.43 and 0.34/0.20) those of RobotB on the

pleasure–displeasure axes. In another word, both the designed

and the estimated RobotA are happier easily than RobotB with

a similar ratio. Furthermore, both of the designed and estimated

Pβ values of RobotB are negative. It indicates that both the

designed and the estimated RobotA will tend to arousal and

RobotB will tend to sleepiness while the same user’s emotional

intensity is imported. Hence, the estimated results of robot

personality parameters are consistent with the designed person-

ality scales in Table VIII. Based on the experimental results, it

can be concluded that a robot can be designed with a desired

personality and differently designed robotic personalities give

distinct interactive behaviors. Moreover, the emotional robots

behave more humanlike interaction.

VII. CONCLUSION

A method of robotic mood transition for autonomous emo-

tional interaction has been developed. An emotional model is

proposed for mood state transition exploiting a robotic per-

sonality approach. Via adopting the psychological Big Five

factors in the 2-D emotional model, the proposed method

generates facial expressions in a more natural manner. The

FKCN architecture, together with rule tables from psychologi-

cal findings, sufficiently provides behavior fusion capability for

a robot to generate emotional interactions. Experimental results

reveal that the simulated artificial face interacts with people

in a manner of mood transition and with robotic personality.

The questionnaire investigation confirms positive results on the

evaluation of responsive robotic facial expressions generated by

the proposed design. In the future, more comparisons with other

emotional models will be further studied. We will also investi-

gate different models for robotic emotion generation and eval-

uate their emotional intelligence with practical experiments.
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