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Many keyhole interventions rely on bi-manual handling of surgical instruments, forcing the
main surgeon to rely on a second surgeon to act as a camera assistant. In addition to the
burden of excessively involving surgical staff, this may lead to reduced image stability,
increased task completion time and sometimes errors due to the monotony of the task.
Robotic endoscope holders, controlled by a set of basic instructions, have been proposed
as an alternative, but their unnatural handling may increase the cognitive load of the (solo)
surgeon, which hinders their clinical acceptance. More seamless integration in the surgical
workflow would be achieved if robotic endoscope holders collaborated with the operating
surgeon via semantically rich instructions that closely resemble instructions that would
otherwise be issued to a human camera assistant, such as “focus on my right-hand
instrument.” As a proof of concept, this paper presents a novel system that paves the way
towards a synergistic interaction between surgeons and robotic endoscope holders. The
proposed platform allows the surgeon to perform a bimanual coordination and navigation
task, while a robotic arm autonomously performs the endoscope positioning tasks. Within
our system, we propose a novel tooltip localization method based on surgical tool
segmentation and a novel visual servoing approach that ensures smooth and
appropriate motion of the endoscope camera. We validate our vision pipeline and run
a user study of this system. The clinical relevance of the study is ensured through the use of
a laparoscopic exercise validated by the European Academy of Gynaecological Surgery
which involves bi-manual coordination and navigation. Successful application of our
proposed system provides a promising starting point towards broader clinical adoption
of robotic endoscope holders.

Keywords: minimally invasive surgery, endoscope holders, endoscope robots, endoscope control, visual servoing,
instrument tracking

1 INTRODUCTION

In recent years, many surgical procedures shifted from open surgery to minimally invasive surgery
(MIS). Although MIS offers excellent advantages for the patient, including reduced scarring and
faster recovery, it comes with challenges for the surgical team. Most notable is the loss of direct view
onto the surgical site. In keyhole surgery, the surgeon manipulates long and slender instruments
introduced into the patient through small incisions or keyholes. The surgeon relies on endoscopes,
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also long and slender instruments equipped with a camera and
light source, to obtain visual feedback on the scene and the
relative pose of the other instruments. The limited field of
view (FoV) and depth of field of the endoscope urge an
efficient endoscope manipulation method that allows covering
all the important features and hereto optimizes the view at
all times.

In typical MIS, surgeons cannot manipulate the endoscope
themselves as their hands are occupied with other instruments.
Therefore, a camera assistant, typically another surgeon takes
charge of handling the endoscope. Human camera assistants have
a number of shortcomings. An important drawback relates to the
cost of the human camera assistant (Stott et al., 2017). Arguably,
highly trained clinicians could better be assigned to other surgical
duties that require the full extent of their skill set (as opposed to
mainly manipulating the endoscope). If made widely feasible, solo
MIS surgery would improve cost-effectiveness and staffing
efficiency. An additional source of weakness related to human
camera assistants is the ergonomic burden associated with
assisting in MIS (Wauben et al., 2006; Lee et al., 2009). This
may lead to reduced image stability, fatigue, distractions,
increased task completion times, and erroneous involuntary
movements (Goodell et al., 2006; Platte et al., 2019; Rodrigues
Armijo et al., 2020). This problem aggravates for long
interventions or when the assistant has to adopt particularly
uncomfortable postures. Besides the ergonomic challenges,
miscommunication between the surgeon and the assistant may
lead to sub-optimal views (Amin et al., 2020).

In order to help or bypass the human camera assistant and to
optimize image stability, numerous endoscope holders have been
designed in the past (Jaspers et al., 2004; Bihlmaier, 2016;
Takahashi, 2020). One can distinguish passive endoscope
holders and active or robotic endoscope holders. Passive
endoscope holders are mechanical devices that lock the
endoscope in a given position until manually unlocked and
adjusted. A problem common to passive endoscope holders is
that they result in an intermittent operation that interferes with
the manipulation task (Jaspers et al., 2004). When surgeons want
to adjust the endoscopic view themselves, they will have to free
one or both hands to reposition the endoscope. To counter this
problem, robotic endoscope holders have been developed. These
motorized devices offer the surgeon a dedicated interface to
control the endoscope pose. Well-designed robotic endoscope
holders do not cause additional fatigue, improve image stability,
and increase ergonomics (Fujii et al., 2018). Also, hand-eye
coordination issues may be avoided. Overall such robotic
endoscope holders may lower the cognitive load of the
surgeon and reduce operating room (OR) staff time and
intervention cost (Ali et al., 2018). However, despite these
advantages and the number of systems available, robotic
endoscope holders have not found widespread clinical
acceptance (Bihlmaier, 2016). This has been linked to the
suboptimal nature of the human interface and consequently
the discomfort caused to the surgeon by the increased
cognitive load needed to control the camera. Popular robotic
endoscope holders use foot pedals, joysticks, voice control, gaze
control, and head movements (Kommu et al., 2007; Holländer

et al., 2014; Fujii et al., 2018). The context switching between
surgical manipulation and these camera control mechanisms
seems to hinder the ability of the surgeon to concentrate on
the main surgical task (Bihlmaier, 2016).

1.1 Contributions
In this work, we introduce the framework of semantically rich
endoscope control, which is our proposal on how robotic
endoscope control could be implemented to mitigate
interruptions and maximize the clinical acceptance of robotic
endoscope holders. We claim that semantically rich instructions
that relate to the instruments such as “focus on the right/left
instrument” and “focus on a point between the instruments” are a
priority, as they are shared among a large number of surgical
procedures. Therefore, we present a novel system that paves the
way towards a synergistic interaction between surgeons and
robotic endoscope holders. To the best of our knowledge, we
are the first to report how to construct an autonomous
instrument tracking system that allows for solo-surgery using
only the endoscope as a sensor to track the surgical tools. The
proposed platform allows the surgeon to perform a bi-manual
coordination and navigation tasks while the robotic arm
autonomously performs the endoscope positioning.

Within our proposed platform, we introduce a novel tooltip
localization method based on a hybrid mixture of deep learning
and classical computer vision. In contrast to other tool localization
methods in the literature, the proposed approach does not require
manual annotations of the tooltips, but relies on tool segmentation,
which is advantageous as the manual annotation effort could be
trivially waived employing methods such as that recently proposed
in Garcia-Peraza-Herrera et al. (2021). This vision pipeline was
individually validated and the proposed tooltip localizationmethod
was able to detect tips in 84.46% of the frames. This performance
proved sufficient to allow for a successful autonomous guidance of
the endoscope (per user study of the whole robotic system).

We propose a novel visual servoing method for a generalized
endoscope model with support for both remote center of motion
and endoscope bending. We show that a hybrid of position-based
visual servoing (PBVS) and 3D image-based visual-servoing
(IBVS) is preferred for robotic endoscope control.

We run a user study of the whole robotic system on a
standardized bi-manual coordination and navigation
laparoscopic task accredited for surgical training (European
Academy of Gynaecological Surgery, 2020). In this study we
show that the combination of novel tool localization and visual
servoing proposed is robust enough to allow for the successful
autonomous control of the endoscope. During the user study
experiments (eight people, five trials), participants were able to
complete the bi-manual coordination surgical task without the aid
of a camera assistant and in a reasonable time (172s on average).

1.2 Towards Semantically Rich Robotic
Endoscope Control
While solo surgery has been demonstrated with simple robotic
endoscope control approaches (Takahashi, 2020), we argue that
to overcome the usability issues that impede broad clinical
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adoption of robotic endoscope holders and move towards solo
surgery, robotic endoscope control should be performed at the
task autonomy level. To efficiently operate in this setting, a
robotic endoscope holder should accept a set of semantically
rich instructions. These instructions correspond to the commands
that a surgeon would normally issue to a human camera assistant.
This contrasts with earlier approaches, where the very limited
instruction sets (up, down, left, right, zoom in, zoom out) lead to a
semantic gap between the robotic endoscopic holder and the
surgeon (Kunze et al., 2011). With semantically rich instructions,
it would be possible to bridge this gap and restore the familiar
relationship between the surgeon and the (now tireless and
precise) camera assistant.

A semantically rich instruction set should contain commands
that induce context-aware actions. Examples of such are “zoom in
on the last suture,” “hold the camera stationary above the liver,”
and “focus the camera on my right instrument.” When these
instructions are autonomously executed by a robotic endoscope
holder, we refer to the control as semantically rich robotic
endoscope control. We believe that semantically rich robotic
endoscope control can effectively overcome the problem of
intermittent operation with endoscopic holders, does not
disrupt the established surgical workflow, ensures minimal
overhead for the surgeon, and overall maximizes the usability
and efficiency of the intervention.

Although instructions that have the camera track an
anatomical feature are relevant, autonomous instrument
tracking instructions (e.g. “focus the camera between the
instruments”) play a prominent role, as they are common to a
large number of laparoscopic procedures and form a fundamental
step towards solo surgery. Therefore, in this work we focus on
semantically rich instructions related to the autonomous
instrument tracking (AIT) of a maximum of two endoscopic
instruments (one per hand of the operating surgeon, see
Figure 1). Particularly, the proposed method implements the

instructions “focus on the right/left instrument” and “focus on a
point between the instruments.” User interface methods to
translate requests expressed by the surgeon (e.g. voice control)
to these AIT instructions fall outside the scope of this work.

The remainder of the paper is organized as follows. After
describing the related work, the AIT problem is stated in Section
3. The quality of the AIT depends on robust methods to localize
one or more surgical instruments in the endoscopic view. Section
4 describes a novel image-processing pipeline that was developed
to tackle this problem. Visual servoing methods are described in
Section 5. These methods provide the robotic endoscope control
with the ability to track the detected instruments autonomously.
An experimental user study campaign is set up and described in
Section 6 to demonstrate the value of AIT in a validated surgical
training task. Section 7 discusses the obtained results and Section
8 draws conclusions regarding the implementation of the AIT
instructions proposed in this work.

2 RELATED WORK

Robotic endoscope control (REC) allows the surgeon to control
the endoscope without having to free their hands. A wide variety
of dedicated control interfaces have been developed and
commercialized for this purpose, including joystick control,
voice control, gaze control and head gesture control
(Taniguchi et al., 2010). Despite the apparent differences in
these interfaces, established approaches offer the surgeon a
basic instruction set to control the endoscope. This set
typically consists of six instructions: zoom in/out, move up/
down, and move left/right. The basic nature of these
instructions makes detailed positioning cumbersome, usually
resorting to a lengthy list of instructions. This shifts the
surgeon’s focus from handling the surgical instruments
towards the positioning of the endoscope, as concurrent
execution of those actions is often strenuous and confusing
(Jaspers et al., 2004). Moreover, the increased mental workload
stemming from simultaneous control of the instruments and the
endoscope might adversely affect intervention outcomes
(Bihlmaier, 2016). Similar to passive endoscope holders,
robotic endoscope holders that offer a basic set of instructions
prevent fluid operation and lead to intermittent action.

A number of REC approaches that pursue fully autonomous
operation have been proposed as well. A starting point for an
autonomous REC strategy is to reposition the endoscope so as to
keep the surgical instrument tip centered in the view. Such an
approach could work already when only the 2D position of the
instrument in the endoscopic image is available (Uecker et al.,
1995; Osa et al., 2010; Agustinos et al., 2014; Zinchenko and Song,
2021). In this case, the endoscope zoom level (depth) is left
uncontrolled. Some of these methods also require a 3D
geometrical instrument model (Agustinos et al., 2014), limiting
the flexibility of the system. Approaches such as proposed by
Zinchenko and Song (2021) have also suggested to replace the
endoscope screen with a head-mounted virtual reality device that
facilitates the estimation of the surgeon’s attention focus from the
headset’s gyroscope. In this scenario, the autonomous REC

FIGURE 1 | Proposed experimental setup for autonomous endoscope
control in a laparoscopic setting. The LASTT model (European Academy of
Gynaecological Surgery, 2020) showcased within the box trainer is designed
for the simulation of simple surgical tasks with a focus on gynaecological
procedures. It is common ground for the practice and evaluation of hand-eye
and bi-manual coordination skills.
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strategy aims to reposition the endoscope with the aim of
maintaining the weighted center of mass between the
instruments’ contour centers and the point of focus in the
center of the view. However, it has been shown in works such
as (Hanna et al., 1997; Nishikawa et al., 2008) that the zoom level
is important for effective endoscope positioning. Other authors
tried to circumvent the lack of depth information in 2D
endoscopic images by relating the inter-instrument distance to
the zoom level (Song et al., 2012; King et al., 2013). This approach
is obviously limited to situations where at least two instruments
are visible.

When the 3D instrument tip position is available, smarter
autonomous REC strategies are possible. In the context of fully
robotic surgery, kinematic-based tooltip position information has
been used to provide autonomously guided ultrasound imaging
with corresponding augmented reality display for the surgeon
(Samei et al., 2020). Kinematics have also been employed by
Mariani and Da Col et al.(Mariani et al., 2020; Da Col et al., 2021)
for autonomous endoscope guidance in a user study on ex vivo
bladder reconstruction with the da Vinci Surgical System. In their
experimental setup, the system could track either a single
instrument or the midpoint between two tools. Similarly,
Avellino et al. (2020) have also employed kinematics for
autonomous endoscope guidance in a co-manipulation
scenario1. In (Casals et al., 1996; Mudunuri, 2010), rule-based
strategies switch the control mode between single-instrument
tracking or tracking points that aggregate locations of all visible
instruments. Pandya et al. argued that such schemes are reactive
and that better results can be obtained with predictive schemes,
which incorporate knowledge of the surgery and the surgical
phase (Pandya et al., 2014). Examples of such knowledge-based
methods are (Wang et al., 1998; Kwon et al., 2008; Weede et al.,
2011; Rivas-Blanco et al., 2014; Bihlmaier, 2016; Wagner et al.,
2021). While promising in theory, in practice, the effort to create
complete and reliable models for an entire surgery is excessive for
current surgical data science systems. In addition, accurate and
highly robust surgical phase recognition algorithms are required,
increasing the complexity of this solution considerably.

With regards to the levels of autonomy in robotic surgery,
Yang et al. (2017) have recently highlighted that the above
strategies aim for very high autonomy levels but take no
advantage of the surgeon’s presence. In essence, the surgeon is
left with an empty instruction set to direct the endoscope holder.
Besides being hard to implement given the current state of the art,
such high autonomy levels may be impractical and hard to
transfer to clinical practice. Effectively, an ideal camera
assistant only functions at the task autonomy level. This is
also in line with the recent study by Col et al. (2020), who
concluded that it is important for endoscope control tasks to find
the right trade-off between user control and autonomy.

To facilitate the autonomous endoscope guidance for
laparoscopic applications when the 3D instrument tip position
is not available, some authors have proposed to attach different
types of markers to the instruments (e.g. optical,

electromagnetic). This modification often comes with extra
sensing equipment that needs to be added to the operating room.

In Song and Chen (2012), authors proposed to use a
monocular webcam mounted on a robotic pan-tilt platform to
track two laparoscopic instruments with two colored rings
attached to each instrument. They employed the estimated 2D
image coordinates of the fiducial markers to control all the
degrees of freedom of the robotic platform. However, this
image-based visual servoing is not able to attain a desired
constant depth to the target tissue (as also shown in our
simulation of image-based visual servoing in Section 5.3). In
addition, the choice of fiducial markers is also an issue. Over the
years, going back at least as far as to (Uenohara and Kanade,
1995), many types of markers have been proposed by the
community for tool tracking purposes. For example, straight
lines (Casals et al., 1996), black stripes (Zhang and Payandeh,
2002), cyan rings (Tonet et al., 2007), green stripes (Reiter et al.,
2011), multiple colour rings for multiple instruments (blue-
orange, blue-yellow) (Seong-Young et al., 2005), and multiple
colour (red, yellow, cyan and green) bio-compatible markers
(Bouarfa et al., 2012). However, although fiducial markers
such as colored rings ease the tracking of surgical instruments,
attaching or coating surgical instruments with fiducial markers
presents serious sterilization, legal and installation challenges
(Stoyanov, 2012; Bouget et al., 2017). First, the vision system
requires specific tools to work or a modification of the current
ones, which introduces a challenge for clinical translation. At the
same time, computational methods designed to work with
fiducials cannot easily be trained with standard previously
recorded interventions. Additionally, to be used in human
experiments, the markers need to be robust to the sterilisation
process (e.g. autoclave). This poses a manufacturing challenge
and increases the cost of the instruments. The positioning of the
markers is also challenging. If they are too close to the tip, they
might be occluded by the tissue being manipulated. If they are
placed back in the shaft, they might be hidden to the camera, as
surgeons tend to place the endoscope close to the operating point.
Even if they are optimally positioned, fiducials may be easily
covered by blood, smoke, or pieces of tissue. In addition to
occlusions, illumination (reflections, shadows) and viewpoint
changes still remain a challenge for the detection of the
fiducial markers.

In contrast to using colored markers, Sandoval et al. (2021)
used a motion capture system (MoCap) in the operating room to
help the autonomous instrument tracking. The MoCap consisted
of an exteroceptive sensor composed of eight high resolution
infrared cameras. This system was able to provide the position of
the reflective markers placed at the instruments (four markers per
instrument) in real time. However, the MoCap increases
considerably the cost of the proposed system and complicates
the surgical workflow. Instruments need to bemodified to add the
markers, and the MoCap needs to be installed in the operating
room. As any other optical tracking system, it also possesses the
risk of occlusions in the line of sight, making it impossible for the
system to track the instruments when such occlusions occur. As
opposed to all these different markers, the endoscope is necessary
to perform the surgery, and the surgeon needs to be able to see the1https://www.youtube.com/watch?v=R1qwKAWFOIk
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instruments to carry out the intervention, so using the endoscope
and its video frames without any instrument modifications to
help track the tools is a solution that stems naturally from the
existing surgical workflow. This has also been the path followed in
the devise of AUTOLAP™ (Medical Surgery Technologies,
Yokneam, Israel) (Wijsman et al., 2018, 2022), which is, to the
best of our knowledge, the only robotic laparoscopic camera
holder that claims to have incorporated image-based laparoscopic
camera steering within its features. However, no technical details
are provided in these publications on how it is achieved.

3 AUTONOMOUS INSTRUMENT TRACKING

In a typical surgical scenario, a surgeon manipulates two
instruments: one in the dominant and one in the non-
dominant hand. In such a case, the surgeon might want to

focus the camera on one specific instrument, or center the
view on a point in between the instruments, depending on
their relative importance. AIT strives to automate these tasks,
as explained next.

3.1 Centering Instrument Tips in FoV
With one instrument present, the proposed AIT objective is to
center the instrument tip position s in the FoV, as is illustrated in
Figure 2 (top). With two visible instruments, a relative dominance
factor wd ∈ [0, 1] can be assigned to the instruments (adjustable via
a semantically rich instruction “change dominance factor X% to
the right/left”). The AIT controller can then track the virtual
average tip position according to

s � 1 − wd( )sl + wdsr, (1)
Where sl and sr are the respective tip positions of the left and right
instrument as visualized in Figure 2, bottom.

If the AIT were implemented to continuously track the virtual tip
position s, the viewwould never come to a standstill, which would be
disturbing for the surgeon. As a solution, also suggested in
(Bihlmaier, 2016) and Eslamian et al. (2020), a position hysteresis
behaviour can be implemented. In this work, a combination of
instructions with position hysteresis is implemented based on three
zones in the endoscope FoV. As illustrated in Figure 2, target zone A
captures the ideal location of the tooltip, and transition zone B
represents a tolerated region. Entering a violation zone C triggers re-
positioning of the endoscope. Whenever s moves from zone B to
zone C, the AIT will be activated. It will then stay active until s
reaches zone A. Afterwards, the FoV will be kept stable, until s again
crosses the border between zone B and zone C.

This implementation of AIT offers the surgeon instructions to
track either instrument, to change the dominance factor, or to
stop the tracking by disabling the AIT. Note that this
implementation of AIT only specifies two degrees of freedom
(DoFs) out of the four available DoFs in typical laparoscopy. The
depth DoF is controlled by an additional instruction for the zoom
level, i.e., the distance between the camera and the instrument tip.
The DoF that rolls the endoscope around its viewing axis is
controlled to always enforce an intuitive horizontal orientation of
the camera horizon. If desired, a semantically rich instruction
could be added to alter this behaviour.

3.2 Comanipulation Fallback
As neither the set of AIT instructions nor any other set of
instructions can realistically cover all instructions relevant for
semantically rich REC, situations can arise in surgical practice
where the capabilities of the robotic endoscope holder are
insufficient. In such a case, it is necessary to switch to a
comanipulation mode. This kind of switching is already the
clinical reality for commercial robotic endoscope holders
(Gillen et al., 2014; Holländer et al., 2014) and is particularly
relevant when the system is used to support rather than replace
the surgical assistant.

This work proposes to embed an easy switching functionality
as a system feature. A natural transition from REC to
comanipulation mode can be made possible through the use
of a mechanically backdrivable robotic endoscope holder. This

FIGURE 2 | Endoscopic view with one instrument tip at position s (top),
and two instrument tips at positions sl and sr, combined to a virtual tip position
s (bottom). The AIT controller aims to make s coincide with a desired position
s*. A, B and C are respectively the target, transition and violation zones of
a programmed position hysteresis approach.
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way, no extra hardware components are needed for switching,
neither is it necessary to release the endoscope from the robotic
endoscope holder. Instead, the surgeon can simply release one
instrument, grab the endoscope and comanipulate it jointly with
the robotic endoscope holder. During comanipulation, the
human provides the intelligence behind the endoscope
motions, while still experiencing support in the form of
tremor-eliminating damping and fatigue-reducing gravity
compensation. Such an approach broadens the scope of
interventions where REC can be realistically applied.

4 MARKERLESS INSTRUMENT
LOCALIZATION

REC based on semantically rich instructions requires the robotic
endoscope holder to autonomously execute context-aware tasks.
This implies a need to autonomously collect contextual
information. The AIT instruction relies on knowledge of the
tip position s of the surgical instruments in the endoscopic view.
To obtain this information, without the need to alter the
employed instruments or surgical workflow, a markerless
instrument localization pipeline is developed in this section.
Note that the term localization is employed here, instead of
the commonly used term tracking, as for the sake of clarity
this work reserves tracking for the robotic servoing approaches
needed for AIT.

4.1 Instrument Localization Approaches
If, in addition to the endoscope, the instruments are also mounted
on a robotic system (Weede et al., 2011; Eslamian et al., 2016) or if
they are monitored by an external measurement system
(Nishikawa et al., 2008; Polski et al., 2009), the position of the
instruments can be directly obtained, provided that all involved
systems are correctly registered and calibrated. However, in this
work, manual handling of off-the-shelf laparoscopic instruments
precludes access to such external localization information.

An alternative, which we use in this work, is to exploit the
endoscope itself as the sensor. A review on this topic has been
published relatively recently by Bouget et al. (2017). In their work
Bouget et al. present a comprehensive survey of the last years of
research in tool detection and tracking with a particular focus on
methods proposed prior to the advent of the deep learning
approaches. Recent instrument localization techniques based
on Convolutional Neural Networks (CNN) (González et al.,
2020; Pakhomov et al., 2020) are currently recognized as the
state-of-the-art approaches (Allan et al., 2019; Roß et al., 2021)
for such problems. In this work, we leverage our previous
experience with CNN-based real-time tool segmentation
networks (García-Peraza-Herrera et al., 2016; Garcia-Peraza-
Herrera et al., 2017) and embed the segmentation in a stereo
pipeline to estimate the location of the tooltips in 3D.

4.2 Instrument Localization Pipeline
A multi-step image processing pipeline was developed for
markerless image-based instrument localization (see Figure 3).
As input, the pipeline takes the raw images from a stereo

endoscope. As output, it provides the 3D tip positions of the
visible instruments. The maximum number of instruments and
tips per instrument are required as inputs. In the task performed
in our user study, presented in Section 6), a maximum of two
instruments with two tips may be present.

The 2D tooltip localization in image coordinates is a key
intermediate step in this pipeline. Training a supervised bounding
box detector for the tips could be a possible approach to perform
the detection. However, to implement the semantically rich AIT
presented in Section 3 and Figure 2 we would still need to know
whether the detected tips belong to the same or different
instruments, and more precisely whether they belong to the
instrument handled by the dominant or non-dominant hand.
Therefore, we opted for estimating the more informative tool-
background semantic segmentation instead. Via processing the
segmentation prediction, we estimate how many instruments are
in the image, localize the tips, and associate each tip with either
the left or right-hand instrument. A downside of using semantic
segmentation in comparison to a detector is the increased
annotation time required to build a suitable training set.
However, recent advances to reduce the number of contour
annotations needed to achieve the segmentation such as
(Vardazaryan et al., 2018; Fuentes-Hurtado et al., 2019;
Garcia-Peraza-Herrera et al., 2021) greatly mitigate this
drawback.

In the remaining of this section we first discuss the
assumptions made, imaging hardware, and preprocessing
steps. Then, we proceed to describe the localization pipeline.
The localization method consists of the following steps: binary
tool-background segmentation (Section 4.2.3), skeletonization of
the segmentation mask (Section 4.2.4), graph extraction from the
pixel-wide skeleton (Section 4.2.4), entrynode detection on the
graph (Section 4.2.5), leaf node detection on the graph (Section
4.2.6), leaf node to entry node matching (Section 4.2.6), and left/
right instrument identification (Section 4.2.8). After matching
leaf nodes to entry nodes we have a subgraph for each instrument,
and we distinguish between the left/right instrument using the
estimated location of each instrument’s entry node
(Section 4.2.8).

The implementation of the whole localization pipeline was
done in Python, reading the video feed from the framegrabber
V4L2 device with OpenCV, and performing the deep learning
inference with Caffe (Jia et al., 2014) on an NVIDIA GeForce
GTX Titan X GPU.

4.2.1 Assumptions of Proposed Instrument
Localization Pipeline
In our instrument localization pipeline, we assume that the
instruments are not completely occluded. Partial occlusions
are supported, as long as there is a visible path from the
entrypoint to the tip of the instrument. Note that with
entrypoint we refer to the point located at the edge of the
endoscopic content area where the instrument enters the
image. This point is not to be confused with the incision point
which is the point on the body wall where the incision is made
through which the instrument enters the patient’s body. Now, if
the tip is occluded, the tooltip will be estimated on the
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FIGURE 3 | Instrument localization pipeline: (A) stereo-rectified right camera input image; (B) predicted tool segmentation; (C) skeletonisation; (D) graph
extraction, 2D detection of entrypoints and tips, right and left instrument labelled in green and yellow; (E) left and (F) right stereo-matched tooltips in 2D (bottom row). The
pink dots in (D) are graph nodes extracted from the skeleton in (C) but represent neither entrypoints nor tooltips.

FIGURE 4 | Behaviour and limitations of the instrument localization pipeline in the presence of occlusions. The detected entrypoint and tooltip are indicated by the
green and yellow arrow, respectively. In the partially occluded instrument (left), there is a visible path from entrypoint to tip, therefore the instrument is correctly detected.
However, when the tip is occluded (center), the tooltip is detected to be on the shaft. If the entrypoint is occluded (right), the instrument is not detected in this stage of the
research as tools are expected to enter the scene from the boundary of the content area.
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furthermost point of the shaft. When the entrypoint is completely
covered, the instrument will not be detected in the current
approach. Methods that exploit knowledge of the incision
point could help in such a case (and could be explored in
future work as they do not form the core of this work). The
current limitations are illustrated in Figure 4. The assumption
that instruments have to enter from the edge serves two purposes,
1) as a noise reduction technique for the segmentation, because
false positive islands of pixels can be easily discarded, and 2) to
detect whether the instrument is held by the right/left hand of the
surgeon (as explained in Section 4.2.8). In most cases, the
entrypoint of at least one of the instruments will be visible.
Therefore, the benefits of the assumption that instruments will
not be completely occluded largely outweigh its limitations. The
proposal of surgical tool segmentation models that are robust to
entrypoint occlusions (Figure 4, right) or complete occlusions is
out of the scope of this work.

4.2.2 Imaging Hardware and Preprocessing Procedure
The stereo camera and endoscopy module of choice for this work
were the TIPCAM1 S 3D ORL (30° view on a 4 mm outer diameter
shaft) and IMAGE1 S D3-LINK respectively (both from KARL STORZ,
Germany). The DVI output of the endoscopy module is plugged
into a DVI2PCIE DUO framegrabber (EPIPHAN, Canada). The
endoscopy module produces images at 60 fps and at a
resolution of 1920, ×, 1080 pixels, which turns into 1920, ×,
540 as each grabbed image contains a stereo pair with the left
frame on even rows and the right frame on odd ones. These
images are upsampled in the y-axis so that two images of 1920, ×,
1080 pixels are obtained. Upscaling is chosen (as opposed to
downsampling to 960, ×, 540 pixels) to avoid degrading the depth
resolution based on x-axis disparity. The left-right cameras are
calibrated using a chessboard pattern of 1.1 mm-wide squares
(Cognex Glass Calibration Plate Set 320-0015R, APPLIED IMAGE

INC., NY, United States). Both frames, left and right, are rectified
in real-time. Then, the black background of the images is cropped
out, keeping just a square crop of the endoscopic circle content
area (as shown in Figure 2), which results in an image of 495 ×
495 pixels. Finally, the image where the 2D tooltip localization is
going to be performed (either the left or right frame can be chosen
without loss of generality) is downsampled to 256 × 256 pixels to
speed up the subsequent processing steps (i.e. segmentation,
graph extraction and 2D tooltip localization). Once the 2D
tooltips have been estimated, they are extrapolated to the
original image size and the disparity estimation and 3D tooltip
reconstruction in Section 4.2.9 is performed on the original
upsampled images of 1920, ×, 1080 pixels.

4.2.3 Instrument Segmentation
In this work, we trained a CNN to segment instruments in our
experimental setup (see Figure 1). While having the necessary
characteristics for a bimanual laparoscopic task, the visual
appearance of the surgical training model we use is not
representative of a real clinical environment. Therefore, we do
not propose a new image segmentation approach but rather focus
on the downstream computational questions. In order to translate
our pipeline to the clinic, a newly annotated dataset containing

real clinical images would need to be curated, and the images
would need to contain artifacts typical of endoscopic procedures
such as blood, partial occlusions, smoke, and blurring.
Alternatively, an existing surgical dataset could be used. We
have compiled a list of public datasets for tool segmentation2

where the data available includes surgical scenes such as retinal
microsurgery, laparoscopic adrenalectomy, pancreatic resection,
neurosurgery, colorectal surgery, nephrectomy, proctocolectomy,
and cholecystectomy amongst others. The compiled list also
includes datasets for similar endoscopic tasks such as tool
presence, instrument classification, tool-tissue action detection,
skill assessment and workflow recognition, and laparoscopic
image-to-image translation. The unlabelled data in these other
datasets could also be potentially helpful for tool segmentation.

Next, we provide the details on how we built the segmentation
model for our particular proof-of-concept of the robotic endoscope
control. The dataset we curated consists of 1110 image-annotation
pairs used for training, and 70 image-annotation pairs employed
for validation (hyperparameter tuning). These 1110, + ,70 image-
annotation pairs were manually selected by the first co-authors so
that the chosen images represent well the variety of scenes in the
task. They have been extracted from the recording of a surgical
exercise in the lab, prior to the user study, and in a different
location. There is no testing set at this point because the
segmentation is an intermediary step. In Section 7.1, we give
more details about our testing set, which is used to evaluate the
whole tooltip localization pipeline (as opposed to just the
segmentation). The images in each stereo pair do not look the
same: there is an observable difference in colour tones between
them. Therefore, the data set has an even number of left and right
frames such that either of them could be used as input for the
surgical tool segmentation. In the training set, 470 images (42%) do
not contain any tool. In them, the endoscope just observes the task
setting under different viewpoints and lighting conditions (diverse
intensities of the light source). The remaining 640 images of the
training set, and all images of the validation set, have been
manually labelled with delineations of the laparoscopic tools.
The U-Net (Ronneberger et al., 2015) architecture showed
superior performance in the tool segmentation EndoVis
MICCAI challenge (Allan et al., 2019). Therefore, this was the
architecture of choice employed for segmentation (32 neurons in
the first layer and convolutional blocks composed of Conv + ReLU
+ BN). A minibatch of four images is used. Default conventional
values and common practice was followed for setting the
hyperparameters as detailled hereafter. The batch normalization
(Ioffe and Szegedy, 2015) momentum was set to 0.1 (default value
in PyTorch). Following the U-Net implementation in
(Ronneberger et al., 2015), Dropout (Srivastava et al., 2014) was
used. In our implementation, Dropout was employed in layers with
≥ 512 neurons (p = 0.5), as in (Garcia-Peraza-Herrera et al., 2017).
Following Bengio (2012), the initial learning rate (LR) of choice was
set to 1e − 2. The network was trained for a maximum of 100
epochs. As is common practice, LR decay was employed during
training, multiplying the LR by 0.5 every 10 epochs. Data

2https://github.com/luiscarlosgph/list-of-surgical-tool-datasets

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 8322088

Gruijthuijsen et al. Autonomous Instrument Tracking

https://github.com/luiscarlosgph/list-of-surgical-tool-datasets
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


augmentation was limited to on-the-fly left-right flips. As we
evaluate our segmentation using the intersection over union
(IoU), our loss function LIoU is a continuous approximation to
the intersection over union (Rahman and Wang, 2016) averaged
over classes:

I ŷ, y, k( ) � ∑P
i�1

ŷi,k · yi,k,

U ŷ, y, k( ) � ∑P
i�1

ŷi,k +∑P
i�1

yi,k −∑P
i�1

ŷi,k · yi,k,

LIoU ŷ, y( ) � 1 − 1
K

∑K
k�1

I ŷ, y, k( ) + ϵ
U ŷ, y, k( ) + ϵ,

(2)

Where P is the number of pixels, K = 2 is the number of classes
(instrument and background), ŷ represents the estimated
probability maps, y represents the ground truth probability
maps, ŷi,k is the estimated probability of the pixel i belonging
to the class k, and yi,k is the ground truth probability of the pixel i
belonging to class k. A machine epsilon ϵ is added to prevent
divisions by zero (e.g., in case that both prediction and ground
truth are all background).

Once we have obtained a segmentation prediction from the
trained convolutional model, we proceed to convert the
segmentation into a graph, which is a stepping stone towards
the tooltip detection.

4.2.4 Instrument Graph Construction
The instrument segmentation prediction is skeletonized via
medial surface axis thinning (Lee et al., 1994). The resulting

skeleton is converted via the Image-Py skeleton network
framework (Xiaolong, 2019) into a pixel skeleton graph G =
(V, E) (see Figure 5E), where V is a set of vertices and
E ⊆ {{x, y}: x, y ∈ V ∧ x ≠ y} is a set of edges. The nodes vi ∈
V are defined as a tuple vi = (i, pi) where i and pi = {xi, yi} represent
the node index and 2D point image coordinates, respectively.

4.2.5 Instrument Entry Node Extraction
As the size of the image is known, a circular segmentation mask
(see Figure 5B) is used to detect the graph nodes that could
potentially correspond to instrument entrypoints. That is, given
G, we populate a set R containing those graph nodes that
represent tool entrypoints into the endoscopic image. Those
graph nodes contained within the intersection of the circle
mask and the tool segmentation mask are collapsed into a
single new entry node vc = (n, pc) per instrument, where pc =
{xc, yc} is set to the centroid of all nodes captured within the
aforementioned intersection. See Figures 5B–F for an example of
entry node extraction.

A depth-first search is launched from each entry node to
determine all the graph nodes that can be reached from entry
nodes. Those that cannot be reached are pruned from the graph.

4.2.6 Instrument Leaf Node to Entry Node Matching
Let L = {v ∈ V : dG(v) = 1 ∧ v∉R} be the set containing all leaf
nodes, where dG(v) = |{u ∈ V: {u, v} ∈ E}|. In this part of the
instrument localization pipeline each leaf node in L is paired to an
entrypoint node in R. This is solved by recursively traversing G,
starting from each leaf. The criteria to decide which node to
traverse next is coined in this work as dot product recursive

FIGURE 5 | Surgical instrument graph construction and entry node extraction: (A) segmentation mask; (B) circle mask used to detect entrypoints; (C) intersection
of segmentation mask and circle mask; (D) segmentation mask skeleton obtained according to (Lee et al., 1994); (E) graph obtained from skeleton by means of
(Xiaolong, 2019); (F) entrypoint detection. If several graph nodes lie inside the entrypoint mask (in red), they are merged into a new single entry node (in green) whose
position attribute is set to the centroid of all the graph nodes inside the dotted area.
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traversal. It is based on the assumption that the correct path from
a tip to a corresponding entrypoint is the one with minimal
direction changes. The stopping condition is reaching an
entry node.

Dot product recursive traversal operates as follows. Let vi, vj ∈
V be two arbitrary nodes, and {vi, vj} the undirected edge
connecting them. Assuming vi is previously visited and vj
being traversed, the next node v* to visit is chosen following:

v* � argmax
k,pk( )∈N vj( )−A

pj − pi
||pj − pi||2

· pk − pj
||pk − pj||2

( ), (3)

Where N(vi) = {w ∈ V: {vi, w} ∈ E}, and A = {vi} is the set of nodes
previously traversed. The idea behind (3) is to perform a greedy
minimization of direction changes along the path from tooltip to
entrypoint (Figure 6A).

In the case of two tools present in the image, it is possible to
have hidden leaves (Figures 6B,D), defined as graph nodes that
represent an overlap between the tip of an instrument and
another instrument. This situation can easily occur (Figure 6)
in surgical tasks, including the task presented in the experiments
from Section 6. There are two possible graph arrangements that
can lead to hidden leaves. A node with exactly two (Figure 6B) or
three neighbours (Figure 6D). Nonetheless, the number of
neighbours alone does not facilitate the discovery of such
hidden leaves (and subsequent disentanglement of tools), as it
is also possible for a node with exactly two (could be a chain
instead) or three (could be a bifurcation instead) neighbours to
not be a hidden leaf (see Figure 6C). Hence, extra information is

needed. Aiming in this direction, after each successful traversal
from a normal leaf to an entry node, all the edges along the path
are labelled with the index of the entry node. In addition, all the
edges directly connected to an entry node are also labelled.

A node with exactly two or three neighbours whose edges are
all labelled with different entry nodes is a hidden leaf. Labelling
helps to solve some of the hidden leaf cases. Such leaves can be
duplicated, effectively splitting the graph into two, and
disentangling the overlapped instruments. After
disentanglement, they become normal leaves which can be
assigned to an entry node by dot product traversal (3).
Although not a hidden leaf, a node with exactly four
neighbours whose edges are labelled represents an overlap
which can be trivially disentangled. Hidden leaves such as the
ones presented in Figures 6B,D cannot be classified with
certainty as such just with the graph/skeleton information. As
shown in Figure 6, different tool configurations/occlusions could
lead to the same graph configuration. As not all the tips can be
unambiguously detected, entry nodes that are unmatched after
dot product traversal (i.e., they were not reached after launching a
traversal from each leaf node to a possible entry node) are paired
to the furthest opposing node connected to them.

Although the traversal from tips to entrypoints has been
illustrated in this section with one or two instruments (as it is
the case in our setup, see Figure 1), the dot product traversal
generalizes to setups with more instruments as the assumption
that the path from tip to entrypoint is the one with less direction
changes still holds.

4.2.7 Instrument Graph Pruning
Noisy skeletons can lead to inaccurate graphs containing more
than two leaves matched to the same entry node, or more than
two entry nodes connected to leaves. In our framework,
unmatched entry nodes are deleted. In addition, due to the
nature of our experimental setup, a maximum of two tools
with two tips each can be found. Therefore, when more than

FIGURE 6 | Leaf traversal and hidden leaves: (A) graph traversal step. vi
(green) represents the previous node. vj (blue) is the current node. vk are
possible next nodes. Following (3), the next node will be the one that
maximizes the dot product; (B) possible hidden leaf (dashed red box)
connected to two nodes; (C) node with two neighbours that does not
represent a hidden leaf as both connecting edges are labelled after dot
product traversal from l1; (D) possible hidden leaf (dashed red box) with three
neighbours.

FIGURE 7 | Left/right instrument identification. Two-instrument case
(left). Single-instrument case (right). The location of the entrypoints is used to
identify whether the instruments are left/right. When two instruments are
visible, an imaginary vertical line (parallel to the vertical axis of the image)
that crosses over the central point of the segment connecting both entrypoints
is used to determine if the instrument is left/right. When there is only one
instrument, the location of the entrypoint with regards to the vertical axis of the
image determines which tool is visible. If the entrypoint resides in the right half,
as in the figure above, this is considered to be the right instrument.
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two leaves are matched to the same entry node, only the two
furthest are kept. Analogously, when more than two entry nodes
are found and matched to leaves, the two kept are those with the
longest chain (from entry node to leaves). That is, a maximum of
two disentangled instrument graphs remain after pruning.

4.2.8 Left/Right Instrument Identification
In the presence of a single instrument, left/right vertical semi-
circles determine whether the instrument is left/right (see Figure 7,
right), i.e. if the entrypoint of the tool is located in the right half of
the image, it is assumed that the subgraph connected to this
entrypoint is the right instrument, and viceversa. Note that this
simple method is also generalizable to scenarios with three to five
instruments, which are different from the two-instrument solo
surgery setting examined in this work (see Figure 8), but still worth
mentioning as there are some endoscopic procedures that may
involve such number of tools (Abdi et al., 2016).

When two instruments are detected (i.e. two entrypoints with
their corresponding subgraphs), a line segment connecting the
entrypoints of both instruments is assumed to be the viewing
horizon. A vertical line that is parallel to the vertical axis of the
image and cuts through the central point of the viewing horizon
defines whether the entrypoints (and subsequently the
instruments) are left/right (see Figure 7, left).

4.2.9 Tooltip Stereo Matching
Once the tips of the instruments have been detected and classified
as right/left instrument, the disparity for each tooltip in the left
and right stereo images is estimated using classical intensity-
based template matching. As endoscope images are stereo-
rectified, template matching with a sliding window of 64 × 64
pixels running over the same line (and only in one direction)
suffices for the stereo matching. Normalized cross-correlation is
the cost function of choice. Given the disparity measure for each

tooltip, its depth can be reconstructed using the pinhole camera
model and conventional epipolar geometry. The 3D
reconstruction was performed with an extended Kalman filter
(EKF). The EKF is valuable here, because of its capacity to bridge
potential measurement gaps and to reduce the noise on the 3D
position estimate, which is very sensitive to small disparity
variations, as the lens separation of the TIPCAM is only 1.6 mm.
The details of the EKF are specified in Section 5.2.2.

Although in our proposed experimental setup we use
stereovision because we have an stereo-endoscope, many
centers still use monoscopic endoscopes. In this case, a
method such as that presented by Liu et al. (Liu et al., 2020)
could be used to estimate the 3D tip location directly from the 2D
endoscopy.

5 VISUAL SERVOING FOR ROBOTIC
ENDOSCOPE CONTROL

A visual servoing controller determines the relative motion
between a camera and an observed target in order to produce
the desired camera view upon the target. In the case of AIT, the
target is the (virtual) instrument tip position s, defined by (1), and
the camera is the endoscope held by the robotic endoscope
holder. When working with endoscopes, the visual servoing
controller needs to take into account a number of aspects
specific for endoscopy, including the presence of the incision
point which imposes a geometric constraint and the endoscope
geometry. For the online estimation of the incision point,
automated routines exist, such as (Dong and Morel, 2016;
Gruijthuijsen et al., 2018). This section formalizes visual
servoing approaches for REC in MIS.

5.1 Visual Servoing Approaches
Two classical approaches exist for visual servoing problems:
image-based visual servoing (IBVS) and position-based visual
servoing (PBVS) (Chaumette and Hutchinson, 2008). For REC,
an extension to these methods is necessary as the camera motion
is constrained by the presence of the incision point. In IBVS, this
can be done by modifying the interaction matrix, such that it
incorporates the kinematic constraint of the incision point (Osa
et al., 2010) or such that it describes the mapping between the
image space and the joint space of the robotic endoscope holder
(Uecker et al., 1995; Zhao, 2014). As these IBVS approaches only
act in the image plane, the zoom level can be controlled by a
decoupled depth controller (Chen et al., 2018). PBVS approaches
can incorporate the incision constraint in an inverse kinematics
algorithm that computes the desired robot pose, given the desired
endoscopic view (Yu et al., 2013; Eslamian et al., 2016).

Implementations of the above approaches, that the authors are
aware of, lack generality: they are formulated for a specific robotic
endoscope holder and do not cover oblique-viewing endoscopes,
while such endoscopes are commonly used in MIS procedures.
Yet, oblique-viewing endoscopes are the most challenging to
handle for clinicians (Pandya et al., 2014), and could thus reap
most benefits of REC. Generic constraint-based control
frameworks, such as eTaSL (Aertbeliën and De Schutter,

FIGURE 8 | Definition of reference frames in a generalized endoscope
model. The incision frame {i} is located at the incision point in the body wall, the
distal tip frame {t} at the end of the straight endoscope shaft and the camera
frame {c} at the end of the endoscope, in the optical center of the
camera. The image produced by the endoscope is also shown (upper right
insert), along with the projections of the detected feature of interest s and its
desired position s*, and with the image coordinate vectors (u, v).
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2014), could be applied with a generalized endoscope model, like
presented below, although they are slower than explicit visual
servoing methods.

5.2 Visual Servoing With Generalized
Endoscope Model
This section introduces a novel generalized endoscope model for
visual servoing that incorporates the incision constraint, as well as the
endoscope geometry. Such a model is presented here, along with the
ensuing modifications to the classical IBVS and PBVS approaches.

5.2.1 Generalized Endoscope Model
Endoscopes come in different forms and sizes. Rigid endoscopes
are typically straight, but can also be pre-bent. The camera can be
oriented collinear with the longitudinal axis of the scope or can be
positioned at an oblique angle. Some scopes are flexible over their
entire length, others contain a proximal rigid straight portion
with a distal bendable portion.

Figure 9 visualizes a general endoscope geometry that
encompasses all the above configurations, along with the frames
of interest. The incision frame {i} is defined at the incision point
and is common for all robotic endoscope holders. The z-axis of {i}
is the inward-pointing normal of the body wall. A frame {t} is
connected to the distal tip of the straight portion of the endoscope
shaft, with its z-axis pointing along the shaft axis. In the most
general case, the camera frame {c} is located at an offset and rotated
with respect to {t}. The offset can reproduce for tip articulation, for
stereo camera lens separation. The rotation can account for
oblique-viewing endoscopes. As such, this endoscope model can
describe complex endoscopes, such as the articulating 3D video
endoscope ENDOEYE FLEX 3D (OLYMPUS, Japan) (Figure 10).

Starting from this general endoscope model, different visual
servoing approaches for REC will be detailed next. The visual
servoing approaches strive to determine the endoscope motion
that is needed to match the position s � [ x y z ]T of the feature
of interest, expressed in the camera frame, with its desired
position s* � [x* y* z* ]T, while taking into account the
presence of the incision point. The visual servoing approaches
assume that the robot endoscope holder has three active DoFs
that can produce any linear velocity of the endoscope tip. In order
to obtain a fully determined endoscope motion, it is further
assumed that the remaining rolling DoF about the endoscope axis
is not controlled by the visual servoing controller, but by an
external controller. Note that, as was pointed out in Section 3,
this DoF could be employed to control the camera horizon.

The following notation will be used in the subsequent sections:
a rotation of angle ξ about the axis i will be denoted by Ri(ξ). For a
transformation from a frame {j} to a frame {i}, the notation T i

j will
be used, consisting of a rotation Ri

j and a translation Pi
j. Further,

the twist vector t � [ vT ωT ]T is defined as the concatenation of a
linear velocity v and an angular velocity ω. For all kinematic
variables, the reference frames will be indicated with a trailing
superscript. For the features s and the error e in the camera frame,
the trailing superscript c is mostly omitted for brevity.

5.2.2 EKF for Tooltip 3D Position Reconstruction
The instrument localization pipeline from Section 4.2 yields the
tooltip image coordinates ul, vl and the disparity dx. The 3D
tooltip position, required for the visual servoing methods, is
estimated from these measurement data, through an EKF. The
state transition model describes a linear tooltip motion of
exponentially decreasing velocity, partially expressed in frames
{i} and {c} to limit the non-linearity, and the observation model
implements the pinhole camera model:

FIGURE 9 | ENDOEYE FLEX 3D ©OLYMPUS CORPORATION (Tokyo, Japan).

FIGURE 10 | Comparison of the endoscope tip trajectories for different
visual servoing approaches for REC. In this simulation, an oblique-viewing 30°

endoscope with a 120° FOV was used. Its initial and final pose are drawn. In
the final pose, the feature of interest s is in the desired position with
respect to the camera. The trajectories are drawn for a case with a small initial
depth error (top) and a large initial depth error (bottom).
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Where xk � [ scTk _si
T

k ]T is the state vector, sck is the tooltip position
in the camera frame {c}, _sik is the tooltip velocity in the incision
frame {i}, tcc is the camera twist, L3D is the 3D interaction matrix
from Eq. 20, λs is a reduction factor < 1 (governing the
exponential decrease of _si), zk � [ ul,k vl,k dx,k ]T is the
observation vector, fx, fy, cx, cy are the intrinsic camera
parameters, bc the distance between the optical centres of the
(left and right) cameras, and k and δk are the usual process and
observation noises. The velocity reduction factor λs is introduced
to scale down the contribution of dead reckoning during
measurement gaps.

5.2.3 Image-Based Visual Servoing (IBVS)
IBVS aims to determine the camera motion to move the 2D
projection of the 3D feature point s to its desired position in the
image plane. Assuming a pinhole camera model, the 2D
projection sn is obtained by expressing s in normalized camera
coordinates:

sn � xn yn[ ]T � x/z y/z[ ]T. (6)
Classically, the relation between the camera twist tcc and the 2D

feature point velocity _sn is expressed by the interaction matrix L2D
(Chaumette and Hutchinson, 2008):

_sn � L2Dt
c
c, (7)

Where

L2D � −1/z 0 xn/z xnyn − 1 + x2
n( ) yn

0 −1/z yn/z 1 + y2
n −xnyn −xn

[ ]. (8)

In this equation, it is assumed that the camera has six DoFs,
while only three are available for the endoscope control. To
incorporate these constraints, the camera twist tcc needs to be
mapped first to the twist of tip of the endoscope’s straight
portion ttt:

tcc � Jctt
t
t, (9)

Where Jct is the well-known expression for a twist transformation:

Jct � Rc
t −Rc

t ptc[ ]×
0 Rc

t
[ ]. (10)

The operator [ ]× is the operator for the skew-symmetric
matrix. The incision constraint introduces a coupling between the
linear tip velocity vtt and angular tip velocity ωt

t and can be
expressed as:

ttt � J iv
t
t, (11)

With the incision transformation

J i �

1 0 0
0 1 0
0 0 1
0 −1/l 0
1/l 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

And the inserted endoscope length l � ‖pit‖. Combining (7–12)
yields the modified interaction matrix L2D′ :

L2D′ � L2DJ
c
tJ i (13)

Which maps vtt to _sn. This matrix is a generalized form for the
modified interaction matrix presented in (Osa et al., 2010).

As is customary in visual servoing, the error in the normalized
image space is expressed as

en � sn − sn* (14)
And the control law enforces an exponential decay of the error:

_en � −λen, (15)
Characterized by the time constant τ = 1/λ. For a constant sn*, this
yields the desired endoscope tip velocity:

_en � _sn � L2D′ vtt � −λen
0vtt � −λL′ +

2Den.
(16)

5.2.4 Image-Based Visual Servoing With Decoupled
Depth Control (IBVS+DC)
IBVS only seeks to optimize the 2D projected position sn of the
target point s in the image plane. As such IBVS alone is
insufficient to control the 3D position of the endoscope. A
decoupled depth controller can be added to control the third
DoF. This was proposed in (Chen et al., 2018) and will be
generalized here.

The depth controller acts along the z-axis of the camera frame
{c} and uses the kinematic relation between the camera twist tcc
and the change in the depth z of s:

_z � Lzt
c
c, (17)

Where

Lz � 0 0 −1 −y x 0[ ]. (18)
To reduce the depth error ez = z − z*, concurrently with the

image-space error en, a similar reasoning as with IBVS can be
followed, yielding:

_en
_ez

[ ] � _sn
_z

[ ] � L2D

Lz
[ ]JctJ ivtt � L2D′

Lz′
[ ]vtt � −λ en

ez
[ ]

0vtt � −λ L2D′
Lz′

[ ]+
en
ez

[ ]. (19)

To differentiate between directions, it is possible to define λ as
a diagonal matrix, rather than as a scalar.
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5.2.5 3D Image-Based Visual Servoing (3D IBVS)
Instead of decoupling the control in the image plane and the
depth control, the 3D feature s can also be used directly to define
the 3D motion of the endoscope. This requires a 3D interaction
matrix L3D, which can be derived from the kinematic equations of
motion for the stationary 3D point s in the moving camera
frame {c}:

_s � −vcc − ωc
c × s � L3Dt

c
c, (20)

With

L3D � −I s[ ]×[ ]. (21)
As before, the modified interactionmatrix L3D′ can be obtained

by including the offset of the tip frame with respect to the camera
frame and the incision constraint. The desired endoscope velocity
that ensures an exponential decay of the error e = s − s* follows
then from:

_e � _s � L3DJ
c
tJ iv

t
t �L3D′ vtt � −λe

0vtt � −λL′ +
3De.

(22)

5.2.6 Position-Based Visual Servoing (PBVS)
PBVS identifies the camera pose, with respect to an external
reference frame, that produces the desired view upon the 3D
feature s and moves the camera towards this pose. As
mentioned before, the camera pose is constrained to three
DoFs due to the presence of the incision point and the separate
horizon stabilization. Finding the desired camera pose, while
taking into account its kinematic constraints, involves solving
the inverse kinematics for the endoscope as defined in
Figure 9.

The forward kinematics of the endoscope can be described as a
function of three joint variables (θ1, θ2, l). Based on these
variables, any endoscope pose can be reached by applying
successive operations in a forward kinematics chains. When
these joint variables are set to zero, the endoscope system is in
a configuration where the incision frame {i} coincides with the
distal tip frame {t}, while the camera frame is offset by ptc and
rotated by Rt

c � Rx(α), with α the oblique viewing angle of the
endoscope. Starting from this configuration, θ1 rotates {t} about
its y-axis, then θ2 rotates it about its x-axis and finally l translates
it along its z-axis. This leads to the following forward kinematic
equations, expressed in the reference frame {i}:

T i
c~s � T i

c*~s*� T i
t*T

t
c~s*

(23)

� Ry θ1*( )Rx θ2*( ) 0
0T 1

[ ] I l*ê3
0T 1

[ ] Rx α( ) ptc
0T 1

[ ]~s*,
With ê3 � [ 0 0 1 ]T the unit vector along the z-direction. The
trailing * designates a desired value, different from the current
value. The ˜ signifies the homogeneous representation of a 3D
vector. Eq. 23 constitutes a system of three equations in the
unknowns (θ1*, θ2*, l*). 1 elaborates the analytic solution to this
inverse kinematics problem.

The solution of the inverse kinematics can be inserted in the
forward kinematics equations to obtain the desired position of the
distal endoscope tip pit*:

pit* �
l* sin θ1*( ) cos θ2*( )

−l* sin θ2*( )
l* cos θ1*( ) cos θ2*( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (24)

Which straightforwardly leads to the position error of the distal
tip, expressed with respect to the incision frame {i}:

ei � pit − pit*. (25)
When an exponential decaying error is required, the desired

endoscope velocity becomes:

vit � _ei � −λei (26)
And can be expressed in the frame {t} as:

vtt � −λRt
ie

i. (27)

5.3 Simulation of Visual Servoing Methods
A simulation was implemented to validate all four visual servoing
methods for REC: IBVS, IBVS+DC, 3D IBVS and PBVS.
Figure 11 presents a visual comparison between them, for a
30° oblique-viewing endoscope with a 120° FoV. In all
simulations, s enters the FoV from a side. The visual serviong
controller moves the endoscope to center s within its FoV at a
given depth z*, or s* � [ 0 0 z* ]T. The trajectories described by
the endoscope tip are shown in the graphs, as well as the initial
(marked in black) and final (marked in grey) endoscope poses.

5.3.1 Comparison of Visual Servoing Methods
From the graphs, it is clear that IBVS differs from the other
approaches in that, by construction, it does not attain the desired
depth z* in the final endoscope pose. Moreover, IBVS also doesn’t
guarantee a constant depth z. Consequently, z will drift towards
undesired depths over time. In some configurations, this can be
counteracted by separately controlling l to stay constant, but this

FIGURE 11 | LASTT (European Academy of Gynaecological Surgery,
2020) laparoscopic training model. Inital position of the pins before starting the
bi-manual coordination task (left). Procedure to pass a pin from the non-
dominant to the dominant hand (right).
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does not hold for the general case. IBVS alone is thus unsuitable
for REC and 3D information about s is a requirement.

Both IBVS+DC and 3D IBVS linearize the visual servoing
problem in the camera frame. This enables a desired exponential
decay of the targeted errors, but does not produce a well-
controlled endoscope motion in Cartesian space. It can be
seen from Figure 11 that the trajectories for these methods
deviate from the straight trajectory that is accomplished by
PBVS, and more so for large initial errors. As space is limited
in REC and the environment delicate, the straight trajectory of
PBVS appears favourable compared to its alternatives.

IBVS typically yields more accurate visual servoing results
than PBVS, because the feedback loop in IBVS-based methods
can mitigate camera calibration errors (excluding stereo
calibration errors). However, the objective in REC often is to
keep s inside a specific region of the endoscopic image (cf.
position hysteresis), rather than at an exact image coordinate.
The importance of the higher accuracy of IBVS is thus tempered
by this region-based control objective: small calibration
inaccuracies are acceptable. Therefore, and in contrast to the
claims in (Osa et al., 2010), it can be argued that the predictability
of a straight visual servoing trajectory outweighs the importance
of the visual servoing accuracy. This argumentation points out
why PBVS is the preferred approach for REC, especially when
large initial errors exist.

5.3.2 Hybrid PBVS and 3D IBVS
If the accuracy of PBVS would need to be enhanced, e.g., when
significant calibration errors exist, it is possible to apply a hybrid
visual servoing method. PBVS can be used until the initial error
drops below a certain threshold and from there, the visual
servoing controller gradually switches to an IBVS-based
approach for refinement, by applying a weighted combination
of the desired tip velocities vtt computed by each visual servoing
method. The curved shape of IBVS trajectories can thus be
suppressed. In experiments that are not further documented
here, it was observed that 3D IBVS, which ascertains an
exponential Cartesian error decay, provided a more predictable
and thus more desirable endoscope behaviour than IBVS+DC. To
ensure robustness against potential calibration errors, the hybrid
combination of PBVS and 3D IBVS was thus selected for the
experiments in Section 6. Figure 11 shows the simulated
performance of the hybrid visual servoing approach, which
gradually transitions from PBVS to 3D IBVS when the error
‖en‖ in the normalized image space goes from 0.6 to 0.3.

6 EXPERIMENTS

To determine the feasibility of the proposed autonomous
endoscopy framework, an experimental setup was built (see
Figure 1). The mockup surgical setting consisted of a
laparoscopic skills testing and training model (LASTT) placed
within a laparoscopic box trainer (see Figure 8). A bi-manual
coordination exercise was chosen as the target surgical task for the
experiments. In this task, a set of pushpins need to be passed
between hands and placed in the right pockets. The choice of both

laparoscopic trainer and surgical task was clinically motivated.
The present study is largely inspired by the surgical scenario
occurring during spina bifida Bruner (1999); Meuli andMoehrlen
(2014); Kabagambe et al. (2018) surgical procedures (see
Figure 12). In this fetal treatment, a surgeon operates while
another one guides the endoscope. The LASTT model along with
the bi-manual coordination task have been developed by The
European Academy for Gynaecological Surgery3 as an initiative
to improve quality control, training and education in
gynaecological surgery (Campo et al., 2012). Therefore, they
are ideal candidates for the feasibility study of the proposed
autonomous endoscopy framework.

6.1 Bi-manual Coordination Task
This task starts by placing a set of coloured pushpins at the base of
the LASTT model (see Figure 8, left). There are two pins of each
colour. The operator has to pick a pin with the non-dominant
hand, pass it to the dominant hand (Figure 8, right), and place it
inside the pocket of the same colour. The LASTT task is
successfully completed when a pushpin of each of the six
colours has been placed in a corresponding pocket, within less
than 5 min. If the pin is dropped during the procedure, a second
pin of the same colour has to be picked up from the base. If the
second pin is also dropped, the test is considered a failure.

As shown in the demonstration video of the bi-manual
coordination task with the LASTT model of the European
Academy of Gynaecological Surgery4, this exercise cannot be

FIGURE 12 | Spina bifida intervention performed on an animal model.
The surgeon dressed in blue scrubs controls the instruments and manipulates
the tissue. The colleague dressed in green guides and holds the endoscope
camera during the intervention. The yellow arrows point to the hand of
the assistant guiding the camera. As becomes evident in the pictures above,
this operating arrangement is not ergonomic, leading to discomfort that
increases with the duration of the intervention, and severely limiting the tasks
that the surgeon controlling the camera can perform. Picture courtesy of Prof.
Jan Deprest.

3https://esge.org/centre/the-european-academy-of-gynaecological-surgery
4https://europeanacademy.org/training-tools/lastt/
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performedwith a fixed immobile endoscope due to the reduced field
of view of the endoscope, the limited space available for maneuvers
within the operating cavity, and the small size of the pins (which
resembles small tissue structures). All of these characteristics of the
LASTT model mimic the real operating conditions, particularly for
gynaecological interventions. Without a robotic endoscope holder,
the bi-manual coordination task is performed with one trainee
handling the laparoscopic graspers and another trainee acting as the
(human) camera assistant. The assistant should hold the endoscope
and keep the view centered on what the laparoscopic operator is
doing. In our experiments, this human camera assistant is replaced
by the VIRTUOSE6D

5 (HAPTION SA, Laval, France) robotic arm. As
shown in (Avellino et al., 2020), the dimensions, workspace, and
supported payload of this robotic arm are well suited for robotic
endoscope control6. The operational workspace is defined as a cube
of side 450mm and is located in the center of the workspace
envelope. The extremities of the workspace envelope are bounded
by a volume of 1330, ×, 575 × 1020 mm3. The payload supported by
the VIRTUOSE6D is 35 N (peak)/10 N (continuous). Additionally, the
Virtuose6D features passive gravity compensation, which can be
mechanically adjusted to carry up to 8 N. Therefore, although in our
setup we are using a stereo-endoscope, this system is also able to
hold laparoscopy cameras (e.g. those used in abdominal surgery). In
our setup, the robotic arm was holding the KARL STORZ TIPCAM1, as
shown in Figure 1. The VIRTUOSE6D was programmed to respond to
semantically rich AIT instructions (Section 3). Additionally, it
featured a comanipulation fallback mode (Section 3.2), which it
naturally supports owing to its mechanical backdrivability.

6.2 Study Participants
A total of eight subjects participated in the study. Two surgeons,
two plateau novices, and four novices. The plateau novices were
authors of the study, who started out as novices, but familiarized
themselves with the system and the task until they reached a
plateau in the learning curve. Each participant performed the bi-
manual coordination task five times. Before these trials, each
participant practised 5–10 min to perform the task while assisted
by the robotic endoscope holder.

6.3 Configuration of the Autonomous
Endoscope for the Study
The autonomous endoscope controller implemented the Hybrid
PBVS and 3D IBVS method (Section 5.3.2), switching from PBVS
to 3D IBVS when the error ‖en‖ in the normalised image space
decreased from 0.6 to 0.3. The target position of the endoscope tip was
set to s* � [ 0 0 z* ]T, where z* = 8 cm. The endoscope tip was
controlled to track a trajectory towards its desired position with the tip
velocity vtt limited to 2 cm/s. This trajectory was implemented as a soft
virtual fixture, with stiffness of 0.3 N/mm. The aforementioned low
speed and stiffness were found to provide smooth and predictable
motions. They proved also helpful in avoiding sudden motions when
one of the instruments is occluded and the remaining one is located in

the violation zone. Low speed and stiffnesswere also necessary because
of the 340ms delay on the measurements updates of s. The
framegrabber was responsible for 230ms of this delay. A
framegrabber that supports NVIDIA GPUDirect, not available to
us at the time of writing, could be used to mitigate this latency. The
other 110ms came from the 3D tooltip localisation pipeline (Section
4.2). A delay that could be potentially reduced in future work using
TensorRT. Measurements were available at 9 Hz.

The position hysteresis approach, which was illustrated in
Figure 2, was applied separately in the image plane and along the
viewing direction. In the image plane, the target zone A occupied
the first 40% of the endoscopic image radius, the transition zone B
the next 20%, and the violation zone C the remaining 40%. Along
the viewing axis, the target zone was set to 3 cm in both directions
of z*. The violation zone started at a distance of 5 cm with respect
to z*. The EKF for stereo reconstruction (Section 4.2.9) was used
to fill missing data up to 1 s after the last received sample. When
the instruments were lost from the view for more than 10 s, the
REC switched from the AIT mode to the comanipulation fallback
mode, waiting to be manually reset to a safe home position.

When designing the experiments, two preliminary observations
were made: 1) the AIT instruction that fixes the tracking target on
the tip of the instrument held by the dominant hand was most
convenient, and 2) instructions to change the zoom level were not
used. The latter observation is easily explained by the nature of the
LASTT task, which requires overview rather than close-up
inspections. The former observation points out that it is
confusing to track a virtual instrument tip in between the real
tooltips. While concentrated on the task, participants tend to forget
their non-dominant hand andmove it out of the view (or in and out
of the view without a particular reason). This affected the position of
the virtual instrument tip in unexpected ways. In those situations
where tracking the non-dominant hand is relevant (e.g., when
passing the pin from one hand to another), participants quickly
learned to keep the tips together. Hence, tracking the dominant-
hand tool was sufficient to provide a comfortable view, and this
became the only operationmode that participants used. In fact, as an
operator, it was convenient to know that the system is tracking your
dominant hand: this is easy to understand and remember. Thus,
during all the experiments, the only instruction that was issued was
to make the camera track the dominant hand. As all participants
were right-handed, s was assigned to the tip of the right-hand tool.

7 RESULTS AND DISCUSSION

In this section we provide quantitative results on the tooltip
tracking accuracy, the responsiveness and usability of the visual
servoing endoscopic guidance, and the learning curve of the user
study participants.

7.1 Validation of Instrument Localization
Pipeline
Given an endoscopic video frame as input, the tooltip localization
pipeline produces an estimate of the 2D location of the surgical
instrument tips (see Figure 3). The tooltip location in image

5https://www.haption.com/en/products-en/virtuose-6d-en.html
6https://www.youtube.com/watch?v=R1qwKAWFOIk

Frontiers in Robotics and AI | www.frontiersin.org April 2022 | Volume 9 | Article 83220816

Gruijthuijsen et al. Autonomous Instrument Tracking

https://www.haption.com/en/products-en/virtuose-6d-en.html
https://www.youtube.com/watch?v=R1qwKAWFOIk
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


coordinates is used for the later 3D position reconstruction of the
tooltips. Therefore, we first validate the localization pipeline
performance independently of the overall task. This includes
the instrument segmentation (Section 4.2.3) together with the
subsequent tooltip detection steps (Sections 4.2.4–4.2.8).

For the selected bi-manual coordination task of Section 6, two
laparoscopic instruments are used. Hence, a maximum of four
tips may be encountered in any given endoscopic video frame.
Two for the left and two for the right instrument. We define a
bounding box around each detected tooltip. The chosen size for
the bounding box is 200, ×, 200 pixels (cf. 1080p raw video
frames). This corresponds to the size of the instrument distal part
at a practical operation depth (Figure 13). A comparison between
the bounding box and the image size is shown in Figure 13.

Following common practice in object detection (Everingham
et al., 2015), a ≥ 50% intersection over union (IoU) between the
prediction and ground truth bounding boxes is considered a true
positive. A predicted bounding box that does not surpass this
threshold represents a false positive. The Hungarian method is
employed to match predictions to ground truth bounding boxes.
The number of unmatched or missed bounding boxes from the
ground truth represents the false negatives. In object detection,
precision and recall at different confidence levels are commonly
blended into a single performance metric, the average precision
(AP) (Everingham et al., 2015). In the absence of a confidence
level, we report precision and recall.

The testing set that we use to report results for the whole
tooltip localization pipeline comprises 379 images. These images
are evenly sampled video frames extracted at a constant frequency
from the recording of the user study experiments, when
participants operate the robot (i.e. they are not used during
the training or validation of the segmentation model). Our
tooltip tracking localization pipeline achieved a tooltip
detection precision and recall of 72.45 and 61.89%,

respectively. In 84.46% of the video frames, at least one of the
present tips was correctly detected.

7.2 Responsiveness of the Endoscopic
Guidance
The responsiveness of the proposed system was also evaluated. To
navigate outside the view, participants have to place the tip of the
instrument in the violation zone C (see Figure 2 for a description
of the zones). When this occurs, the AIT functionality is triggered
until the instrument appears in zone A. Figure 14 shows how
long it took for the system to recover (entering zone A) after a
violation (entering zone C) was detected. As shown in the figure,
the control was responsive, taking an average of ≈ 3s (≈ 2s in the
viewing direction) to bring back the instrument tips to zone A.
The slight difference between the correction time in the viewing
direction and image plane is due to the difference in size of the
zone A, which was relatively large along the viewing direction and
therefore harder to violate.

In Figure 14, a number of outliers are present. This occurred
when the participants moved their hands too fast for the REC to
follow, causing the instruments to entirely disappear from the
FoV. Onmost of these occasions, the participants were able to put
the instruments back inside FoV after some time, resuming
normal navigation. However, in three instances (of the outliers
> 10s), the endoscope had to be manually brought back to a safe,
centered home position, using its comanipulation fallback mode.

7.3 Usability of the Endoscopic Guidance
When a human trainee is operating the endoscope, it is important
for the coordination and the overview of the surgeon that the view
remains centred around the instrument. This is also the objective
when a human trainee is operating the endoscope. To quantify
this aspect, Figure 15 shows the distribution of tip positions for
the dominant-hand instrument across all the experiments. The
REC indeed manages to keep the tooltip within the boundaries of
the target zone A for most of the time. In the 2D image plane, the
tip of the instrument was 46%, 23%, and 31% in target, transition,
and violation zones, respectively. Similar behaviour was observed
along the viewing direction, with a cumulative zone presence of
66%, 22%, and 12%, respectively.

7.4 Surgical Skills Assessment and Learning
Curve on the Bi-manual Coordination Task
The proposed system allowed the user study participants to
perform the benchmark surgical task7 with autonomous
endoscope guidance within the allocated time. The completion
time is shown in Figure 16. The average completion time for the
40 trials was 172 s (only one outlier exceeding 300 s). As shown in
the figure, the completion time for the plateau novices was
relatively constant. This was not the case for novices and
surgeons, where a learning curve can be appreciated despite

FIGURE 13 | Image crop of visible area of 1080p endoscope video
frame. The green square is the 200 ×200 pixel bounding box used to evaluate
detection performance. An intersection over union ≥ 50% between predicted
and ground truth bounding boxes is considered a correct detection.

7An exemplary video is located in section “Exercise 3: Bi-manual Coordination” at
https://europeanacademy.org/training-tools/lastt/
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the initial 5–10 min of practice. The average completion time
across participants decreased from 209 s in the first attempt to
144 s in the last exercise. These results indicate that the system
provided repeatable behaviour that participants were able
to learn.

8 CONCLUSION

In this work we proposed the use of semantically rich instructions to
govern the interaction between a robotic autonomous endoscope

holder and the operating surgeon. These are instructions such as
“focus on the right tool” or “focus the camera between the
instruments.” This opposes previous endoscope holders handled
via commands such as “move up” or “zoom in.” Semantically rich
instructions are similar to the instructions surgeons would issue to a
human camera operator, and can therefore be naturally adopted in
clinical practice. Thus, we believe that they may be a powerful tool
to increase clinical acceptance.

As a first step towards implementing these instructions within
a robotic endoscope holder, we concentrated our efforts on
semantically rich instructions related to surgical instruments,

FIGURE 14 | Completion time for all the participants in the bi-manual coordination task. (A) Completion time across attempts, with novices (top), plateau novices
(centre), and surgeons (bottom). (B) Completion time per group across all trials.

FIGURE 15 | Time taken to correct the position of the endoscope after the dominant-hand tooltip entered the violation zone.

FIGURE 16 | Distribution of dominant-hand tooltip presence across all the experiments in the 2D image and viewing direction.
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which we called autonomous instrument tracking (AIT)
instructions. To implement these instructions we built a
robotic system capable of executing them without the need for
additional sensors besides the endoscope. To the best of our
knowledge, we are the first to report how to construct an
autonomous instrument tracking system that allows for solo-
surgery using only the endoscope as a sensor to track the
instruments. Within the proposed system we included a novel
tooltip detection method and a new visual servoing approach for
a generalized endoscope model with support for remote center of
motion and endoscope bending.

We found that our proposed localization method was able to
detect tips in 84.46% of the frames, which in combination with
our visual servoing approach allowed for a robust autonomous
guidance of the endoscope. With regards to the visual servoing
method, we found that a hybrid of position-based visual servoing
(PBVS) and 3D image-based visual-servoing (IBVS) is preferred
for robotic endoscope control.

During our experimental campaign we found that the REC-
enabled AIT instructions yielded a predictable behaviour of the
robotic endoscope holder that could be quickly understood and
learned by the participants. The participants were able to execute a
proven bi-manual coordination task within the prescribed
completion time while assisted by the robotic endoscope holder.
In three of the exercise runs, it was observed that the comanipulation
fallback mode was required to solve for situations in which the
instruments moved out of the view and the operator was unable to
recover them in the view. This comanipulation mode thus ensures
that failures in which the robotic endoscope holder has to be
abandoned can be dealt with swiftly. An additional instruction to
move back the robotic endoscope holder to a safe overview position
could be considered as well. Such a safe location could for instance be
close to the remote centre ofmotion (at the incision point). Although
for the general case, when flexible instruments are used, care should
be paid that such retraction does not cause the bending segment to
hinge behind anatomic structures.

Besides the framework evaluation already performed, an in-
depth comparison between human and robotic endoscope
control remains as future work. Aspects such as time of
completion, smoothness of motions, the stability of the image,
number of corrections to the target zone, and average position of
the instruments in the view remain to be compared. This contrast
would quantify the difference in navigation quality between the
proposed framework and a human-held endoscope.

While AIT instructions are necessary in most laparoscopic
procedures, they are not the only instructions required for a
semantic control of the endoscope holder, and it is a limitation of
this study that it only focused on them. Therefore, we are positive
that this work will pave the way for further developments to
enlarge the set of semantically rich instructions.

1 INVERSE KINEMATICS SOLUTION TO
PBVS

The inverse kinematics problem (23) can be solved
analytically to obtain (θ1* , θ2* , l*). This problem has four

possible solutions. To select the appropriate solution, it is
important that the z-axis of {i} is defined as the inward-
pointing normal of the body wall. As a first step, (23) should
be rewritten as:

f θ1*, θ2*, l*( ) �
fx θ1*, θ2*, l*( )
fy θ1*, θ2*, l*( )
fz θ1*, θ2*, l*( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � T i
c*~s* − T i

c~s � 0. (28)

Next, l* needs to be extracted from each expression in (fx, fy,
fz), yielding respective expressions (lx* , ly* , lz*). Equating lx* � lz*
and rewriting the result, eliminates θ2* and an expression of the
form

a1 sin θ1*( ) + b1 cos θ1*( ) � c1 (29)
Emerges, with a1, b1, c1 constants. Solving this for θ1* yields two
supplementary angles, of which the solution with the smallest
absolute value should be retained. If the expression ly* is
substituted in fx and fz, and both are squared and added
according to:

fx θ1*, θ2*, ly*( )2 + fz θ1*, θ2*, ly*( )2 � 0, (30)
The dependence on θ1* cancels out. Simplifying this equation
leads to:

a2 cos
2 θ2*( ) + b2 cos θ2*( ) + c2 � 0, (31)

With a2, b2, c2 constants. This is a quadratic equation in
cos(θ2*). The solution with the smallest |θ2*| is to be
retained, but the sign of θ2* still needs to be confirmed. It is
now possible to determine l*, by plugging the known θ1* and
|θ2*| into one of the expressions (fx, fy, fz). For numerical
stability, fy should be used if | sin(θ2*)|> 1

2, fx if | sin(θ1*)|> 1
2,

and fz otherwise. As the final step, the two unused expressions
within (fx, fy, fz) need to be evaluated to determine the sign of
θ2*. If they do not evaluate to 0, θ2* has to be negative and l*
needs to be recomputed.
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