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Abstract

In this paper we develop methods for maximizing the throughput of a mobility-on-demand
urban transportation system. We consider a finite group of shared vehicles, located at a set
of stations. Users arrive at the stations, pick-up vehicles, and drive (or are driven) to their
destination station where they drop-off the vehicle. When some origins and destinations are
more popular than others, the system will inevitably become out of balance: Vehicles will
build up at some stations, and become depleted at others. We propose a robotic solution
to this rebalancing problem that involves empty robotic vehicles autonomously driving between
stations. Specifically, we develop a rebalancing policy that lets every station reach an equilibrium
in which there are excess vehicles and no waiting customers and that minimizes the number of
robotic vehicles performing rebalancing trips. To do this, we utilize a fluid model for the
customers and vehicles in the system. We then show that the optimal rebalancing policy can be
found as the solution to a linear program. We use this solution to develop a real-time rebalancing
policy which can operate in highly variable environments. We verify policy performance in a
simulated mobility-on-demand environment and in hardware experiments.

1 Introduction

In the past century, private automobiles have dramatically changed the concept of personal urban
mobility by enabling fast and anytime point-to-point travel within large cities. In 2001, personal
urban mobility in the US resulted in more than 3.5 trillion urban miles traveled by private cars,
representing 75% of total car travel in the US (BTS, 2001). This figure, coupled with the fact that
by 2030 the total population living in urban areas will jump from the current 40% to more than
60% (UN, 2007), implies that the demand for personal urban mobility will increase to formidable
levels. The demand for roads and parking spaces will dramatically increase, while the availability
urban land will continue to decrease. The result is that private automobiles are an unsustainable
solution for the future of personal mobility in dense urban environments. To cope with this problem,
a paradigm shift is emerging to replace the outdated policy of infrastructure augmentation with
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personal urban mobility leveraging robotics and automation. The challenge is to ensure the same
benefits of privately-owned cars without requiring additional roads and parking spaces.

One of the leading emerging paradigms for future urban mobility systems is one-way vehicle
sharing, which effectively merges private and public mobility, and directly targets the problems of
parking spaces and current low vehicle utilization rates. Arguably, the most promising approach
within this paradigm is represented by Mobility-on-Demand (MOD) systems (Mitchell et al., 2010),
which provide stacks and racks of light electric vehicles at closely spaced intervals throughout a city:
when a person wants to go somewhere, he/she simply walks to the nearest rack, swipes a card to
pick up a vehicle, drives it to the rack nearest to his/her destination, and drops it off (see Figure 1
for an illustration of mobility-on-demand). Large-scale systems employing traditional, non-electric
bicycles have already demonstrated the feasibility of mobility-on-demand in several cities through-
out Europe, e.g., Paris, Lyon, Milano, Trento, Zurich (Midgley, 2009). Furthermore, experimental,
limited-size, car-based MOD systems have been deployed in the past few years (Massot et al.,
1999; Barth and Todd, 2001; CAR2GO, 2011) and a number of car manufacturers are currently
developing two-seat electric vehicles specifically designed for MOD systems and even capable of
autonomous operation (see, e.g., the General Motors EN-V prototype (GM, 2011)).

However, sharing has its drawbacks. When some origins and some destinations are more popular
than others, the system will inevitably become out of balance: Vehicles will build up at some
stations, and become depleted at others (this is one of the reasons why car-sharing operators such
as Zipcar and Hertz allow hourly rental but only on a round-trip basis). In this paper we propose
a robotic solution for vehicle rebalancing in MOD systems, whereby the shared vehicles (e.g., the
General Motor’s EN-V prototype) autonomously drive from a delivery location to the next pick-up
location. Rebalancing through autonomously driving vehicles has the clear potential of eliminating
imbalances within the transportation network, and effectively adds another dimension to MOD
systems by introducing autonomy in the design space. In the recent past, considerable efforts have
been devoted to the problem of autonomous driving, and substantial progress has been made (see,
for example, (Buehler et al., 2007, 2009)). However, there are virtually no tools to address the
system-level problems arising at the interface between robotics and transportation science: How
should one pre-position vehicles in order to anticipate future demand? Is it possible to characterize
optimal, real-time rebalancing policies? How many vehicles are needed to achieve a certain quality
of service (e.g., a desired average waiting time for the customers)? The purpose of this paper is to
develop an approach that provides rigorous answers to such questions.

Even though rebalancing in MOD systems is an entirely new problem within the realm of trans-
portation networks, it has many characteristics in common with the well-known Dynamic Traffic
Assignment (DTA) problem (Merchant and Nemhauser, 1978; Friesz et al., 1989; Ziliaskopoulos,
2000; Peeta and Ziliaskopoulos, 2001). In this problem, one seeks to “optimize” the time varying
flows on each arc of a transportation network, taking into account congestion effects along arcs and
at nodes (Friesz et al., 1989). DTA models mainly differ in the methods used to capture the time-
varying nature of supply and demand processes, and can be broadly divided into four categories
(Peeta and Ziliaskopoulos, 2001): (i) mathematical programming, e.g., Merchant and Nemhauser
(1978); Ziliaskopoulos (2000), (ii) optimal control, e.g., Friesz et al. (1989), (iii) variational inequal-
ity, e.g., Friesz et al. (1993), and (iv) simulation-based, e.g., Balakrishna et al. (2007). The key
difference between rebalancing in MOD systems and the DTA problem is that in the former the
optimization is over the empty vehicle trips (i.e., the rebalancing trips) rather than the passenger
carrying trips. Rebalancing in MOD systems is also related to Dynamic one-to-one Pick-up and
Delivery problems (DPDPs), where dynamically-generated passengers must be transported from a
pick-up site to a delivery site by a fleet of vehicles. DPDPs can be divided into three main cate-
gories (Berbeglia et al., 2010): (i) Dynamic Stacker Crane Problem, where the vehicles have unit
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capacity, (ii) Dynamic Vehicle Routing Problem with Pickups and Deliveries, where the vehicles
can transport more than one request, and (iii) Dynamic Dial-a-Ride Problem, where additional
constraints such as time windows are considered. Excellent surveys on heuristics, metaheuristics
and online algorithms for DPDPs can be found in Berbeglia et al. (2010) and Parragh et al. (2008),
while analysis specifically tailored to the structural properties of transportation-on-demand systems
can be found in Pavone et al. (2010). The key difference from DPDP problems is that there are a
finite number of pick-up and delivery sites, the vehicles are not aware of the destination of newly
arrived customers, and the optimization is over the empty vehicle trips. Finally, our problem is
also related to dynamic load balancing in distributed computing systems (Cybenko, 1989; Cardellini
et al., 1999). However, these problems are less constrained since the demands (i.e., jobs) do not
need to wait for a “vehicle” to move across multiple processors.

1 2

3

4

λ1 λ2

λ3

λ4

Definition

ci # of customers
vi # of vehicles
λi customer arrival rate
µi departure rate
Tij travel time to j

pij fraction of customers
destined for j

αij rebalancing rate to j

γi
∑

j
αij

H(·) Heaviside function

Figure 1: At each station there is a queue of customers (yellow dots) and a queue of vehicles
(represented by small car icons). The customer at the head of queue enters the vehicle at the head
of the queue. This is shown in the circles at stations 3 and 4. Notice that at station 1 there are
no vehicles, and at station 2 there are no customers. In rebalancing, we send empty vehicles from
station 2 to station 1.

This paper is structured as follows. In Section 2 we present a fluid model for MOD systems, and
we formally state the rebalancing problem. In Section 3 we (i) study well-posedness and equilibria of
the fluid model, and we show that without rebalancing vehicles the system is unstable (i.e., at some
stations the number of waiting customers will grow without bound); (ii) determine the minimum
number of vehicles needed to meet the customer demand; and, (iii) show that with rebalancing
vehicles the system is indeed locally stable (i.e., stable within a neighborhood of the nominal
conditions). Then, in Section 4, we show how to optimally route the rebalancing vehicles across the
transportation network so that stability is ensured while minimizing the number of empty vehicles
traveling. The results in Sections 3 and 4 lead to a robust, real-time policy for vehicle rebalancing,
which is presented in Section 5 and which is thoroughly evaluated through simulation experiments
in Section 6. In Section 7 we present hardware experiments with the robotic testbed shown in
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Figure 2: The MOD testbed used to implement rebalancing policies. The white rectangles represent
stations (four in total), while the dashed lines represent streets. There are eight robotic vehicles
providing service to “virtual” customers (simulated in a ground station laptop). Details about the
hardware experiments can be found in Section 7.

Figure 2, and in Section 8 we draw our conclusions, and we present directions for future research.
A preliminary version of this paper appeared as Pavone et al. (2011). Compared to the con-

ference version, this version presents detailed proofs of all the statements, additional remarks and
examples, an expanded simulation section, and hardware experiments.

2 Modeling the Mobility-on-Demand System

In this paper, we use a fluidic approach to model mobility-on-demand systems. Our fluid model
is intended to serve as an approximation of a corresponding stochastic queueing model, where
customers enter the system according to a Poisson process and where travel times between stations
are nondeterministic.1 Consider n stations defined over an extended geographical area (see Figure 1;
see also Figure 2 for a corresponding hardware testbed). We denote the set of stations with N .
In this model, the number of customers and vehicles are represented by real numbers. Customers
arrive at station i at a constant rate λi ∈ R>0. The number of customers at station i at time t
is ci(t) ∈ R≥0, and the number of vehicles waiting idle at station i at time t is vi(t) ∈ R≥0. The
total number of vehicles in the system is V ∈ R>0 (the relation between V and the vi’s will be
made explicit at the end of this section). The fraction of customers at station i whose destination
is station j is pij (where pij ∈ R≥0, pii = 0, and

∑

j pij = 1). The travel time from station i to

1This can be formalized by showing that the fluid model arises as the limit of a sequence of appropriately scaled
queueing models. Such analysis will be presented in a forthcoming paper. In this paper, the relation between the
fluidic approximation and the queueing model will be discussed through simulation in Section 6.
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station j is Tij ∈ R≥0. When there are both customers and vehicles at station i (i.e., ci(t) > 0
and vi(t) > 0), then the rate at which customers (and hence vehicles) leave station i is µi; when,
instead, ci(t) = 0 but vi(t) > 0 the departure rate is 0. A necessary condition for the total number
of customers at station i to remain bounded is that µi ≥ λi; we will assume µi > λi throughout
the paper (the case µi = λi can be addressed with techniques similar to the ones introduced in this
paper and is omitted).

In order to rebalance the number of vehicles at each station, (robotic) empty vehicles will be
sent between stations. The rate at which station i sends empty (i.e., rebalancing) vehicles to station
j is denoted by αij ∈ R≥0 and the total rate at which station i sends empty vehicles is γi :=

∑

j αij ,
where αii = 0. We let α denote the matrix with entries given by αij . The notation is summarized
in Figure 1.

We are now in a position to write the differential equations governing the evolution of the number
of vehicles and customers at each station. In order to write the expressions more compactly, we
introduce the following shorthand notation:

vi := vi(t), ci := ci(t), vij := vj(t− Tji), cij := cj(t− Tji).

Then, we can write the customer dynamics at station i as

ċi =











λi, if vi = 0,

0, if vi > 0 and ci = 0,

λi − µi, if vi > 0 and ci > 0.

Defining the Heaviside function as

H(x) :=

{

1, if x > 0,
0, otherwise,

the customer dynamics can be written as

ċi = λi
(

1−H(vi)
)

+ (λi − µi)H(ci)H(vi).

The rate of change of vehicles at station i can be written as the sum of four components:

1. the rate at which customer-carrying vehicles depart station i:











0, if vi = 0

−λi, if vi > 0 and ci = 0,

−µi, if vi > 0 and ci > 0,

which can be written more compactly as −λiH(vi) + (λi − µi)H(ci)H(vi);

2. the rate at which customer-carrying vehicles arrive at station i:

∑

j 6=i

pji

(

λjH(vij)− (λj − µj)H(cij)H(vij)
)

;

3. the rate at which empty (rebalancing) vehicles depart station i, given by γiH(vi);

4. the rate at which empty (rebalancing) vehicles arrive at station i, given by
∑

j 6=i αjiH(vij).
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Putting everything together, we can write a set of nonlinear, time-delay, differential equations
describing the evolution of customers and vehicles in the system as

ċi =λi
(

1−H(vi)
)

+ (λi − µi)H(ci)H(vi),

v̇i =− λiH(vi) + (λi − µi)H(ci)H(vi) +
∑

j 6=i

pji

(

λjH(vij)− (λj − µj)H(cij)H(vij)
)

− γiH(vi) +
∑

j 6=i

αjiH(vij),

(1)

where t ≥ 0; the initial conditions satisfy ci(τ) = 0, vi(τ) = 0 for τ ∈ [−maxi,j Tij , 0), ci(0) ∈
R≥0, vi(0) ∈ R≥0 with vi(0) > 0 for at least one i ∈ N , and

∑

i vi(0) = V .
The problem we wish to solve is as follows: find an optimal rebalancing assignment α that

minimizes the number of rebalancing vehicles traveling in the network and ensures that the number
of waiting customers remains bounded. It will turn out (see Remark 4.1) that this objective is
equivalent to minimizing the vehicle utilization rate while meeting the customer demand.

3 Well-posedness, Equilibria, and Stability of Fluid Model

In this section we first discuss the well-posedness of model (1) by showing two important properties,
namely existence of solutions and invariance of the number of vehicles along system trajectories.
Then, we characterize the equilibria, we show that without rebalancing vehicles the system, in
general, does not admit any equilibrium (and indeed waiting customers will grow without bounds),
and we determine the minimum number of vehicles required for stabilizability (i.e., to ensure
existence of equilibria). Finally, we show that rebalancing vehicles give rise to equilibria that are
locally (i.e., within a neighborhood of the nominal conditions) stable.

3.1 Well-posedness

The fluid model (1) is nonlinear, time-delayed, and the right-hand side is discontinuous. Due to
the discontinuity, we need to analyze the model within the framework of Filippov solutions (see,
e.g., Filippov (1988)). The following proposition verifies that the fluid model is well-posed.

Proposition 3.1 (Well-posedness of fluid model). For the fluid model (1), the following hold:

1. For every initial condition, there exist continuous functions ci(t) : R → R≥0 and vi(t) : R →
R≥0, i ∈ N , satisfying the differential equations (1) in the Filippov sense.

2. The total number of vehicles is invariant for t ≥ 0 and is equal to V =
∑

i vi(0).

Proof. To prove the first claim, it can be checked that all assumptions of Theorem II-1 in Haddad
(1981) for the existence of Filippov solutions to time-delayed differential equations with discontin-
uous right-hand side are satisfied, and the claim follows.

To prove the second claim, let vij(t), where t ≥ 0, be the number of vehicles in-transit from
station i to station j (i.e., the vehicles for which the last station visited is i and the next station
they will visit is j). Clearly, vii(t) = 0. Now, the total number V (t) of vehicles in the system at
time t ≥ 0 is given, by definition, by V (t) =

∑n
i=1 vi(t) +

∑

i,j vij(t). One can express vij(t) as

vij(t) =

∫ t

t−Tij

pij

(

λiH(vi(τ))− (λi − µi)H(ci(τ))H(vi(τ))
)

+ αijH(vi(τ)) dτ. (2)
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By applying the Leibniz integral rule, one can write

v̇ij(t) = pij

(

λiH(vi)− (λi − µi)H(ci)H(vi)
)

+ αijH(vi)

− pij

(

λiH(vji )−(λi−µi)H(cji )H(vji )
)

− αijH(vji ).

Therefore, one immediately obtains, for t ≥ 0,

V̇ (t) =

n
∑

i=1

v̇i(t) +

n
∑

i=1

n
∑

j=1

v̇ij(t)

=
n
∑

i=1

n
∑

j=1

pij

(

−λiH(vi(t)) + (λi − µi)H(ci(t))H(vi(t))
)

+

n
∑

i=1

n
∑

j=1

pji

(

λjH(vj(t− Tji))

− (λj − µj)H(cj(t− Tji))H(vj(t− Tji))
)

−
n
∑

i=1

n
∑

j=1

aijH(vi(t))

+

n
∑

i=1

n
∑

j=1

αjiH(vj(t− Tji)) +

n
∑

i=1

n
∑

j=1

v̇ij(t)

= 0.

This proves the claim.

3.2 Equilibria

The equilibria of model (1) are characterized by the following theorem.

Theorem 3.2 (Existence of equilibria). Let A be the set of assignments α that verify the equation

∑

j 6=i

αij −
∑

j 6=i

αji = −λi +
∑

j 6=i

λjpji, (3)

for each i ∈ N , and let

Vα :=
∑

ij

Tij (pijλi + αij).

If α /∈ A, then no equilibrium exists. If α ∈ A, there are two cases:

1. If V > Vα, then the set of equilibria is

ci = 0, vi > 0, ∀ i ∈ N ,

where
∑

i vi = V −
∑

ij Tij (pijλi + αij).

2. If V ≤ Vα, then no equilibrium exists.

.

Proof. To prove the theorem, we set ċi = 0 and v̇i = 0 for all i ∈ N . From the ċi = 0 equations we
obtain

λi = λiH(vi)− (λi − µi)H(vi)H(ci). (4)
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Since λi < µi, the above equations have a solution only if

ci = 0 and vi > 0 ∀ i ∈ N .

Then, setting v̇i = 0, combined with (4), we obtain

0 = −λi +
∑

j 6=i

λjpji − γiH(vi) +
∑

j 6=i

αjiH(vj),

where we have used the fact that in a stationary equilibrium vi(t) and ci(t) are constants.
For every equilibrium we require vi > 0, and thus H(vi) = 1. Therefore, a necessary condition

for the existence of equilibria is that the rebalancing assignment α can be chosen such that

∑

j 6=i

αij −
∑

j 6=i

αji = −λi +
∑

j 6=i

λjpji,

for each i ∈ N . Hence, if α /∈ A, no equilibrium exists and the first claim is proven.
Assume now that α ∈ A and assume that V > Vα; we now want to show that the candidate

equilibria ci = 0 and vi > 0 for all i ∈ N are indeed valid equilibria (note that these are the only
possible equilibria). Since α ∈ A, then the necessary condition for the existence of equilibria in
equation (3) is satisfied; the only condition that yet needs to be verified is that the overall number
of vehicles is sufficient to sustain the equilibrium system traffic, i.e., the equilibrium flow of transit
vehicles. Indeed, when ci = 0 and vi > 0 for all i ∈ N , the equilibrium number of transit vehicles is
given by Vα (recall equation (2)). Hence, in order to satisfy the condition vi > 0 for all i ∈ N , one
needs a number of vehicles larger than Vα, which is verified by assumption. This, together with
the invariance result in Theorem 3.1, shows the second claim.

Finally, by using similar arguments, one can show that when α ∈ A but V ≤ Vα no equilibrium
exists.

Equation (3) implies that without rebalancing vehicles (i.e., when each αij is equal to zero),
the system, in general, does not have equilibria. Also, it can be shown that in absence of equilibria
the number of waiting customers will grow without bounds (the proof of this statement is rather
straightforward—it can be obtained with a two station example—and is omitted in the interest of
brevity). Hence, in general, rebalancing vehicles are necessary to ensure equilibria and stability.

Theorem 3.2 shows that if the set of assignments A is empty, then no equilibrium can exist.
The next lemma shows that, fortunately, there always exists a rebalancing assignment that satisfies
equation (3), i..e, the set A is always non-empty.

Lemma 3.3 (Existence of assignments satisfying equation (3)). There always exists an assignment
α such that equation (3) is satisfied, i.e., set A is always non-empty.

Proof. Consider the assignment in which α1k := λk −
∑

j 6=k λjpjk, for k ∈ {2, . . . , n}, and all other
entries in α are zero. For each i ∈ {2, . . . , n}, we can substitute the assignment into the LHS of
(3), and verify that the constraint is satisfied. Thus, we just need to verify the assignment satisfies
the constraint in (3) obtained when we set i = 1. Setting i = 1 in (3), and bringing all terms to the
LHS, the constraint becomes

∑

k 6=1 α1k + (λ1 −
∑

j 6=1 λjpj1) = 0. Substituting the assignment into

the above equation, the LHS becomes
∑

k

(

λk −
∑

j λjpjk

)

=
∑

k λk −
∑

k

∑

j λjpjk =
∑

k λk −
∑

j λj
∑

k pjk = 0, since
∑

k pjk = 1. Thus, the proposed assignment is feasible and the linear
system of equations given by (3) is consistent with at least one solution.
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We conclude this section by presenting a simple result about the minimum number of vehicles
required to ensure the existence of equilibria, which is a direct consequence of Theorem 3.2 and
Lemma 3.3.

Corollary 3.4 (Minimum number of vehicles for the existence of equilibria). Model (1) admits
equilibria if and only if

V > V := min
α∈A

Vα.

3.3 Stability of Equilibria

In this section we consider the following questions: assume that the system is in equilibrium, what
happens if there is a “burst” of customers arriving at the stations? Or, what happens if there is a
sudden change in the number of available vehicles (e.g., because of a disruption)? In other words,
we investigate the (local) stability of the equilibria of our model.

3.3.1 Stability of Equilibrium Sets

We consider the following notion of local stability. Let α ∈ A and assume V > Vα (this is a
necessary and sufficient condition to have equilibria, see Theorem 3.2). The (non-empty) set of
equilibria

Eα :=
{

(c,v) ∈ R
2n

∣

∣ ci = 0, vi > 0, for all i ∈ N , and
∑

i

vi = V − Vα
}

(5)

is locally asymptotically stable if for any equilibrium (c,v) ∈ Eα there exists a neighborhood
Bδ
α(c,v) := {(c,v) ∈ R

2n | ci ≥ 0, vi ≥ 0 for all i ∈ N , ‖(c − c,v − v)‖ < δ, and
∑

vi = V − Vα}
such that every evolution of model (1) starting at

ci(τ) = ci for τ ∈ [−max
i,j

Tij , 0)

vi(τ) = vi for τ ∈ [−max
i,j

Tij , 0)

(c(0),v(0)) ∈ Bδ
α(c,v)

(6)

has a limit which belongs to the equilibrium set. In other words,
(

limt→+∞ c(t), limt→+∞ v(t)
)

∈
Eα. The next theorem characterizes stability.

Theorem 3.5 (Stability of equilibria). Let α ∈ A be a feasible assignment, and assume V > Vα;
then, the set of equilibria Eα is locally asymptotically stable.

Proof. The proof is provided in the Appendix.

3.3.2 Stability of Single Equilibrium Points

In the previous section, we have discussed the stability of the set of equilibria Eα. Here, we discuss
stability of single equilibrium points. For simplicity, in this section we restrict perturbations to the
number of customers only (the extension to the general case is possible but more involved).

Specifically, consider an assignment α ∈ A, and assume, as usual, V > Vα. We say that an
equilibrium point (c,v) ∈ Eα is locally asymptotically stable if there exists a neighborhood

Bδ
α(c,v) := {(c,v) ∈ R

2n | ci ≥ 0, vi = vi for all i ∈ N , and ‖(c− c,0)‖ < δ}
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such that every evolution of model (1) starting (note that we have redefined Bδ
α(c,v)) at the initial

conditions in (6) satisfies limt→+∞ c(t) = c and limt→+∞ v(t) = v.
In general, a single equilibrium point is not locally asymptotically stable, as the following

example shows.

Example 3.6. Consider the simplest possible case where there are only two stations. Assume that
Tij = Tji := T , and that λ1 < λ2. In this case, an assignment belonging to set A is γ1 = α12 =
λ2 − λ1 and γ2 = α21 = 0. Consider an arbitrary equilibrium (c,v) ∈ Eα. Assume that δ is small
enough, so that T1 := c1/(µ1 − λ1) < T , T2 := c2/(µ2 − λ2) < T , c1 < v1, c2 < v2. Assume also
that c1 6= c2. Consider the case T1 < T2 (the other case is analogous). Then, model (1) with initial
conditions as in (6) has the following evolution. In time interval [0, T1] one has

ċ1(t) = λ1 − µ1, ċ2(t) = λ2 − µ2,

v̇1(t) = λ1 − µ1, v̇2(t) = λ2 − µ2.

Then, in time interval [T1, T2] one has

ċ1(t) = 0, ċ2(t) = λ2 − µ2,

v̇1(t) = 0, v̇2(t) = λ2 − µ2.

In time interval [T2, T ] all derivatives are equal to zero. Then, in time interval [T, T +T1] one has

ċ1(t) = 0, ċ2(t) = 0,

v̇1(t) = µ2 − λ2, v̇2(t) = µ1 − λ1,

and, finally, in time interval [T + T1, T + T2]

ċ1(t) = 0, ċ2(t) = 0,

v̇1(t) = µ2 − λ2, v̇2(t) = 0.

For t > T +T2 all derivatives are identically zero. Hence, one easily obtains that limt→+∞ c(t) = 0

and limt→+∞ v(t) = [v1(0)−c1(0)+c2(0), v1(0)−c2(0)+c1(0)] 6= [v1(0), v2(0)]. Since δ is arbitrarily
small, we conclude that, in general, single equilibrium points in Eα are not locally asymptotically
stable. •

The above example shows that, in general, single equilibrium points in Eα are not locally
asymptotically stable; this implies that, to make individual equilibrium points locally asymptot-
ically stable, an additional feedback term is needed. Specifically, assume that (0, vd) ∈ Eα is a
desired equilibrium point (e.g., vdi = (V − Vα)/n for each i ∈ N ). Then, one can make (0, vd)
locally asymptotically stable by adding to the vehicles’ dynamics the feedback term

−H
(

vi(t)− vdi
)

+
∑

j 6=i

1

n− 1
H
(

vj(t− Tji)− vdi
)

. (7)

That is, each station i sends away empty vehicles at a rate of 1 when the current number of vehicles
vi(t) exceeds the desired number of vehicles vdi . This rate is in addition to the rebalancing vehicles,
which are sent at rate γi =

∑

j αij . The normalizing constant 1/(n− 1) has the interpretation that
the extra rebalancing vehicles are equally likely sent to the other stations. The next theorem shows
that under model (1) with the additional feedback term (7) on vehicle’s dynamics the equilibrium
point (0, vd) is locally asymptotically stable.

10



Theorem 3.7 (Stability of single equilibrium points). Let α ∈ A be a feasible assignment, assume
V > Vα, and let (0, vd) ∈ Eα be a desired equilibrium point. Under model (1), with the additional
feedback term (7) on the vehicles’ dynamics, the equilibrium point (0, vd) is locally asymptotically
stable.

Proof. The proof is provided in the Appendix.

4 Optimal Rebalancing

Our objective is to find a rebalancing assignment α that minimizes the number of empty vehicles
traveling in the network and ensures the existence of (locally) stable equilibria for model (1). From
the previous section, we already know that the set of assignments ensuring the existence of stable
equilibria is A (provided that the total number of vehicles V is large enough). Hence, we are left
with the problem of finding the rebalancing assignment in A that minimizes the number of empty
vehicles traveling in the network.

The time-average number of rebalancing vehicles is simply given by
∑

i,j Tijαij . Note that
in minimizing this quantity, we are also minimizing the lower bound on the necessary number of
vehicles V from Corollary 3.4. Combining this objective with the existence of stable equilibria (i.e.,
the constraints in (3)), we see that α should be chosen as the solution to the following minimum
cost flow problem (Korte and Vygen, 2007):

minimize
∑

i,j

Tijαij

subject to
∑

j 6=i

(αij − αji) = −λi +
∑

j 6=i

λjpji ∀ i ∈ N

αij ≥ 0 ∀ i, j ∈ N ,

where N := {1, . . . , n}. The two constraints ensure that the optimization is over the set A.
From Lemma 3.3, this linear program is feasible, and thus an optimal solution α∗ exists. The

rebalancing policy is then given by sending empty vehicles from station i to station j at a rate of
α∗
ij .

Remark 4.1 (Minimizing the vehicle utilization rate). Our stated objective is to minimize the
number of rebalancing vehicles traveling in the network. For a given rebalancing assignment in A,
the time-average number of rebalancing vehicles is given by

∑

ij Tijαij. The time-average num-
ber of vehicles carrying customers is given by

∑

ij Tijpijλi and thus the time-average number of
vehicle trips (empty and customer carrying) is Vα :=

∑

ij Tij(pijλi + αij). Therefore, in minimiz-
ing the number of rebalancing trips we also minimize the total number of vehicles on the road, or
equivalently, the total vehicle utilization rate. •

The above optimization gives optimal values for the αij ’s. However, when the travel times Tij
satisfy the triangle inequality there is additional structure in the optimization that can be leveraged.
Consider the flow of vehicles when no re-balancing is performed. We can divide the stations into
two sets; the set S consisting of stations with a surplus of vehicles, and the set D consisting of
stations with a deficit vehicles. The sets are given by

S :=
{

i ∈ N | λi <
∑

j

λjpji
}

, (8)

D := N \ S. (9)

11



The following lemma characterizes the structure of the optimal solution when the travel times
satisfy the triangle inequality.

Lemma 4.2 (Re-balancing structure). Assume that the travel times satisfy the triangle inequality.
In an optimal re-balancing solution, empty vehicles are sent from station i to station j (i.e., α∗

ij > 0)
only if i ∈ S and j ∈ D.

Proof. Let us begin by showing the following fact about an optimal assignment α∗. If for some
i, j ∈ N , we have α∗

ij > 0, then α∗
jk = 0 for every k ∈ N . To prove this, suppose by way

of contradiction, that there exist three stations a, b, and c, such that α∗
ab, α

∗
bc > 0. Now, let

ǫ := min{α∗
ab, α

∗
bc} > 0, and let us define a new assignment ᾱ such that ᾱab := α∗

ab−ǫ, ᾱbc := α∗
bc−ǫ,

ᾱac := α∗
ac + ǫ, and ᾱij = α∗

ij for all other entries. Note that since α∗ is feasible, so is ᾱ. That is,
it satisfies the constraints in (3). However, letting C(α) =

∑

i,j αijTij , we see that

C(α∗)− C(ᾱ)

= Tab(α
∗
ab − ᾱab) + Tbc(α

∗
bc − ᾱbc) + Tac(α

∗
ac − ᾱac)

= ǫ(Tab + Tbc − Tac) > 0,

where the final inequality comes from the fact that the travel times Tij satisfy the triangle inequality.
But, this implies that strictly fewer empty trips occur with ᾱ than with α∗, a contradiction.

Now, consider the set S := {i ∈ N | λi <
∑

j λjpji}, and a station i ∈ S. Since i ∈ S, an
assignment α∗ satisfies the constraint

∑

j 6=i(α
∗
ij −α∗

ji) = −λi+
∑

j 6=i λjpji, only if α∗
ij > 0 for some

j. But, we have shown above that if α∗
ij > 0, then α∗

jk = 0 for every k ∈ N . Thus, j /∈ S, implying
that j ∈ D. Hence we have that the stations are partitioned into two sets S and D, such that
α∗
ij > 0 only if i ∈ S and j ∈ D.

The above lemma allows us to rephrase the optimization as follows:

minimize
∑

i∈S,j∈D

Tijαij

subject to
∑

j∈D

αij = −λi +
∑

j 6=i

λjpji ∀ i ∈ S

∑

i∈S

αij = λj −
∑

i 6=j

λipij ∀ j ∈ D (10)

αi,j ≥ 0 ∀ i ∈ S, j ∈ D.

Notice that the above optimization has fewer variables, and fewer constraints than the first opti-
mization. We can visualize this new optimization as a continuous matching problem in a bipartite
graph, with vertex sets S and D.

We conclude this section by discussing some important aspects of our problem setup.

4.1 Optimality with respect to Generalized Feedback Control Laws

In our model setup we have considered a restricted class of rebalancing control laws (specifically,
constant rebalancing rates). However, at least when the travel times satisfy the triangle inequality,
the solution that we derived is optimal within the general class of causal feedback control laws, in
the sense that no other causal control law can achieve stability with a smaller average number of
rebalancing trips. Indeed, without rebalancing, vehicles will accumulate at stations belonging to set
S at an average rate

∑

j(pji λj − λi). Hence, to ensure stability, every causal control law needs to

12



“pump” into the system empty vehicles at an average rate at least as large as
∑

i∈S

∑

j(pji λj−λi).
When the Tij ’s satisfy the triangle inequality, this is exactly the rate at which empty vehicles are
“pumped” into the system by the optimal rebalancing control law derived in this section (see the
constraints in the optimization problem 10).

4.2 Provision of Door-to-Door Service

An interesting extension of a MOD system is to allow the robotic vehicles to pick up some of
the customers directly at their travel origins (for example, their houses) and deliver them at their
travel destinations (for example, their offices). This aspect could be modeled in our framework by
assigning to each station i all locations in the city that are closer to i than any other station j.
This forms a partition of the city into n dominance regions, one for each station. Then, a customer
in dominance region i would be serviced in the following manner: 1) A vehicle travels from station
i to customer i’s location; 2) the vehicle drives the customer to its destination in region j; and 3)
the vehicle travels to the corresponding station j. The travel time Tij would then represent the
average time to complete the three legs of this trip. (In Section 6.3 we demonstrate the effect of
uncertain travel times on the performance of the MOD system).

5 Adaptive Real-time Rebalancing Policy

Until now, the policies have required knowledge of the arrival rates λi, and the destination distri-
bution pij . In this section we introduce a policy that does not require any a priori information.
The idea is to repeatedly solve the optimization introduced in Section 4, but using the current dis-
tribution of customers and vehicles. Let us define the number of vehicles owned by a station i to be
the number of vehicles at that station, given by vi(t), plus the number of vehicles in transit to the
station, given by

∑

j vji(t): v
own
i (t) := vi(t) +

∑

j vji(t). Note that by definition,
∑

i v
own
i (t) = V

at all times t ≥ 0.
Now, if station i has ci(t) customers and vi(t) vehicles, then min{ci(t), vi(t)} vehicles will leave

the station to serve the waiting customers. The excess vehicles at station i is then vexcessi (t) :=
vown
i (t)−ci(t). These are the vehicles that station i currently has available to send to other stations
in need. Thus, the total number of excess vehicles in the system is

∑

i v
excess
i (t) = V −

∑

i ci(t).
Note that this number may be negative. We would like to split these excess vehicles among the
n stations according to some desired distribution. That is, for each station i we have a desired
number of vehicles vdi (t), such that

∑

i v
d
i (t) ≤ V −

∑

i ci(t) for all t. As an example, we may choose
that the excess vehicles are evenly split among the stations so that

vdi (t) =

⌊

V −
∑

j cj(t)

n

⌋

for each station i, (11)

where we take the floor to obtain an integer. Our goal is to have vexcessi (t) ≥ vdi (t) for all t.
Let us define an optimization horizon thor > 0. At time instants kthor, where k is a non-negative

integer, we rebalance the excess vehicles by solving the following optimization:

minimize
∑

i,j

Tijnumij

subject to vexcessi (t) +
∑

j 6=i

(numji − numij) ≥ vdi (t) ∀ i ∈ N ,

numij ∈ N ∀ i, j ∈ N , i 6= j.

13



Note that this is an integer linear program, where numij is the number of vehicles that station
i will send to station j. It can be written in the form {min cx | Ax ≥ b, x ∈ N}. However, it can
easily be verified that the constraint matrix A is totally unimodular (Korte and Vygen, 2007). In
addition, the vector b contains integer entries vexcessi (t)− vdi (t). Therefore, we can relax the integer
constraints to numij ≥ 0, and solve the problem as a linear program {min cx | Ax ≥ b, x ≥ 0}. The
resulting solution will necessarily have integer values, and thus will also be the optimal solution to
the integer linear program.

Therefore, we can efficiently rebalance the system every thor time units without knowledge of
λi or pij . Each time the optimization is solved, we simply send numij rebalancing vehicles from
station i to station j. In the next section we will characterize the performance of this policy in
simulation. For future work, we are looking at modelling customer arrivals as a stochastic process
and then analyzing the theoretical performance of this policy.

6 Simulation Results

We have developed a simulation environment in MATLABR© for testing rebalancing policies. An
example of a 12 station environment is shown in Figure 3. In this environment customers arrive
stochastically at each station i according to a Poisson process with parameter λi. Each customer’s
destination is sampled from the distribution pij . Since the evolution of the system is stochastic, we
perform several trials, and then compute statistics in order to characterize a policy’s performance.
For each policy, we solve the necessary linear programs using the freely available SeDuMi (Self-
Dual-Minimization) toolbox. Simulations were run on a laptop computer with a 2.66 GHz dual
core processor and 4 GB of RAM.

This section presents simulation results for an environment with 50 randomly distributed sta-
tions. The environment is shown in Figure 4 for 65 vehicles. The travel times Tij between stations
are given by the Euclidean distance. However, in Section 6.3 we investigate the effects of uncer-
tainty in travel times on the system performance. The dimensions of the environment are 20 by
20 (dimensionless) units, and each vehicle moves 0.2 units per time step. The arrival rates at each
station were randomly selected, as was the destination density pij . Using the necessary condition
on the number of vehicles in Theorem 3.4, we obtain that V > 58.8 for any stabilizing policy. A
simulation study for a smaller 12 station environment was presented in the preliminary work Pavone
et al. (2011).

6.1 Real-time Rebalancing Policy

Figure 5 summarizes the performance of the real-time rebalancing policy of Section 5 with vdi (t) as
shown in (11). The left figure shows the number of waiting customers, and the number of in-transit
vehicles as a function of the optimization horizon thor. The total number of vehicles is V = 120.
Each data point is the mean of 20 independent trials, where each trial starts from an initial condition
of equally distributed vehicles, and no customers, and runs for 5000 time steps. Error bars show the
standard deviation over the 20 trials. We see that as the optimization horizon increases, the number
of in-transit vehicles decreases, but the number of waiting customers increases. Thus, the optimal
choice of thor is a trade-off between the cost of performing rebalancing trips, and the wait-time of
customers.

The right figure shows the stability of the real-time rebalancing policy. Each data point shows
the mean of 20 trials. In each trials, we start the system with 2000 customers, and run the system
for 15, 000 time steps. We then look at the difference between the initial number of customers, and
the time-average present over the last 1000 time steps of the trial. From the simulation, we can see
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Figure 3: The simulation environment for load balancing in mobility-on-demand systems. At each
station, the grey bar shows the number of vehicles, and the blue bar shows the number of waiting
customers. Blue vehicles are carrying customers, while grey vehicles are performing rebalancing
trips. The first frame shows the initial condition, with 24 vehicles and 3 customers. The second
and third frames show the system as it evolves.
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Figure 4: The 50 station simulation environment. At each station, the grey bar shows the number
of vehicles, and the blue bar shows the number of waiting customers. Blue vehicles are carrying
customers, while grey vehicles are performing rebalancing trips.

that approximately 65 vehicles is the threshold for stability in this example. With V ≥ 65 we have
stability. This compares quite well with the necessary condition of V > 58.8.

6.2 Policy Comparison

Finally, we compare the performance of three policies: 1) the real-time rebalancing policy with
thor = 100 and vdi (t) as shown in (11); 2) the basic policy from the fluid model, where we send a
constant rate of αij vehicles between stations; and 3) the fluid model policy with feedback discussed
in Section 3.3.2. In this third policy we set the desired number of vehicles at each station to be
vdi = ⌈V/n⌉. It should be noted that the choice of vdi is not an equilibrium point in Eα since
∑

i v
d
i > V −Vα. However, in practice we obtain better performance with this choice than we do in

choosing an equilibrium point such as vdi = (V − Vα)/n. The reason for is that in the fluid policy
with feedback, a station i sends away additional vehicles as soon as vi(t) > vdi . When the arrival
rate of customers is stochastic, it frequently occurs that there is a temporary increase in customer
arrivals, and thus a station requires additional vehicles that it just sent away. By setting vid to a
value larger than the equilibrium, we see a reduction in both the number of rebalancing trips and
in the number of waiting customers.

For each policy, Figure 6 (left) shows the number of waiting customers as a function of the total
number of vehicles V , on a log scale. Figure 6 (right) shows the number of in-transit vehicles as a
function of V . Each data point is the mean of 20 independent trials, and each trial consists of 5000
time steps. In each trial we compute mean number of waiting customers, and the mean number of
in-transit vehicles over the last 2000 time steps of the trial. Note that a finite number of waiting
customers does not necessarily indicate stability. We see from Figure 5 that at least 65 vehicles are
needed for stability.

From the left figure we see that the real-time rebalancing policy has the best performance in
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Figure 5: Analysis of the real-time rebalancing policy. Left figure: The number of customers or
vehicles as a function of the optimization horizon thor. Right figure: Stability as a function of
the number of vehicles V . Positive numbers indicate instability, while negative numbers indicate
stability.

terms of number of waiting customers. The basic fluid policy performs quite poorly. This is due to
the stochastic fluctuations in the customer arrival rates, and their chosen destinations. The fluid
policy with feedback performs adequately, but consistently has over 50% more waiting customers
than the real-time rebalancing policy.

From the right figure we see that the fluid model policy sends the fewest rebalancing vehicles.
Thus, to minimize rebalance cost without regard to customer satisfaction (i.e., wait times), the
fluid model policy performs best. The real-time rebalancing policy sends fewer vehicles than the
fluid policy with feedback. Thus, the real-time policy outperforms the feedback policy in terms of
waiting customers, and in-transit vehicles. Finally, the number of in-transit vehicles for the fluid
policy with feedback temporarily drops when the number of vehicles exceeds 100. This occurs
because the desired number of vehicles at a station was chosen as vd = ⌈V/n⌉. Since there are
n = 50 stations, when the number of vehicles is increased from 100 to 101, the value vd changes
from 2 to 3. This shift dramatically affects the number of in-transit vehicles. However, we can see
that it does not have as large of an effect on the number of waiting customers. Thus, one may be
able to further improve the performance of the fluid policy with feedback by setting vd to a value
larger than ⌈V/n⌉. We plan to explore this further in our future work.

6.3 Uncertainty in Travel Times

Finally, in this section we demonstrate the effects of nondeterministic travel times on the perfor-
mance of the real-time rebalancing policy. In the above simulations, each vehicle moves a fixed
(nominal) distance of stepnom = 0.2 in each time-step. Thus, the travel time Tij is given by the
distance from station i to station j, divided by stepnom. To simulate nondeterministic travel times,
we add a uniform random variable with support on [−a, a], denoted U(−a, a), to each step of each
vehicle:

steprand = stepnom + U(−a, a).
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Figure 6: The performance of the three different policies. Left figure: The time-average number
of customers waiting in the system. Note that the vertical axis is a log-scale. Right figure: The
time-average number of vehicles performing rebalancing trips per unit of time.

The expected step size at each time-step remains equal to stepnom, but as a increases, the uncer-
tainty in the travel times increases. However, the expected time to travel from station i to station
j remains approximately equal to the deterministic time Tij . By varying a we can see the effect
of uncertain travel times on the performance of the policy. We consider large perturbations in
which a > stepnom to simulate large deviations from the expected travel time. Note that this has
a non-intuitive physical interpretation that the vehicle may take a step in the opposite direction
of its destination station. However, the travel time distribution remains centered around Tij , and
thus it is just used to increase the variance.

Figure 7 shows the average number of waiting customers and the average number of rebalancing
vehicles as a function of a. The Monte Carlo simulation is performed for the same 50 station
environment as in the previous sections. The number of vehicles is set to 120. Each data point is
the mean of the 20 independent trials, and each trial consists of 5000 time steps. In each trial we
compute the mean number of waiting customers and the mean number of in-transit vehicles over
the last 2000 time steps of the trial.

From Figure 7 we can see that the effect of uncertain travel times on the average number of
customers in the system is very small. We see a slight trend to higher wait-times (and large standard
deviations), but the trend is not statistically significant even when the maximum perturbation a is
48 times the nominal step size. Even less change is noticed in the average number of rebalancing
vehicles shown on the right side of Figure 7. Thus, as long as the mean travel times between
stations are known accurately, uncertainty in the travel times does not appear to have a significant
effect on the system performance. Of course, if the mean travel time is not accurately known, we
would expect that the performance would degrade.
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Figure 7: The performance of the real-time rebalancing policy as a function of uncertainty on travel-
times. The nominal vehicle step size is 0.2, and a zero mean uniform random variable U(−a, a) is
added to the step size at each time step. The value of a is shown on the x-axis of the plot, ranging
from 0 to 2.4. Left figure: The time-average number of customers waiting in the system. Right
figure: The time-average number of vehicles performing rebalancing trips.

7 Hardware Experiments

We have also validated the real-time rebalancing policy through hardware experiments involving
eight ground robots and four stations. The robots are iRobot iCreate platforms, each outfitted
with a netbook computer (see Figure 8). The testing area consists of a 2m × 2m square with a
station at each corner and the surrounding area for parking queues (see Figure 8). Localization
was performed by using a Vicon motion capture system, which allows for exact localization of
the vehicles. Collision avoidance between vehicles were handled by using a first-in-first-out rule.
Each ground robot communicates via WiFi with a ground station laptop, where the real-time
rebalancing policy is run. Specifically, the real-time rebalancing policy has been implemented with
vdi (t) as shown in (11) and an horizon thor = 100 s.

We ran eight trials, each starting at the initial configuration shown in Figure 8. Each trial
lasts approximately 17 minutes, and a robot can travel from one station to another in roughly
two minutes. For each run, “virtual” customers arrive stochastically at each station i ∈ {1, 2, 3, 4}
according to a Poisson process with parameter λi. Both the arrival rates at each station and the
destination density pij were randomly selected.

Figure 9 summarizes the performance of the rebalancing policy in the first run, where the total
number of vehicles is larger than the minimum number of required vehicles (which, according to
Theorem 3.4, is approximately equal to 4). Specifically, Figure 9 (left) shows the total number of
waiting customers, while Figure 9 (right) shows the total number of vehicles waiting idle at the
stations. One can note that the number of waiting customers stays bounded and is almost zero,
which is in accordance with our theoretical results.

Figure 9 summarizes the performance of the rebalancing policy in the eighth run, where the
total number of vehicles is smaller than the minimum number of required vehicles (which, according
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Figure 8: View of hardware testbed with eight robots. Rectangles represent stations (four in total),
while dashed lines represent “streets.” Each trial starts with two robots per station.

to Theorem 3.4, is approximately equal to 10). Specifically, Figure 10 (left) shows the total number
of waiting customers, while Figure 10 (right) shows the total number of vehicles waiting idle at the
stations. One can note that the number of waiting customers keeps growing, which is in accordance
with our theoretical findings.

8 Conclusions

In this paper we studied the problem of rebalancing a mobility-on-demand system to efficiently
transport customers in an urban environment. We proposed a robotic solution to rebalancing that
involves empty robotic vehicles autonomously driving between stations. For a fluid model of the
system, we showed that the optimal rebalancing policy can be found as the solution to a linear
program. Under this policy, every station reaches an equilibrium in which there are excess vehicles
and no waiting customers. We used this solution to develop a real-time rebalancing policy that
can operate under stochastic customer demand. For future work we plan to analyze the stochastic
queueing model and characterize the performance of the real-time rebalancing policy. We also plan
to enrich our model by including uncertainty in the travel times, time windows for the customers,
and capacity constraints for the roads. Finally, we are interested in using dynamic pricing to
provide incentives for customers to perform rebalancing trips themselves.
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Figure 9: Performance of the rebalancing policy in run 1. Left figure: total number of waiting
customers. Right figure: total number of vehicles waiting idle at the stations. The minimum
number of vehicles required for stabilizability is V ≥ 4. The number of waiting customers stays
bounded.
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Figure 10: Performance of the rebalancing policy in run 8. Left figure: total number of waiting
customers. Right figure: total number of vehicles waiting idle at the stations. The minimum
number of vehicles required for stabilizability is V ≥ 10. The number of waiting customers grows
without bound.
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Appendix

Proof of Theorem 3.5. Consider an equilibrium (c,v) ∈ Eα (note that c = 0 by Theorem 3.2). We
now prove that every evolution of model (1) starting at

ci(τ) = 0 for τ ∈ [−max
i,j

Tij , 0)

vi(τ) = vi for τ ∈ [−max
i,j

Tij , 0)

(c(0),v(0)) such that 0 ≤ ci(0) < vi(0) for all i ∈ N , and
∑

vi(0) = V − Vα,

(12)

has a limit which belongs to the equilibrium set. The claim of the theorem will then be an easy
consequence of this statement.

We start by observing the following fact. Assume that vi(τ) > 0 for all τ ∈ [−maxi,j Tij , t],
then at time t the differential equations read ċi(t) = (λi − µi)H(ci(t)), for all i ∈ N ; recalling that
−λi +

∑

j 6=i λjpji − γi +
∑

j 6=i αji = 0,

v̇i(t) = −λi + (λi − µi)H(ci) +
∑

j 6=i

pji

(

λj − (λj − µj)H(cij)
)

− γi +
∑

j 6=i

αji

= (λi − µi)H(ci)−
∑

j 6=i

pji(λj − µj)H(cij)

≥ (λi − µi)H(ci), for all i ∈ N .

Since vi(τ) > 0 for all τ ∈ [−maxi,j Tij , 0], and since vi(0) > ci(0) for all i ∈ N , we conclude that
no vi(t) can reach the value 0 before the corresponding number of customers ci(t) has reached the
value 0. However, once ci(t) reaches the value 0 (after a time interval ci(0)/(µi − λi)), the time
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derivative v̇i(t) is larger than or equal to zero. This implies that when the initial conditions satisfy
(12), then vi(t) > 0 for all t ≥ 0.

Since vi(t) > 0 for all t ≥ 0, and since this implies that ċi(t) = (λi − µi)H(ci(t)) for all i ∈ N
and t ≥ 0, we conclude that all ci(t) will be equal to zero for all t ≥ T ′ := maxi ci(0)/(µi − λi).
Then, for t ≥ T ′ +maxij Tij =: T ′′ the differential equations become: ċi(t) = 0, v̇i(t) = 0.

Collecting the results obtained so far, we have that limt→+∞ ci(t) = 0 for all i ∈ N . Moreover,
since v̇i(t) = 0 for all t ≥ T ′′, the limit limt→+∞ vi(t) exists. Finally, one has vi(t) = vi(0) +
∫ t

0 v̇i(τ) dτ ≥ vi(0) +
∫ t

0 ċi(τ) dτ = vi(0) + ci(t) − ci(0). Since vi(0) > ci(0), we conclude that
limt→+∞ vi(t) > 0. Thus any solution with initial conditions (12) has a limit which belongs to Eα
(the property limt→+∞

∑

vi(t) = V −Vα is guaranteed by the invariance property in Proposition 3.1
and the assumption

∑

vi(0) = V − Vα).

ci

vi

(c
i
, v

i
) ψi

Figure 11: The relation 0 ≤ ci < vi, and the definition of the radius ψi.

Let ψi := vi sin
π
4 (see Figure 11), and let ψmin := mini ψi. Then, from the definitions of ψi and

ψmin, it follows that if one chooses δ = ψmin, then any solution of model (1) with initial conditions
satisfying (6) has a limit which belongs to the equilibrium set. This concludes the proof.

Proof of Theorem 3.7. The proof is similar to the proof of Theorem 3.5. Assume perturbations in
the number of customers c such that 0 ≤ ci(0) < vdi = vi(0) for all i ∈ N .

We start by observing the following fact. Assume that vi(τ) > 0 for all τ ∈ [−maxi,j Tij , t],
then at time t the differential equations read ċi(t) = (λi − µi)H(ci(t)), for all i ∈ N ; recalling that
−λi +

∑

j 6=i λjpji − γi +
∑

j 6=i αji = 0, one obtains

v̇i = −λi + (λi − µi)H(ci) +
∑

j 6=i

pji

(

λj − (λj − µj)H(cij)
)

− γi +
∑

j 6=i

αji

−H(vi − vdi ) +
∑

j 6=i

1

n− 1
H(vij − vdi )

= (λi − µi)H(ci)−
∑

j 6=i

pji(λj − µj)H(cij)−H(vi − vdi ) +
∑

j 6=i

1

n− 1
H(vij − vdi )

≥ (λi − µi)H(ci) +

{

−1 if vi > vdi ,

0 if vi ≤ vdi ,

for all i ∈ N . Since vi(τ) > 0 for all τ ∈ [−maxi,j Tij , 0], and since vi(0) = vdi > ci(0) for all i ∈ N ,
we conclude that no vi(t) can reach the value 0 before the corresponding number of customers ci(t)
has reached the value 0. However, once ci(t) reaches the value 0 (after a time interval ci(0)/(µi−λi)),
the time derivative v̇i(t) is larger than or equal to zero whenever vi(t) ≤ vdi . This implies that under
the assumptions on the initial conditions, then vi(t) > 0 for all t ≥ 0.
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Since vi(t) > 0 for all t ≥ 0, and since this implies that ċi(t) = (λi − µi)H(ci(t)) for all i ∈ N
and t ≥ 0, we conclude that all ci(t) will be equal to zero for all t ≥ T ′ := maxi ci(0)/(µi − λi).
Then, for t ≥ T ′ +maxij Tij =: T ′′ the differential equations become:

ċi(t) = 0,

v̇i(t) = −H(vi(t)− vdi ) +
∑

j 6=i

1

n− 1
H(vj(t− Tji)− vdi ).

Note that v̇i(t) < 0 if vi(t) > vdi and v̇i(t) ≥ 0 if vi(t) ≤ vdi . Hence, if at some instant t ≥ T ′′ the
number of vehicles satisfies vi(t) = vdi , then vi(τ) = vdi for all τ ≥ t, in other words vi will “slide”
along the mode vdi for ever. Let U(t) be the set of indexes of stations such that vi(t) > vdi , and
D(t) be the set of indexes of stations such that vi(t) < vdi .

One can show that U(t) 6= ∅ if and only if D(t) 6= ∅, for all t ≥ T ′′. Indeed, assume by the
sake of contradiction that U(t) 6= ∅ ; D 6= ∅. Then, since D(t) = ∅, and since ci = 0 and vi > 0
for all i ∈ N and for all t ≥ T ′, one can write for all t ≥ T ′′: V (t) =

∑n
i vi(t) +

∑

i,j vij(t) >
∑

i v
d
i +

∑

ij Tij(pijλi + αij) = V (0), which is in contradiction with the fact the the total number
of vehicles is invariant. The proof for the converse implication is identical.

Now, if U(t) = ∅, then one immediately obtains the claim of the theorem. Assume, instead, that
U(t) 6= 0; from the previous discussion, one concludes that for each i ∈ U(t), v̇i(t) ≤ −1/(n − 1).
This implies that for t ≥ T ′′ + (n− 1) maxi∈U(T ′′) vi(T

′′) the set U(t) will be empty, and thus also

set D(t) will be empty, implying that vi = vdi from then on. This concludes the proof.
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