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Abstract

Origami, the human art of paper sculpture, is a fresh challenge for the field of
robotic manipulation, and provides a concrete example for many difficult and gen-
eral manipulation problems. This thesis will present some initial results, including
the world’s first origami-folding robot, some new theorems about foldability, defi-
nition of a simple class of origami for which I have designed a complete automatic
planner, analysis of the kinematics of more complicated folds, and some observa-
tions about the configuration spaces of compound spherical closed chains.
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Chapter 1

Introduction

The contributions of the thesis fall in three classes: designing for foldability,
folding manipulation, and analysis of closed chains. This chapter will dis-
cuss some of the challenges presented by origami, key scientific questions
motivated by origami, and the contributions and structure of the thesis.

1.1 The challenge of origami

Modelling and manipulation of flexible objects, folding manipulation, and
analysis and planning for closed-chain structures are key areas on the bound-
aries of what we understand about manipulation science. Origami is a con-
crete example for study. Paper is flexible and springy, but stretches hardly
at all; simulation and manipulation are hard. Complex origami involves
many thicknesses of paper; each successive fold is more difficult than the
last, and the volume or surface area typically shrinks with each fold. We
might model creases as joints, and the uncreased regions as rigid bodies.
If the creases cross, it turns out that the mechanism is a closed chain. Al-
though robot configuration spaces are typically modelled as manifolds, we
can make a mechanism with a non-manifold configuration space with just
two folds of a flat piece of paper.

Origami is also a good problem to study because there is a ‘ladder’ of
origami skills and designs, from the very simple to the complex. Although
this thesis will only reach the first few rungs, the avenue of exploration is
clear. Origami books provide thousands of designs, with annotated instruc-
tions describing one way to fold each. Each new design that we analyse will
require and inspire a better understanding of the art of manipulation.
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Figure 1.1: Landmarking.

1.2 Three example problems

Origami is interesting from the robotics perpsective because of the wealth
of problems that it poses, from the design of low-level manipulation primi-
tives, to mechanism configuration-space analysis, to the mathematical mod-
elling of folding.

This section presents three motivating ‘case studies’, each of which will
be returned to and discussed more fully later in the thesis.

One perspective from which origami folding is interesting is that of clas-
sical manipulation. How should a crease be placed precisely in a flexible
sheet of paper? It is difficult to see how to measure the state of a bent pa-
per with sensors. Occlusion, the thin-ness of the paper, and the presence of
curved surfaces make a general origami vision or laser-range-finder system
seem hopeless. Tactile sensors are even worse – touching the paper is likely
to deform it. Do dynamics need to be measured? Representation poses an
additional problem; flexible paper seems likely to require a large number
of configuration variables.

In spite of these difficulties, a human folder can place certain types of
fold very reliably and accurately. Figure 1.1 shows an example. The key
seems to be a technique called ‘landmarking’, in which two corners or

10



Figure 1.2: Topology of the configuration space of a simple origami design.

edges far away from the fold are precisely placed together. The paper is
then flattened; the fact that the paper does not stretch forces the crease to
occur in the desired location. This is a minimal-sensing approach to flexible
object manipulation; once the fixed corners have been aligned, the fold can
be completed quickly, apparently without much effort spent on determin-
ing the exact state of the paper.

Interestingly, there are various approaches to making folds of this type;
some seem to allow or require more or less sensing as the fold is created,
but each starts with the same landmarking step. Chapter 2 will survey
some of these skills in more detail.

A second perspective from which origami is interesting is mechanism
kinematics. Consider a piece of origami with two perpendicular crease
lines. Model each of the four creases as a revolute joint, and model each
piece of uncreased paper as a rigid body. What is the configuration space
for this mechanism? When flat, the paper can be folded along either crease
line. As soon as the paper is not flat, however, it is only possible to fold
along the previously folded crease line, at least until the paper becomes flat
again.

Figure 1.2 shows a graph describing the topology of the configuration
space, and an example fold trajectory. The horizontal and vertical axes are
the joint angles of two perpendicular creases. For the example, crease 1

11
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Figure 1.3: A shopping bag. The configuration space of the rigid-body
model is isolated points, and the bag cannot be collapsed.

is first folded in the ‘negative’ direction; once the first fold has been made,
crease 2 is folded in the negative direction, forming a small four-layer trian-
gle. The nodes in the graph represended by filled circles are points where
folding is possible in multiple directions; the nodes represented by open
circles are points where folding in multiple directions would be possible if
not for collisions between facets.

Even the simplest origami design with crossing creases may have a rela-
tively complicated configuration space; what happens when there are high-
degree vertices, and networks of vertices connected by creases? Chapter 5
explores this problem in more detail.

A third perspective from which origami is interesting is mathematical
foldability. Figure 1.3 shows a paper shopping bag, like those used in de-
partment stores and grocery stores. It turns out that if we model the bag
using rigid bodies and revolute joints at creases, the configuration space
is isolated points: the bag can’t be opened or folded. When are kinematic
structures foldable? What happens if we add additional creases? Chapter 5
explores these questions in more detail.
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1.3 Key contributions

How should roboticists measure research progress in a domain? Some
milestones include basic modelling of the system, simple local planning
or optimization, understanding the space of configurations of the system,
and development of a complete planner or global optimization algorithm.
For manipulation tasks, understanding the physical process or manipula-
tion skills needed to transform the system state can be a challenge, and
building a robot to execute those skills is an important milestone.

Figure 1.4 gives a rough map of the origami domain, and outlines the
level of understanding reached by this thesis. The far left column shows
some traditional human origami skills. I have also developed a classifica-
tion of origami skills that is based on the complexity of the simplest model
that can be used to represent a fold. For example, ‘simple folds’ reflect all
paper from one side of a crease line to the other, and fold sequences can be
planned using a very simple model of polygons in the plane, but origami
with curved creases and facets requires a richer model.

1.3.1 A new domain

The driving application for the study of manipulation has been automated
manufacturing. The types of manipulation considered most in the litera-
ture reflect this: grasping, fixturing, pushing, sorting, and feeding are ele-
ments of the manufacturing process.

New applications can give new perspectives. The study of human ath-
letic abilities (including throwing, running, juggling, soccer, swimming,
and acrobatics) has led to significant advances in our understanding of
robot control, planning, dynamic manipulation, mobile manipulation, and
the manipulation of flexible or high-degree-of-freedom objects.

Origami is a human manipulation art. The study of origami provides
insight into folding as a class of manipulation of its own. What is fold-
ing? A perspective suggested by the current work is that folding is a series
of local shape-transforming manipulations of a flexible or high-degree-of-
freedom body. An unfolded piece of origami typically has a very complex
structure, even if the uncreased portions of the paper are modelled as rigid
bodies. Yet, complete and efficient planners can be designed to take the
mechanism to interesting goal configurations, using only simple manipu-
lation skills.

A primary contribution of this work is the analysis and classification
of simple human origami. How should simple folding skills be modelled
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with enough precision that they can be simulated or analysed? Chapter 2
will discuss some aspects of human origami folding.

1.3.2 An origami-folding robot

I have built what appears to be the first machine designed specifically to
fold origami. The heart of the system is a 4-DOF Adept SCARA arm. The
arm positions the paper using a vacuum pad, and a machine similar to
a sheet-metal brake makes the folds. Successful folds include a ‘cushion
base’, where all four corners of the paper are folded to the center, a simpli-
fied version of the classic samurai hat, a paper airplane, and a paper cup.

1.3.3 Complete planning for a simple class of origami

The origami-folding machine can fold paper from one side of a desired
crease line to the other; we call this type of folding simple folding. If the
pattern of creases in the final shape is known, it is possible to enumerate
all simple folds. Chapter 4 describes a graph search planner that is com-
plete for simply-foldable origami; the planner was used to find the fold
sequences that the robot used to fold the cushion base, the hat, and the
airplane.

Simply-foldable origami is a subset of Pureland origami, a class of origami
that will be discussed in chapters 2 and 4. The primary skill that divides
simply-foldable and Pureland origami is the separation of flaps of paper,
a skill the robot does not have. Separating folds that reflect paper across
a crease line are often called book folds in the origami community. Chap-
ter 4 models these folds, and describes a planner that is complete for book-
foldable origami. The traditional samurai-hat design is book-foldable, but
not simply-foldable.

1.3.4 Kinematic models of origami

The simplest model of origami takes creases as revolute joints and un-
creased paper as rigid. Under this model, the kinematic structure of an
unfolded origami pattern is either an open (serial) or closed chain, depend-
ing on whether or not creases meet on the interior of the paper. Around
each interior vertex is a spherical closed chain; if there are many interior
vertices we say that the mechanism is a compound spherical closed chain.

Origami therefore provides a motivation to study spherical closed chains.
Chapter 5 will present a number of results about closed chains, including
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parameterizations of simple and compound chains, and some analysis of
their configuration spaces.

1.3.5 3D foldability results

The primary model of origami used in this thesis is a rigid-body model
with a fixed number of creases in fixed locations on the paper. This model
is sometimes sufficient to describe high-level state transitions of the paper
as folds are made, but there are some cases where it is not. One example
is closed structures. Connelly’s bellows theorem states that a polyhedron
with rigid facets and a finite number of hinge joints at fixed locations has
constant volume. This means that it is impossible to model the collapse or
inflation of a car airbag, a teabag, an origami waterbomb, or other balloon-
like structures using a finite number of fixed creases.

There are other cases where the finite-crease model does not work. It
will be shown in chapter 5 that a finite-crease model of the paper shop-
ping bag with creases in the usual places cannot be collapsed; there are not
enough revolute joints, and the mechanism is overconstrained. It might
seem that some extension of the bellows theorem would apply, but it turns
out that with the addition of a finite number of creases, it is in fact possible
to collapse the bag. (This is joint work with Erik and Martin Demaine.) The
procedure for collapsing the bag does not collapse the bag to the same flat
state as the shopping bag folded in the usual way. An interesting question
is then, given the usual flat state, is it possible to unfold the bag using a
finite number of creases? We conjecture that it is, and present a possible
pattern of creases. (Although we have built a physical model of the mech-
anism that seems to unfold, the proof that our conjectured pattern allows
unfolding is not yet complete.)

1.3.6 Low-level paper manipulation

How should paper be grasped and manipulated? The flexibility of paper
is one obvious problem. Another difficulty is that folds made in paper are
typically very acute; punch-and-die folding methods like those used for
bending sheet metal are problematic, because the punch must be very thin,
and it is difficult to see how to remove it after folding the paper through
almost 180◦.

Human folders often solve these problems by lining up edges or corners
of the paper far away from the intended crease, and then using the fact that

16



paper doesn’t stretch to ensure that the crease is formed in the correct place
as a fingernail presses the paper flat.

The origami-folding robot uses a different technique and friction-grips
the outside of the paper before creating a crease by slamming two metal
plates together, but I have also explored some aspects of more human-like
creasing.

1.4 Structure of the thesis

The structure of the thesis is as follows. Chapters 1 and 2 present some
background, motivation, and a very brief introduction to human origami
folding. Chapters 3, 4, and 5 are the core of the thesis, and present the bulk
of the results. Each of these chapters presents related work and the context
of current work, gives main results, and some evaluation of the results.
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Chapter 2

Human and robotic origami
skills

2.1 Introduction

What is origami? There are many ways that origami is used and enjoyed,
and there often seems to be no common thread. In this chapter, we classify
origami into a few broad categories, and examine some of the very different
skills used to fold each type. But before we turn to the classification of
origami by skills, we briefly discuss some of the uses of origami.

In traditional Japanese origami, the folding of forms is considered a con-
templative ritual. Traditional designs include the samurai hat, the Chinese
junk, and the crane. For a purist, the paper must be square. Cutting, glu-
ing, and the use of tools are strictly forbidden, and there seeems to be little
molding or sculpting: only folds and tucking are used. Typically, the paper
is transformed step-by-step, with a clear new intermediate form after each
fold.

According to the educational computer software Origami, the Secret Life
of Paper [9], each traditional design has a unique key move that is surprising
and satisfying. From the perspective of robotics, these ‘key moves’ are very
interesting. How are these moves different from the moves in the usual
library of skills? Can they be automatically discovered by a planner, or do
they require human intuition?

Origami is also used for education or entertainment of children. Al-
though the rules are less strict than for traditional designs, there are still
template designs and a small set of skills that are used for each fold.

Traditional and educational origami can be described as paper folding.
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Modern origami should be considered paper sculpture. Wet-folded mod-
els are an example – the paper is sculpted while wet and then allowed to
dry, allowing amazing free-form figures. Although there are purists and
minimalists, most cutting-edge folders take a no-holds-barred approach.
Origami master Robert Lang describes the use of methlycellulose coating
to paper to allow better sculpting:

And speaking of purity, the pinnacle of ”pure origami is folding
from one sheet with no cuts or glue” is surrounded on all sides
by slippery slopes, and ”judicious selective application of siz-
ing” is rather far down one of those slopes; if not actually down
at the bottom of the Valley Of Gluing, it’s certainly close enough
to peek through the windows at night. If applying MC and its
ilk bothers you, then don’t do it; if seeing it in others’ work both-
ers you, well, don’t look at my work, because I’m using it more
and more. (And be prepared to expand your blinders, since I
was not the first and the practice seems to be spreading.) [36]

Complex models have hundreds of creases, and each must be made
precisely. On the origami e-mail list, there is a continued discussion of
where to get paper with just the right properties to fold a specific model –
many top folders consider it a necessity to make their own paper.

The most complicated models being designed today push the limits of
the best folders, and require special paper, years of training, and some-
times special tools. Are there origami designs that cannot be folded by any
human being? Thickness of paper is one limitation; it is often mentioned
that no more than seven consecutive folds can be made in a piece of paper
(27 = 128 thicknesses of paper!). But there may be theoretical limitations
as well. Current folds only require two hands; can origami models be de-
signed that require more?

2.2 Origami classification

What is success for an origami folding? Human ‘origamists’ provide one
standard, and their techniques may provide inspiration and intuition. There
are novice folders, and there are established masters of the craft. http:

//folds.net classifies human origami folding skills in six categories.

• Pureland: valley fold, mountain fold, turn over, rotate, book fold.
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• Simple: inside and outside reverse folds, prayer fold.

• Low-intermediate: squash fold, petal fold.

• Intermediate skills: crimp, swivel fold, spread-squash

• High-intermediate skills: open sink, open double sink, closed sink.

• Complex skills: closed unsink.

Our version of the list omits some folds: pleat, radial pleat, cupboard
fold, blintz fold, waterbomb base, preliminary fold, bird base, frog base,
kite base, pentagon, and stretched bird base. Each omitted fold can be
folded by a sequence of the listed folds; for example, a blintz fold valley
folds four corners of a square into the center. These compound folds do
provide an advantage that we ignore for now – they allow landmarking (the
center of a square can be precisely located by making a blintz fold), and
also form larger building blocks for origami instructions.

This list is only a beginning. Wet folding, cutting, scoring and scraping,
modular origami, and folding with various tools are common skills that are
not even mentioned. Some skills are considered too basic to be described,
and others are so complex that they are typically taught through word-of-
mouth and creative experimentation on the part of origami masters.

We will classify origami into roughly three categories: Pureland origami,
flat origami, and 3D origami. The following sections will discuss each of
these classes of origami, with some example patterns, and some discussion
of the required skills. Since detailed origami folding instructions for each
of the patterns we discuss are widely available in origami books and on the
internet, we provide only the patterns; it is recommended that the reader
xerox the patterns and experiment with folding each of the designs.

2.3 Pureland origami

According to the inventor of Pureland origami, John Smith, the motivations
for the creation of Pureland origami were two-fold: the aesthetics of min-
imalist design, and making origami accessible to handicapped children.
(See http://www.users.waitrose.com/˜pureland/.) The name is
from the words ‘pure land’ – only valley and mountain folds are permit-
ted. For a robot, Pureland provides the easiest entry-point into the world
of origami. However, even Pureland origami is human-centric; operations
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Figure 2.1: Four examples of Pureland origami: samurai hat, airplane, boat,
and cup.

like flap insertion and other 3D manipulations are considered easy, and are
permitted.

Pureland origami permits only the simplest type of folds: mountain
and valley folds. In fact, a mountain fold is just a valley fold viewed from
the other side of the paper, so we will only consider valley folds. It should
also be pointed out that there is a sometimes confusing difference between
a valley fold and a valley crease. Every crease on the crease pattern must
either be a mountain or valley; when used in this way, ‘valley’ refers to the
sign of the crease angle. However, valley folds fold paper across a single
crease line; a valley crease is created in every folded layer of the paper. (If
the origami is unfolded and looked at from one side, some of these creases
may be considered mountain creases, since some layers may be ‘upside
down’ when the valley fold is made.)

The difference between valley folds and valley creases is apparently
even sometimes confusing to master origami folders and designers, as ev-
idenced by a number of origami designs labelled as Pureland that in fact
require folding actions more complicated than valley folds. Some examples
include published diagrams for ‘Pureland’ ways of folding the waterbomb
base, the preliminary base, the windmill base, and even John Smith’s but-
terfly. Still, there are many Pureland designs that do in fact use only moun-
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Figure 2.2: Creating a valley fold using landmarking.

tain and valley folds, and for a robot, these simplest of origami designs are
the easiest entry point into the world of origami folding.

2.3.1 Mountain and valley folding skills

How should mountain and valley folds actually be made? Figure 2.2 shows
an example of the creation of a diagonal valley fold on a table. First, the
folder makes a bend in the paper. Then two opposite corners of the paper
are aligned, and held in place. The folder slides her finger across the paper
towards the intended crease location, flattening the paper along a line, and
making a small initial crease in the center of the paper. (We call this step
flattening to create a crease.) The folder then uses her fingers to extend this
crease in either direction to the corners of the paper. (We will call this step
flattening to extend the crease.)

The method used to make the fold in figure 2.2 has some good charac-
teristics. Since the two opposite corners are far from the crease and from
each other, the flexibility of the paper allows them to be manipulated es-
sentially independently. Once the opposite corners have been aligned, the
fact that the paper does not stretch ensures that the crease is created in the
right place, without having to measure the paper; we call this process land-
marking.

Not every human folder uses the same technique to make valley and
mountain folds, although most seem to use some variation of landmarking.
For example, many folders prefer making folds in the air, without the use of
the table. It is hard to say whether one method is intrinsically more precise
than another, but the different methods may provide useful inspiration for
designs for origami-folding robots.
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Figure 2.3: Ten examples of flat origami: pecking crow, duck, crane, box,
hexagonal box, boat, frog, waterbomb, whale.

2.4 Flat origami: basic folds, bases, and examples

Flat origami is a larger class than Pureland origami. Figure 2.3 shows some
examples of flat origami; some of the origami has been ‘opened up’ to 3D,
but was flat after each fold. Kinematically, we can consider each intermedi-
ate step in a Pureland fold of a design as a serial arm with one revolute joint.
Flat origami allows folding of multiple creases to occur simultaneously;
kinematically, the mechanism consists of multiple revolute joints with joint
axes intersecting at crease vertices.

Each intersection of creases on the interior of a crease pattern is a can-
didate for vertex folding. We may classify each vertex by the degree of the
vertex (the number of creases that meet at the vertex) and by the sector
angles around the vertex. In this section, we consider two types of vertex
folding. Basic vertex folds involve only a single vertex, or multiple stacked
vertices with identical patterns that can be treated as a single vertex. Com-
pound vertex folds involve networks of creases and multiple vertices; the
motion of the paper around a single vertex may be considered as a basic
vertex fold, but it may be the case that creases around different vertices
must be folded simultaneously rather than sequentially.

2.4.1 Basic vertex folds

One way to classify vertex folds is by the number of creases that intersect
at the vertex. The reverse, squash, and rabbit ear folds involve only four
creases; the prayer fold requires six. In this section we consider these four
example folds, and briefly discuss the manipulation skills required to fold
each.
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Figure 2.4: Folding a pre-creased reverse fold using two fingers and the
table.

The reverse, the squash, and the rabbit ear

The pattern for the reverse fold is a single crease vertex of degree four.
There are two colinear creases: one mountain, one valley. At the inter-
section, there are two creases making an equal angle with the first crease
line, either both mountain or both valley. The sector angles are α, 180◦ −
α, 180◦ − α, α, where α is the angle between the central crease line and one
of the other creases. Figure 2.6 gives an example pattern for a reverse fold,
and figure 2.4 shows the folding of a pre-creased reverse fold.

The squash fold (pattern in figure 2.7) and rabbit ear (figure 2.8) are
very similar to the reverse fold from the point of view of manipulation;
the pattern for each is also a degree-four vertex. The sector angles for the
squash fold are 135◦, 90◦, 45◦, 90◦; for the rabbit ear, 135◦, 77.5◦, 45◦, 112.5◦.

The prayer fold

The pattern for the prayer fold is a vertex of degree six. Both the waterbomb
base and the preliminary base are folded with a single prayer fold. The
usual sector angles are 90◦, 45◦, 45◦, 90◦, 45◦, 45◦.

2.4.2 Basic vertex-folding skills

How should basic vertex folds be executed? There is some variation in how
humans make folds, and this is particularly apparent with vertex folds.
One primary choice is whether or not to pre-crease the paper. Paper can be
pre-creased using mountain and valley folds, but there are some decisions
to be made during precreasing as well. For example, it is usually more
difficult to create a crease that ends in a vertex rather than extending across
the entire width of the paper. The reverse fold pattern can be precreased by
a sequence of two folds across the entire paper, but some of the mountain
folds will have to be changed to valley folds, or vice versa. One method for
pre-creasing the rabbit ear involves making creases all of the way across
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Figure 2.5: Folding a pre-creased prayer fold (waterbomb base) using two
fingers and the table.

the paper, but only using the parts of the creases that are part of the rabbit
ear; this method has the disadvantage that some creases are created but left
unfolded in the final design.

It is also possible to make basic vertex folds without fully pre-creasing
the paper, but this is often more difficult. Combinations are also possible;
the four valley folds in the waterbomb base (figure 2.9) are often precreased,
but the two mountain folds are not created until the prayer fold is pressed
flat. It is interesting that unlike mountain and valley folding, multiple non-
colinear crease lines may be created at once, and in may be necessary to
control multiple flexible regions of paper during flattening.

How many fingers are necessary to make basic vertex folds? Experi-
mentally, Nell Hana Hoffman has shown in our lab that it is possible to
make each of the folds discussed using just two fingers and the table, as-
suming the pattern has been precreased.

Another aspect of making basic vertex folds is landmarking. It may be
difficult to line up appropriate edges during pre-creasing, but each of the
rabbit ear, squash fold, and waterbomb base patterns shown offer conve-
nient opportunities for landmarking if the pattern is not completely precreased
before folding.
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Figure 2.6: Pattern for the basic reverse fold. Relative to the side facing the
viewer, this is an ‘inside’ reverse fold.
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Figure 2.7: The squash fold.
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Figure 2.8: The pattern for a rabbit-ear fold.
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Figure 2.9: Pattern for the prayer fold.
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2.4.3 Compound vertex folds

The crimp, double rabbit-ear, petal fold, spread-squash, and open sink all
have patterns with multiple vertices; these vertices can be classified as re-
verse, squash, rabbit ear, or prayer vertices. The basic components suggest
how these folds may have been designed, and are one way of analysing the
behavior of these folds.

Figures 2.14, 2.15, 2.16, 2.17, and 2.18 show the patterns for these folds;
the following table summarizes the components that make up each fold:

Fold Components

Crimp Two reverse folds
Double rabbit-ear Reverse, 2 rabbit-ears

Petal Squash, 2 rabbit-ears
Spread-squash 6 squashes, 2 reverses

Open sink 2 nested prayer, or 1 prayer and 6 reverses

Another way to classify crease-network patterns is by the number of
creases and vertices, and the maximum vertex degree; we expect patterns
with many high-degree vertices to be more difficult to fold.

Fold # creases # vertices max. degree

Crimp 7 2 4
Double rabbit-ear 10 3 4

Petal 9 3 4
Spread-squash 19 8 4

Open sink 18 7 6

2.4.4 Folding skills for compound patterns

What skills are required to fold compound patterns? Although the indi-
vidual vertices of compound patterns may be recognizable as basic reverse
folds, squash folds, rabbit ears, or prayer folds, it may be necessary to fold
all or many of the vertices in a crease pattern simultaneously. For example,
the spread-squash has eight vertices of degree-four connected by creases.
Since each vertex has a mobility of 1, the pattern as a whole has a mobil-
ity of 1; partially folding any crease will cause all other creases to become
partially folded.

Basic vertex folds of degree four or higher always have degrees of free-
dom, if we model the facets as rigid links and the creases as revolute joints.
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Figure 2.10: The petal fold.

But once we connect multiple vertices together, it may be possible that
there are not enough degrees of freedom for the rigid-body model to be
folded. Consider the pattern for the open-sink fold, shown in figure 2.18.
Two of the six reverse-fold vertices have angles between the creases of
90◦, 90◦, 90◦, 90◦; although we do not go into details here, these vertices
cannot be folded simultaneously in a way that is consistent with the fold-
ing of the central prayer-fold, without bending the facets. (The proof of this
would be similar to the proof that the rigid-body model of a shopping bag
cannot be folded, in chapter 5.) An open question is, when is it possible to
add a finite number of creases so that the facets do not have to be bent?

It is hard to say whether folding that requires bending facets is intrin-
sically more difficult than folding that doesn’t require bending facets. One
interesting observation is that the final folded shape behaves somewhat dif-
ferently. Since facets tend to resist bending, the open-sink is kinematically
‘locked’ in place in the final folded shape, and does not unfold automati-
cally when released. (Compare to the final step of the extended bird base,
shown in the last few subfigures of figure 2.11. When released, the flaps
immediately splay outwards from each other!)
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Figure 2.11: Folding the extended bird base.

Figure 2.12: Folding the open sink.
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Figure 2.13: Pattern for a double reverse fold. Relative to the side of the
paper facing the viewer, the top fold is an outside reverse fold, and the
bottom fold an inside reverse fold.
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Figure 2.14: The crimp fold. The crimp fold can be seen as a pair of reverse
folds, with outer creases that just touch. (Compare to figure 2.13.)
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Figure 2.15: The pattern for a double-rabbit-ear fold. The pattern is built
from two rabbit ear folds (upper right corner of the paper, to the left and
right of the main diagonal) that substitute for part of a reverse fold.
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Figure 2.16: The pattern for a petal fold. The upper left vertex is a squash
fold; the other two vertices are rabbit-ears.
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Figure 2.17: The pattern for a spread-squash fold.
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Figure 2.18: The pattern for the open-sink fold.
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2.4.5 Bases for flat origami

Figure 2.19: Pattern for the kite base.
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Figure 2.20: Pattern for the preliminary base.
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Figure 2.21: Pattern for the waterbomb base.
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Figure 2.22: Pattern for the fish base.
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Figure 2.23: Pattern for the bird base.
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Figure 2.24: Pattern for the frog base.
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Figure 2.25: Pattern for the extended bird base.

46



2.4.6 Example flat crease patterns

Figure 2.26: The pattern for an origami waterbomb.
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Figure 2.27: The pattern for a paper crane.
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Figure 2.28: An example of 3D origami: two Kawasaki roses folded by Luis
Pena.

2.5 3D origami

Although the folding of more complicated three-dimensional models of
origami like those shown in figure 2.28 are largely beyond the scope of
this paper, in this section we mention a few interesting observations. For
more detail, the reader is referred to Robert Lang’s excellent three-part arti-
cle on 3D orgami folding techniques, posted online on the origami internet
bulletin board [36].

One observation, confirmed by experienced origami folder Luis Pena,
is that most of the creasing for a 3D model is done in an initial first stage,
before any 3D folds are made. Consider the first subfigure of figure 2.29,
which shows the precreasing done for the Kawasaki rose. One reason for
the pre-creasing step may be that once the model becomes three-dimensional,
it is much harder to add additional creases precisely, since the model is
harder to grasp, and there may be no available flaps for landmarking.

How should the model be locked in its final form? As mentioned earlier
in the chapter, coatings and glue are one approach. The choice of paper also
seems essential, since it can be important that creases of less than 180◦ hold
their shape. Techniques like wet-folding rely on the fact that thick paper,
when folded wet, tends to stiffen as it dries.

What about other techniques? Curved creases are only possible in 3D
origami, since folding curved creases bends the paper. But how should
curved creases be created? One method is pre-creasing or light scoring
with a knife blade. Other techniques include crumpling, and scraping one
side of the paper to curl it. Although these techniques are beyond the scope
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Figure 2.29: Three-dimensional paper manipulation used to fold the rose.
(Folder: Luis Pena.)

50



of this thesis, they pose a fascinating challenge for future work.
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Chapter 3

Representation and design

This chapter presents some of the simple models used in the thesis to de-
scribe origami folding, and surveys related work on modelling the state of
paper, cloth, and bendable wire.

What mathematical models should be used to describe origami? There
are a number of problems that make finding a single unified model of
origami state difficult. Paper is thin, flexible, and not stretchy. The paper
behaves like a spring when flexed, but creasing occurs when elastic limits
are exceeded. Origami creases add layers of papers to each step of a fold
exponentially, and natural creases (crinkling) can occur easily if too many
constraints are applied to the edges of the paper. And what happens when
creases are curved, or cross in the middle of the paper?

Models of paper tend to be driven by the manipulation or simulation
task being considered, and can be classified as high-level or low-level mod-
els. Many origami designs are flat (essentially planar) after each fold is
made, and most creases are not curved. The simplest high-level model of
origami therefore uses revolute joints to model creases, and rigid bodies
to model the uncreased portions of the paper. This model is the primary
model used by the thesis, and allows planning over flat origami states.

The rigid-body origami model also describes the folding of pre-creased
origami, a primary technique of human origami folders, and provides a
beginning point for understanding more complicated origami-like mecha-
nisms; e.g. paper shopping bags, teabags, airbags, and foldable mirrors.

The rigid-body model is not particularly useful for describing the cre-
ation of creases, or the dynamic motion of the flexible paper as it is actually
manipulated. Therefore, this chapter also outlines some (very much more
complicated) models that could provide an avenue for future exploration
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of low-level folding techniques.

3.1 Related work; properties of paper

This thesis focuses on a model of paper that is very simple; uncreased facets
of paper are considered to be planar rigid bodies, and creases are con-
sidered to act as revolute joints. However, for completeness, this section
surveys a wide variety of work related to modelling flexible paper. Sec-
tions 3.1.1 and 3.1.4 provide necessary background material on the behav-
ior of paper, and suggest directions in which our current model of origami
could be extended. Huffman’s results (section 3.1.3) are particularly rele-
vant, and are further developed and extended in chapter 5.

Sections 3.1.5 through 3.1.10 describe work primarily concerned with
the dynamics of flexible objects. Although relevant to future efforts at un-
derstanding robotic origami, dynamics are not considered in the thesis, and
these sections may be skipped by most readers.

3.1.1 Developable surfaces

Paper stretches much less than materials like cloth or sheet metal, and as-
suming that it does not stretch at all may be a useful approximation. If
paper does not stretch, the class of shapes it can assume without creasing
is restricted – wrapping an initially flat piece of paper onto the surface of a
sphere is impossible. The possible shapes are called developable surfaces. We
will need some concepts from differential geometry to describe the char-
acteristics of developable surfaces; Thorpe [61] is my reference for basic
differential geometry, and Hilbert and Cohn-Vossen [24] has an extensive
section on the properties of developable surfaces.

An isometry between two surfaces with defined dot products on their
tangent spaces is defined as a continuous bijective mapping that preserves
the dot products of tangent vectors. Since lengths of paths and areas of
regions on a surface are defined in terms of dot products of tangent vectors,
isometries preserve length and area.

The simplest isometries are rigid-body transforms (rotations and trans-
lations), but there are more complicated isometries. If an initially flat paper
cannot stretch, then there must be an isometry between the flat paper and
any uncreased configuration of the paper. A path drawn on the flat piece
of paper will have the same length along the bent piece of paper, and a
rectangle will have the same area.
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Even if there is an isometry between two surfaces, it may not be possible
to smoothly transform one surface into the other. A bending between two
surfaces is a one-parameter family of isometries that continuously deforms
one surface into the other. Consider a knotted piece of string. Glue the ends
together to form a knotted loop. Although there is an isometry between the
knotted loop and an unknotted loop, there is no bending between the two
configurations that avoids self-intersection – the knot cannot be removed.

A property of a surface is said to be intrinsic if it is preserved under
isometries. Geodesics are curves on a surface that have no component of
acceleration tangent to the surface. The shortest paths on a surface are
geodesics; on a flat piece of paper the geodesics are straight lines. Since
isometries preserve length, it is not surprising that geodesics are intrinsic.
So, the curves created by drawing straight lines on a flat piece of paper and
then bending the paper are geodesics on the bent paper.

The Gauss map takes all of the (unit) normal vectors of a surface to the
origin. Since all the normal vectors are of unit length, the image of a surface
under the Gauss map must fall on a unit sphere centered on the origin. This
unit sphere is called the Gaussian sphere. The image is called the spherical
indicatrix.

If we draw a small closed path around a point p on a surface, the path
encloses some area on the surface; call this area a. The image of the region
within the path under the Gauss map has an area on the Gaussian sphere;
call this area g. We define the Gaussian curvature G at p to be the limit of the
ratio of these two areas as the area of the region withing the path goes to
zero.

G(p) = lim
a→0

g

a
(3.1)

There is another way to find the Gaussian curvature. If we take the
intersection of a surface with a plane that includes the normal at p, we
get a plane curve which we call a normal section (or slice) at p. Define the
principle curvatures at p to be the maximum and minimum curvatures of the
normal sections, evaluated at p. The Gaussian curvature at p is the product
of the two principle curvatures at p.

Surprisingly, Gaussian curvature is an intrinsic property of a surface.
(Gauss’ Theorem Egregium [18].) The Gaussian curvature of a plane is zero,
since both principle curvatures are zero, and since the Gauss map takes
the entire surface to a single point of zero area on the sphere. We define
a developable surface to be a surface which is everywhere locally isometric
to the plane. Because of this local isometry, the Gaussian curvature of a

55



Figure 3.1: A ruled surface that is not a developable.

developable must also be zero everywhere. For example, a piece of paper
can be folded into a circular cone. At any point on the paper, one principle
curvature is zero (along the line from that point to the vertex), and the other
is equal to the curvature of the circle formed by intersecting the cone with a
plane containing the point and perpendicular to the line through the center
of the cone. Since one principle curvature is zero, the product must be zero;
Gaussian curvature is preserved.

For any surface with Gaussian curvature of zero, at least one of the prin-
ciple curvatures must also always be zero at every point. From this it is pos-
sible to show that developable surfaces are ruled surfaces; through any point
in the surface there is a line segment (a ruling) contained in the surface and
extending to the boundaries of the surface. However, not all ruled surfaces
are developables: consider the surface shown in figure 3.1, parameterized
by (u, v), with u ∈ [−1, 1], v ∈ [0, π], and

x = u cos v (3.2)

y = u sin v (3.3)

z = v (3.4)

The surface is generated by spinning and translating a segment of the x-axis
of length 2 around and along the z axis. The rulings are the line segments
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at each z value, but there is not an isometry between this surface and the
plane.

A developable may be defined as a ruled surface for which the tangent
plane is the same at any point along a line embedded in the surface. This
gives an additional way to describe developable surfaces – as the envelope
of a one-parameter family of tangent planes.

3.1.2 Representing paper by developable surfaces

A number of authors have used the geometric properties discussed above
to derive representations of developable surfaces. Redont [54] used the
zero-curvature property as well as the fact that geodesics are intrinsic to
show that a developable can be described by a trajectory on the Gaussian
sphere. Since the path on the Gaussian sphere gives the normals to the
surface, the formulation is in terms of an ordinary differential equation, to-
gether with an initial condition. Although the differential equation usually
cannot be solved analytically, Redont points out that if the trajectory on the
Gaussian sphere is a circular arc, then the developable is a segment of a cir-
cular cone. Redont therefore proposes a method of approximating devel-
opable surfaces using C1-connected circular arcs on the Gaussian sphere.
Thus, the class of surfaces considered are composed of segments of right
circular cones.

Sun and Fiume [59] used a representation similar to Redont’s to build
a geometric modelling program. The authors used their software to create
models of a hanging scarf and of a bow made out of ribbon. Leopoldseder
and Pottmann [37] have also explored the problem of approximating devel-
opable surfaces by right circular cones. They point out that one difference
between their work and Redont’s is that they are concerned primarily with
approximating local properties of the general developable surface, whereas
Redont’s algorithm is global in nature.

Pottmann and Wallner [53] also propose an alternate representation
of developable surfaces, based on the definition of a developable surface
as the envelope of a one parameter family of tangent planes. Since four
numbers can be used to represent a plane using homogenous coordinates,
there is a duality between developable surfaces and trajectories in projec-
tive Cartesian space. The authors present metrics in the dual space, and
use this to derive a method for approximating a set of tangent planes with
developable surfaces of a certain class.

Weiss and Furtner [70] considered the problem of finding a developable
surface that connects two space curves. The rulings of the developable are
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used to connect the curves. However, arbitrarily connecting the two curves
by rulings will yield a ruled surface, but not necessarily a developable; the
additional constraint is that the tangent plane to the surface must be the
same at each point along the ruling. The authors propose a metric mea-
suring the extent to which the four endpoints of two adjacent rulings are
co-planar. An iterative algorithm generates appropriate rulings, and thus
a polyhedral approximation of a developable surface connecting the two
curves.

Aumann [4] presents an important extension of Weiss and Furtner’s
work. Two general curves cannot always be connected by a developable –
bending the edges of a piece of paper into certain shapes will lead to crin-
kling and creasing of the paper. Aumann considers the special case where
the two curves to be connected are Bézier curves, and determines necessary
and sufficient conditions for the interpolating developable patches to exist
and be free of singularities.

3.1.3 Geometry of creases

The work on developable surfaces presents a detailed picture of the shapes
a piece of paper can be bent into without creasing. But what happens if we
crease the paper? Huffman studied this problem in [27], also from a geo-
metric perspective. Huffman’s motivating application was scene analysis.
One goal of the work was to extend the generality of the models that could
be considered in computer vision. Huffman wrote,

Objects bounded by planes were reasonable ones upon which
to do initial research in scene analysis... No two neighboring
points on an arbitrary surface need have the same tangent plane.
By contrast, all points on a plane surface have the same tangent
plane. On a developable...all points on a given line embedded
in the surface have the same tangent plane... [A] paper surface
offers a complexity that is, therefore, in a very real sense exactly
midway between that of a completely general surface and that
of a plane surface. Consequently, paper surfaces constitute a
class that may be ideally suited to be both richer than that of
plane surfaces and more tractable analytically than that of to-
tally arbitrary surfaces.

Huffman first examined the simpler problem of polyhedral vertices.
Consider the vertex of the cube shown in the upper left of figure 3.2. The
Gauss map takes each of the three faces to a point on the Gaussian sphere.
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Figure 3.2: Polyhedral vertices on the Gaussian sphere. Re-drawn
from [27].

We may consider the dihedral angles of the cube to correspond to edges
connecting these points. Thus the Gauss map of the area of the surface en-
closed by a small loop around the vertex is a spherical triangle (with edges
that are segments of great circles) on the Gaussian sphere, shown in the up-
per right of figure 3.2. As the area of the loop shrinks to zero, the triangle
on the Gaussian sphere is constant. Therefore, the Gaussian curvature at a
vertex of a cube is infinite.

If we assign a direction to the loop around the vertex, we can associate
a direction with each edge of the triangle on the Gaussian sphere. We con-
sider the area of the triangle to be positive, since the area is enclosed in a
clockwise fashion. (Area enclosed in a counterclockwise fashion would be
considered to be negative.) The area of the triangle is +π/2. If the cube
were cut along an edge and laid flat, the ‘missing angle’ would also be
+π/2. In fact, a similar observation is true for all polyhedral vertices – the
area of the region enclosed on the Gaussian sphere is equal to the ‘missing’
angle (positive area ) or ‘excess’ angle (negative area) if a cut were made
from the vertex along an edge and the facets were laid flat.

If we form a vertex by creasing paper, there will be no missing or excess
angle. Huffman analyzed the simplest interesting example of a case where
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the area on the Gaussian sphere is zero; this example is shown in the bottom
of figure 3.2. Since three creases intersecting at a point will always lead to a
triangle on the Gaussian sphere (with non-zero area), the simplest example
must have four creases. Furthermore, the configuration must be such that
either three of the creases are convex, and one concave, or vice versa.

The above discussion assumes that the faces of the polyhedron are rigid.
However, if the faces are actually parts of the paper where there are no
creases, the faces should be permitted to bend. For example, if a piece
of paper contains only three creases which intersect at a point, then any
non-flat configuration of the paper will require that the uncreased portions
bend. In this case, each facet is a developable surface, and can be repre-
sented by a curve on the Gaussian sphere. Finally, Huffman considered the
case of curved creases. The shape of the curve places a restriction on the
orientations of the nearby tangent planes.

3.1.4 Modelling paper with natural creases

Sometimes paper is creased intentionally, and sometimes creases occur be-
cause there are constraints applied that are inconsistent with the paper re-
maining a smooth developable surface. We will call creasing of the second
type natural creasing. Kergosien et al [34] (Bending and Creasing Virtual Pa-
per) is the only work that I know of that combines the work on developable
surfaces with a model of natural creasing.

In spirit, the work is most similar to that of Weiss and Furtner [70] and
Aumann [4]. The location of rulings was used to describe the uncreased
sections of paper; the locations of rulings were parameterized along a tra-
jectory around the edge of each section. The locations were discretized and
all bending was assumed to occur along rulings. It was shown that there is
a linear constraint between the positions of the rulings and the ‘developa-
bility’ of the surface (the extent to which rulings share a common tangent
plane at each endpoint). The authors implemented a graphical interface
that allowed the user to apply spring forces to the surface. The forces typi-
cally deformed the object in a way that violated the constraint that the sur-
face was developable. A constraint projection step was then used to ensure
developability.

When the rulings of the paper began to cross, a creasing model was
triggered. Thus, the paper was described by a data structure containing
both developable patches and creased regions. The authors point out that
the creasing patterns that may be used are non-unique; they studied both
point creases and short line creases. The specific choice of crease type was
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heuristic; placing the creases was posed as an optimization problem and
solved using sequential quadratic programming.

3.1.5 Manipulation of flexible objects

The work on developable surfaces and creasing is concerned with what
shapes paper (or other developables) might take, assuming that paper does
not stretch. If there are enough additional constraints, this may be sufficient
to determine the shape of the paper kinematically – for the purposes of high
level motion planning, we could treat a piece of paper stretched tightly
over a drumhead as a rigid body. Typically, however, the configuration of
paper is determined by internal spring forces as well as external forces and
constraints.

The simplest way of modelling these internal forces is to attach discrete
springs to various parts of the flexible body. Another possibility is to use a
constitutive law describing the potential energy as an integral of a contin-
uous function representing the shape of the flexible object.

3.1.6 Rigid multibody dynamic simulation

Many of the most successful methods for simulating flexible objects treat
the flexible object as a collection of a large number of rigid bodies. There-
fore it is appropriate to briefly discuss efficient simulation of high-DOF
rigid body systems.

The simulation techniques may be broadly classified as two types: those
with implicit constraints (joint space, or generalized coordinates), and those
with explicit constraints. The former techniques may make use either of
Lagrangian or Newton-Euler formulations of the dynamic equations; the
latter introduce Lagrange multiplier forces to maintain the constraints.

Craig [14] points out that the first algorithms used to simulate the dy-
namics of (serial) robot arms used a straightforwards Lagrangian formu-
lation. The approach relied on calculating and inverting the (dense) mass
matrix, and was O(n4) in the number of links. The first efficient (O(n))
algorithms were based on recursive Newton-Euler formulations of the dy-
namics, and efficient Lagrangian formulations were also eventually devel-
oped [14].

Simulating the dynamics of systems with closed loops is more difficult,
and efficient solutions methods have only recently been proposed. As for
arms, the methods are of two general types: those that deal with either only
implicit constraints, and those that also permit explicit constraints.
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Lagrangian representations with implicit constraints typically consider
dynamics equations of the form

Mq̈ = f (3.5)

where M is the mass matrix, q is the configuration of the system, and f is the
vector of external and velocity-dependent forces. The structures of M and
f depend on the choice of coordinates for q, and the choice of coordinates
ensures that the constraints are always satisfied.

Unfortunately, it may be difficult to determine appropriate generalized
coordinates to represent the constraints. Another difficulty with these ap-
proaches is that some choices of generalized coordinates lead to a system
that is difficult to simulate efficiently. Fortunately, efficient dynamic sim-
ulation techniques that allow explicit constraints have also been demon-
strated. In this case, the system consists of an equation similar to that of
equation 3.5, together with a constraint equation of the form

g(q) = 0 (3.6)

Since the constraint equation is satisfied at each time, the time derivative is
also 0:

d

dt
g(q) = J(q)q̇ = 0 (3.7)

where J is the matrix of partials known as the constraint Jacobian. Simu-
lation techniques that allow explicit constraints typically involve writing
a matrix equation involving the external forces, the mass matrix, the con-
straint Jacobian, and the Lagrange multipliers (constraint forces). Since the
mass matrix and the constraint Jacobian are sparse, sparse matrix methods
can be used to efficiently solve for the Lagrange multipliers. Gleicher [19]
used a conjugate gradient method; Baraff [6] presents an algorithm that is
O(n + m3), where n is the number of links and m is the number of closed
loops – the method is linear if there are no closed loops.

Baraff’s algorithm is linear in the number of links, but cubic in the num-
ber of closed loops. Ascher and Lin [3] present an algorithm that is linear
even if there are a large number of closed loops. The algorithm breaks each
closed loop to form an open chain. At each time step, the open chain is sim-
ulated using a method similar to that used by Baraff [6] and others. An iter-
ative method is used to satsify the loop closure constraints. It is shown that
the number of iterations is independent of the number of links, although
it is dependent on the topology of the configuration space. The algorithm
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Figure 3.3: Connections between a central particle and its neighbors used
by Choi and Ko [11]. Top view (left) and side view (right). Re-drawn
from [11].

was applied to simulate the dynamics of a four-connected mesh with up to
1000 links (25 × 20). In each case only two constraint satisfaction iterations
per time step were required. Simulations were conducted with a time step
of .2 seconds, for a simulation time of a few seconds. No information on
run-time was provided.

It is interesting that in addition to models that approximate flexible sys-
tems by high-degree-of-freedom systems of rigid bodies, there are also ex-
amples of approximating discrete high-degree-of-freedom rigid-body sys-
tems by continuous models – for example, Minksy’s elephant trunk arm [48]
and Chirikjian’s work on the inverse kinematics of high-DOF binary ma-
nipulators [10].

3.1.7 Cloth simulation

Impressive dynamic simulations of cloth have been achieved by modelling
the cloth as a high-DOF system of rigid bodies. Some of the most notable
recent techniques are presented by Choi and Ko [11], and by Bridson et
al [8]; these papers also present a more complete survey of previous cloth
simulation work than is possible here. [11] focuses on the internal dynam-
ics of the cloth, and [8] concerns itself primarily with problems of contact
and friction.

Most cloth simulation algorithms do not place hard constraints on the
relative motion of particles or small facet elements; rather, stiff springs are
used to keep the cloth from stretching very much. As an example, figure 3.3
shows the configurations of springs and particles used by Choi and Ko [11].
Typically, these stiff springs introduce instability into the dynamic simula-
tion. The usual solution, proposed first by Baraff and Witkin [7], is to use
implicit integration techniques. Implicit integration formulations may also
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ameliorate problems related to stiffness in the differential equations due
to contact and friction; for example, see Stewart and Trinkle [57]. (For a
discussion of implicit integration methods, see the referenced papers.)

Since there are no constraints, and since the only direct interactions
between particles of the cloth are local, the mass matrix is sparse. Iter-
ative sparse matrix methods (e.g., conjugate gradient) are therefore used
to solve the dynamic equations efficiently. External contact forces due to
collisions, friction, and self-intersection are usually handled by attaching
virtual springs at contact points.

3.1.8 Haptic simulation

Cloth simulations do not typically run in real-time; even the most efficient
algorithms require minutes or hours to create a realistic-seeming dynamic
simulation. Therefore, motion planning or control of flexible objects using
these algorithms is problematic.

A different perspective on simulation of flexible objects is provided by
a number of papers on haptic simulation; James and Pai [30] provides a
good survey. Unlike the cloth simulation algorithms, haptic simulation
algorithms typically use a quasistatic model. That is, it is assumed (or
proven) that if forces are applied to a flexible object, then it will eventually
reach an equilibrium configuration. Green’s functions relate displacements
of the material to forces applied.

James and Pai represent the surface of a flexible object by a set of dis-
crete points, or nodes. Each node is either fixed in space, or has forces
applied to it. The set of nodes that are fixed describes the problem type.
(Typically, the base of a flexible object might be fixed, while the remain-
der of the nodes would be free. Poking at the object with a finger would
introduce a new spatial constraint, and change the type.)

The authors consider linear models; models for which (by definition)
there is a linear relationship between displacements and applied forces. If
the model is linear, there is a linear basis for the Green’s functions. This ba-
sis can be computed off-line. Once the basis has been computed, simulation
can be carried out quickly by simple matrix multiplication.

The linear model also allows efficient re-use of computation if the type
of the problem changes slightly (for example, if a finger pokes the object).
Computing the response of the system to a set of forces or constraints re-
quires a matrix inversion. If the type of the problem is known, this inver-
sion can be done off-line. If the type changes slightly, capacitance matrix
algorithms can be used to efficiently update the inverse.
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3.1.9 Fourier models

Hirai et al [26] modelled the shape of a cross section of a piece of bent (but
not creased) paper. Fourier coefficients were used to describe the shape of
the paper. The model was used to find equilibrium configurations of the
paper under a set of geometric constraints. The authors write an equation
for the potential energy in terms of the Fourier basis coefficients, and use
non-linear optimization software to minimize the energy. They used five
coefficients, and demonstrated experimentally that the model predicted the
behavior of a piece of copy paper reasonably well, for some simple exam-
ples. In [64] a similar approach was used to model yarn in a knitted piece
of fabric.

One difficulty of the method described is the problem of bifurcation.
There may be two or more possible configurations of the paper consistent
with a given set of geometric constraints. Non-uniqueness of solutions is
a familiar problem in physical simulation algorithms. For example, it is
well-known that the problem of determining the accelerations of two con-
tacting rigid bodies under the Coulomb friction assumption may have no
solutions, one solution, or many solutions (see Painlevé [52], Lötstedt [40],
Erdmann [16], and Stewart [58]).

There are various approaches to dealing with the problem of non-uniqueness
of solutions for the purposes of simulation. The simplest is to modify the
assumptions so that the solutions are unique; this is the approach taken
by Lötstedt [40], and Anitescu and Potra [1] in designing their rigid-body
simulation algorithms. For the purposes of planning, analysis of the model
to determine when the solutions are non-unique or non-existent may allow
plans to be generated that are guaranteed to work in spite of the uncer-
tainty; for the rigid body contact planning problem, this is the approach
taken by Erdmann [16], Trinkle et al. [63], and Balkcom and Trinkle [5].

Wada et al. [67] extended the Fourier model developed in Hirai et al [26]
to the case of a rod in three dimensions, and considered dealing with the
bifurcation problem by using an optimizer that tends to find local rather
than global potential energy minima. This approach is not really satis-
factory, since it is not clear what metric should be used to decide which
minima are ‘close’ and which are ‘far’; I expect that some modelling of dy-
namics is necessary to determine which of several local minima the system
eventually reaches.

Wakamatsu et al. [69] considered the problem of simulating the dynam-
ics of rodlike objects. If the system is conservative, then the trajectories it
follows must minimize the integral of the difference between kinetic and
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potential energies, subject to the constraints. The authors wrote equations
for the kinetic and potential energies as functions of Fourier basis coeffi-
cients that were used to approximate the rod’s configuration and velocity.
They then used non-linear optimization software to solve for the accelera-
tions at each discretized time step.

There is an interesting connection between the problem of finding min-
imum energy configurations of a rod and finding optimal (or near-optimal)
trajectories for robots. Although the application is much different, the al-
gorithm proposed by Hirai et al. [26] appears to be identical to that used
by Fernandes, Gurvits, and Li in A Variational Approach to Optimal Nonholo-
nomic Motion Planning [17].

The Fourier model just discussed uses a finite number of variables to
approximate the configuration of a flexible rod. This method is similar to
classical techniques used to analyse vibration. Symon’s Mechanics [60] de-
scribes the configuration of a vibrating string by an infinite Fourier series.
In this case, the series describes the x and y coordinates of each particle,
rather than the angle of the tangent. As a result, there is no implicit arc
length constraint, and the string can stretch. The dynamics are modelled,
and the frequency of vibration is determined analytically.

3.1.10 Continuum models

There is a vast field of research on elasticity and the mechanics of continua.
Only the briefest summary is possible here; Antman [2] provides a good
survey. Typically, the configuration of the flexible object is represented by
a parameterized function. Constitutive laws are formulated to describe the
local behavior of the material. Potential and kinetic energy are described as
functionals. Various techniques are then used to analyze the behavior. For
example, minima of the potential energy functional correspond to equilib-
rium states; variational approaches attempt to solve for the equilibria di-
rectly, or, when that is not possible (the usual case), used to find properties
of the equilibria (e.g. bifurcation points, geometric properties, etc.).

The method of Lagrangian dynamics can also be extended to objects
whose configurations are described by continuous functions. Chapter 13 of
Classical Mechanics by Goldstein et al. [20] describes this technique in detail.
It turns out that Lagrange’s equations yield partial differential equations
describing the dynamics, rather than ordinary differential equations.

What if the flexible object is thin, like paper or string? Pai [51] con-
sidered the problem of simulating thin elastic solids that both bend and
twist. Pai points out that “modelling these [objects] as 3D elastic solids
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requires very fine FEM meshes to correctly capture the global twisting be-
havior. . . models using meshes of mass particles and springs have similar
problems since they require a large number of particles and springs. . . ”

Pai uses a Cosserat model to describe the behavior of a thin elastic rod
that can twist – a strand. The configuration is described by the trajectory of
a frame of three directors. One of the directors is the tangent vector to the
strand; the other two describe the twisting. If the trajectory is of constant
speed, then the strand may bend but does not stretch. Pai formulates (ordi-
nary) differential equations describing equilibria for the case where one end
is fixed and force is applied at the other end. He discretizes the equations,
and presents a linear-time algorithm to solve the discretized equations.

Cosserat models also exist for shells and points, as well as for rods
(strands). Antman [2] and Rubin [55] are standard sources. Rubin points
out that an advantage of modelling flexible objects using thin, directed me-
dia is that thinness may simplify the form of the dynamic equations. In
tabular form,

Model Dynamic equations

Cosserat point ODE in time
Cosserat rod PDE in time, and in one spatial coordinate

Cosserat shells PDE in time, and in two spatial coordinates
3D elastic PDE in time, and in three spatial coordinates

Since ODEs are easier to solve than PDEs, Rubin also presents a number
of methods to numerically simulate Cosserat rods, shells, and general 3D
elastic materials using a collection of points.

3.1.11 Origami mathematics and design

There is a rich field of work on the mathematics of origami design. De-
maine et al. [15] is a good survey. According to [15], the field “essentially
began with Robert Lang’s work on algorithmic origami design, starting
around 1993.” Given a desired origami base (an origami silhouette from a
restricted class of shapes) Robert Lang’s TreeMaker software (described in
[35]) finds a crease pattern allowing the paper to be folded into the base.

Demaine et al. [15] classifies work in computational origami as univer-
sality results, efficient decision algorithms, and computational intractability re-
sults. As an example of universality results, the authors state that “any
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Figure 3.4: The pattern, facet graph, and a facet tree for a waterbomb base.

tree-shaped origami base, any polygonal surface, and any polyhedral sur-
face can be folded out of a large enough piece of paper”. As an example
of an efficient decision algorithm, “there is a polynomial time algorithm to
decide whether a ... grid of creases marked mountain and valley can be
folded by a sequence of simple folds.” Intractability results include that
the problem of determining whether a crease pattern can be folded flat is
NP-hard, and that “given a crease pattern... finding the overlap order of a
flat folded state is NP-hard”.

Miyazaki et al. [49] describes software that allows the folding of “vir-
tual” origami by the user. The origami is treated as a collection of rigid
facets connected by hinge joints. Two basic primitives are designed: fold-
ing and tucking in. During folding, facets rotate around a single hinge
joint. During tucking, a pair of facets connected by a hinge joint is reflected
through a plane perpendicular to the facets. The authors were able to use
their system to virtually fold a crane and a paper airplane.

3.2 Rigid-body origami models

The goal of a paper folding task is to achieve some final state of the paper –
a particular shape of the paper surface. Origami books usually describe
paper folding tasks by a series of instructions. The instructions encode
both intermediate states and the goal. As long as only common folding
techniques are used, the instructions are simple to represent. The primary
limitation of this method is that no origami piece can be described until
the folding technique (including folding skills and the correct sequence) is
known.

Planning and simulation techniques for mechanisms in robotics and
computer graphics often describe the state of a mechanism as a set of float-
ing point numbers representing joint angles. These representations work
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well as long as the configuration of the mechanism is not too near a self-
intersection. Unfortunately, in folding manipulation, facets of origami al-
most always touch.

The representation of origami that will be used for the majority of the
thesis uses both continuous crease angle information and discrete values
to represent the relationship between facets that almost touch. The kine-
matics of the mechanism are described by the locations of the creases on
the unfolded paper – the origami pattern. Flat folded origami can be de-
scribed by the pattern, the relative heights of the facets in the folded state,
and the constraint that the final shape be flat. Representations of this type
are useful because they allow descriptions of tasks for which the goal is
known, but for which no simple set of folding instructions exists. We can
then search for ways to fold the origami using only known folding actions,
or even design new folding actions to suit the task.

3.3 Line-segment origami with revolute joints

This section uses a very simple class of origami to introduce some key fea-
tures of origami representations. Consider a strip of paper with parallel
crease lines. Cross-sections of the facets can be represented by line seg-
ments. Number the segments from left to right on the initially unfolded
paper, and fix the pose of the first segment.

Origami is flat if all crease angles are 0◦ (unfolded), 180◦ (a valley fold), or
−180◦ (a mountain fold). However, the crease angles do not fully determine
the configuration of the origami; see figure 3.8.

The fold between the first two segments of our cross-sectional origami
will be on the right, regardless of whether we fold segment two up or
down; the fold between the next two segments must be on the left. There-
fore, if we know the locations of creases on the unfolded paper (the origami
pattern), we can calculate the locations of each facet on the folded piece.
Specifically, describe the location of each segment by a real number xk, and
the length of each segment by a real number li. For k ∈ [2 . . . n],

xk = x1 +
k−1

∑
i=1

(−1)i+1li (3.8)

Assume that the top of the unfolded origami is colored. Once the origami
has been folded, segments with odd indices will have the colored side up,
and segments with even indices will have the white side up.
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Figure 3.5: On the left, a feasible stacking. On the right, a stacking that is
not feasible due to collisions between facets.

Figure 3.6: The pattern, facet graph, and a facet tree for a samurai hat.

The location and top color of each segment are independent of the fold-
ing method, order, and direction. Folding order and direction do determine
the heights of each segment. We can describe the relative heights of each
segment by an ordered list of segment indices. For example, the list (1 3 2)
would be read as: segment two is on the bottom, segment three is on top
of segment two, and segment one is on the top. We call the ordered list of
segment heights an origami stacking. In fact, partial orderings are also pos-
sible, since two non-intersecting segments can sometimes be considered to
have the same height; this will be discussed more fully below.

We can determine the crease angles using the stacking and top colors.
If segment i is colored, and segment i + 1 is on top of segment i, then fold i
is a valley fold. The other three cases are similar.

How many ways are there to fold a pattern? There is an upper bound of
n!, if we consider all possible orderings of the segments. However, there are
some stackings that are not possible, for some lengths of segments. For ex-
ample, consider the stacking (1 3 2 4), with segment lengths all equal. There
would have to be a right-hand side fold between one and two, and another
between three and four. However, as figure 3.5b shows, this configuration
is not possible.
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Figure 3.7: The pattern, facet graph, and a facet tree for a paper shopping
bag. The bold lines show the facet tree; the dashed lines show the cut edges
of facet graph.

3.4 Faceted origami with revolute joints

The model of origami that will be used for the majority of the thesis takes
each facet as a rigid link and each crease as a hinge joint; this model is simi-
lar to those used by Huffman [27] (geometry of creases), Lu and Akella [42]
(carton folding), and Gupta et al [21] (sheet-metal bending). Even for this
simple model of origami, the kinematic structure may be quite compli-
cated. If creases meet on the interior of the paper, then the structure in-
cludes closed chains.

Define the facets of an origami piece to be the unfolded regions of paper.
In the present work, we model only polygonal facets, and treat them as
rigid links. The facet edges interior to the paper are creases; a crease line is a
set of colinear creases. Define the crease pattern to be the location of creases
on unfolded origami. Creases meet at interior vertices of the pattern; if n
creases meet, we say that a vertex is of degree n. The angles between creases
around a vertex in the pattern are called sector angles.

Origami kinematics

Take each facet to be a node of a graph, and connect adjacent facets on the
pattern with an edge; we will call this graph the facet graph. We say that
any tree that spans the facet graph is a facet tree. Facet trees are easy to
construct; any complete search method such as breadth-first or depth-first
search is suitable. Creases not contained in a facet tree will be said to be
virtually (but not necessarily physically) cut relative to that tree.

A facet tree implies a parent-child relationship between two facets con-
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nected by a crease. We will choose the convention that all facets are de-
scribed by a counter-clockwise set of points in the pattern; we will associate
a unit vector with each crease such that the vector’s direction agrees with
the order of vertices in the child facet. We then describe the crease angle
as the angle between a parent facet and its child; the sign is chosen to be
consistent with the ‘right-hand rule’ applied to the crease vector.

Given a pattern and any facet tree, the crease angles associated with
all uncut creases determine the kinematics of the origami mechanism – the
pose of each facet and the angle of each cut crease can be determined by
traversing the facet tree applying rotations to descendent facets.

Facet trees also allow the determination of the mobility of the system, a
lower bound on the number of degrees of freedom. Assume there are nc

creases and and l loops in the facet graph. The facet tree has nc − l uncut
creases. Since each loop around any vertex is a spherical closed chain, each
loop closure removes an additional 2 freedoms. The mobility m is therefore

m = nc − 3l. (3.9)

For the waterbomb base, nc = 6 and l = 1, so m = 3. In a generic
configuration like the one shown on the left side of figure 3.4, there are
three degrees of freedom. But sometimes the constraints are dependent.
Consider the waterbomb pattern in an unfolded configuration (right side of
figure 3.4). There are locally four independent directions of motion for the
mechanism. It is possible to mountain or valley fold along any of the three
crease lines, and also possible to ‘prayer’ fold, bringing creases 2 and 5
towards each other until the configuration shown on the left side of the
figure is reached. (This folding is shown in figure 2.5.) We will return to
this case in chapter 5.

The mobility of some crease patterns is not as important as for others.
For the samurai hat, nc = 20 and l = 3, so m = 11. However, as we will
see in chapter 4, it is possible to fold the samurai hat using a succession of
mountain and valley folds; during folding, all creases with a value not one
of {−π, 0, π} are colinear and can be treated as a single crease.

For the shopping bag with flattened pattern shown in figure 3.7, nc = 18
and l = 8. According to the formula, m = 18 − 24 = −6. This implies that
constraints must be dependent for any valid configuration of the shopping
bag. As we will see in chapter 5, it turns out that the configurations for
which enough constraints are dependent are the open and folded configu-
rations; the configuration space of the shopping bag is just isolated points.
This might be considered a design feature; facets must be bent if the bag is
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Figure 3.8: Orthogonal and cross-sectional views of two nearly flat origami
pieces. Once completely folded, the crease angles will be the same, but the
two origami pieces are clearly different.

in any configuration that is not fully open or fully closed, and since facets
resist bending, the bag tends to stay in the open or closed configuration it
is put into.

Stacking order and compound facets

Since origami is flexible and can be folded essentially flat, it is convenient to
allow crease angles in the range [−π, π]. Flat origami illustrates a difficulty
with a purely ‘kinematic’ model, however. Figure 3.8 shows the problem:
although in the limit the crease angles of two flat origami pieces may be
the same, the order in which facets are stacked is important. We will call
a group of coplanar facets a compound facet. With each compound facet we
associate a normal vector and a facet stacking relative to this vector. The
height of a facet is its height in the stacking, and the height of a crease is
the height of its child facet.

Before the paper is folded, there is a single compound facet, with nor-
mal pointing upwards; each facet height is zero. As planning or simulation
takes place, compound facets break and form depending on the fold exe-
cuted. Both ‘simple folding’ and ‘book folding’, defined in chapter 4, break
a single compound facet into two compound facets; one of the compound
facets is then flipped, and the two compounds are combined into one new
compound.

Given a stacking order, it is possible to find a minimal stacking order that
minimizes the height of each facet. Apply a bubble sort to the facets of
height 1 to height n, using polygon intersection to determine whether the
current (‘bubble’) facet moves downwards.
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Figure 3.9: The proofs of Maekawa’s and Kawasaki’s theorems.

3.5 Properties of flat origami

‘Flat origami’ that is two-dimensional when folded has some special prop-
erties when considered from the perspective of the rigid-body model de-
scribed above. This section presents well-known local properties that apply
to individual crease vertices, and also some global conditions that apply to
origami with multiple vertices connected by creases. The typical approach
is to consider the origami in the flat, folded configuration, and determine
how this state is constrained.

3.5.1 Local properties of flat origami

Two well-known theorems describe necessary conditions for origami to be
flat-foldable. Maekawa’s theorem describes origami in the folded state, and
Kawasaki’s theorem describes the unfolded crease pattern. Figure 3.9 illus-
trates the following proofs.

Theorem 1 (Maekawa) In any flat-foldable origami, the difference between the
number of mountain and valley creases around any vertex is two.

Proof: [(due to Jan Siwanowicz, according to [28]):] Cut the paper near
the vertex with a circle. The lengths of the arcs are proportional to sec-
tor angles on the crease pattern, and the arcs form a polygon on the circle.
(Note that the polygon can be ‘unbent’ so that it is planar.) For any closed
polygon, the sum of interior angles is (n − 2)180, and any flat closed poly-
gon has an even number of vertices. For each mountain fold, the interior
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angle is 0, and for each valley, 360. So

0 + 360V = (M + V − 2)180 (3.10)

M − V = 2 (3.11)

If we flip the paper over, mountain creases become valley creases and vice
versa. In this case, V − M = 2.

Theorem 2 (Kawasaki) For any flat origami, the odd (and even) sector angles
around any vertex sum to 180.

Proof: [Thomas Hull [28]):] Cut across the paper near the vertex. Note
that ∑ odd − ∑ even = 0, since odd go right, even go left, and we need to
get back to the starting point. Since ∑ odd + ∑ even = 360, both the odd
and the even angles must sum to 180.

We can generalize Kawasaki’s theorem to vertices with missing angle:

Corollary 1 For any flat origami, the odd (and even) sector angles around any
vertex sum to half of the sum of the sector angles around the vertex. That is, if γ is
the ‘missing’ or ‘excess’ angle,

∑ odd = ∑ even = (360 − γ)/2. (3.12)

As an example, consider the corner of a collapsible garment box. The
sector angles sum to 270◦, and since the box is flat-foldable, the odd and
even sector angles each sum to 135◦.

Kawasaki’s theorem and Maekawa’s theorem are not sufficient to prove
flat-foldability of even a single vertex, since neither considers the problem
of self-intersection – as an example of a pattern that satisfies both theorems
but is not flat foldable, see figure 3.10. (To prove that the pattern is not
foldable with the mountain-valley assignments and sector angles shown,
consider that the associated flat polygon self-intersects.)

3.5.2 Global properties of flat origami

Necessary and sufficient conditions for a multi-vertex pattern to be flat-
foldable are not known, but it is possible to derive some further necessary
conditions.

A flat origami piece can be described by the (planar) poses of each of
the facets, and the stacking (relative heights) of the facets. If the origami
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Figure 3.10: Conditions of Kawasaki’s and Maekawa’s theorems are not
sufficient to prove flat foldability. This ‘reverse fold’ is impossible. Example
by Nell Hana Hoffman.
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is completely folded, it turns out that the poses of the facets can be deter-
mined from the pattern alone.

We first define a folding method, edge folding. To edge fold an origami
pattern, choose a facet tree on the facet graph. (Search algorithms like
breadth-first or depth-first search are suitable.) Cut every crease that is
not in the facet tree; the kinematic structure of the cut origami piece is a
branching chain with no loops. Fold every crease 180◦. Edge folding is
virtual, rather than physical, in the sense that we allow self-intersections of
the origami during folding, and cut the paper as necessary to allow folding.

Theorem 3 The relative poses and top color of the facets in a completely folded
flat origami piece depend only on the origami pattern. Specifically, the poses and
top color depend neither on the signs of the crease angles nor on the final relative
heights of the facets.

Proof: Edge fold the paper; note that the pose and top color of each
child facet depends only on the path on the facet tree from the root to the
child. Note that regardless of the physical folding method used, this path
on the facet tree must be folded.

Because edge folding is virtual and not physical, edge folding is not a
sufficient condition for flat-foldability, but does provide a useful necessary
condition on the crease pattern:

Theorem 4 If a pattern is flat-foldable, then for every edge folding of the pattern,
the two sides of any cut crease must match.

Most crease patterns contain loops in the facet graph, and cannot be
edge folded without cutting some creases. However, if we allow aligned
creases to be folded simultaneously, more complicated patterns can be folded
without making any cuts. This will be discussed in chapter 4.

Maekawa’s thereom gives a condition on crease patterns for flat fold-
able origami: around any vertex, the difference between the number of
mountain and valley creases is two. If we know the stacking order of the
final origami piece, we can do better, and determine the types of all creases
for a multi-vertex pattern.

Theorem 5 The facet graph and the goal stacking order completely determine
which creases are mountain creases and which are valley creases.

Proof: Construct a facet tree that spans the facet graph. Assign colors
to each facet by walking the facet tree. Each crease connects two facets;
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the sign of the crease angle (valley creases have positive crease angles, and
mountain have negative) depends only on the top color of the two adjacent
facets and the relative height of the two facets. Specifically, if the two col-
ors are white (w) and black (b), and we call the two facets ‘1’ and ‘2’, the
following table determines the type of the crease:

Color facet 1 Color facet 2 z order type

w b 1 2 valley
w b 2 1 mountain
b w 1 2 mountain
b w 2 1 valley

As can be seen from the above proof, every child node has a different
top color than its parent after edge folding. This observation constitutes a
very simple proof of another well-known theorem about flat origami, Me-
guro’s theorem.

Theorem 6 (Meguro) Any flat origami must have a two-color facet graph.

The above algorithms can be applied whenever the final shape is flat,
even if the unfolded state is not flat, and even if the actual continuous fold-
ing motions are not known. In this case, the fold must be accomplished by
a 3D rotation of vertices, rather than a planar reflection. Collisions between
facets may be ignored if the only goal is to find the pose of the facets in the
flat folded state, or to find necessary conditions on the pattern.

As an example of a case where the theorems may be useful even when
continuous folding motions are not known, we point out that a polyhe-
dral model of a paper shopping bag has a configuration space that is just
isolated points (see chapter 5); there is no path between the folded and
unfolded states. (Some crumpling or bending of facets must occur during
folding.) However, we can still determine the folded state from the un-
folded state, up to the stacking order of the facets. A cloth airbag provides
another example; no finite number of creases and rigid facets is sufficent to
model the continuous collapse of the bag (see chapter 5, the bellows theo-
rem), but theorems 4 and 5 still place restrictions on the pattern and final
folded state.

3.6 Origami with ball joints and struts

The physical model of origami used in the current work primarily repre-
sents origami using rigid bodies with revolute joints at the creases. It turns
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Figure 3.11: The waterbomb base modelled with struts and ball joints.

out that an alternate physical model is possible, with struts connecting ball
joints placed at the vertices of the crease pattern. Consider the waterbomb
base. There are six facets and six creases. The mechanism shown in fig-
ure 3.11 has twelve struts and seven ball joints; the struts are placed around
the border of each facet, and the ball joints are placed wherever struts meet.
Since each facet is triangular, the struts ensure that each facet remains rigid.
Folding is possible along any crease, but along no other line.

Each physical model is suggestive of a mathematical model. The con-
straints in revolute-joint origami can be represented by a series of matrices
that express the constraint that around each vertex, the crease angle must
be such that the first and last facet around the loop ‘line up’. In terms of
Huffman’s work [27], the facet normals around the vertex must enclose
zero net area on the Gaussian sphere. These constraints are discussed in
detail in chapter 5.

The ball-joint model suggests a mathematical model that has only pair-
wise distance constraints. Symbolically, the state of the system is described
by the Cartesian coordinates (xi, yi, zi) of each ball joint; for each pair of ball
joints (a, b) connected by a strut, there is a distance constraint of the form

(xb − xa)
2 + (yb − ya)

2 + (zb − za)
2 = l2

a,b (3.13)

where la,b is the length of the strut.

Each mathematical model has some advantages: the crease-angle for-
mulation can be solved to eliminate the constraints, yielding a minimal-
coordinate represenation of origami configurations (see chapter 5), and the
pairwise-distance model has very simple constraints.

Unlike the constraints on a crease-angle model, the constraints for the
distance-constraints model are local (depend only on coordinates of ball
joints a and b), and the constraint Jacobian (that describes the tangent space
to the configuration space embedded in R3n) depends linearly on the coor-
dinates. For revolute-joint origami, the joint angles depend non-quadratically
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Figure 3.12: Rigidifying a four-bar linkage.

on crease angles throughout the origami, and thus the elements of the Ja-
cobian are non-linear in the coordinates.

Chapter 5 describes the topology of configuration spaces for single-
vertex origami mechanisms, and the proofs use either the crease-angle or
distance-constraint model as convenient.

The minimum number of struts to make a facet rigid

If all facets are triangular, placing struts along the borders of facets and ball
joints at the intersections of struts is sufficient. However, if facets have four
or more edges, then this placement of struts might allow deformation of
facets.

Consider the four-bar linkage shown in figure 3.12a. If we fix a base to
the ground, the linkage still has one degree of freedom that allows flexing in
the plane. Figure 3.12b shows a way to place a fifth strut to prevent flexing
in the plane. It might seem that the mechanism shown in figure 3.12b will
behave as a rigid body, but in fact it can flex out of the plane. Figure 3.12c
places a sixth strut to prevent this out-of-plane flexing.

A body is rigid if the distance between any two points on the body is
fixed. If there are two, three, or four vertices, then it is necessary to con-
nect each pair of vertices with a strut to ensure rigidity. If there are more
vertices, it may not be necessary to use n choose 2 struts.

A set of rigid bodies is rigidly connected if there are sufficient constraints
such that the entire set of bodies must move as a rigid body. If we have a
set of nv vertices in R3, we need at least

ns = 3nv − 6 (3.14)

80



Figure 3.13: Two ways of rigidly connecting six points.

struts to rigidly connect them, since each vertex has three degrees of free-
dom, each strut removes at most one degree of freedom, and the rigid body
has six degrees of freedom.

Two rigid bodies that share three non-colinear points are rigidly con-
nected, since the common points describe a frame. We can use this obser-
vation to minimally rigidly connect any set of vertices, as long as there exist
three non-colinear vertices. Figure 3.13a illustrates one procedure.

Procedure #1:

1. Choose an ordering for the vertices, with first three not colinear.

2. Use three struts to connect the first three vertices.

3. Use three struts to attach each new vertex to the first three.

This procedure is simple, but has a disadvantage. All of the vertices
of an origami facet lie in a plane; the facet is a polygon. In order to mini-
mize the number of struts used to form the entire origami mechanism, the
number of struts interior to each facet must be minimized, so that exterior
struts can be shared between facets. Figure 3.13b illustrates a procedure
that rigidly connects the vertices, while ensuring that a strut is placed along
each edge.

Procedure #2 (rigidly connecting a polygon):

1. Choose an ordering of the vertices from 1 to n.

2. Use three struts to connect the first three vertices.
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3. Connect each of vertices 4 . . . nv − 1 to its three predecessors.

4. Connect vertex n to vertices nv − 2, nv − 1, and 1.

Since each new vertex is rigidly connected to a rigid body, each pro-
cedure rigidly connects the vertices. Since each procedure places a single
strut for each of the first three vertices, and three struts for each additional
vertex, 3nv − 6 struts are placed, which is minimal.

3.7 Bending of paper

The models discussed so far are primarily concerned with the creasing of
paper, but creased and uncreased paper behave differently. The work dis-
cussed in this section explores the behavior of paper that is bent but not
creased. A primary goal of the work was to extend principles used in the
manipulation of rigid bodies to a model of flexible paper.

We consider a one-dimensional “cross-sectional” model of the paper.
This model is most applicable when the rulings of the paper are approxi-
mately parallel in R3.

In order to better understand the behavior of bending paper, I imple-
mented a method described by Hirai et al. [26] to find likely configurations
of paper subject to a set of geometric constraints. The model used by [26]
describes the configuration of the paper using a set of Fourier basis coeffi-
cients. I used the model to extend some analysis techniques typically used
for rigid bodies to the flexible paper. I determined a formula describing the
forwards kinematics of the paper. The principle of virtual work can also
be applied to the model, yielding equations that describe the static equil-
bria. I derived the dynamic equations that are implied by the model, and
considered the problem of force control of the paper.

3.7.1 Formulation of the model

One way to model paper is to describe the configuration by a function that
gives the angle of the tangent at each point on the curve

θ(s) : [0, 1] 7→ [0, 2π) (3.15)

and an initial condition (x0, y0) which describes the location of a particle on
an edge of the paper. Figure 3.14 shows an example. The location of each
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Figure 3.14: One-dimensional paper as the limit of a planar revolute arm.

particle is then given by

x(x0, θ(·), s) = x0 +

∫ s

0
cos θ(τ) dτ (3.16)

y(y0, θ(·), s) = y0 +

∫ s

0
sin θ(τ) dτ (3.17)

The tangent vector to the parameterized curve described by equations 3.16
and 3.17 is always of unit length – the paper is assumed not to stretch. Since
θ is a continuous function of one variable, it can be approximated by a fi-
nite Fourier series. The Fourier coefficients then give a finite-dimensional
representation for the configuration of the paper. Hirai used this method
to find equilibrium points of model of paper held at two opposite edges.

If the Fourier coefficients are collected in a vector p then the state of the
paper q is given by

q =





x0

y0

p



 (3.18)

If we define the vector b(s) containing two leading zeros followed by
the Fourier basis functions,

b(s) =



























0
0
1

sin 2πs
cos 2πs
sin 4πs
cos 4πs

...



























(3.19)
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then we may write θ, x, and y as functions of q and s:

θ(q, s) = qTb(s) (3.20)

x(q, s) = x0 +

∫ s

0
cos qTb(τ) dτ (3.21)

y(q, s) = y0 +

∫ s

0
sin qTb(τ) dτ (3.22)

We may describe trajectories of the paper by allowing q to be a function of
time.

Hirai et al. [26] used this formulation together with non-linear program-
ming software to find configurations of the paper that minimize potential
energy due to some constraints. I implemented this algorithm. One dif-
ficulty with the algorithm is that there may be multiple local minima of
the potential energy function. In order to better understand continuous
motions of the paper, I used the Fourier basis representation to find the La-
grangian dynamics of the system. I will also briefly discuss the problem
of controlling some control points or a subset of the degrees of freedom of
the paper by applying forces at specified points along the paper. Although
the dynamics of this model were also considered by [69], their algorithm
involved numerically minimizing the difference between kinetic and po-
tential energy at each time step; my derivation is analytical.

3.7.2 Potential energy functions

Hirai et al.used the following formula to calculate the potential energy due
to gravity

Vg(q) = ρ

∫ 1

0
y ds = ρy0 + ρ

∫ 1

0

∫ s

0
sin qTb(τ) dτ ds (3.23)

where ρ is the mass of the paper per unit length, assumed constant over the
paper for simplicity. To derive the dynamics of the paper analytically, we
simplify to a single integral:

Vg(q) = ρy0 + ρ

∫ 1

0
(1 − τ) sin qTb(τ) dτ (3.24)

Hirai used a constitutive law to model the spring energy of the paper

Vs = k

∫ 1

0
θ′2 ds, (3.25)
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where k is a spring constant determined experimentally. Hirai calculated
the energy numerically for a given configuration using the Fourier basis
representation:

Vs(q) = k

∫ 1

0
(qTb′)2 ds (3.26)

In fact, the integral can be found analytically. If we define a diagonal
matrix K with ki as the ith diagonal element of K

ki =







0 if i = 1
k(i − 2)2π3 if i is even, i ≥ 2
k(i − 3)2π3 if i is odd, i ≥ 3

(3.27)

(3.28)

It turns out that the spring energy can be written as a simple weighted
sum of squares:

Vs(q) = qTKq (3.29)

3.7.3 Differential kinematics

In a typical manipulation task, we might want to be able to determine the
motion of a number of points of interest on the paper, due to a change in the
configuration of the paper as a whole. For example, the points of interest
might be the set of points of contact between the paper and a manipulator.
We can describe the points of interest by a vector of parameters:

s =







s1

s2
...






(3.30)

The location of the points is given by the vector

x(q, s) =





















x(q, s1)
x(q, s2)

...
y(q, s1)
y(q, s2)

...





















(3.31)
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We first consider how the x coordinate of a single point changes as a
single basis function coefficient is varied.

∂x(q, s)

∂q1
=

∂x(q, s)

∂x0
= 1 (3.32)

∂x(q, s)

∂q2
=

∂x(q, s)

∂y0
= 0 (3.33)

For i ≥ 3,
∂x(q, s)

∂qi
=

∂

∂qi

∫ s

0
cos (qTb(τ)) dτ (3.34)

Since all terms are continuous, we can exchange differentiation and inte-
gration:

∂x(q, s)

∂qi
=

∫ s

0

∂

∂qi
cos (qTb(τ)) dτ = −

∫ s

0
bi(τ) sin (qTb(τ)) dτ (3.35)

We may calculate the partials of y(s) similarly. For i ≥ 3,

∂y(q, s)

∂qi
=

∫ s

0

∂

∂qi
sin (qTb(τ)) dτ =

∫ s

0
bi(τ) cos (qTb(τ)) dτ (3.36)

Define the vector functions xq(q, s) and yq(q, s) that contain the partial
derivatives of x and y with respect to q. Then define the 2m × n Jacobian
matrix:

J(q, s) =





















xq(q, s1)
T

xq(q, s2)
T

...
yq(q, s1)

T

yq(q, s2)
T

...





















(3.37)

Then
ẋ(q, s) = J(q, s)q̇ (3.38)

3.7.4 Kinetic energy and dynamics

In order to find the kinetic energy of the system, we first consider the ve-
locity of each particle. By the multivariable chain rule:

ẋ = xT
q q̇ (3.39)

ẏ = yT
q q̇ (3.40)
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The square of the velocity of the particle at position s is

v2(q, q̇, s) = ẋ2 + ẏ2 (3.41)

= q̇T(xqxT
q + yqyT

q )q̇ (3.42)

We define ρ to be the mass of the paper per unit length; we assume ρ is
constant over the paper. Then the kinetic energy is

T =
ρ

2

∫ 1

0
v2(q, q̇, s) ds (3.43)

T =
ρ

2

∫ 1

0
q̇T(xqxT

q + yqyT
q )q̇ ds (3.44)

T =
1

2
q̇T

(

ρ

∫ 1

0
xqxT

q + yqyT
q ds

)

q̇ (3.45)

We define the mass matrix

M(q) = ρ

∫ 1

0
yqyT

q + xqxT
q ds (3.46)

The kinetic energy is

T(q, q̇) =
1

2
q̇T M(q)q̇ (3.47)

Once the kinetic energy and mass matrix have been defined, we can
derive the dynamical equations. The details of the derivation are omitted,
but it turns out that the equations can be written in a familiar form:

Mq̈ + Ṁq̇ = Tq − Vq + JT f , (3.48)

where Vq is the vector of partial derivatives of Vs + Vg with respect to state.
One use of the dynamic equations is simulation. Truncate the Fourier

series, invert M to solve for q̈, and numerically integrate q̈ to find the trajec-
tory q(t). Since the mass matrix is symmetric, the numerical stability of the
simulation can be improved by using a Cholesky decomposition at each
time step, rather than inverting M directly.

The dynamic equations also contain the familiar formulas for the static
case. If q̇ = q̈ = 0, then

Vq = JT f (3.49)
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3.7.5 Force control

f2

f1

f3

f4

What if we can control forces at some specified points? Let J1 be the Jaco-
bian that relates the motion of the points where forces are applied to the
generalized velocity q̇. Then write the dynamic equations:

q̈ = M−1(Tq − Vq − Ṁq̇) + M−1JT
1 f (3.50)

Let s be the vector of parameters describing the points we want to con-
trol. Then x(s) will be the Cartesian location of these points. Let J2 be the
Jacobian relating q̇ and x.

ẋ(q, s) = J2(q, s)q̇ (3.51)

Differentiate with respect to time.

ẍ = J2q̈ + J̇2q̇ (3.52)

J2q̈ = ẍ − J̇2q̇ (3.53)

Premultiply equation 3.50 by J2:

J2q̈ = J2M−1(Tq − Vq + −Ṁq̇) + J2M−1JT
1 f (3.54)

Substitute:

ẍ = J2M−1(Tq − Vq − Ṁq̇) + J̇2q̇ + J2M−1JT
1 f (3.55)

which has the form

ẍ = d(q, q̇) + C(q) f (3.56)

C is square, and non-singular as long as both J1 and J2 have full row
rank. (The number of Fourier coefficients chosen to represent the system
should be large compared to the number of control points.) We can choose
ẍ as we like, and solve for f .

f = C−1(ẍ − d) (3.57)
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3.7.6 Evaluation

What have we learned? One observation is that directly simulating the
system using the dynamics equations derived requires the mass matrix to
be computed and factored at each time step. Since the mass matrix is dense,
this is computationally expensive. The inverse dynamics method of force
control described suffers from the same problem. The result is that only a
few Fourier coefficients can be used if numerical simulation or control is
the goal. Much better results could probably be achieved by modelling the
paper as a serial chain, and using efficient simulation techniques such as
those described in [6].

On the other hand, the model derived may be useful from the perspec-
tive of analysis. It is particularly interesting that under the Fourier basis
representation, the spring energy of the system is a simple weighted sum
of squares. Another possible benefit is the smoothness of the model; deriva-
tives are defined everywhere along the curve. (This would not be the case
if the paper were modelled as a serial chain.)

One primary limitation of the model is that it is least applicable during
creasing, since the Fourier representation needs many terms to describe
sharp bends. Chapter 4 describes some experimental observations about
the creasing process, but understanding the behavior of paper just as it
creases is a primary direction of future work.
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Chapter 4

Simple origami folding

Much can be learned from human origami experts. One observation is that
most origami folds are quite simple. Folds are introduced sequentially,
and previously folded facets are ‘locked’ down, allowing the origami to
be treated as a serial chain. According to origami folder Luis Pena (discus-
sion July l8, 2004), procedures for complicated 3D models usually have two
phases; the first precreasing phase primarily involves simple straight line
folds, and 3D manipulation only happens once all creases have been made.

We define two basic folding techniques, simple folding and book folding,
and present a complete planner for origami that can be folded using these
techniques. We also present a prototype of a machine that can fold simply-
foldable origami – movies are available from http://www.cs.cmu.edu/

˜devin.

As discussed in chapter 2, “Pureland” origami is a human class of origami
that only permits valley and mountain folds. Up to flap insertion and some
three-dimensional manipulation permitted in Pureland, Pureland origami
(like the samurai hat) is book-foldable. Simply-foldable origami is a special
case of book-foldable origami.

Our folds are similar to those used by the virtual origami software de-
scribed in Miyazaki et al. [49]; our contribution relative to this work is an
analysis of the conditions under which these folds can be made, a require-
ment for automatic planning. We present a paper airplane and a hat that
are simply foldable, and show that the traditional ‘samurai hat’ design can
be folded using eight simple folds and a single book fold, without flipping
the paper.

The structure of the chapter is as follows. After a discussion of related
work, a high-level model of simple folds and book folds is presented. The
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complete automatic planner and a folding machine will be described. Dur-
ing folding, the high-level rigid-body model is not applicable, and finding a
suitable model for low-level folding is an open challenge. The final section
describes some alternative techniques for making folds.

4.1 Related work

Box folding and sheet-metal bending are perhaps the two applications in
robotic manipulation closest to origami folding. Lu and Akella ([42],[43])
describe a planner (modelled on traditional planners for robot arms) that
enumerates all collision-free sequences to fold a carton blank into a carton.
Possibly the most complete and practical system for sheet-metal bending
is that described by Gupta et al [21], consisting of a high level planner that
determines the sequence of bends, and a number of low level planners for
individual actions. Unlike sheet metal and cardboard cartons, origami is
often flat when folded, and typically contains closed chains in its kinematic
structure. These characteristics have implications for collision detection,
state representation, and available actions.

4.1.1 Another origami-folding robot

I have recently been made aware of another origami-folding robot, devel-
oped by Nigel Hinson as part of a master’s thesis at Brunel University,
shortly after our robot was developed. The mechanical design is very im-
pressive, involving two arms, two suction cups, and rollers and blades to
fold the paper. A picture is available at http://www.interactiveorigami.
com/. Apparently (based on e-mail discussions with the builder), due to
time constraints, the robot was not programmed to make more than the
simplest folds. At the time of writing, more information on this very in-
teresting robot is not available, but movies can be requested directly from
Nigel Hinson.

4.1.2 Sheet-metal bending

The problem of sheet-metal bending has been studied by a number of au-
thors. Possibly the most complete and practical system is that described
by Gupta et al [21]. Their system consists of a high level planner that deter-
mines the sequence of bends, together with a number of low level planners.
The low level planners provide ‘primitive’ actions, including:
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• selecting appropriate bending tools and configuration

• inserting the part into the station

• removing positional error by gaging

• creating a bend

• removing the part from the station

• using a second gripper to allow re-grasping of the part

The hardware consisted of a robot arm (used to position the sheet metal),
a gripper that was used for re-grasping, and a press brake that used a die
and punch to create the bends. In fact, there are a large number of special-
ized tools for sheet-metal bending. The punch and die selection planner at-
tempted to recognize features from the intermediate part shape, and used
these features to select appropriate tools from a large database. A wide va-
riety of grippers is also available; the system chose from a library of fifty
different designs.

Each of the planners relied on kinematic models of the sheet metal and
the press brake system. Most of the planners considered the sheet metal to
be a single rigid body; the exception is the grip location planner, which also
considered the fact that the gripped portion of the sheet metal may move
during bending in the brake. Since the angle of the bends were chosen by
a human designer, and all bends occured atomically, the top level planner
needed to determine only the order of the bends, a discrete planning prob-
lem.

4.1.3 Box folding

Lu and Akella ([42],[43]) describe a planner that enumerates all collision
free sequences to fold a carton blank into a carton. The carton blank is a
flat piece of cardboard with creases separating the panels. The carton was
modelled as a collection of joints (the creases) and links (the panels). The
possibility that bends are not atomic was considered, so the configuration
space was continuous rather than discrete.

The model of the cartons was kinematic, and the number of degrees of
freedom was equal to the number of creases; typically between five and
nine for the problems considered. The model included both explicit con-
straints (self-intersection collisions) and implicit constraints (the configura-
tion of the carton was described in joint space.)
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Figure 4.1: Folding a box using a fixture. Reprinted from [42] by permis-
sion.
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The configuration space was represented by a recursive tree represen-
tation based on that used by Lozano-Perez [41] to model serial arms; some
modification was necessary to take into the account the possibly branching
sequences of links. Since creases in the cartons do not typically meet, the
authors do not consider the possibility that the structure is a closed chain.

The intended use of the planner was to enumerate possible fold se-
quences to help a human design a carton-folding fixture. The authors ap-
plied the planner to a number of types of carton blanks, and designed a
single fixture to fold two similar types of blank. They used a five-joint
Adept arm to move the carton blanks through the fixture, and achieved
good results – success rates were nine out of ten and nine out of sixteen for
the two types. Figure 4.1 shows an example.

A similar problem was also explored by Song and Amato [56]. Because
cartons may have many flaps, the dimensionality of the configuration space
may be very high. Fully exploring the configuration space therefore may be
prohibitively expensive. The authors designed and implemented a proba-
balistic roadmap planner, and applied it to the problem of folding a car-
ton with twelve creases. The planner was also successfully applied to the
problem of folding protein molecules with about one hundred degrees of
freedom, and to a paper folding problem with eleven degrees of freedom.
The problems considered involved only open chains.

4.1.4 Rope handling

Inoue and Inaba’s paper, Hand-Eye Coordination in Rope Handling [29], de-
scribes an experiment in robotic manipulation of rope. Figure 4.2 shows
the task. The rope was fed from a horizontally positioned hollow tube. The
robot grasped the rope, and pulled a length of it from the tube. The robot
re-grasped the rope closer to the tube, pulled out more rope, and dropped
the dangling endpoint through a wire loop. The robot then released the
rope, and regrasped a point on the rope below the wire loop. It then pulled
more of the rope through the loop, and laid the endpoint over the feeder
tube.

Inoue and Inaba’s system comprised a six degree of freedom arm, a
stereo vision system, tactile sensors in the fingers, an arm controller, and
a micro-computer running custom software. Although this paper appears
to be the first published work describing a robot manipulating a flexible
object, the focus is actually the design and architecture of this system – the
rope handling was seen as a virtuoso demonstration of capabilities of the
robot.
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Figure 4.2: One of the first examples of robotic manipulation of a flexible
object, re-drawn from [29].

This focus on the system architecture defines the perspective with which
the authors view the manipulation task. Surprisingly, visual servoing was
seen as the only feasible approach.

The task of rope handling seems simple. But it inherently re-
quires intensive machine vision. So far, robots have handled
only solid objects...a flexible object like a rope does not keep its
initial shape and it changes during motion. Therefore, visual
feedback is essential in order to manipulate flexible objects suc-
cessfully.

How should we classify the model of flexible objects used in this work?
Based on the visual servoing approach, the model of the system appears
to have a dimension of nine: three numbers for the position of the rope
endpoint, and six numbers for the configuration of the gripper. After each
move, the robot waited for the dangling rope to reach equilibrium; thus
the model is essentially quasistatic. Constraints were not considered in the
paper; the plan was hand-crafted, and reasoning about the motion of the
rope through the ring was made by the researchers, not the robot.

4.1.5 Planning for flexible objects

Most work involving flexible objects has focused on dynamic simulation
and control of flexible objects; there is relatively little work on the problem
of manipulation planning for flexible objects among obstacles. The lack
of work in this area may be due to the difficulties inherent in applying
traditional planning techniques to flexible systems. Some of the problems
involve:

1. Dimensionality: Models of flexible and continuously deformable ob-
jects typically use a large number of variables to approximate the pos-
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sible configurations of the system. The combinatorics of search algo-
rithms makes planning in high-dimensional spaces infeasible without
strong heuristics.

2. Predictability and Repeatability: Modelling flexible objects is diffi-
cult in itself, and most models do not adequately capture all aspects
of the system. Over short time intervals, flaws in the model may not
become apparent, and closed-loop control can ensure that the model
is synchronized with the world. However, planning is intrinsically an
open-loop process.

3. Underactuation: Ultimately, only a few controls will be available to
manipulate a flexible object. How should a flexible object be grasped?
Should the planner operate in the lower-dimensional control space, or
in the higher-dimensional configuration space? If the planner oper-
ates in the control space, there is an additional difficulty: the configu-
ration may be dependent not only on the current grasp configuration,
but on the entire history of grasp configurations.

Kavraki et al [33] explored the problem of planning the motions of a
thin, rectangular, elastic plate among obstacles. The plate was modelled as
a Bézier surface with control points. A potential energy function was de-
fined over the location of the control points. The plate was assumed to be
grasped by two opposite edges. Once the configurations of the edges had
been determined, a conjugate gradient method was used to find a mini-
mum of the energy function. A table of minimum-energy configurations
was precomputed.

The planner was a probabalistic roadmap planner. Each random config-
uration was generated by fixing an edge, randomly selecting the configura-
tion for the other grasped edge, finding a minimum-energy configuration
from the pre-computed table, and randomly selecting a rigid transforma-
tion to apply to the body.

The approach was tested using two hundred pre-computed minimum-
energy configurations. A problem involving moving the plate through a
triangular hole was solved with an average running time of about three
minutes.

An alternate method was also explored, in which it was assumed that
the Bézier control points could be directly manipulated to determine a con-
figuration; the potential energy function was used only to exclude ‘unrea-
sonable’ configurations. In this case, the problem was of much higher di-
mensionality (26 DOF). The planner took about five hours to explore the
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space of solutions for a problem involving bending the plate and moving it
through a U-shaped hole.

4.1.6 Wire bending and insertion

Nakagaki et al [50] considered the task of inserting a flexible wire into a
hole. When force acts on the tip of the wire, some deformation occurs; if the
deformation is entirely elastic, the wire returns to its original shape when
the force is removed. There may also be some plastic deformation; once the
wire is released, it may not return to its original shape. These authors use
a Fourier basis model similar that is described in chapter 3, together with
a vision system and a force sensor at the wire tip to determine how much
of the deformation is plastic, and how much is elastic. A gripper is used to
remove the plastic deformation and straighten the wire. Visual servoing is
then used to insert the wire into a hole.

4.1.7 Manipulation of fabric

If we grab the edges of a piece of paper and move them around, we ex-
pect to be able to indirectly control other points on the paper. This is an
implicit assumption in most visual servoing approaches to the manipula-
tion of flexible objects. Wada et al. [66, 65] explores this approach for the
problem of manipulating a piece of fabric during automatic stitching. The
authors model the cloth using a simple mass-spring system, and show that
a small number of interior points can be controlled by moving a few cor-
ners of the cloth. They also show that if deformations are small, their visual
servoing controller will still converge even without a model of the cloth.
Hirai et al. [25] describes a similar technique for manipulating a grasped
sponge.

4.1.8 Grasping of flexible objects

Wakamatsu et al. [68] considers the problem of grasping deformable ob-
jects. The authors point out that the principle of force closure is not really
approprate for flexible objects. They propose that grasps of flexible objects
can be evaluated using the idea of bounded force closure – can the current
grasp resist a force of bounded magnitude in an arbitrary direction? The
authors conducted some simulations involving the grasping of a thin rod.
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Figure 4.3: A sequence of two simple folds.

4.2 Simple folds

The most basic origami fold takes all paper on one side of a crease line
and folds it to the other side; the final pose of facets can be determined by
reflection across the crease line. Figure 4.3 shows a sequence of two simple
folds.

Given a flat origami state, what simple folds are possible? First, find
the minimal set of lines that contains all creases. Discard any crease lines
that cross a facet. Each remaining crease line divides the facets into two
compound facets; we arbitrarily assign one to be the ‘base’ and one the
‘flap’. During folding, the base will not move. The flap can folded either
up (a valley simple fold) or down (a mountain simple fold).

To execute the fold, all creases colinear with the crease line are folded
simultaneously. During folding, the heights of facets in the flap are re-
versed, and then either stacked above or below the base, forming a single
new compound facet.

There are many interesting origami designs that can be simply folded.
Figure 4.4 shows two of these: a cup, and a paper airplane.

Given an origami state, it is possible to find all possible simple folds.
First, find the set of all lines that contain creases; each crease line gives a
candidate simple fold. Check each candidate crease line; discard any that
intersect a facet in the interior. If the desired goal state is known and each
crease has been assigned as either a mountain or valley, check that each
crease in the crease line can fold in a consistent direction.

4.3 Book folds

Figure 4.5 shows two examples of origami that cannot be simply folded.
Origami folders often refer to the type of fold shown in figure 4.5b as a
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Figure 4.4: Simple foldings of two traditional origami designs.

Figure 4.5: Two designs that can be book folded but not simply folded.
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‘book fold’ – the moving facet separates from the fixed facets, just as a page
of a book is separated from the pages below it. To formally define a book
fold, we remove the restriction on simple folds that the base and the flap lie
on opposite sides of the crease line. Specifically, we will say that any fold
for which all the active creases are colinear such that the continuous rigid-
body rotation of the moving facets does not cause self-intersection of the
origami or tear any creases is a book fold. We will call the moving facets
the flap, and the fixed facets the base. All facets lie in a plane both before
and after the fold.

The simple folds from an origami state are easy to enumerate. Find-
ing the possible book folds is somewhat more complicated. The following
observation is useful to limit the number of possibilities that must be con-
sidered.

Theorem 7 The set of active creases in any fold cuts the facet graph, separating
each pair of relatively moving compound facets.

Proof: Choose two compound facets that move relative to one another;
call one the base, and one the flap. Any crease that connects the base and
flap and is colinear with the crease line must be active; the crease angle will
be the angle between the base and flap, up to sign. Any crease that connects
the base and flap but is not colinear with the crease line will be torn by any
rigid body rotation of the flap around the crease line.

We can determine the set of all book folds from an origami state, using
the following algorithm. First, enumerate all crease lines. Sort the creases
by height. Consider all sequential combinations of creases that contain ei-
ther the minimum- or maximum-height crease. Test each of these crease
sets to determine if it cuts the facet graph into at least two pieces. All
pieces strictly to the left of the current crease line that do not include the
root node of the facet tree (which is always fixed) are candidate flaps, as
are all pieces strictly to the right. (For simplicity, we do not consider com-
binations of pieces of the graph as candidate flaps, since combinations can
be folded by a sequence of book folds.) Test each candidate flap to see if
and in which direction(s) folding is possible without self-intersection of the
origami; this can be accomplished by polygon intersections in the plane of
the compound facet.

The state of the origami after a book fold can be predicted: reflect the
flap across the crease line, flip flap stacking, and stack the flap either above
or below the base, depending on the direction of the fold.
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4.3.1 Necessary conditions

Is it possible to determine from an origami state whether book folding is
possible? One method would be to run a complete planner; such a plan-
ner will be described in the next section. However, this can be very time-
consuming. This section will show that there are also necessary conditions
on the vertices of the state that can quickly show that it will be impossible
to complete the design using only simple folding.

Since book-foldable origami is a subset of flat origami, the conditions
we present are stronger and more specific than Kawasaki and Maekawa’s
theorems about for origami to be flat-foldable. Unfortunately, they are also
difficult to derive for vertices of degree 12 or higher. (Vertices of higher
degree must have a subset of creases of lower degree that satisfy the condi-
tions; this does serve as a weaker necessary condition.)

The necessary conditions are derived by considering the contribution
of successive book folds to the crease pattern. The construction used in the
proofs of Kawasaki’s and Maekawa’s theorems is also useful; we cut the
folded vertex, and consider the flat polygon that is the cross-section of the
paper.

After the first fold, the paper has two layers around the vertex; by in-
duction, no later crease can ever add an odd number of layers. (For sim-
plicity, we consider only vertices interior to the paper.) Also, notice that
the vertex degree is equal to the maximum number of layers in the folded
origami; with a single simple fold, it is not possible to add more layers than
the vertex degree. Finally, if n folds are made to a vertex, then the vertex
must have degree at least 2n.

Figure 4.6 shows the family tree of vertices with up to four folds. The
necessary condition for degree-four vertices is that one fold must be a straight
line, and the next be a reflection across that line. Formally, if we label the
creases as (1a, 1b, 2a, 2b) as in the figure, where the leading number indi-
cates the fold that created the crease, then 1a and 1b are colinear, and 2a

and 2b make a constant angle with 1a; as expected, this satisfies Kawasaki’s
theorem that odd sector angles sum to 360◦.

There is also a condition on the mountain-valley assignment of creases;
choose an orientation of the paper so that 1a and 1b are both valley. Then
2a can be either mountain or valley, and 2b must be the opposite; this is a
stronger condition than Maekawa’s theorem.

Degree-four and degree-six vertices can only be folded one way, as
shown in figure 4.6; degree-eight vertices can be folded with either three
or four folds, yielding two distinct classes of vertex. The following table

102



Figure 4.6: A ‘family tree’ of book-foldable vertices.
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enumerates the classes of book-foldable vertices.

Vertex deg. min. # folds max. # folds predec. degree # classes

0 0 0 - 1
2 1 1 0 1
4 2 2 2 1
6 3 3 4 1
8 3 4 4, 6 2
10 4 5 6, 8 3
12 4 6 6, 8, 10 6
14 4 6 8, 10, 12 11
16 4 6 8, 10, 12, 14 22

For each class, there is a condition on the sector angles and on the
mountain-valley assignment of creases. Figure 4.6 shows the condition on
sector angles for degree less than or equal to eight; similar conditions could
be derived for vertices of higher degree, although the number of classes
appears to grow exponentially. The following table shows the necessary
conditions on mountain-valley assignment; it is assumed that the paper is
oriented so that creases 1a and 1b are valleys. ‘v’ means a valley fold, ‘e’ can
be either, and a ‘not’ symbol in front of a crease index means that the two
creases cannot be of the same type.

1a 1b 2a 2b 3a 3b 3c 3d 4a 4b

Degree 4 v v e ¬2a

Degree 6 v v e ¬2a e ¬3a

Deg. 8 (3 folds) v v e ¬2a e ¬3a ¬3a 3a

Deg. 8 (4 folds) v v e ¬2a e ¬3a e ¬4a

4.4 A planner for book-foldable origami

Origami that can be folded using book folds is flat after each fold. Since the
motion of the flap occurs out of the plane of the base, collision detection
is only necessary at the beginnings and ends of folds, and only requires
simple polygon intersection tests. Futhermore, the origami state after each
fold is just the stacking of the facets, together with the set of creases that
have been folded, and is thus discrete. (Note that crease angles can be
determined from the stacking, as long as we know which creases have been
folded.) We have implemented a complete graph search planner for book-
foldable origami; the nodes of the graph are flat origami states. Figure 4.7
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Figure 4.7: Automatically planned folding of the samurai hat. With the
exception of step 7 (a book fold), all folds are ‘simple’.

shows an automatically planned folding of the samurai hat comprised of
eight simple folds and one book fold.

The input to the planner is the pattern and the desired stacking of the
facets. Use the goal stacking and the pattern to determine signs on the
crease angles. Insert the pattern into the search queue as the initial state.
While the search queue has elements, pop, test for goal state, and if goal,
backchain to find the plan. Otherwise, determine the book folds from the
state and generate successor states. Cull any states that have crease angles
that do not agree with those of the goal state. Also cull any states that have
been previously visited. Insert remaining states into the visited list and into
the search queue.

The visited list is implemented as a hash table that hashes based on the
integer heights of facets in the stacking. Before testing against the visited
list, the compound facet of the state is collapsed to determine a minimal
stacking. The algorithm to find the minimal stacking is essentially a bubble
sort – each facet is allowed to bubble downwards in the stacking as long as
it does not intersect with any facets in the level underneath it.

The planner implementation is about 5000 lines of C++ code, and was
run on a 500 mhz Pentium III. The table below shows results for four tradi-
tional origami designs.

Origami creases nodes CPU time (sec) folds

Cup 9 30 .1 5
Airplane 9 24 .1 5

Hat 14 75 .5 5
Samurai hat 20 4250 110 9

For the samurai hat, more than 99% of the CPU time was spent in poly-
gon intersections to determine minimal stackings and to find book folds.
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Figure 4.8: A machine that can fold simple origami.

4.5 An origami folding machine

Figures 4.8 and 4.9 show a machine designed to allow a 4DOF Adept SCARA
robot arm to make simple folds. The arm was used to position the paper,
which was gripped by a vacuum pad. The design is based on the following
observation:

Theorem 8 Any origami piece that can be folded by a sequence of flips and simple
folds can be folded by a single initial flip and a sequence of valley simple folds.

Proof: A mountain simple fold is equivalent to a flip, valley simple fold,
flip sequence; write m = f v f . Also, either the facets on the left or on the
right of the crease line can be chosen as the base. Using similar notation,
vl f = vr, and vr f = vl . Finally, f f is the identity. These substitution rules
imply that any fold sequence of the form ( f ∗v∗m∗)∗ can be replaced by a
sequence of the form f ∗v∗.

The folding procedure is outlined in figure 4.10. The paper is first po-
sitioned on the table above a slot; the position of the paper determines the
location of the crease. A blade presses the paper into the slot (step 2); fric-
tion holds the paper in the slot as the blade is removed. The slot clamps
shut, forming the crease (step 3). Steps 4 and 5 show a method for remov-
ing the paper from the slot and placing it flat on the table; this is required
since the arm only provides one rotational degree of freedom at the wrist.
First the blade sweeps across the paper, forcing it to lie flat. The clamp is
released while the blade holds the paper against the table; the springiness
of the paper allows it to swing free of the slot.
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Figure 4.9: A machine that can fold simple origami.

Figure 4.10: Making a simple fold with the machine; side view.
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Figure 4.11: Robotic folding of a paper hat. Subfigures a) through d) show
the first crease, e) through i) the second, j) through m) the third, n) through
q) the fourth, r) through u) the fifth, and v) and x) show the final product –
a folded hat.
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Figure 4.12: A completed paper airplane, folded automatically by the robot.

The machine is able to completely fold both the simple airplane de-
sign shown in figures 4.4 and 4.12 and a simplified 14-crease version of the
samurai hat – each design takes about two minutes to fold. Figure 4.11
shows the folding sequence for the hat in detail. The machine has also
folded a few other designs, including an envelope and a paper cup.

4.6 Machine evaluation; future directions

This section discusses each of the folding steps in figure 4.10 in more detail,
and describes some of the the limitations and failure modes of the machine.
Under ideal conditions and with the right paper selection, the folding of the
paper hat is very reliable, and the robot is successful more than nine out of
ten attempts. The paper-airplane folding is more difficult, and under ideal
conditions, succeeds about half the time. The paper-cup folding is only
occasionally succesful.

4.6.1 Step 1 – Paper positioning

In step 1, the paper is grabbed by the vacuum pad, and positioned over
the creasing slot by the 4-DOF arm. The positioning itself is quite accurate,
but picking up and releasing the paper can be challenges for folding some
origami; these substeps are described in more detail below.
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Figure 4.13: Lifting the paper from the bottom layer allows gravity to assist
in keeping creases connected to upper facets from unfolding. If the vacuum
pad grasped the paper on either of the other facets, we would expect the
paper to sag and unfold.

Grasping the paper

Where and how should the paper be grasped? One design choice that af-
fects paper positioning is the vacuum pad. Smaller vacuum pads of more
rigid material deform the paper less, but larger flexible pads are more reli-
able in grabbing the paper. There are also more choices of where to grab the
paper using a small pad, which turns out to be an important consideration
during later folds.

Uncreased paper tends to droop; too much droop, and the paper can
peel off the pad. If the paper has already been creased, the creases unfold
somewhat when the paper is lifted; if they unfold too much, it may be
difficult to return the paper to a flat configuration when placing it on the
table. For this reason, it seems to be better to grasp lower layers of the
paper, so that gravity assists in holding creases shut; see figure 4.13. But
this can be difficult, since the vacuum pad approaches from the top. The
folding of the hat in figure 4.11 shows a case where the fact that creases tend
to spring open to allow the paper to be grasped at a lower layer (subfigure
r), but if the creases do not spring open enough, this can be a source of
error.

Grasping the paper near an edge typically causes more paper droop,
but grasping the paper near the center can be a problem as well. If the
paper is flat, suction between the paper and table can develop; this will be
discussed more fully below.

The automatic planner used to generate the folding plans for the air-
plane, hat, cup, and envelope uses a very simple heuristic to grasp the pa-
per, and simply selects the centroid of the vertices as the grasping point;
this point tends to be near the center of the folded paper, and in a place
where there are many thicknesses of paper, which minimizes the amount
of crease unfolding during lifting. This heuristic was sufficient for the spe-
cific designs folded, but probably would not be effective for many origami
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Figure 4.14: Two modes of lifting unfolded paper. On the left, the paper
bends with rulings parallel to one edge of the paper. On the right, the
paper crinkles slightly, and the crinkles prevent large-scale deformation.

designs.

Paper deformation caused by suction cup

Grabbing the paper and lifting it off the table causes deformation of the
paper. There seem to be two modes, shown in figure 4.14. With a small
suction cup, the paper tends to bend smoothly, with all rulings parallel to
two of the sides of the square paper. (Which sides? Origami paper does
seem to be much more flexible in one direction than in the other, presum-
ably because of the direction of the grain of the paper.)

With a larger, flexible pad, and high suction, the paper tends to crinkle
slightly as part of the paper is sucked inside the pad. Because of the non-
stretchiness of paper, the result is interesting: the paper behaves relatively
rigidly; 15 centimeter/side origami paper can be held essentially parallel to
the table. This behavior can cause a problem if the goal is to bend the paper
while maintaining a suction grip; this difficulty was encountered during
previous folding experiments, described in section 4.8.3.

Vacuum between table and paper during lifting

If the paper is completely flat against the table, the vacuum between the
table and the paper can be greater than between the paper and the vacuum
pad. (From Nigel Hinson’s movies of his origami-folding machine, which
also uses a vacuum pad to grasp the paper, this problem seems to be a
very common failure mode.) Large, flexible pieces of paper are particularly
difficult to grasp.

There are some ways to avoid this problem. A large vacuum pad pro-
vides better suction, and also tends to crinkle the paper during grasping;
the crinkling breaks the vacuum between the rigid table and the paper. An-
other approach is to grasp the paper from near an edge, rather than near the
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Figure 4.15: Pressing the paper flat against the table.

center; this allows the paper to be ’peeled’ off the table, but the cost is that
there will be more paper droop, which can cause difficulties in later stages
of the folding process. Finally, careful selection of paper is important, and
was vital to the successful folding of the paper hat; this will be discussed
below.

Release of paper

As discussed, ‘flat’ origami designs become very non-planar when lifted
off of the table. After the paper has been positioned, it needs to be pressed
flat against the table and released. This can be difficult; figure 4.15 shows
the problem. In the top right subfigure, the contacts between the paper and
table stick, and the paper is not pressed flat; in the bottom right subfigure,
the contacts slip, and the paper is flattened.

The case where the contacts stick and the paper is not pressed flat is
the most common failure mode for the folding of the paper airplane. Some
possible solutions (not implemented) might include either not lifting the
paper completely off the table, or a more complicated motion to press the
paper flat.

4.6.2 Step 2 – Paper bending and friction grasp

During step 2 of placing a crease, the paper is pressed into the slot by a
ruler; friction between the paper and the sides of the slot holds the paper in
place while the ruler is removed. One question is how the paper behaves
as it is inserted into the crease. If the paper is thin and flexible, the contact
between the paper and the ruler does not visibly slip, and a smooth bend is
formed as the paper slides into the crease. If there are multiple thicknesses
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of paper, or the paper is very stiff, the behavior is less predictable, and
sharp crinkles can form as the paper is inserted.

If thick paper is used for the folding of the samurai hat, friction between
the paper and the walls is insufficent to hold the paper stably, and the paper
pops out of the slot when the ruler is removed. A thinner or taller slot
would probably solve the problem, but the slot must be wide for the sweep-
flattening of the paper in step 4 to work. A future machine design would
remove step 4 by rotating the paper and slot as a unit, and would have a
much thinner slot.

4.6.3 Step 3 – Dynamic crease formation

What happens when the slot clamps shut, creasing the paper? It is diffi-
cult to observe the process because of the speed of the pneumatic actuator
that closes the gap. Simulation and analysis are also beyond the scope of
the tools and models presented in this thesis, and better models for crease
formation are a major goal of future work. In this section, we make a few
simple observations, and pose some a few questions.

One observation is that the paper must slip as the slot closes; the paper
is taller after it has been flattened. Which side slips first? The action of the
pneumatic clamp is not symmetric for the current machine design; only
one wall of the slot moves. Nonetheless, it does appear that the crease
forms approximately in the center of the gap; if a diagonal crease is placed
by placing two opposite corners above the center of the gap, the crease
runs approximately from corner to corner; the error (on the order of a few
millimeters) does not appear to be biased towards one side of the gap or
the other.

Since the paper must slip, we might expect it to escape the closing slot
by popping out the top. This does sometimes occur, typically when there
are many thicknesses of paper. To correct this problem, rough masking
tape was applied to the gap to increase friction with the paper. Although
the paper must still eventually slip, it seems possible that the masking tape
delays the slipping, allowing the sides of the paper time to comply with the
parallel walls of the slot.

A future design would have a thinner, taller slot; we would expect this
to increase the accuracy of the fold, assuming that the insertion of the paper
into the thinner slot could be done without the paper slipping. Also, if the
paper did not touch the bottom of the slot, it would not be forced to slip;
this might increase reliability and accuracy.

There are some limitations of the method used to form the crease. One

113



problem is sharpness of the crease. When a human being uses a fingernail
to create or sharpen a crease, all force is applied over a small area. Although
the pneumatic actuator provides more force than a human being can com-
fortably apply, there is relatively low pressure applied at any point along
the crease, since the entire crease is formed simultaneously. The fact that
the creases are not sharp causes additional problems during manipulation
of the paper, since they tend to open when the paper is lifted or released;
facets on the bottom shift, moving the paper, and facets on the top get in
the way of picking the paper up with the suction cup. This effect can be
seen in figures 4.11n, 4.11r, 4.11s, and 4.11v.

Another limitation of the folding method is that there is no landmark-
ing. Human beings line up points far away from the crease, where two
sides of the paper can be treated as rigid bodies. The constraint that those
two points on the pattern be a reflection across the crease constrains the
location of the crease, allowing very precise positioning of the crease. The
method used by the machine, however, is very local. The paper is grasped
very near where the crease will be formed; in this region, the paper must
deform greatly, and must slip with the current machine design. Section 4.8
discusses some initial experiments in the direction of human-inspired fold-
ing.

4.6.4 Step 4 – Sweep-flattening of paper

In step four, the ruler sweeps across the paper, flattening it against table,
while the paper is still gripped by the crease-forming clamp. This step is
not vital to crease formation, and is only used to rotate the paper in a di-
rection in which the robot does not have any degree of freedom. Although
interesting because it makes use of the flexibility of the paper, the method
has a disadvantage; a shallow crease is formed on the sharp right edge
of the slot as the paper is pressed against it! A future version of the ma-
chine would have an additional degree of freedom, and would not use this
method to return the paper to the horizontal plane after creasing.

4.6.5 Step 5 – Paper release

Once the paper has been flattened, it is still clamped in the slot. How
should it be removed? The current machine design uses the springiness
and flexibility of the paper. The slot is designed to have equal width and
height; when the slot opens, the shallow crease placed by the right wall of
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the slot unfolds, rotating the part of the paper in the slot out. This step
would probably be unneccessary in a future machine design.

4.6.6 Paper selection; effect of humidity

There are a number of steps in the folding process that depend on the char-
acteristics of the paper. Thin paper creases more easily, and can be more
easily folded into multiple layers. Step two, the friction grasp of the paper,
depends on the roughness of the surface of the paper. Step four, the flatten-
ing of the paper with the ruler requires that the paper be somewhat stiff; if
the paper droops too much, the ruler hits the wrong side of the paper.

In fact, the machine reliably folds the paper hat only with standard
origami paper; even origami paper that is colored on both sides is too thick,
and the paper pops out of the slot during step two of the fourth fold.

Weather conditions also affect the performance of the machine. Humid-
ity seems to make the paper much less stiff, and step four fails on the first
step of the hat folding on a wet day when the paper droops too much.

Future machine designs would take into account a wider range of paper
behaviors. A narrower creasing slot would require less friction to hold the
paper, and actuating the slot to allow the paper to be rotated into the flat
position after folding would alleviate the problem of paper droop during
sweep-flattening.

4.6.7 Sensing

The current design does not sense the location of the paper at all – it is
somewhat surprising that the sequences of five folds needed to make the
hat and paper airplane can be completed so precisely open-loop. The ad-
dition of a vision system might help later folds to be made more precisely,
and make the folding process more forgiving of slight errors in early folds.

4.7 Comparison to other folding methods

The primary goal was to design a machine that could fold a class of origami,
not just one design. Although the final machine is quite simple, there were
many choices made during the design process. Some of these choices were
made based on the limitations of the machine, and other choices were made
based on the specific nature of origami folding. This section discusses some
of the design choices, particularly with regard to other folding processes,
including sheet-metal bending, carton folding, and human origami folding.
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4.7.1 Comparison to sheet-metal bending

Sheet-metal is thicker than paper, and the types of shapes sheet-metal is
bent into are different from most origami. (There are some exceptions
in the art world; for example Lane Allen’s origami-inspired sheet-metal
scultures, which can be seen at http://my.inil.com/˜origami/.) Al-
though sheet metal does have some flexibility, bent sheet metal tends to re-
main bent; unlike origami creases, sheet-metal bends do not act like joints
after the bending tools are removed. This means that it is easy to bend sheet
metal into three-dimensional forms, whereas three-dimensional origami
seems to require much care to lock facets into position.

The design of sheet-metal-bending tools and machines depends on the
fact that bends are less than 180◦. The punch presses the metal into the die.
Friction between the punch, the metal, and the die holds the metal in place
firmly. The unilateral bending forces are created by the walls of the die, and
the punch prevents over-bending. If the metal is thick or the bending angle
is very acute, then the metal may be prepared ahead of time by milling out
a wedge of metal along the intended bend.

There seem to be three important requirements for a sheet-metal bend-
ing machine: holding the metal in place, applying sufficient bending forces
from the outside, and ensuring the correct bending angle. Although the
origami-folding machine described above at first seems very similar to a
sheet-metal press, there are some important key differences. Since the de-
sired fold is approximately 180◦, either the punch must be very thin, or it
must be removed before folding. Even a thin punch would have to be re-
moved after folding, and it is not clear at all how this could be done reliably.

The solution used by our origami-folding machine to the problem of
180◦ folds is to bend the paper into a configuration that can be held in place
by friction applied to the outside. There are some disadvantages to this
approach. One problem is that the frictional forces are primarily created
by the springiness of the paper pressing the sides of the paper against the
walls of the creasing slot. These forces are likely to be small, since the con-
tact between the paper and the walls is several millimeters away from the
central bend in the paper. It also difficult to predict the exact shape of the
paper when pressed into the slot, and as a result, it is difficult to estimate
the forces.

It is also possible to locate a sheet-metal punch fairly precisely, and there
is a line contact along the desired bending location. With the friction grip
used by the origami-folding machine, the two lines of contact between the
paper and machine can move as the paper flexes during folding (in fact,

116



the paper must slip, as described above, since some of the paper must be
pushed out as the slot slams shut). Symmetry of the paper may help to
cause the crease to form in the center of the slot during early folds, but in
later stages, there may be more layers of paper on the left or right, biasing
the location of the new fold.

A narrower folding slot would probably reduce the error, but there is a
lower limit on how small the slot can be before it become difficult to press
in multiple layers of paper using the blade. A narrower slot would also
increase the difficulty of removing the blade without interfering with the
rest of the paper.

4.7.2 Comparison to carton folding

As discussed in the related work section above, carton and origami folding
are similar in some ways, but it is difficult to see how carton-folding fixtures
like the one described in e.g. Lu and Akella [42] could be immediately
applied to origami folding of the type for which our machine is suitable.
One primary difference between the problems is the fact that origami paper
is not precreased. Another is that origami is folded many times, creating
multiple thicknesses of paper.

On the other hand, three-dimensional origami models seem to have
more in common with cartons. According to origami folder Luis Pena,
most complicated 3D models are almost entirely pre-creased during the
first step of folding, since creases are much more difficult to place once
the model has become three-dimensional. Folding 3D origami with fix-
tures would be very challenging, however, since the facets are flexible and
springy, and it seems difficult to predict precisely how the model will be-
have when external forces are applied to it. 3D origami also tends to have
many creases, and they may be arranged in complicated networks. Por-
tions of the model may also be 2D, requiring creases to be folded 180◦.

4.7.3 Comparison to human folding

Humans are far better at origami than robots. The industrial arm that pro-
vides the primary programmable motion for the origami-folding machine
has only four degrees of freedom; humans have twenty four-degree-of-
freedom fingers attached to two seven-degree-of-freedom arms. The fold-
ing done by the machine is open-loop; humans have vision and touch. Hu-
mans also have much more adaptable reasoning capabilities, and can an-
ticipate, avoid, or correct problems that arise during folding.
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The machine’s folding technique is limited by its basic manipulation
capabilities. Relative to human techniques, the machine does all manip-
ulation of the paper very near the desired crease location. This approach
has some advantages and disadvantages. An advantage is that in a smaller
area near the crease, there may be fewer complicating features like layers,
flaps, and prexisting creases. There is also less bending of the paper, and
the paper is relatively stiffer near the crease. The large, springy loop of
paper the humans typically create before flattening the paper to create a
crease would be difficult for a robot to reliably deal with.

The primary disadvantage of local creasing is that it is more difficult to
reliably grasp the paper near the crease, since the spring forces are larger,
and there are less edges of the paper. Another disadvantage is that land-
marking is impossible; there are no obvious features to line up, and the
increased stiffness of the paper makes it difficult to bring the paper on each
side of the desired crease together without actually creating the crease.

4.8 Experiments motivated by human folding techniques

I conducted a series of experiments with a four-joint Adept arm to gain a
better understanding of how humans fold origami. The folds described in
this section do not make use of the special purpose creasing-tool discussed
above; a simple roller was used to make the creases. One of the limitations
with this method was the lack of a second hand to hold the paper in place
while creating a crease. A second limitation was the lack of degrees-of-
freedom; it was very difficult to figure out how to bend the paper 180◦ to
create a crease, or even how to flip the paper over. Although the origami
folded during these experiments is much simpler than the origami folded
by the robot described above (the most complicated piece is an envelope
with four creases), the experiments do give some perspective on minimalist
human folding.

4.8.1 Tool design

The design of the tool used is shown in figure 4.16. A vacuum pad (suc-
tion cup) was used to pick up the paper; a pneumatic vacuum generator
supplied the vaccum. Ink brayers are usually used to roll ink onto rubber
stamps. They are available in sizes from about 8 cm in length to about 15
cm in length, and are made from a variety of materials including foam, soft
rubber, hard rubber, and acryllic. A 15 cm long soft rubber ink brayer was
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Figure 4.16: Tool design for making simple folds.

attached to the tool to allow the robot to ‘roll out’ creases in the paper. A
pneumatically powered linear actuator moved the vacuum pad out of the
way while the brayer was being used. I also built a wooden table to act as
a workspace; for many of the experiments, the table played the role of a
second hand.

4.8.2 Folding the paper

The first experiments I conducted were motivated by the observation that
humans often place precise creases by aligning two edges or corners, and
then ‘rolling out’ the curvature until the paper is creased. The alignment
of the edges or corners determines the location of the crease – a person
who has difficulty drawing a straight line free-hand can still fold a straight
crease.

Figure 4.17 shows the experiment I designed to explore this technique.
The operation requires two hands. As a substitute for the second hand, I
taped one edge of the paper to the table. The robot grasped the other end
of the paper with the vacuum pad, and pressed it down into contact with
the table (1, 2). Once the brayer was firmly holding the paper against the
table, the vacuum pad was removed (3). The robot then rolled the brayer
forwards (4), rolling out the curvature and eventually creasing the paper
(5).

One interesting observation is that not all paper configurations can be
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Figure 4.17: Placing a simple crease.
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Figure 4.18: Creasing as a reflection.

‘rolled out’ in this way. When the taped edge and the grasped edge were
precisely aligned, this simple operation was fairly repeatable, and the ac-
curacy of the crease placement appeared to be within a few millimeters.
Occasionally, the paper tore along endpoints of the crease, typically when I
had not placed the paper carefully before the gripper grasped the top edge.
When I intentionally rotated the gripper ten degrees before placing the top
edge, the paper crumpled badly as the brayer rolled across it.

If there is only a single crease in a piece of paper, it acts as a line of
reflection. If there is no line of reflection consistent with the placement of
the two edges, then we should not expect the formation of a single crease.
Figure 4.18 shows an example. If the upper right corner of the paper is
dragged in either direction along the dotted line without rotation, there
will be no single crease consistent with the relative position of the upper
and lower facets of the paper.

Although it seems likely that most relative placements of the edges can
be achieved with three creases, the ‘rolling out’ action does not appear to
permit the formation of more than one crease due to the serial way in which
curvature is removed from the paper. On the other hand, pressing the pa-
per flat simultaneously (for example, by squashing it with a book) does
seem to create three creases that are consistent with the relative placement
of the two landmarks.

4.8.3 Bending the paper

The Adept arm used has only four degrees of freedom; we can describe
the configuration of the tool by the coordinates x, y, z, and θ, the rotation
about the z axis. This means that there is no way to flip a rigid body while
grasping it from the top. If the paper is grasped, the grasped point cannot
be flipped over to create a 180 degree bend. In the second experiment, I
investigated the possibility of using the flexiblity of the paper to create a
bend. Figure 4.19 shows the motion of the gripper and paper during the
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Figure 4.19: Bending the paper.

experiment.

The robot first gripped the paper, and dragged it off of the table. It
allowed the paper to droop, and then swept the paper back onto the table.
During this phase, the edge of the table caused the paper to bend.

I was surprised by the fact that the paper did not always droop once
it was dragged off the edge of the table. This may have been because the
paper crinkled slightly when gripped by the vacuum pad. When support
was removed from the paper it remained in an essentially horizontal con-
figuration. This is an interesting example of paper behaving like a rigid
body.

When people hold a newspaper up to read it, it is important that the
top edge not droop down. However, for this experiment, some droop was
necessary. Crinkles or bends in the paper not parallel to the intending fold-
ing direction give the paper some rigidity, and picking the paper up with a
suction cup can create such crinkles, as discussed above and shown in fig-
ure 4.14. I implemented a strategy to ensure that the rigidity was broken.
After moving the paper off of the edge of the table, the robot moved the
(ungrasped) edge of the paper underneath the table edge. The arm then
lifted the paper, using the table edge to break the rigidity. The arm then
swept the paper across the table edge and back onto the table to place the
desired bend.

The flexibility of the paper also allows it to be flipped with one hand.
If the vaccuum pad releases the paper once the bend has been placed,
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Figure 4.20: Placing a shallow crease using a blade.

the paper slides off, and usually ends up upside down. Unfortunately,
the springiness of the paper makes this motion dynamic and very unpre-
dictable!

Although the dynamic aspect could be ameliorated by grasping the bot-
tom edge with a simple gripper before releasing the top edge, a larger prob-
lem is that the motion of the bottom edge and shape of the bend are diffi-
cult to predict. Typically, some twist develops between the top and bottom
edges. Also, if the robot drags the paper from left to right starting in the
final position shown in figure 4.19, the bottom edge will eventually move,
trailing behind the robot. However, if the robot moves the gripper from
right to left, the bottom edge does not move until it eventually flips over.
This would probably make it hard to control the position of the bottom
edge even with a feedback control law.

4.9 Experiments in folding pre-creased paper

Although bending and flipping the paper using the edge of the table turned
out to be unpredictable, the method is more successful if there is already a
crease in the paper. If there is already a crease, the deformation of the paper
tends to occur along that crease during the bending phase. I explored pre-
creasing the paper in the experiment outlined by figure 4.20.

I attached the blade of a long paint scraper to the table. The robot placed
the paper above the blade. The brayer then rolled across the paper along
the blade, forming a crease along the line of the blade. The process is anal-
ogous to bending sheet metal in a brake – the blade acted as the punch and
the soft rubber brayer acted as the die.

The accuracy and repeatability of this procedure were not very good.
As the brayer moved across the blade, the paper tended to be dragged
along a few millimeters by the brayer. Increasing the accuracy is a prob-
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Figure 4.21: Folding pre-creased paper.

lem for a future mechanical design.

4.9.1 Folding creased paper

The method just described places a very shallow crease in the paper. How-
ever, even a shallow crease may be useful, since creased paper behaves
differently from uncreased paper. Once there is a crease, applying forces to
the edges of the paper tends to cause more bending along the crease than
elsewhere in the paper. I used this observation to fold the paper once a
shallow crease had been placed. Figure 4.21 outlines the experiment.

The motions of the paper for this experiment were the same as the mo-
tions shown in figures 4.17 and 4.19. The paper was grasped from above,
near the crease. The paper was then oriented so that the crease was parallel
to the edge of the table. The robot dragged the paper off the table, and used
the edge of the table to break any rigidity and bend the paper. The robot
then dragged the paper along the table while squeezing downwards; most
of the bending of the paper occurred along the crease. Once the paper was
essentially flat on the table, the robot released the vacuum grip and rolled
the brayer across the paper to sharpen the crease. It is interesting that in
addition to allowing the fold to be made precisely, pre-creasing also allows
the paper to be flipped: part of the paper is upside down after the motion,
and positioned in a known location.

4.9.2 Folding an envelope

The experiments discussed to this point developed a series of primitives.
These primitives can be combined to fold the simple origami shown in fig-
ure 4.22. Figure 4.23 shows the strategy. First, one crease was placed in the
paper using the method described in section 4.9. The robot then dragged
the paper off the table, and used the table edge to ‘fold under’ the flap
formed by the crease. The fold was made along the crease by squeezing the
paper against the table while dragging the paper to the right. The brayer
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Figure 4.22: An ‘envelope’ origami shape. The four corner flaps are folded
into the center of the square.

rolled over the paper to sharpen the crease. At the end of the procedure,
one corner of the paper was folded under. The process was repeated for
each of the three remaining flaps, folding the paper into the desired enve-
lope shape.

4.9.3 Evaluation

How well did it work? The robot was able to repeatably place all four
creases, and fold the flaps to form the envelope. The error in the pose of the
first crease was small – on the order of a few milimeters and a few degrees.
However, error accumulated, and the pose error of the last crease was typ-
ically nearly a centimeter, and about ten degrees. The primary source of
error seemed to be the slip of the paper on the table as the brayer rolled
over it to place a crease. Reducing this error will require that the paper be
grasped during creasing, probably on both sides of the crease. Some sim-
ple sensing of paper edges could be used to reduce the problem of error
accumulation.
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Figure 4.23: Folding the envelope.
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Chapter 5

Vertex folding

Many origami designs cannot be book folded; figure 5.1 shows some ex-
amples. Inside and outside reverse folds, squash folds, and petal folds all
manipulate four creases simultaneously; prayer folds manipulate six. How
should we analyse these folds? This chapter defines and analyses two types
of folding, vertex folding and network folding. Both fold types assume the ar-
ticulated rigid-body model of paper, with revolute joints at creases.

Vertex folds are continuous trajectories of an articulated rigid body with
a single crease vertex that do not cause intersection between any facets. (As
usual, facets are allowed to become co-planar, but not to pass through one
another.) The key results of this chapter relative to vertex folding are an-
alytical local parameterizations of the configuration space of single-vertex
origami, a graphical method for determining the global topology and con-
nectedness of the c-space for four- and five-bar spherical closed chains, and
some initial results describing the topology of the configuration space for
n-bar spherical closed chains.

Path planning for vertex folds also requires some method of avoiding

Figure 5.1: Only the first design is book-foldable. Dashed lines represent
valley creases, and solid lines, mountain creases.
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self-intersection. Local discretized planning only requires checking for for
self-intersections at specific sampled states and avoiding those states; ef-
ficient and complete global path planning requires some better method of
avoiding self-intersection. Results presented in the chapter show that in
fact, flat-foldable four-bar mechanisms with planar facets can only self-
intersect when flat. This means that complete planning like that applied
to book folds in the last chapter could be applied to degree-four folds like
squash folds and reverse folds; implementation of such a planner is a detail
left for future work.

Network folds are continuous trajectories of an articulated rigid body
with multiple crease vertices that do not cause intersection between any
facets. The primary contribution of the thesis is a method of locally param-
eterizing the c-space of crease networks using local parameterizations of
the individual vertices. These parameterizations allow local planning and
simulation; some examples of trajectories generated using these parame-
terizations are also presented.

Sometimes, a network of creases cannot be network-folded, either be-
cause the network does not have enough degrees of freedom, or because of
intersections between the facets for all trajectories of the articulated rigid
body. Possibly the most common everyday of an origami-like structure, the
paper shopping bag, falls into the first class. A proof that the configuration
space includes only the folded and fully open states is presented. Observa-
tion of a real shopping bag does seem to confirm that some crinkling occurs
along the sides as the bag is folded. But could the bag be folded if we added
a finite number of creases? It turns out that it can; however, the flat state
is not the same as the expected folded state of the shopping bag. A further
question is therefore posed: can the bag be unfolded from its usual folded
state by the addition of a finite number of creases. We conjecture that it can,
and propose a possible solution.

For all figures in this section, we will choose coordinates so that the x
axis points along the first (horizontal) axis, the y axis points up, and the
z axis points out of the page. For single vertex patterns, this coordinate
system will be anchored at the vertex.
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5.1 Related work

5.1.1 Parameterization of closed-chain mechanism c-spaces

Four-bar spherical mechanisms have been well-studied; McCarthy [44] is
a standard reference. Parameterizations of four-bar mechanisms appear in
McCarthy; Huffman gives an alternate formula in Huffman [27]. Parame-
terizations of closed-chain mechanism c-spaces using an inverse kinematics
approach like that described below are also quite common; Han and Am-
ato [22] describe just such an approach to allow efficient path planning for
spatial closed chains of line-segment links connected by revolute joints.

The primary use of the parameterization of spherical closed chains with
non-sequential dependent joint angles developed in this chapter is to allow
Huffman’s work on degree-four crease networks to be extended to crease
networks with vertices of arbitrary degree.

5.1.2 Topology of configuration spaces

Our approach to analysis of the topology of single-vertex origami configu-
ration spaces is inspired by the work of Milgram and Trinkle [45]. The key
results of the paper are the derivation of the topological structure of the
configuration spaces of single-loop k-bar mechanisms with revolute joints,
in unobstructed Rn. Trinkle and Milgram [62] describes how the analysis
can be applied to motion planning problems.

The configuration spaces of 4-bar spherical linkages are well-understood,
and a classification of mechanisms by configuration space appears in [44];
our contribution is a geometric method of analysis based on Milgram and
Trinkle [45].

The analysis of configuration spaces for high-degree closed chains typi-
cally makes use of Morse theory; it should be pointed out that the work we
present in this chapter presents only preliminary results in this direction.
Milnor’s books on Morse theory [46] and differential topology [47] seem
to be standard references in the field. Allen Hatcher’s book on algebraic
topology [23] is freely available on the web, and is also a good reference.
Kapovich and Millson have written papers on the c-spaces of k-bar mech-
anisms [31], and also on spherical mechanisms [32] that use a Morse ap-
proach to prove strong results about the global topology of the configura-
tion spaces, but their work seems difficult to directly apply to robot motion
planning problems.

Most of the topological analyses of closed-chain c-spaces, including our
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work, that of Milgram and Trinkle [45], and Kapovich and Millson [31]
ignores the possibility of self-intersections. The problem of determining
whether a trajectory free of self-intersections exists without explicitly con-
structing one seems difficult; some preliminary work by Liu et al.does sug-
gest an interesting avenue of approach. [39] presents an analysis of config-
uration spaces of a 2R manipulator with point obstacles; [38] shows how
the results can be applied to efficiently solve the path existence problem,
and presents a complete path planner.

5.1.3 Foldability of 3D structures

The fact that the articulated-rigid body model of a shopping bag with creases
in the usual places does not collapse was proven independently by myself
and Erik and Martin Demaine. The solution to the problem of adding finite
creases to the shopping bag to allow it to be collapsed was joint work be-
tween myself and Erik and Martin Demaine, as is the problem of unfolding
the shopping bag, together with the conjectured solution. The first pub-
lished proofs of the results regarding shopping bags that we are aware of
appear in [?].

5.2 Local parameterization

Reverse folding, prayer folding and more advanced origami skills require
the simultaneous manipulation of four or more creases. We now present
the relationship between crease angles for vertices of arbitrary degree; our
result is also applicable to the case where there is missing or excess sector
angle around the vertex.

The mobility of a vertex of degree n is n − 3. We will therefore choose
n− 3 independent crease angles as input, and solve for the remaining crease
angles.

5.2.1 Sequential crease angles

In the special case where the dependent crease angles are sequential, a sim-
ple solution is possible using an inverse kinematics approach.

Use forward kinematics to solve for the location of point (x, y, z) given
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Figure 5.2:

values for the independent crease angles:





x
y
z



 = Ram(−θm) . . . Ra2(−θ2)Ra1(−θ1)





cos(ρ2 + ρ3 + γ)
sin(ρ2 + ρ3 + γ)

0



 (5.1)

The location of (x, y, z) can be used to determine the configurations of
the dependent crease angles:





x
y
z



 = Rx(φ1)Rp2(φ2)





cos(ρ2 + ρ3)
sin(ρ2 + ρ3)

0



 (5.2)

= Rx(φ1)Rz(ρ2)Rx(φ2)





cos(ρ3)
sin(ρ3)

0



 (5.3)

= Rx(φ1)





cos ρ2 cos ρ3 − sin ρ2 cos φ2 sin ρ3

sin ρ2 cos ρ3 + cos ρ2 cos φ2 sin ρ3

sin φ2 sin ρ3



 (5.4)

The first row of equation 5.4 can be used to solve for values of φ2, under
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the assumption that all sector angles are less than π:

cos φ2 =
cos ρ2 cos ρ3 − x

sin ρ2 sin ρ3
(5.5)

There are a few cases. If the magnitude of the right-hand side is less
than one, the inverse kinematics problem has two solutions – one ‘elbow-
up’ and one ‘elbow-down’. If the magnitude is one, there is a single solu-
tion: the second passive crease is either unfolded or folded completely flat.
If the magnitude is greater than one, there is no solution.

For each of the solutions for φ2, the possible solutions for φ1 can be
determined geometrically. From the last two rows of equation 5.4,
(

y
z

)

=

[

cos φ1 − sin φ1

sin φ1 cos φ1

](

sin ρ2 cos ρ3 + cos ρ2 cos φ2 sin ρ3

sin φ2 sin ρ3

)

(5.6)

If the vector on the right-hand side of equation 5.6 is non-zero, φ1 is the
angle between the two vectors:

φ1 = atan

(

z
y

)

− atan

(

sin φ2 sin ρ3

sin ρ2 cos ρ3 + cos ρ2 cos φ2 sin ρ3

)

(5.7)

If the right-hand side vector of equation 5.6 is zero, the joint corresponding
to φ1 is unconstrained. Geometrically, this occurs when the point (x, y, z)
lies on the x axis. The following cases are possible:

cos φ2 sector angles φ2 φ1

-1 ρ2 = ρ3 one solution (−π, π]
-1 ρ2 6= ρ3 one solution one solution

(-1, 1) any two solutions one solution each
1 ρ2 6= −ρ3 one solution one solution
1 ρ2 = −ρ3 one solution (−π, π]

The parameterization of crease angles allows for some simple local sim-
ulation and planning of motions of an origami mechanism. Figure 5.3
shows and animation of the prayer fold used to fold a crane base. The
mechanism has six creases, and in general position, three degrees of free-
dom, assuming the base has been fixed to ground.

5.2.2 Non-sequential crease angles

The procedure for parameterizing vertex configuration spaces above relies
on the dependent or ‘output’ crease angles being sequential around the
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Figure 5.3: Frames from an animation of the initial ‘prayer fold’ of a crane.

vertex. If there is only one vertex, and the configuration is non-singular,
this is not a problem. However, as will be discussed below, networks of
high-degree-vertices are more easily parameterized if we allow an arbitary
selection of dependent creases at each vertex.

Figure 5.4 shows the procedure; φ1, φ2, and φ3 are the crease angles to
be solved for. First cut the crease corresponding to φ3. Anchor the next
(counter-clockwise) facet, and choose a coordinate system so that the φ1

crease falls on the x axis. The closure constraint can be written using a
product of rotation matrices,

R1Rx(φ1)R2Rz(α)Rx(φ2)Rz(−α)R3 pl = pr , (5.8)

where Ri are rotation matrices corresponding to independent crease angles,
and pl and pr are points that must touch to close the loop. Rewrite equa-
tion 5.8:

Rx(φ1)ZRx(φ2)a = b, (5.9)

where

Z = R2Rz(α) (5.10)

a = Rz(−α)R3 pl (5.11)

b = RT
1 pr (5.12)

are known. Multiplying out equation 5.9 gives three equations, the first of
which is

k3 = k1 cos φ2 + k2 sin φ2, (5.13)
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Figure 5.4: Solving for three dependent crease angles.

with known variables

k1 = z12a2 + z13a3 (5.14)

k2 = z13a2 − z12a3 (5.15)

k3 = b1 − z11a1. (5.16)

If k1 = k2 = 0, then equation 5.13 implies that φ2 can take on any value.
Otherwise, equation 5.13 has the solution(s)

φ2 = atan(k2, k1) ± acos





k3
√

k2
1 + k2

2



 . (5.17)

There may be zero, one, two, or infinitely many solutions for φ2. For each
value of φ2, the remaining two rows of equation 5.9 can be used to solve for
the consistent values of φ1. Specifically,

Rx(φ1)c = b (5.18)

where

c = ZRx(φ2)a (5.19)
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If c and b both fall on the x axis, then any value for phi1 is a consistent
solution. Otherwise,

φ1 = atan(b3, b2) − atan(c3, c2) (5.20)

Once φ1 and φ2 are known, φ3 is determined by the angle between the
normals to the facets at either end of the cut chain.

5.3 The c-space topology of spherical n-bar linkages

The parameterizations described in section 5.2 allow simulation and local
planning for origami and other spherical n-bar linkages. However, they
have some disadvantages:

1. The domain of the parameterization is only a subset of the torus of
input joint angles. Determining what input joint angles are valid is a
difficult inverse kinematics problem.

2. The parameterizations are not global: the mapping from certain input
joint angles to output joint angles may be one-to-many.

3. Parameterizations give no information about the connectedness of
configuration space. Configuration space may have multiple com-
ponents, or there may be low-dimensional subsets that connect com-
ponents.

This section describes the connectedness and topology of configuration
spaces of n-bar spherical closed chains. The analysis uses techniques de-
scribed in Milgram and Trinkle [45].

5.3.1 Four- and five-bar mechanisms

We first consider four-bar closed chain mechanisms, and present a graphi-
cal method for determining the configuration space.

Following Milgram and Trinkle [45], we first remove one of the links,
and consider the workspace of the resulting open three-link spherical link-
age. Figure 5.5 shows an example. If we anchor one end, the configuration
space is a torus, S × S.

Consider a point one unit of distance from the vertex along the cut
crease, at the terminal end of the linkage. What is the workspace of this
point? Since the distance of the point from the vertex is fixed, the workspace
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β
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one-to-one

two-to-one

many-to-one
workspace point

Figure 5.5: An open spherical three-bar linkage, and workspace. The link-
age shown has β1 = β2, so the forward kinematics map is many-to-one
at the point where the horizontal axis intersects the workspace. Since
β1 + β2 < π, the map is one-to-one along the circular boundary of the
workspace.

is a subset of the unit sphere. We construct the workspace by first spin-
ning the point around the second axis, and then spinning the resulting cir-
cle around the first axis. Since the first joint axis is along the x axis, the
workspace is a portion of the sphere bounded by two planes normal to the
x axis. The x coordinates of the planes are determined by the maximum
and minimum x coordinates for the point, which occur when the second
crease angle is an integer multiple of π.

The forward kinematics mapping from joint angles to the location of the
workspace point is two-to-one on the interior of the workspace. If a bound-
ing plane is less than one unit of distance from the vertex, the mapping is
one-to-one along that boundary. If a bounding plane is one unit from the
vertex, the mapping is many-to-one at the intersection of the plane, the x
axis, and the sphere.

Now that the workspace of the open chain has been determined, we
replace the removed link, and make a cut along the joint that contains the
workspace point. The closure constraint requires that the two copies of the
workspace point (one on each side of the cut) touch. The workspace of
the second copy of the point point is a circle. The configuration space of
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Figure 5.6: A closed spherical four-bar linkage, and workspace. The
workspace is of class ‘transverse-null’, and the configuration space of the
mechanism is topologically a circle.

the closed chain is the pre-image of the intersection of this circle with the
workspace previously constructed.

Figure 5.6 shows an example. The workspace of the reference point on
the closed chain (the intersection of the portion of the sphere and the circle)
is an arc of a circle. On the interior of the arc, the forward kinematics map
is two-to-one, and the pre-image of the interior of the arc is two arcs. At
each endpoint of the arc, the map is one-to-one, and the pre-image of each
endpoint is a point. The pre-images of the endpoints (two points) connect
the pre-image of the arc (two arcs), and the pre-image of the entire arc (and
thus the configuration space of the mechanism) is topologically a circle.

The configuration spaces of planar four-bar mechanisms can be classi-
fied by considering the possible intersections of circles on the sphere with
workspaces of open three-link mechanisms.

• Null intersection. One side of the circle may be completely contained
in the workspace. The pre-image of an arc completely contained
within the workspace is two arcs.

• Transverse intersection. One side of the circle may be cut by the bound-
ing plane at two points. The pre-image of an arc touching the bound-
ing plane is an arc.
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• Tangent intersection. The circle just touches a bounding circle of non-
zero radius. The pre-image of an arc tangent to the bounding circle is
a pair of arcs touching at a single interior point.

• Radius-zero intersection. The circle touches the bounding plane at one
of the poles of the sphere on the x axis. The pre-image of this point is
a circle of configurations corresponding to spinning links about the x
axis; the pre-image of an arc through this point is two arcs connected
by a circle.

• We ignore the case where the circle is completely contained within
the boundary of the open workspace.

It is possible to determine algebraic conditions for each case.

Case Condition

Null −| cos (α + β0)| > max(cos(β2 − β1), cos(β2 + β1)) or
| cos (α + β0)| < min(cos(β2 − β1), cos(β2 + β1))

Transverse −| cos (α + β0)| < max(cos(β2 − β1), cos(β2 + β1)) or
| cos (α + β0)| > min(cos(β2 − β1), cos(β2 + β1))

Tangent −| cos (α + β0)| = max(cos(β2 − β1), cos(β2 + β1)) or
| cos (α + β0)| = min(cos(β2 − β1), cos(β2 + β1))

Radius-zero β0 ± α = β2 ± β1 = nπ

If the ’tangency’ condition occurs in the z = 0 plane, then the paper is
flat. Kawasaki’s theorem gives a simpler algebraic condition, for the cases
that all creases are folded and the sum of the sector angles is 2π – alternate
sector angles must add to π/2.

Since there are four different ways the circle can intersect each of the
two workspace boundaries, there are sixteen cases to consider. Thirteen of
these are shown in figure 5.7; the remaining three are symmetric, as are a
few of the cases shown. We label each case by the type of intersection the
circle makes with the workspace boundary; for example, ‘transverse-null’
(see figure 5.6) describes the case where the circle intersects the left (min-
imum x coordinate) bounding plane in two places, and does not intersect
the right bounding plane at all.

There are not sixteen different topological classes of configuration space,
but only seven. There are two types of symmetry. First, there is a reflec-
tion symmetry; for example, ‘transverse-null’ and ‘null-transverse’ have
the same configuration space. Second, by choosing different base links,
it may be possible to change the way in which the circle intersects the
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null-null

null-transverse

null-tangent

transverse-transverse

tangent-transverse

radzero-transverse

tangent-tangent
radzero-tangent

radzero-radzero

transverse-null

tangent-null

transverse-tangent

radzero-null

Figure 5.7: Thirteen of the sixteen possible ways a circle can intersect the
workspace of an open three-bar spherical chain. For each class, the ellipses
on the left show the workspace; the circles on the right show the config-
uration space (the pre-image of the workspace). There are seven distinct
topological classes of configuration space.
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workspace of the open linkage, but changing base links does not change
the topology of the configuration space. For example, it may be possible to
choose a different base link, and change the intersection class from ‘null-
null’ to ’transverse-transverse’; the c-space will be a pair of circles in either
case.

Two different mechanism may have topologically equivalent configura-
tion spaces even if there is no apparent symmetry between the mechanisms.
The ‘radzero-transverse’ and ‘tangent-tangent’ classes are an example; the
configuration space of each class is a pair of circles connected at two points.
(In figure 5.7 these are drawn slightly differently, to more clearly show the
relationship between adjacent classes in the table.)

Five-bar-mechanism configuration spaces can be seen as a parameter-
ized family of four-bar c-spaces; we move one link an infinitesimal amount,
fix it in place, and analyse the topology of the four-bar mechanism. In-
formally, slices of the five-bar c-space are four-bar c-spaces. As the pa-
rameterizing link moves through critical points, the topology of four-bar
configuration-space slices change.

5.3.2 Many-link mechanisms

In order to analyze the configuration space of the closed spherical chain,
we will analyze the singularities and the workspace of an open spherical
chain. In this analysis, we ignore joint limits and self-intersections.

The following definitions are taken from Milnor [47]. We say that a map
between two manifolds is smooth if all of the partial derivatives exist and
are continuous. Consider a smooth map f : M 7→ N, from a manifold of
dimension m to a manifold of dimension n. Let C be the set of all x ∈ M
such that

d fx : TMx 7→ TN f (x)

has rank less than n (is not onto). Then C will be called the set of critical
points, f (C) the set of critical values, and the complement N − f (C) the set
of regular values of f .

Consider the forwards kinematics map f : M 7→ N from the torus M =
S1 × S1 × . . .× S1 of dihedral angles to the workspace of an endpoint on the
last facet. The map can be written as a product of rotation matrices applied
to the initial location of the endpoint, and is smooth.

The workspace N may be constructed iteratively. Spin the endpoint
around the m − 1 axis, creating a circle with radius dependent on sector
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angle βm−1. Call this circle Nm−1. Spin the circle around the m − 2 axis;
call the result Nm−2. Since all axes intersect at the origin, Nm−2 is a section
of a sphere, bounded by two half-planes perpendicular to the m − 2 axis.
Spin each resulting workspace around the preceding axis. The workspace
N is equal to N1, and is the intersection of the unit sphere S2 with two
halfspaces with normals pointing along the first axis N is therefore either a
two-manifold or a two-manifold with boundary.

Lemma 1 Consider an open spherical chain with all sector angles B0 . . . Bn−1 less
than π. The critical points of the forwards kinematics map which sends a con-
figuration of the chain to its endpoint are the configurations for which the first
dihedral angle ranges over [0, 2π), and each of the remaining dihedral angles is
one of {0, π}.

Proof: The configurations of the system can be described by a list of
vectors corresponding to the current location of the endpoint Xn and each
axis Xi in the workspace,

q = (X1, X2, . . . , Xn), (5.21)

with the constraints

||Xi|| = 1 (5.22)

∠XiXi+1 = βi. (5.23)

The linear map d fθ between the tangent spaces of the torus and the
workspace can be described by the Jacobian of f . Use the cross product
method to write the Jacobian:

J f = [ X1 × Xn | X2 × Xn | . . . | Xn−1 × Xn ] (5.24)

If X1 . . . Xn lie in a plane, then the Jacobian has rank less than two, and
the configuration is a critical point. Proof of the converse: X1 and X2 are
linearly independent, so at least one column of the Jacobian (either X1 ×
Xn or X2 × Xn) is non-null. All axes and the endpoint must lie in a plane
perpendicular to this column. Since X1 . . . Xn lie in a plane iff all of the
dihedral angles except the first are one of {0, π}, this completes the proof.

Corollary 2 The critical values of f are the circles formed by rotating the points
(cos ρk, sin ρk) around the X1 axis, where k ranges over 0 . . . 2n−1, and

ρk =
n−1

∑
i=1

(−1)ei−1(k)βi, (5.25)
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with ei(k) denoting the ith bit of k.

Lemma 1 from Milnor [47] states that if f : M 7→ N is a smooth map
between manifolds of dimension m ≥ n, and if y ∈ N is a regular value,
then the set f−1(y) ⊂ M is a smooth manifold of dimension m − n.

Corollary 3 Let γ be a curve on the unit sphere that intersects critical circles only
at discrete points, and that does not contain any critical circles of radius 0, and let
W = f−1(γ). W is a differentiable manifold if and only if γ intersects each critical
circle transversally.

Proof: Assume the curve γ is described by a pair of constraints of the
form

p(x, y, z) = 0 (5.26)

x2 + y2 + z2 = 1, (5.27)

where p has the property that its gradient ▽p is tangent to the unit sphere.
The algebraic variety W is a subset of the torus of dihedral angles, and

can described by the composition of the constraints described by equa-
tion 5.26 with the forwards kinematic map f . Since the forwards kinematic
map already constrains the endpoint to lie on the unit sphere, along any
path θ(t) contained in the variety W,

d

dt
p( f (θ(t))) = ▽pT ḟ = ▽pT J f θ̇ = 0. (5.28)

So the Jacobian of the variety W is

JC = ▽pT J f (5.29)

=
[

▽pT(X1 × Xn) . . . ▽pT(Xn−1 × Xn)
]

. (5.30)

The Jacobian has only one row, and describes the normal to W. At any
regular point of f , at least two of the cross products will be linearly inde-
pendent, and the rank of JW is therefore one. At a critical point of f where
γ is transverse to the critical circle, ▽p makes a non-zero dot product with
X1 × Xn, and the rank of JW is one. At a critical point of f where γ is tangent
to the critical circle, every dot product is zero, and JW is degenerate.

Corollary 4 If W is a differentiable manifold, then the set of critical points of the
composition of the length function on γ with f on W are exactly the critical points
of f restricted to W.
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Proof: Consider a curve θ(t) on M, the torus of dihedral angles. The
length of the corresponding curve X(n) on the workspace N is

s(t) =

∫ t

0
||Ẋn(τ)|| δτ (5.31)

The derivative of s is

d

dt
s = ||J f θ̇|| (5.32)

At a regular point of f , the image of the tangent space of M under f has
full rank, and we can choose a vector θ̇ from W such that

||J f θ̇|| 6= 0 (5.33)

▽pT J f θ̇ = 0. (5.34)

At a critical point x of f , the image of TMx under d fx is a line through
the origin parallel to the tangent to the critical circle through f (x). Since γ
is transverse to each critical circle, the intersection of this image with the
tangent vector to γ is the origin. Therefore for θ̇ in W, J f θ̇ = 0, and critical
points of f restricted to W are critical points of s.

5.4 Self-intersection

The planner for book folding described in chapter 4 relies on a key obser-
vation – self-intersection can occur only when the origami is flat. It turns
out that a similar result holds for origami where four creases that intersect
at a vertex are manipulated simultaneously:

Theorem 9 Rigid flat-foldable degree four origami can only self-intersect when
flat.

Proof: First show that continuous motions of the origami cannot cause
self-intersection without at least one crease angle reaching either zero or
2π. This will be proven in lemma 2. If no adjacent sector angles sum to 0 or
2π, then if one crease angle is zero or π, the origami is flat; see lemma 2. If
adjacent sector angles sum to 0 or 2π, then the inverse kinematics approach
described in lemma 3 suggests that book folding may be possible, but book
folds also only self-intersect when flat.

Lemma 2 Continuous motions of planar four-bar-linkages with links that lie in
the same plane as their joint axes cannot cause self-intersection without at least
one joint angle reaching either 0 or 2π.
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Figure 5.8: A ‘cut’ spherical four-bar.

Proof: Adjacent links cannot intersect without the angle between them
reaching 0 or 2π. Choose any link; call it the base. Call the endpoints of
the opposite link p1 and p2. Since both the base and the opposite link are
line segments, intersection between them must first occur when an end-
point of one link is colinear with the other link; i.e. when at least one of
the following sets of points is co-linear: (b1, b2, p1), (b2, p1, p2), (p1, p2, b1),
(p2, b1, b2). Each of these sets of three points defines a joint angle; when any
set contains colinear points, the corresponding joint angle is zero or 2π.

Lemma 3 Continuous motions of a spherical four-bar linkage with links that are
coplanar with the joint axes cannot cause self-intersection without at least one joint
angle reaching either zero or 2π.

Proof: Adjacent links cannot intersect without the angle between them
reaching 0 or 2π. Pick a link; call it the base. (See figure 5.8.) Call the
endpoints of the opposite link a and b. Intersection between the links must
first occur when a or b is coplanar with the base. If a is coplanar with the
base, then the joint angle between the base and the adjacent link containing
a must be one of 0 or 2π; if b, then the joint angle between the base and the
adjacent link containing b must be one of 0 or 2π.

Notice that lemma 3 applied even for origami that is not flat-foldable,
or has has total sector angle that is less than or greater than 2π. A stronger
condition is true for flat origami folded out of a flat piece of paper:

Lemma 4 For flat-foldable degree-four origami with total sector angle of 2π, if no
two adjacent sector angles are equal or sum to π, and if one crease angle is 0 or π,
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Figure 5.9: A multi-vertex pattern with a mobility of one.

the origami is flat.

Proof: Huffman [27] derives a relationship between opposite crease an-
gles m and n for degree-four origami,

1 − cos n =
sin A sin B

sin C sin D
(1 − cos m), (5.35)

where A, B, C, and D are sector angles counter-clockwise from the crease
corresponding to m. For flat-foldable origami, Kawasaki’s theorem con-
strains A + C = π and B + D = π; thus for flat-foldable origami, there
exists an integer i s.t. n = m + iπ. Choose n to be the crease angle that is
0 or π. If no two sector angles are equal or sum to π, inverse kinematics
implies that the other angles are flat as well.

5.5 Multi-vertex patterns

The results discussed so far in this chapter deal only with single-vertex
origami. Simple folding and book folding apply to multi-vertex origami,
but folds are along colinear crease lines, and must be sequential. This
section discusses crease networks of the type shown in figures 5.9 and
5.10, and considers the case where multiple non-colinear creases are folded
simultaneously. Networks of degree-four vertices have been studied by
Huffman [27], the extension of this work to networks with higher-degree
vertices is possible using the parameterization of vertices with non-sequential
creases.
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Figure 5.10: A multi-vertex pattern with a mobility of six.

5.6 3D foldability

So far, we have considered only a rigid-body model of origami, with a finite
number of creases whose locations in the pattern are fixed. When is this
model useful? What things can be folded using this model?

In this section, we consider what is probably the most commonplace
origami-like structure: the paper shopping bag. It turns out that a shopping
bag with rigid facets, and creases in the usual places, has a configuration
space that is just isolated points corresponding to the flat and fully open
states. This might be considered a design feature; since the facets resist
bending and crinkling, the bag tends to stay in its current configuration,
either open or closed.

5.6.1 The bellows theorem

It was conjectured in [12] and proven in [13] that “any continuous flex that
preserves the edge-lenghts of a closed triangulated surface of any genus
in three-space must flex in such a way that the volume it bounds stays
constant.” This is an extremely important theorem. It says, for example,
that no polyhedron with a fixed, finite number of creases is sufficient to
model the deflation of a closed airbag, or the inflation of a teabag or origami
waterbomb. But where are the boundaries? What origami structures can
or cannot be satisfactorily modelled with fixed crease patterns?
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Figure 5.11: A tall box, with paper bag crease pattern. The configuration
space is isolated points, and the box cannot be collapsed.

5.6.2 Can a shopping bag be collapsed?

We will consider a rectangular box with one facet (the top) missing. The
box has a bottom, a front, a back, a left side, and a right side, as shown in
figure 5.11. The right and left sides have dimensions w × h; the front and
back have dimensions l × h, where h is the height of the box.

The shopping bag has a pattern of creases. On each of the left and right
sides of the box, there are two creases that make a 45◦ angle with the bottom
edge. If h ≤ w/2, then the creases on each side do not intersect on the
interior of the facet, and there are no other creases on the box; we say the
bag is short. (This situation is shown in 5.12.)

If h > w/2, then the two creases on the right side of the box intersect, as
do the creases on the left side. (See figure 5.11.) In this case, the shopping
bag is tall, and there are five additional creases: one vertical crease on each
side from the intersection point to the top, one horizontal crease on each
side from the intersection point to the back, and on horizontal crease on the
back connecting the horizontal creases on the sides. We say that the box
has been collapsed if all facets lie in a plane.
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Figure 5.12: A ’short’ box with paper bag crease pattern, similar to a col-
lapsible garment box.

Facet 1

Facet 2

Facet 3

Facet 4

Figure 5.13: A corner of the short box (garment box), cut between two
facets, and anchored to the ground.
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Theorem 10 For every ’short’ open box with a shopping-bag crease pattern and
h ≤ l/2, there exists a continuous folding that does not cause self-intersection,
and takes the bag from the fully open to the collapsed configuration.

Proof: Consider a single corner of the box, with associated crease pat-
tern. If we ignore self-intersections, the configuration space is a single con-
nected componenent. Let the links be numbered as shown in figure 5.13,
and anchor link 1. The workspace of the endpoint of link 3 is the portion
of the sphere bounded by two halfplanes; |x| <

√

(2)/2. The workspace
of the endpoint of link 4 is a circle of radius

√

(2)/2, centered at the point
(0,−1). The pre-image of the intersection of these two workspaces is a pair
of circles connected at two points. (These points correspond to two col-
lapsed configurations.)

We choose the collapsed configuration in which all joint angles are π,
and choose a trajectory that moves to this configuration directly (i.e., with-
out passing through the other collapsed trajectory). We let θ1 increase
monotonically from π/2 to π. From 5.5), φ2 = ±θ1; for the trajectory we
have chosen, φ2 = θ1. φ1 also increases monotonically from π/2 to π for
this trajectory.

Adjacent links can only collide if the angle between them is zero or pi;
no joint angles are 0 or pi except at the start and end of the trajectory. Inter-
sections between links must first occur when the φ2 or φ3 axis touches the
z = 0 plane; since φ1 and θ1 are positive except at the end of the trajectory,
there are no intersections. The case of intersection between link 2 and link
4 is symmetric.

The four corners of the box are connected by creases along the bottom of
the box, and all four corners fold occur simultaneously and symmetrically;
the condition that h ≤ l/2 is sufficient to ensure that no facets that do not
share a vertex can intersect.

Theorem 11 An ‘tall’ open box with a shopping-bag crease pattern has a configu-
ration space that is isolated points corresponding to the fully open and fully closed
configurations.

Proof: Consider the vertex on the back right edge of the box that has
all sector angles equal to π/2. The two vertical creases that meet at this
vertex have crease angles that are equal in magnitude; if the magnitude is
not 0 or π, then the two horizontal creases from this vertex must be one
of {0, π}. Choose a crease that is 0 or π, and connected to another interior
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vertex. Walk the crease network; each of the left and right sides is flat (open
or folded), and each of the corners is either fully open or collapsed.

The following observations can be made:

1. A shopping bag with creases in the ‘usual’ places is rigid.

2. Two shopping bags taped together at their tops cannot be flattened
with a finite number of fixed creases. (Thanks to Robert Lang for this
example of the bellows theorem.)

3. A shopping bag cannot be turned inside-out with a finite number of
fixed creases. (According to Erik Demaine, is has been proven by
Connelly that a convex vertex cannot be turned inside out using a
finite number of creases, but this work may not yet have been pub-
lished.) Robert Lang points out that this work implies that the ‘closed
sink’ origami move that inverts a convex vertex cannot be modelled
with a finite number of creases.

But in spite of all these results, a shopping bag can be collapsed with
the addition of a finite number of fixed creases. Theorem 12 will show the
procedure. In order to verify the procedure, it is necessary to show that
facets do not collide during folding; the primary method for showing this
will be to consider the workspaces of pairs of facets, and show that the
workspaces do not intersect on the interior. We will need the following
simple lemma:

Lemma 5 Two right circular cones that share a vertex and with axes separated by
at least 90◦ do not intersect on their interior.

Theorem 12 A tall box can be collapsed with a finite number of creases.

Proof: The approach is to shorten the box, by adding creases that allow
the top to be rolled inside the box. Once the box is short, theorem 10 allows
the box to be collapsed. We consider a single edge of the box, with crease
pattern shown in figure 5.14.

The crease between facets 1 and 2 is fixed at 90◦. The fold takes place in
three steps. During step 1, we fix crease 5, and drive crease 3 from 180◦ to
0◦, choosing the solution such that crease angle 1 is positive, crease angle
2 is negative, and crease angle 4 is positive. During step 2, we fix crease 3
at 0◦, and drive crease 1 to 180◦. Crease angles 2 and 4 do not change sign,
and crease angle 5 becomes positive. During step 3, we fix crease 1 at 180◦,
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Facet 1
Facet 2

Facet 3

Facet 4Facet 5

Facet 6

Crease 1

Crease 2

Crease 3Crease 4

Crease 5

Figure 5.14: An edge of the tall box (shopping bag) with creases added to
allow folding. Facets 1 and 2 are rigidly connected; there are joints (creases)
between all other pairs of adjacent facets.
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Figure 5.15: Shortening an edge of a paper bag. The rows correspond to
steps 1, 2, and 3 of the folding process described in the proof of theorem 12.

and drive crease 3 to −180. Crease angles 2 and 4 return to 0◦, and crease
angle 5 reaches 180◦.

θ1 θ2 θ3 θ4 θ5

Start 0◦ 0◦ 90◦ 0◦ 0◦

After step 1 +, < 180◦ −, > −180◦ 0◦ +, < 180◦ 0◦

After step 2 180◦ −, > −180◦ 0◦ +, < 180◦ +, < 180◦

After step 3 180◦ 0◦ −180◦ +, < 180◦ 0◦

Ignoring self-intersection, the existence of a trajectory of this form can
be verified using the graphical method for determining the topology of of
a degree-four spherical linkage, since each of the steps is a fixes two of the
six creases (the crease between facets 1 and 2, and one other.)

To prove that self-intersection does not occur, consider pairwise inter-
sections of facets. No two adjacent facets can collide unless the angle of
the crease between them crosses 180◦; this never happens for our choice of
trajectory. The following table summarizes the analysis of collision possi-
bilities for non-adjacent facets.
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facet(s) vs. facet(s) Don’t intersect because:

Step 1 3 1, 6 Workspace of 3 is a right circular cone that
intersects plane of facets 1, 6 only at origin.

3 5 Workspaces of 3, 5 right circular cones;
lemma 5.

4 1, 2, 6 Facet 4 is bounded by two creases. Crease 2
is inside the box for θ1 ≥ 0, and crease 3 is as
well for θ5 = 0, θ4 ≥ 0.

5 2 Workspace of 5 is a right circular cone that
intersects plane of facet 2 only at origin.

5 6 Facet 6 is co-planar with facet 1.

Step 2 4, 5 1, 2 Crease 2 and crease 4 are inside the box for
θ1 ≥ 0 and θ5 ≥ 0.

3 1 Cone workspace vs. plane; intersection is ori-
gin.

3 6 Cone workspaces; lemma 5.

6 2 Cone workspace vs. plane; intersection is ori-
gin.

Step 3 6 2, 3 Cone workspace vs. plane.

6 4 Two cones; lemma 5.

5 1, 2, 3 Creases 3, 4 inside the box for range of θ2, θ5.

4 1 Cone workspace vs. plane.

4 6 Cone vs. cone, lemma 5.

A single edge can be rolled inside the box using the procedure above; to
shorten the box, place symmetric crease patterns at each edge. Figure 5.16
shows an animation. For a tall box, or a box with dissimilar length and
width, it may be necessary to perform a number of shortenings before col-
lapsing the box. Note that the height removed during a shortening can be
as small as desired, so it is possible to shorten the box to any desired height.

5.6.3 Unfolding the shopping bag

The solution to folding the bag proposed by theorem 12 is surprising in that
the the collapsed state of the shopping bag is not the same as the folded
state that uses the original creases. The obvious question then is, can the
bag be unfolded from the original folded state by adding a finite number of
creases. We conjecture that it can; a possible solution is shown in 5.17.
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Figure 5.16: Procedure for shortening a rectangular tube.
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Figure 5.17: Conjectured solution to the problem of unfolding a paper bag
by adding a finite number of creases. The creases to be added are shown in
red.
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The idea behind the conjectured solution is this. Recall that a short bag
can be collapsed. One difference between a short bag and a tall bag is the
addition of four additional interior vertices as the bag is lengthened and
creases intersect on sides and at the intersection between the front and the
sides. These additional vertices prevent the bag from being folded, as the
proof of theorem 11 demonstrates. If these vertices could be ‘cut out’, the
tall box could be folded. One way to do this would be to cut out four
wedges, from the top of the box to each new vertex, removing the paper
around the vertical crease in each case.

Although we can’t cut the paper, we can add additional creases that
will allow each vertex to act as though the vertical crease has been cut,
at least within some range of motion. Adding just one crease connecting
each vertex would seem to be enough, but the range of motion appears
too limiting to collapse the bag; adding two creases around each vertex as
shown in 5.17 is a more conservative solution.

We have built a plastic model of the conjectured solution, and it does
seem to fold and unfold smoothly; in fact, it is hard to keep the bag un-
folded, since gravity tends to pull it into the collapsed state!

Proving that this bag is truly collapsible would seem to require some-
what more detailed work than was done in theorem 12, since although the
vertices are of equal degree (six), no degree-four motion that locks some of
the creases will be sufficient to fold or unfold the bag from its initial open or
collapsed state. The primary question is, “what happens near the collapsed
state?” It seems obvious that the bag has some configurations that are nei-
ther open nor closed, and degrees of freedom at those points (the shopping
bag with no additional creases does not), but are they lost as the crease ver-
tices near singular configurations? Are there enough degrees of freedom to
avoid intersections between the facets in the nearly flat configuration? A
detailed proof that the new bag is foldable is left for future work.
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Chapter 6

Conclusion

Where next? Current work has posed a lifetime of questions, with answers
to only the most basic of them. How should flexible paper be manipulated
and creased? We don’t know. What is the configuration space of the sim-
plest rigid-body model of a multi-vertex origami pattern? Even ignoring
self-intersections, we don’t know. What shapes can be collapsed into a flat
state, and how? We don’t know that, either.

Still, this thesis has presented some results. Primary among these is a
more clear understanding of the origami domain, and some concrete prob-
lems on which to focus future efforts. There are also more practical re-
sults: what seems to be the world’s first origami-folding robot, and what
may be the world’s first rigidly-collapsible shopping bag. Complete fold-
sequence planning for a large subclass of human Pureland origami. New
necessary conditions for flat-foldability and book-foldability. Proofs that
simple, book, and degree-four vertex folding of flat origami are atomic,
and self-intersection can occur only when the origami is flat. Formulas
for the kinematics of single- and multi-vertex patterns. Geometric analysis
of the topology of the configuration spaces of degree-four and degree-five
single-vertex patterns, and a few results about the topology for degree-n
patterns.

Immediate future work includes applying the results of the thesis to
other domains where foldable structures are important. Further analysis of
the configuration spaces of foldable mechanisms will also be an important
next step. And of course, there will always be one more robot to build, and
one more design to fold!
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Appendix A

Some notes on Morse theory

This appendix collects some definitions and theorems from Morse theory
that are useful for analysis of the topology of surfaces. A simple example
is also worked out.

A.1 Definitions

The definitions in this section are based on Milnor [47], except where noted.

Smooth mappings between open sets: Let U ⊂ Rk and V ⊂ Rl be open
sets. A mapping f from U to V is smooth if all of the partial derivatives exist
and are continuous.

Diffeomorphism: A map f : X 7→ Y is called a diffeomorphism if f carries
X homeomorphically onto Y and if both f and f−1 are smooth.

Manifolds: A set M ⊂ Rk is called a smooth manifold of dimension m if
each x ∈ M has a neighborhood W ∩ M that is diffeomorphic to an open
subset U of the Euclidean space Rm. Any particular diffeomorphism g :
U 7→ W ∩ M is called a parameterization of the region W ∩ M. (The inverse
diffeomorphism W ∩ M 7→ U is called a system of coordinates on W ∩ M.)

The derivative of a mapping between manifolds; tangent space: To de-
fine the derivative d fx for a smooth map f : M 7→ N between smooth man-
ifolds, we associate with each x ∈ M ⊂ Rk a linear subspace TMx ⊂ Rk of
dimension m called the tangent space of M at x. Then d fx will be a linear
mapping from TMx to TN f (x). We write d fx : TMx 7→ TN f (x).

Concretely, d fx is represented by the Jacobian matrix of partial deriva-
tives of f , evaluated at x. If x ∈ M is a function of a parameter t ∈ R, then
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x(t) is a trajectory, and ẋ evaluated at some specific time is a vector in the
tangent space TMx. If y = f (x), then J(x)ẋ = ẏ, and ẏ is in the tangent
space TNy.

Critical points, critical values, and regular values: We say that a map
between two manifolds is smooth if all of the partial derivatives exist and
are continuous. Consider a smooth map f : M 7→ N, from a manifold of
dimension m to a manifold of dimension n. Let C be the set of all x ∈ M
such that

d fx : TMx 7→ TN f (x)

has rank less than n (is not onto). Then C will be called the set of critical
points, f (C) the set of critical values, and the complement N − f (C) the set
of regular values of f .

Index of a map: Definition based on Milnor [46]. The index of a bilinear
functional H, on a vector space V is the maximal dimension of a subspace
of V on which H is negative definite.

A.1.1 Theorems

Lemma 6 (Lemma 1 from Milnor [47]) If f : M 7→ N is a smooth map be-
tween manifolds of dimension m ≥ n, and if y ∈ N is a regular value, then the set
f−1(y) ⊂ M is a smooth manifold of dimension m − n.

Lemma 7 (Morse) Let p be a non-degenerate critical point for f . Then there is a
local coordinate system (y1, . . . , yn) in a neighborhood U of p with yi(p) = 0 for
all i and such that the identity

f = f (p) − y2
1 − . . . − y2

λ + y2
λ+1 + . . . + y2

n (A.1)

holds throughout U, where λ is the index of f at p.

If f is a real-valued function on a manifold M, let

Ma = f−1(− inf, a] = p ∈ M : f (p) ≤ a. (A.2)

Theorem 13 (Theorem 3.1 from [46]) Let f be a smooth real-valued function
on a manifold M. Let a < b and suppose that the set f−1[a, b], consisting of all
p ∈ M with a ≤ f (p) ≤ b, is compact, and contains no critical points of f . Then
Ma is diffeomorphic to Mb. Furthermore, Ma is a deformation retract of Mb, so
that the inclusion map Ma 7→ Mb is a homotopy equivalence.
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Theorem 14 (Theorem 3.5 from [46]) If f is a differentiable function on a man-
ifold M with no degenerate critical points and if each Ma is compact, then M has
the homotopy type ofa CW-complex, with one cell of dimension λ for each critical
point of index λ.

A.1.2 A simple example: Morse on a sphere

A surface M ⊂ Rn can be represented implicitly by a constraint function

g(x1, . . . , xn) = 0. (A.3)

Take as an example the sphere:

g(x1, . . . , xn) = x2
1 + x2

2 + x2
3 − 1 = 0. (A.4)

We will apply some of the theorems above to determine the topological
structure of the sphere. First, we want a mappping f : M 7→ R. Pre-images
of this function of the form f−1(c) slice the manifold. A height function is
a good choice. Let’s take

f (x1, x2, x3) = x3. (A.5)

The slices of M generated by the pre-images of constants under f are circles
in planes parallel to the x − y plane. We want to find the critical points of
the function f on M, since these are points where the slices can change
topology (pretend we don’t know what the slices look like).

We could find the critical points of f by finding coordinates for the im-
plicit surface M, but parameterizing implicit surfaces is usually hard. So,
we’ll find critical points using the implicit representation. Geometrically, a
critical point is any point x ∈ M where for all vectors v ∈ TMx the direc-
tional derivative of f in the direction v is zero:

▽v f = 0. (A.6)

We can describe the tangent space to the sphere, TM, by taking a par-
tials of the constraint function g. Specifically, v ∈ TMx implies that

▽gTv = 0 (A.7)

(x1 x2 x3)v = 0. (A.8)

The directional derivative, ▽v f , can be written using the gradient of f :

▽v f = ▽ f Tv = (0 0 1)v = 0 (A.9)
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So critical points may occur where:

[

x1 x2 x3

0 0 1

]





v1

v2

v3



 =

(

0
0

)

(A.10)

So at any critical point, v3 = 0, and x1v1 + x2v2 = 0. There are critical
points at x1 = x2 = 0; we can plug into the constraint function g to find
that x3 = ±1. (Technical note – there are no other critical points. If x1 or x2

is non-zero, then there exists a vector v ∈ TMx with v3 6= 0. Choose any
non-zero v3, set the element of v not associated with the non-zero element
of x to zero, and solve for the final element of v.)

Now that we have the critical points, we want to describe the topol-
ogy of the sphere. One way to do this is to find a special coordinate sys-
tem (y1, y2) on the sphere near the critical points such that f (y1, y2) has the
special form described in the Lemma of Morse, above. Although possible
for this special case, this typically requires inspired guess-work. Another
way to find the topology is to choose some arbitrary coordinate system and
evaluate the signature of the Hessian at the critical point. Choose

y1(x1, x2, x3) = x1 (A.11)

y2(x1, x2, x3) = x2 (A.12)

for x3 < 0, and the same thing for x3 > 0. Then

f (y1, y2) = sign(x3)
√

1 − y2
1 − y2

2. (A.13)

We want to evaluate the Hessian at critical points. The first partials of f
are

∂ f

∂y1
= −sign(x3)y1(1 − y2

1 − y2
2)

−1/2 (A.14)

∂ f

∂y2
= −sign(x3)y2(1 − y2

1 − y2
2)

−1/2. (A.15)

(A.16)

As expected, the partials are zero when evaluated at the critical points. We
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need three second partials to evaluate the (symmetric) Hessian:

∂2 f

∂y2
1

= −sign(x3)(1 − y2
1 − y2

2)
−1/2 − sign(x3)y2

1(1 − y2
1 − y2

2)
−3/2(A.17)

∂2 f

∂y2
2

= −sign(x3)(1 − y2
1 − y2

2)
−1/2 − sign(x3)y2

2(1 − y2
1 − y2

2)
−3/2(A.18)

∂2 f

∂y1∂y2
= −sign(x3)y1y2(1 − y2

1 − y2
2)

−3/2 (A.19)

At the critical points, y1 = y2 = 0, and the Hessian is:

[

−sign(x3) 0
0 −sign(x3)

]

(A.20)

Since the Hessian is non-degenerate, our slice function f is Morse. For the
first critical point, with x3 < 0, the signature (number of positive eigen-
values, number of negative eigenvalues) of the Hessian is (2, 0). For the
second critical point, with x3 < 0, the signature is (0, 2).
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