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Abstract 

The problem of robotic path planning has always attracted the interests of a 

significantly large number of researchers due to the various constraints and 

issues related to it. The optimization in terms of time and path length and 

validity of the non-holonomic constraints, especially in large sized maps of high 
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resolution, pose serious challenges for the researchers. In this paper we propose 

Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) algorithm for 

solving the problem. Diversity preservation measures are introduced in this 

applied evolutionary technique. The novelty of the algorithm is threefold. Firstly 

the algorithm generates paths of increasing complexity along with time. This 

ensures that the algorithm generates the best path for any type of map. 

Secondly the algorithm is efficient in terms of computational time which is done 

by introducing the concept of momentum based exploration in its fitness 

function. The indicators contributing to fitness function can only be measured 

by exploring the path represented. This exploration is vague at start and 

detailed at the later stages. Thirdly the algorithm uses a multi-objective 

optimization technique to optimize the total path length, the distance from 

obstacle and the maximum number of turns. These multi-objective parameters 

may be altered according to the robot design.  

Keywords: Robotic Path Planning, Robotics, Evolutionary Algorithms, Hybrid 

Genetic Algorithm Particle Swarm Optimization, Momentum, Diversity 

Preservation, Information Technology  

1. Introduction 

Robotics is one of the very active fields of research. The vast amount of ongoing 

research in the domain is the result of the immense rise in need in automation. 

Now we expect many things to be done by robots which were previously 

performed by humans. The use of robots to clean houses, surveys, factory 

operations, etc are now turning into reality. All intelligent robotic systems use 

path planning to plan the path of the robot from one point to the other. Once 

the path has been found by the devised algorithm, robotic controllers are used 

for the physical movement of the robot from the source to the destination. This 

enables carrying of various intelligent tasks in autonomous robots. The notion of 

path planning depends a lot upon the scenario of use, robotic design, degrees of 

freedom, robotic capabilities, constraints, etc. The maximum allowable speeds, 

acceleration, robotic shape are some constraints that need to be considered. 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

Another constraint is the validity of non-holonomic constraints in the worked 

over path. 

This paper assumes a simple modeling scenario that is commonly found and 

studied in robotic literature. We have a grid based map where each cell 

corresponds to the presence or absence of obstacle. There is a single source and 

a single destination that is known in advance. The goal is to move the robot 

from the source to the destination without colliding with any of the obstacles.  

The entire problem of robotic path planning can be easily framed as a problem 

of Multi-Objective Optimization where the aim is to find the optimal value of a 

set of objective functions. The problem may further have numerous constraints 

that need to be fulfilled. Here we are required to optimize the total path length 

traversed by the robot. At the same time we need to avoid the robot being too 

close to any obstacle for validity of the non-holonomic constraints after path 

has been smoothened by some technique. The other factor we consider is the 

number of turns in the path of the robot henceforth referred as the path 

complexity.  

Complexity in the problem of robotic path planning may be indicated by various 

parameters depending upon their interpretation. In solutions generated by A* 

algorithm, the map dimensions indicate the problem complexity. For behavioral 

solutions the number of behavioral rules or weights, and for evolutionary 

systems the genomic length is an indicative of the complexity. These more or 

less convey the same meaning for the same problem. In this problem we 

assume the complexity denotes the maximum number of turns in the computed 

robotic path. The solution of the robotic path problem may be very simple or 

may be very complex. Lesser turns naturally mean a greater scope for the robot 

to traverse the path with greater speeds for a better drive at less time. Also this 

may denote a straighter and hence shorter path. The constraints include the 

feasibility of the path and the avoidance of obstacles in the path.  



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

The recent advancements into the field of robotics and the use of robots in 

many new scenarios have resulted in the generation of large maps of very high 

dimensions. As a result many of the traditionally used algorithms and 

approaches including A* algorithm (Shukla et al. 2008), Dynamic Programming 

and other graph algorithms fail to solve the problem within time constraints. 

This has led to the use of evolutionary algorithms to solve the problem. 

Evolutionary algorithms take an inspiration from the natural evolutionary 

processes to generate near optimal solutions in finite time. These algorithms 

use a set of solutions or the population pool and iteratively solve the problem 

where each iteration is called a generation. The lower generation individuals 

mate to generate more fit higher generation individuals. The use of swarm 

intelligence is another positive development in solving these problems. 

The limitations in convergence of both evolutionary and swam algorithms lead 

to the hybridization of both these approaches giving rise to Hybrid Genetic 

Algorithms Particle Swarm Optimization (HGAPSO) (Juang, 2004). This algorithm 

divides the whole population pool into two halves. The first half consists of the 

fitter individuals, which are the elite individuals. Only these individuals 

participate in the evolution, the others die off. The fitter half generates the 

offspring by using Particle Swarm Optimization (PSO). These resultant 

individuals directly go into the next generation. At the same time half of the 

next generation population is made by the Genetic Algorithm (GA) that operates 

on the same individuals generated by the PSO.  

Diversity preservation is of a special matter of concern for the proposed 

algorithm. This is carried out separately in both the GA and PSO. The GA uses a 

restricted selection criterion where two individuals are only allowed to 

crossover when the separation between them is below a specified threshold (η) 

(Badran and Rockett, 2007; Squillero and Tonda, 2008 ). For PSO, an instance of 

Fitness Distance Ratio based PSO (FDR-PSO) is used for diversity preservation 

(Peram and Veeramachaneni, 2003; Veeramachaneni et al., 2003). In this 

algorithm the modification of every particle has an added term that checks for 

the performance of the neighboring particles. Using this algorithm, the velocity 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

vid update for dth dimension for any particle i with position xid is done by 

equation (1). The update on position is given by the conventional equation. 

                  (       )          (       )          (    

   )         (1) 

Here w is the inertial factor, c1, c2 and c3 are PSO constants, rand is a random 

number, pid is the best solution in the path of particle, pgd is the globally known 

best path, pnd is the position of best neighboring particle j that maximizes term 

given in equation (2).      

       (  )        (  )

         
       (2) 

A variety of methods have been used for solving the problem of robot path 

planning which include A* Algorithm (Shukla et al., 2008), D* algorithm, 

Artificial Neural Networks (Yang and Meng, 2000; Kala et al., 2009),Fuzzy 

Systems (Pradhan et al. 2009), ANFIS, Potential Fields (Tsai et al., 2001; Pozna et 

al., 2009), etc. A comparison of some of the algorithms including hybrid 

algorithms can be found in the works of Hui and Pratihar (2009).  

Because of the underlying complexity of the problem, a significant use of 

evolutionary techniques to solve the problem is also prevalent. A variety of 

mechanisms are applied to customize the conventional genetic algorithm to give 

an enhanced performance in solving the problem. Kala et al. (2009) represented 

a graph path as a genetic individual. The genetic operators of mutation and 

crossover were designed to work over these paths. Other customizations 

include the use of restrictions in genetic operations to ensure feasibility of the 

solution generated at every step (Alvarez, 2004). Another representation 

technique uses a set of sparse points from source to destination with the line 

joining source and destination as one of the axis (Toogood et al., 1995; Han et 

al., 1997). Many times the corners of the obstacles may be numbered and the 

individual is a sequence of numbers that the robot visits (Sadati and Taheri, 

2002). Tu et al. (2003) give the concept of variable length representation of 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

chromosome. The robot visits these points in a sequential manner. The use of 

Bezier curve is also done that caters to the non-holonomic constraints in the 

path generated by the evolutionary algorithm (Jolly et al., 2009). 

Many times the map may be of a very large dimensionality and hence it may be 

very difficult to work with such a graph. For such cases the problem of planning 

is usually solved in a hierarchical manner which is known as Multi-Resolution 

Path planning. This may represent the map in multiple resolutions using a 

variety of representation techniques (Kambhampati and Davis, 1986; Urdiales et 

al., 1998). This further made hierarchical path planning algorithms possible 

(Wang et al. 2002). Other related works using evolutionary computation include 

(Doitsidis et al., 2009). Here the authors make use of optimization power of the 

evolutionary algorithms to evolve a fuzzy based robotic controller.  The GA here 

tries to evolve the optimal set of rules. The algorithm of Dittrich et al. (1998) is 

another novel work that presents the application of Genetic Programming for 

the problem with the fitness being measured in a combination of simulator and 

physical robot.  

Chen and Chiang (2003) developed an adaptive algorithm by the use of Fuzzy 

Neural Networks and Multi-Objective Genetic Algorithms. Their solution 

generated and adapted rules to move a robot.  Another benchmark work in the 

use of hybrid algorithms to solve the problem include the work of Xiao et al. 

(1997). Their solution separately modeled the static and the dynamic obstacles 

in the robotic map. These were catered to using separate off-line and on-line 

planning techniques. The planning was based on evolutionary algorithms. 

Another concept to plan the robot is with the use of sensors placed on map that 

can provide information to the robot regarding the closeness of obstacles and 

goal (O’ Hara, 2008). Other good ways to solve the problem include Rapidly-

exploring Random Tree (RRT) algorithm (Cortes et al., 2008) and Fast Marching 

Method with Vornoi Transform (Garrido et al., 2009).   

Kala et al. (2010a) presented an interesting hierarchical algorithm for solving the 

same problem. Evolutionary algorithms are usually only used for high resolution 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

dynamic maps. The authors used hierarchical evolutionary algorithm for 

dynamic path planning. The master evolutionary algorithm considered static 

map of a coarser resolution. The finer path planning with dynamic obstacles was 

done with a slave evolutionary algorithm. The passage of individuals between 

evolutionary runs ensured maximization of knowledge of computed path. In 

another work Kala et al. (2010b) presented fusion of A* algorithm and Fuzzy 

Inference System for path planning of robots. They used a probabilistic form of 

A* algorithm on a coarser level that tried to generate approximate path of 

robot, ensuring avoiding paths congested with obstacles. A fuzzy planner 

worked over this path to ensure generation of an optimal path that also caters 

to the validity of the non-holonomic constraints.  

This work is an extension to our earlier work (Kala et al., 2011). Here we had 

introduced the word momentum in exactly the same meaning as we do here. 

The problem of path planning was done using a Simple Genetic Algorithm. We 

observed that the algorithm was able to generate good results in finite time 

duration for the maps presented. The studied limitation of the work however 

was the possibility of the algorithm to return sub-optimal paths as many good 

individuals may be observed to be in-feasible at higher generations of the 

algorithm. This is possible with various critical maps in which a blockage of path 

is only visible at a very fine resolution of the map. In this paper we further 

extend the algorithm by the use of HGAPSO, which is a hybrid of GA and PSO. 

Diversity preservation is added to both the individual algorithms of GA and PSO 

separately. This further ensures the generation of paths with better 

characteristics as defined by the fitness function.  

This paper is organized as follows. In section 2 we present the concept of 

momentum. Section 3 talks about the algorithmic framework of the problem. 

Section 4 talks about the role and importance of variable parameters. Section 5 

presents the results. We give the conclusion remarks in section 6.  



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

2. Momentum 

At any time in the entire evolutionary process of the algorithm, we are required 

to check the feasibility of the path, while computing its fitness.  Now we need to 

traverse point-by-point to check this feasibility, which is computationally very 

expensive. In place of a point-by-point check, the momentum claims a speedy 

check of the given path. We hence mean that we would vaguely examine the 

path, with the vagueness being given by the value of the momentum. Consider a 

path as a set of points (as we shall see later in problem representation). 

Suppose in its traversal, the robot is supposed to travel between points X and Y. 

We only check for the presence of obstacle between points X and Y for the set of 

points Q given by equation (3) 

  *       
(   )

     
    +      (3) 

Here Y and X are the consecutive points used for the definition of the robot path 

(   )

     
 is the unit vector in direction of Y-X, m is momentum, and t is the traversal 

step (t=1, 2, 3…) such that      
(   )

     
 lies between X and Y. The number of 

points checked (or the number of feasible values of t) depends upon the value 

of momentum m. A smaller value of momentum means a larger number of 

values of t may make the intermediate points lie between X and Y and all of 

these are checked for feasibility. It may be easily seen that momentum is 

inversely proportional to processing time. A larger value of momentum means 

lesser number of points being checked, which reduces the computational time 

to find the feasibility of the path.  

It is further important to realize the disadvantages of large momentum as well. 

Larger values of momentum may claim a path to be feasible, which may 

otherwise be infeasible. The infeasibility of the path may many times be easy to 

remove by some small alterations to it (called approximate state). This is when 

there is no heavy blockage in the path, and even if some obstacle occurs in the 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

robotic path, it may be easily avoided. In other condition (called false state) 

there may be a heavy blockage in the path, which may make it impossible for 

the robot to travel even after moderate amendments to its path. Both these 

states are given in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The concept of momentum with false state and approximate state 

conditions in feasibility measurement. 

 

3. Algorithm Framework  

3.1 Individual Representation  

The entire algorithm is basically an evolutionary algorithm. Hence the aim is to 

evolve the individual that represents the path of the robot. We represent any 

individual i by a set of points P <P0, P1, P2, P3, …. Pn, Pn+1>. Here P0 is the source 

and Pn+1 is the goal. Each point is a collection of x and y coordinates and may be 

denoted by (xi, yi). The x axis that we take for this problem is the straight line 

joining the source and the goal. The y axis is perpendicular to the x-axis.  

Another constraint imposed upon the individual representation is that all the 

Valid State 

False State 

Approximate State 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

points are sorted by their x values. Hence an individual is only allowed to move 

such that it goes near to the goal at every step. 

3.2 Fitness Function 

The next important factor in the algorithm is the fitness function. Here we try to 

simultaneously optimize 3 objectives that is total length of the path (l), the 

distance from the closest obstacle (d) and the path complexity (c). The total 

fitness is given by equation (4). 

Fit(P) = α.l + β.d + γ.c     (4) 

Here P is any path or individual of the form ∏Pi 

α, β and γ are multi-objective constants with the constraint that α + β + γ = 1, l is 

the total path length, d is the distance from closest obstacle, c is the path 

complexity 

Complexity of a path or a solution is defined as the total number of points in the 

path or solution. The complexity may lie between 0 (straight line from source to 

foal) to a maximum permissible value Cmax.  

Distance from closest obstacle (d) returns the smallest distance between any 

pixel in the path of the robot (may not necessarily be the points in the 

individuals) and the closest obstacle. In order for the robot to easily navigate the 

path obeying the non-holonomic constraints, it is important that is maintains a 

sufficient distance from all obstacles. This factor is taken to reduce in a Gaussian 

manner with the increase of physical distance of robot to nearest obstacle. We 

assume the factor decays in a Gaussian manner as the actual physical distance 

increases. Equation (5) gives the value of d for any physical distance D.  
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Here a is the decay constant governing shape of the Gaussian curve, M is the 

radius constant controlling the effective region of effectiveness of this function. 

After M units of distance, the function returns almost a zero value. 

3.3 Algorithm  

The basic algorithm used for the problem solving is HGAPSO. This is a hybrid of 

GA and PSO that solves the problem of convergence. The feasible solutions out 

of the entire solution pool are divided into two halves. The fitter half 

participates in the evolutionary process. First PSO is applied. The generated 

individuals go directly into the next generation. The same individuals are also 

worked upon by GA that adds to the next generation population. The infeasible 

solutions are not allowed to participate. Other operators are applied for the 

production of rest of the solutions for next generations. The overall algorithm is 

given by figure 2. 

The Genetic Algorithm uses the operators of Crossover and Mutation for the 

generating the next generation individuals.  The crossover operation of the 

algorithm assures that the diversity is maintained. This is done by selecting only 

those individuals that are separated by a distance smaller than threshold 

distance (η). Since the two individuals may be of different length, the separation 

is measured by average separation between the closest lying points in the two 

individuals. Similarly crossover operation needs to be modified to tackle with 

the problem of variable individual size. Both the children generated from the 

crossover operation have got the number of points that are mean of the 

number of points in the two parents. These many points are randomly given to 

the children using a scattered crossover technique. Mutation operator used 

simply re-locates the points of the individual by moving them by small amounts 

within the map. The PSO optimization technique generates solutions by moving 

a particle in the input space. The movement of the particle is based upon his 

past experience, best available solution and the experience of the neighbors. 

The neighborhood factor is taken from FDR-PSO that is helpful in the diversity 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

preservation. Here also we only consider the non null positions in the individual 

representation while modifying the individual position or velocity. 
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Figure 2: The Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) 

Algorithm for solving path planning problem. 
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The other operators used in the algorithm include elite and insert. At any 

generation we are likely to have a large number of infeasible solutions or 

individuals. The reasons for this may be the un-optimized stage of the 

individual, individual has a lesser complexity as per requirement, detection of an 

obstacle due to decrease in momentum, etc. The GA and PSO work only on the 

feasible solution set. Hence, depending upon conditions, a reasonable part of 

the next generation population is generated by another operator called as the 

inset operator. If there is not even a single feasible solution in the population 

pool, this operator generates random solutions of the maximum allowable 

complexity cmax. In case the population pool has feasible solutions, this operator 

may perform either of three possible actions of generating new individuals i.e. 

generation by a very high mutation of any random feasible solution, or by 

adding a new point in the path represented by any random feasible solution or 

by generating random new individual of maximum permissible complexity. All 

these methods have an equal probability of occurrence. In this manner this 

operator fills up the left population pool for the next generation.   

This operator solves two major problems. The first is that it drives the algorithm 

faster from stages where it is within a complexity that is less than the 

complexity needed to solve the problem. Every map has a least complexity 

below which it would not give any feasible solution. While the algorithm is into 

these stages, all solutions get passed from lower complexity to higher 

complexity without wasting time at the lower complexity regions. The second 

problem that is solved by this operator is cleanliness. The infeasible solutions do 

not contribute at all. It is better to clean them by replacing them with random 

solutions of complexity high enough to represent feasible solution. 

3.4 Diversity 

An important characteristic of the algorithm is of diversity preservation. This is 

done in regard to the possibility of presence of false state and approximate 

state shown in figure 1. Suppose that the best known solution of the EA after a 

number of generations is found to be infeasible due to the presence of 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

approximate state. To overcome such a condition it is necessary for the 

algorithm to always retain sufficient number of weakly mutated individuals 

corresponding to the best few kinds of solutions. Now suppose that the 

infeasibility was due to false state. For this case the algorithm needs to maintain 

a high population diversity which is inbuilt in the algorithm.  

4. Variable Genetic Parameters 

To give the algorithm some adaptability, some of the parameters were kept 

variable. These are the total number of individuals, maximum allowable 

complexity cmax, and momentum.  

There is an increase in the number of individuals with increase in generations 

due to two reasons. Firstly the rise in search space necessities more individuals. 

At the first few generations the complexity is low and hence the search space is 

limited which increases which generations. Secondly a number of individuals are 

already reserved by low complexity paths and cannot be killed due to diversity 

preservation measures. The number of individuals I for any generation g is given 

by equation (6). 

       (         ) 
 

  

 (  )      (6) 

Here Imax is the maximum possible number of individuals 

Imin is the least possible momentum, g is the generation number, c is the decay 

constant, G is the radius constant or the maximum number of generations 

possible 

Similarly maximum complexity cmax is varied as given in equation (7).  
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Here C is the globally maximum possible complexity, g is the generation number 

of EA, d is the decay constant , G is the radius constant or the maximum number 

of generations possible 

On the same lines the value of momentum is decreased as the generation 

increases, or as the algorithm proceeds. It may be easily seen that large 

momentum makes feasibility computation less time complex, but may many 

times return infeasible paths as feasible. The smaller values of momentum 

result in higher computation time but return the correct feasibility of any path. 

Initially the solution pool has all random solutions and even a large momentum 

would be able to work and give initial idea of the path feasibility. As algorithm 

proceeds, a precise idea of path feasibility is needed, before it may be further 

optimized. We make the momentum variable that changes in a Gaussian 

manner along with the generations. The Gaussian decay of momentum is given 

by equation (8). 

       (         ) 
 

  

 (  )      (8) 

Here mmax is the maximum possible momentum, mmin is the least possible 

momentum, g is the generation number of EA, b is the decay constant , G is the 

radius constant or the maximum number of generations possible 

5. Results 

The algorithm was coded and developed as a JAVA module. The entire testing 

with the algorithm was done on a simulator built by the authors themselves. 

JAVA Applets was used for the depiction of the map and the obstacles. The map 

was fed into the simulator as a JPEG image with the dimensions of the image as 

the dimensions of map. The white regions denoted the presence of accessible 

areas and the black denoted obstacles. The algorithm was tested over four 

benchmark maps that varied from each other. All the different kinds of maps 

used are given in figure 3. In all the cases the maps were of size 1000 x 1000. 

The coordinate axis of the map had (0,0) point at the top left. This was the 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

source specified for all cases. The goal was the bottom right point with the 

coordinates of (999,999).  

For all experiments the Multi-Objective parameters α, β and γ were specified as 

0.33 each. The decay constants a, b, c and d for each of the Gaussian curves was 

fixed to be 0.3. The PSO constants c1, c2 and c3 were fixed to 1. Momentum 

could decrease from 10 to 1.5. The mutation rate was fixed to 0.04 and 

crossover rate was fixed to 0.6. Elite count was 5% of the population pool. The 

value of threshold η of population diversity was fixed to be 0.03. The radius 

constant M of distance to obstacle was kept as 10. The maximum complexity 

cmax could vary between 0 and 5. The number of individuals could vary from 1 to 

1000. The simulation was continued for a total of 500 generations. 

The maps and the path traced by the robot for each of these cases are given in 

figure 3(a-d). In all figures the path denoted by straight line denotes the 

experimentally computed path as per discussed parameters. The path with a 

circular legend at corners shows the computed path with no complexity control 

(α, β =0.5, γ =0). 

Figure 3(a) shows a simple map with a single obstacle that is a commonly found 

situation and tests the capability of the robot to avoid obstacle. The robot was 

easily able to pass the obstacle and reach the goal while maintaining a 

comfortable distance of separation from the obstacle. Figure 3(b) is a more 

complex map with a variety of points. Here as well the robot was able to reach 

the goal. It may be seen that the path looks longer at the central region (with 

complexity control). This was because of the heavy penalty of complexity added 

in the multi-objective function. This path can be greatly smoothened to allow 

the robot pass the central region at great speeds. The alternate diagonal path 

traversed in the absence of complexity control was shorter but would add an 

extra turn. The complexity increased from 2 to 3.  



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

 
(a) Map 1  (b) Map 2 

 

 
(c) Map 3  (d) Map 4 

Figure 3: Path traced by robot for various maps with and without complexity 

control objective function. 

 

Figure 3(c) shows a very long path being traversed by the robot. This was 

because the diagonal short route was too congested and greatly increased the 

path length. Without the complexity control also, the robot could not make a 

diagonal move due to the highly congested environment, but it was able to 



   

 

   

   
 

   

   

 

   

 

    

 

 

   

   
 

   

   

 

   

       

 

figure out another path with a compromise in complexity from 1 to 2. Figure 

3(d) is another graph which clearly states our notion of preference between 

path simplicity and total path length. The simple path would be the choice of 

fast and compact robots whereas the smaller path would be the natural choice 

of slow moving robots.  

We further study the best fitness value in all the discussed paths and 

configurations. These for all the graphs are given in figure 4. Closely observing 

any of the maps, we would be able to observe small oscillations in the fitness 

value while the algorithm proceeds. In other words the best fitness value 

increases even after the application of elite genetic operator. This is attributed 

to the presence of approximate state. 

 
Figure 4: Graph of fitness v/s generations showing convergence in the four 

maps. 
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We further plot the total number of feasible solutions at every generation. This 

would give us an idea of how many individuals actually contribute towards the 

search of the most optimal path or solution. This is shows in figure 5. Here also 

oscillatory behavior may be seen which is mainly due to the occurrence of 

condition 2 or approximate state. Also the randomly generated individuals may 

be infeasible. 

 
Figure 5: Graph of total number of feasible solutions in population pool v/s 

generations for four maps. 

 

We also study the execution time requirement between the generations. The 

execution time per generation is plotted against generations in figure 6. As the 

generations increase the rise of time may be attributed due to the increase in 

number of individuals, increase in number of feasible solutions as well as 

decrease in momentum. Generally infeasible solutions take lesser time as 

compared to feasible solutions. This is because we stop the traversal as soon as 

we meet any obstacle on our way. The effort of rest of the journey is saved. The 

oscillatory nature may again be attributed due to the variation in number of 

feasible solutions. 
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Figure 6: Graph of time of execution per generation v/s generations for four 

maps. 

 

We earlier stated that an increase in momentum might lead to an incorrect 

recording of the path feasibility as well as the distance to obstacle (d). We try to 

study the same concept here. A total of 10000 paths of a complexity of 3 were 

generated for the map 2. The momentum was varied from 1 to 1000 and all the 

parameters were measured. The relation of momentum with time of execution 

is given in figure 7. Figure 8 gives the relation between the momentum and the 

predicting capability of the fitness function regarding the feasibility of the 

solution. Figure 9 shows the relation between the momentum and mean 

deviation (or error in measuring) of the minimum distance from robot to 

obstacle (d).  
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Figure 7: Graph showing the decrease in execution time per generation with 

an increase of momentum. 

 
Figure 8: Graph showing the decrease in correctness of feasibility prediction 

with an increase of momentum. 
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Figure 9: Graph showing correctness in prediction of distance to closest 

obstacle (d) for various values of momentum. 

 

An interesting observation is in figure 9 that reports oscillatory behavior. Here it 

may be seen that many times larger jumps may lead the algorithm closer to the 

obstacle. Hence it cannot be generalized that the factor d would be having large 

errors as momentum increases.  

6. Conclusion 

The paper proposed a novel algorithm that evolved the robotic path using rising 

complexities using HGAPSO. The combined effects of GA and PSO enabled the 

generation of path that was optimal based on the set criterion. The basic 

motivation was that most robotic paths are simple enough with less number of 

turns. The straightness of the path enables a robot to navigate through the map 

at high speeds. We also optimized the total path length and the distance to 

closest obstacle. 

The momentum, number of individuals and maximum allowable path 

complexity increased in a Gaussian manner as the number of generations 
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increased. This helped in optimization of the entire algorithm by enabling the 

algorithm to depute only required time for every generation. At the time of 

higher generations there are two processes that happen, each occupying some 

proportion of the total population. The first is the intent to generate paths of 

high complexity, and the other is to further optimize the paths of low 

complexity, which may be having good fitness value. Jumping from a lower 

complexity to a higher complexity is also carried out. 

The algorithm was simulated over four types of maps with all varying 

complexities. We saw that the robot was easily able to solve all of the four maps 

and return a solution. The solution to all these cases could be visually seen to be 

optimal. The solution controlled its complexity based on set multi-objective 

parameters. The graphs plotted between convergence of the four maps as well 

as the execution time, number of feasible solutions and predicting capability of 

d show oscillations. This is a very interesting behavior in the implementation of 

the algorithm. The prime reasons for this may be attributed to the approximate 

state. Because of this phenomenon many solutions that were claimed to be 

feasible in lower generations are now found to be infeasible because of the 

reduction in momentum. This changes the complete metrics of the system. The 

presence of weakly mutated solutions in the population pool as well as the PSO 

and crossover/mutation exploration ensure the generation of better individuals 

for an overall convergence. 

Using the suggested approach we have been effectively able to generate 

optimal paths for a variety of maps. There is still a lot that may be done in the 

future. The path generated by this algorithm is a set of guiding points. The work 

of smoothening of these points making the path much realizable for the physical 

working of the robot may be carried out. The algorithm may be further 

extended to the dynamic obstacles as well. More evolutionary techniques may 

be tried over the developed problem base.  
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