

Robotic Path Planning using Hybrid Genetic

Algorithm Particle Swarm Optimization

Rahul Kala*, Anupam Shukla, Ritu Tiwari

Soft Computing and Expert System Laboratory

Indian Institute of Information Technology and Management Gwalior,

Morena Link Road, Gwalior, Madhya Pradesh – 474010, India

* Corresponding Author:

rahulkalaiiitm@yahoo.co.in

Ph +44 (0) 7424752843

http://rkala.99k.org/

Citation: R. R. Janghel, R. Tiwari, R. Kala, A. Shukla (2012) Breast Cancer Data

Prediction by Dimensionality Reduction Using PCA and Adaptive Neuro

Evolution, International Journal of Information Systems and Social Change, 3(1):

1-9.

Final Version Available At:

http://www.inderscience.com/info/inarticle.php?artid=48756

Abstract

The problem of robotic path planning has always attracted the interests of a

significantly large number of researchers due to the various constraints and

issues related to it. The optimization in terms of time and path length and

validity of the non-holonomic constraints, especially in large sized maps of high

http://www.inderscience.com/info/inarticle.php?artid=48756

resolution, pose serious challenges for the researchers. In this paper we propose

Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) algorithm for

solving the problem. Diversity preservation measures are introduced in this

applied evolutionary technique. The novelty of the algorithm is threefold. Firstly

the algorithm generates paths of increasing complexity along with time. This

ensures that the algorithm generates the best path for any type of map.

Secondly the algorithm is efficient in terms of computational time which is done

by introducing the concept of momentum based exploration in its fitness

function. The indicators contributing to fitness function can only be measured

by exploring the path represented. This exploration is vague at start and

detailed at the later stages. Thirdly the algorithm uses a multi-objective

optimization technique to optimize the total path length, the distance from

obstacle and the maximum number of turns. These multi-objective parameters

may be altered according to the robot design.

Keywords: Robotic Path Planning, Robotics, Evolutionary Algorithms, Hybrid

Genetic Algorithm Particle Swarm Optimization, Momentum, Diversity

Preservation, Information Technology

1. Introduction

Robotics is one of the very active fields of research. The vast amount of ongoing

research in the domain is the result of the immense rise in need in automation.

Now we expect many things to be done by robots which were previously

performed by humans. The use of robots to clean houses, surveys, factory

operations, etc are now turning into reality. All intelligent robotic systems use

path planning to plan the path of the robot from one point to the other. Once

the path has been found by the devised algorithm, robotic controllers are used

for the physical movement of the robot from the source to the destination. This

enables carrying of various intelligent tasks in autonomous robots. The notion of

path planning depends a lot upon the scenario of use, robotic design, degrees of

freedom, robotic capabilities, constraints, etc. The maximum allowable speeds,

acceleration, robotic shape are some constraints that need to be considered.

Another constraint is the validity of non-holonomic constraints in the worked

over path.

This paper assumes a simple modeling scenario that is commonly found and

studied in robotic literature. We have a grid based map where each cell

corresponds to the presence or absence of obstacle. There is a single source and

a single destination that is known in advance. The goal is to move the robot

from the source to the destination without colliding with any of the obstacles.

The entire problem of robotic path planning can be easily framed as a problem

of Multi-Objective Optimization where the aim is to find the optimal value of a

set of objective functions. The problem may further have numerous constraints

that need to be fulfilled. Here we are required to optimize the total path length

traversed by the robot. At the same time we need to avoid the robot being too

close to any obstacle for validity of the non-holonomic constraints after path

has been smoothened by some technique. The other factor we consider is the

number of turns in the path of the robot henceforth referred as the path

complexity.

Complexity in the problem of robotic path planning may be indicated by various

parameters depending upon their interpretation. In solutions generated by A*

algorithm, the map dimensions indicate the problem complexity. For behavioral

solutions the number of behavioral rules or weights, and for evolutionary

systems the genomic length is an indicative of the complexity. These more or

less convey the same meaning for the same problem. In this problem we

assume the complexity denotes the maximum number of turns in the computed

robotic path. The solution of the robotic path problem may be very simple or

may be very complex. Lesser turns naturally mean a greater scope for the robot

to traverse the path with greater speeds for a better drive at less time. Also this

may denote a straighter and hence shorter path. The constraints include the

feasibility of the path and the avoidance of obstacles in the path.

The recent advancements into the field of robotics and the use of robots in

many new scenarios have resulted in the generation of large maps of very high

dimensions. As a result many of the traditionally used algorithms and

approaches including A* algorithm (Shukla et al. 2008), Dynamic Programming

and other graph algorithms fail to solve the problem within time constraints.

This has led to the use of evolutionary algorithms to solve the problem.

Evolutionary algorithms take an inspiration from the natural evolutionary

processes to generate near optimal solutions in finite time. These algorithms

use a set of solutions or the population pool and iteratively solve the problem

where each iteration is called a generation. The lower generation individuals

mate to generate more fit higher generation individuals. The use of swarm

intelligence is another positive development in solving these problems.

The limitations in convergence of both evolutionary and swam algorithms lead

to the hybridization of both these approaches giving rise to Hybrid Genetic

Algorithms Particle Swarm Optimization (HGAPSO) (Juang, 2004). This algorithm

divides the whole population pool into two halves. The first half consists of the

fitter individuals, which are the elite individuals. Only these individuals

participate in the evolution, the others die off. The fitter half generates the

offspring by using Particle Swarm Optimization (PSO). These resultant

individuals directly go into the next generation. At the same time half of the

next generation population is made by the Genetic Algorithm (GA) that operates

on the same individuals generated by the PSO.

Diversity preservation is of a special matter of concern for the proposed

algorithm. This is carried out separately in both the GA and PSO. The GA uses a

restricted selection criterion where two individuals are only allowed to

crossover when the separation between them is below a specified threshold (η)

(Badran and Rockett, 2007; Squillero and Tonda, 2008). For PSO, an instance of

Fitness Distance Ratio based PSO (FDR-PSO) is used for diversity preservation

(Peram and Veeramachaneni, 2003; Veeramachaneni et al., 2003). In this

algorithm the modification of every particle has an added term that checks for

the performance of the neighboring particles. Using this algorithm, the velocity

vid update for dth dimension for any particle i with position xid is done by

equation (1). The update on position is given by the conventional equation.

 () () (

) (1)

Here w is the inertial factor, c1, c2 and c3 are PSO constants, rand is a random

number, pid is the best solution in the path of particle, pgd is the globally known

best path, pnd is the position of best neighboring particle j that maximizes term

given in equation (2).

 () ()

 (2)

A variety of methods have been used for solving the problem of robot path

planning which include A* Algorithm (Shukla et al., 2008), D* algorithm,

Artificial Neural Networks (Yang and Meng, 2000; Kala et al., 2009),Fuzzy

Systems (Pradhan et al. 2009), ANFIS, Potential Fields (Tsai et al., 2001; Pozna et

al., 2009), etc. A comparison of some of the algorithms including hybrid

algorithms can be found in the works of Hui and Pratihar (2009).

Because of the underlying complexity of the problem, a significant use of

evolutionary techniques to solve the problem is also prevalent. A variety of

mechanisms are applied to customize the conventional genetic algorithm to give

an enhanced performance in solving the problem. Kala et al. (2009) represented

a graph path as a genetic individual. The genetic operators of mutation and

crossover were designed to work over these paths. Other customizations

include the use of restrictions in genetic operations to ensure feasibility of the

solution generated at every step (Alvarez, 2004). Another representation

technique uses a set of sparse points from source to destination with the line

joining source and destination as one of the axis (Toogood et al., 1995; Han et

al., 1997). Many times the corners of the obstacles may be numbered and the

individual is a sequence of numbers that the robot visits (Sadati and Taheri,

2002). Tu et al. (2003) give the concept of variable length representation of

chromosome. The robot visits these points in a sequential manner. The use of

Bezier curve is also done that caters to the non-holonomic constraints in the

path generated by the evolutionary algorithm (Jolly et al., 2009).

Many times the map may be of a very large dimensionality and hence it may be

very difficult to work with such a graph. For such cases the problem of planning

is usually solved in a hierarchical manner which is known as Multi-Resolution

Path planning. This may represent the map in multiple resolutions using a

variety of representation techniques (Kambhampati and Davis, 1986; Urdiales et

al., 1998). This further made hierarchical path planning algorithms possible

(Wang et al. 2002). Other related works using evolutionary computation include

(Doitsidis et al., 2009). Here the authors make use of optimization power of the

evolutionary algorithms to evolve a fuzzy based robotic controller. The GA here

tries to evolve the optimal set of rules. The algorithm of Dittrich et al. (1998) is

another novel work that presents the application of Genetic Programming for

the problem with the fitness being measured in a combination of simulator and

physical robot.

Chen and Chiang (2003) developed an adaptive algorithm by the use of Fuzzy

Neural Networks and Multi-Objective Genetic Algorithms. Their solution

generated and adapted rules to move a robot. Another benchmark work in the

use of hybrid algorithms to solve the problem include the work of Xiao et al.

(1997). Their solution separately modeled the static and the dynamic obstacles

in the robotic map. These were catered to using separate off-line and on-line

planning techniques. The planning was based on evolutionary algorithms.

Another concept to plan the robot is with the use of sensors placed on map that

can provide information to the robot regarding the closeness of obstacles and

goal (O’ Hara, 2008). Other good ways to solve the problem include Rapidly-

exploring Random Tree (RRT) algorithm (Cortes et al., 2008) and Fast Marching

Method with Vornoi Transform (Garrido et al., 2009).

Kala et al. (2010a) presented an interesting hierarchical algorithm for solving the

same problem. Evolutionary algorithms are usually only used for high resolution

dynamic maps. The authors used hierarchical evolutionary algorithm for

dynamic path planning. The master evolutionary algorithm considered static

map of a coarser resolution. The finer path planning with dynamic obstacles was

done with a slave evolutionary algorithm. The passage of individuals between

evolutionary runs ensured maximization of knowledge of computed path. In

another work Kala et al. (2010b) presented fusion of A* algorithm and Fuzzy

Inference System for path planning of robots. They used a probabilistic form of

A* algorithm on a coarser level that tried to generate approximate path of

robot, ensuring avoiding paths congested with obstacles. A fuzzy planner

worked over this path to ensure generation of an optimal path that also caters

to the validity of the non-holonomic constraints.

This work is an extension to our earlier work (Kala et al., 2011). Here we had

introduced the word momentum in exactly the same meaning as we do here.

The problem of path planning was done using a Simple Genetic Algorithm. We

observed that the algorithm was able to generate good results in finite time

duration for the maps presented. The studied limitation of the work however

was the possibility of the algorithm to return sub-optimal paths as many good

individuals may be observed to be in-feasible at higher generations of the

algorithm. This is possible with various critical maps in which a blockage of path

is only visible at a very fine resolution of the map. In this paper we further

extend the algorithm by the use of HGAPSO, which is a hybrid of GA and PSO.

Diversity preservation is added to both the individual algorithms of GA and PSO

separately. This further ensures the generation of paths with better

characteristics as defined by the fitness function.

This paper is organized as follows. In section 2 we present the concept of

momentum. Section 3 talks about the algorithmic framework of the problem.

Section 4 talks about the role and importance of variable parameters. Section 5

presents the results. We give the conclusion remarks in section 6.

2. Momentum

At any time in the entire evolutionary process of the algorithm, we are required

to check the feasibility of the path, while computing its fitness. Now we need to

traverse point-by-point to check this feasibility, which is computationally very

expensive. In place of a point-by-point check, the momentum claims a speedy

check of the given path. We hence mean that we would vaguely examine the

path, with the vagueness being given by the value of the momentum. Consider a

path as a set of points (as we shall see later in problem representation).

Suppose in its traversal, the robot is supposed to travel between points X and Y.

We only check for the presence of obstacle between points X and Y for the set of

points Q given by equation (3)

 *
()

 + (3)

Here Y and X are the consecutive points used for the definition of the robot path

()

 is the unit vector in direction of Y-X, m is momentum, and t is the traversal

step (t=1, 2, 3…) such that
()

 lies between X and Y. The number of

points checked (or the number of feasible values of t) depends upon the value

of momentum m. A smaller value of momentum means a larger number of

values of t may make the intermediate points lie between X and Y and all of

these are checked for feasibility. It may be easily seen that momentum is

inversely proportional to processing time. A larger value of momentum means

lesser number of points being checked, which reduces the computational time

to find the feasibility of the path.

It is further important to realize the disadvantages of large momentum as well.

Larger values of momentum may claim a path to be feasible, which may

otherwise be infeasible. The infeasibility of the path may many times be easy to

remove by some small alterations to it (called approximate state). This is when

there is no heavy blockage in the path, and even if some obstacle occurs in the

robotic path, it may be easily avoided. In other condition (called false state)

there may be a heavy blockage in the path, which may make it impossible for

the robot to travel even after moderate amendments to its path. Both these

states are given in figure 1.

Figure 1: The concept of momentum with false state and approximate state

conditions in feasibility measurement.

3. Algorithm Framework

3.1 Individual Representation

The entire algorithm is basically an evolutionary algorithm. Hence the aim is to

evolve the individual that represents the path of the robot. We represent any

individual i by a set of points P <P0, P1, P2, P3, …. Pn, Pn+1>. Here P0 is the source

and Pn+1 is the goal. Each point is a collection of x and y coordinates and may be

denoted by (xi, yi). The x axis that we take for this problem is the straight line

joining the source and the goal. The y axis is perpendicular to the x-axis.

Another constraint imposed upon the individual representation is that all the

Valid State

False State

Approximate State

points are sorted by their x values. Hence an individual is only allowed to move

such that it goes near to the goal at every step.

3.2 Fitness Function

The next important factor in the algorithm is the fitness function. Here we try to

simultaneously optimize 3 objectives that is total length of the path (l), the

distance from the closest obstacle (d) and the path complexity (c). The total

fitness is given by equation (4).

Fit(P) = α.l + β.d + γ.c (4)

Here P is any path or individual of the form ∏Pi

α, β and γ are multi-objective constants with the constraint that α + β + γ = 1, l is

the total path length, d is the distance from closest obstacle, c is the path

complexity

Complexity of a path or a solution is defined as the total number of points in the

path or solution. The complexity may lie between 0 (straight line from source to

foal) to a maximum permissible value Cmax.

Distance from closest obstacle (d) returns the smallest distance between any

pixel in the path of the robot (may not necessarily be the points in the

individuals) and the closest obstacle. In order for the robot to easily navigate the

path obeying the non-holonomic constraints, it is important that is maintains a

sufficient distance from all obstacles. This factor is taken to reduce in a Gaussian

manner with the increase of physical distance of robot to nearest obstacle. We

assume the factor decays in a Gaussian manner as the actual physical distance

increases. Equation (5) gives the value of d for any physical distance D.

 () (5)

Here a is the decay constant governing shape of the Gaussian curve, M is the

radius constant controlling the effective region of effectiveness of this function.

After M units of distance, the function returns almost a zero value.

3.3 Algorithm

The basic algorithm used for the problem solving is HGAPSO. This is a hybrid of

GA and PSO that solves the problem of convergence. The feasible solutions out

of the entire solution pool are divided into two halves. The fitter half

participates in the evolutionary process. First PSO is applied. The generated

individuals go directly into the next generation. The same individuals are also

worked upon by GA that adds to the next generation population. The infeasible

solutions are not allowed to participate. Other operators are applied for the

production of rest of the solutions for next generations. The overall algorithm is

given by figure 2.

The Genetic Algorithm uses the operators of Crossover and Mutation for the

generating the next generation individuals. The crossover operation of the

algorithm assures that the diversity is maintained. This is done by selecting only

those individuals that are separated by a distance smaller than threshold

distance (η). Since the two individuals may be of different length, the separation

is measured by average separation between the closest lying points in the two

individuals. Similarly crossover operation needs to be modified to tackle with

the problem of variable individual size. Both the children generated from the

crossover operation have got the number of points that are mean of the

number of points in the two parents. These many points are randomly given to

the children using a scattered crossover technique. Mutation operator used

simply re-locates the points of the individual by moving them by small amounts

within the map. The PSO optimization technique generates solutions by moving

a particle in the input space. The movement of the particle is based upon his

past experience, best available solution and the experience of the neighbors.

The neighborhood factor is taken from FDR-PSO that is helpful in the diversity

preservation. Here also we only consider the non null positions in the individual

representation while modifying the individual position or velocity.

List of Figures

Figure 2: The Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO)

Algorithm for solving path planning problem.

GA

Generate initial set of solutions

Calculate no of individuals, cmax,

momentum

More

generations
desired?

Selection

Mutation

Crossover

Other Operators

Elite

Insert

PSO

Evaluation and Fitness

No

Yes

End

Select best half individuals

The other operators used in the algorithm include elite and insert. At any

generation we are likely to have a large number of infeasible solutions or

individuals. The reasons for this may be the un-optimized stage of the

individual, individual has a lesser complexity as per requirement, detection of an

obstacle due to decrease in momentum, etc. The GA and PSO work only on the

feasible solution set. Hence, depending upon conditions, a reasonable part of

the next generation population is generated by another operator called as the

inset operator. If there is not even a single feasible solution in the population

pool, this operator generates random solutions of the maximum allowable

complexity cmax. In case the population pool has feasible solutions, this operator

may perform either of three possible actions of generating new individuals i.e.

generation by a very high mutation of any random feasible solution, or by

adding a new point in the path represented by any random feasible solution or

by generating random new individual of maximum permissible complexity. All

these methods have an equal probability of occurrence. In this manner this

operator fills up the left population pool for the next generation.

This operator solves two major problems. The first is that it drives the algorithm

faster from stages where it is within a complexity that is less than the

complexity needed to solve the problem. Every map has a least complexity

below which it would not give any feasible solution. While the algorithm is into

these stages, all solutions get passed from lower complexity to higher

complexity without wasting time at the lower complexity regions. The second

problem that is solved by this operator is cleanliness. The infeasible solutions do

not contribute at all. It is better to clean them by replacing them with random

solutions of complexity high enough to represent feasible solution.

3.4 Diversity

An important characteristic of the algorithm is of diversity preservation. This is

done in regard to the possibility of presence of false state and approximate

state shown in figure 1. Suppose that the best known solution of the EA after a

number of generations is found to be infeasible due to the presence of

approximate state. To overcome such a condition it is necessary for the

algorithm to always retain sufficient number of weakly mutated individuals

corresponding to the best few kinds of solutions. Now suppose that the

infeasibility was due to false state. For this case the algorithm needs to maintain

a high population diversity which is inbuilt in the algorithm.

4. Variable Genetic Parameters

To give the algorithm some adaptability, some of the parameters were kept

variable. These are the total number of individuals, maximum allowable

complexity cmax, and momentum.

There is an increase in the number of individuals with increase in generations

due to two reasons. Firstly the rise in search space necessities more individuals.

At the first few generations the complexity is low and hence the search space is

limited which increases which generations. Secondly a number of individuals are

already reserved by low complexity paths and cannot be killed due to diversity

preservation measures. The number of individuals I for any generation g is given

by equation (6).

 ()

 () (6)

Here Imax is the maximum possible number of individuals

Imin is the least possible momentum, g is the generation number, c is the decay

constant, G is the radius constant or the maximum number of generations

possible

Similarly maximum complexity cmax is varied as given in equation (7).

 () (7)

Here C is the globally maximum possible complexity, g is the generation number

of EA, d is the decay constant , G is the radius constant or the maximum number

of generations possible

On the same lines the value of momentum is decreased as the generation

increases, or as the algorithm proceeds. It may be easily seen that large

momentum makes feasibility computation less time complex, but may many

times return infeasible paths as feasible. The smaller values of momentum

result in higher computation time but return the correct feasibility of any path.

Initially the solution pool has all random solutions and even a large momentum

would be able to work and give initial idea of the path feasibility. As algorithm

proceeds, a precise idea of path feasibility is needed, before it may be further

optimized. We make the momentum variable that changes in a Gaussian

manner along with the generations. The Gaussian decay of momentum is given

by equation (8).

 ()

 () (8)

Here mmax is the maximum possible momentum, mmin is the least possible

momentum, g is the generation number of EA, b is the decay constant , G is the

radius constant or the maximum number of generations possible

5. Results

The algorithm was coded and developed as a JAVA module. The entire testing

with the algorithm was done on a simulator built by the authors themselves.

JAVA Applets was used for the depiction of the map and the obstacles. The map

was fed into the simulator as a JPEG image with the dimensions of the image as

the dimensions of map. The white regions denoted the presence of accessible

areas and the black denoted obstacles. The algorithm was tested over four

benchmark maps that varied from each other. All the different kinds of maps

used are given in figure 3. In all the cases the maps were of size 1000 x 1000.

The coordinate axis of the map had (0,0) point at the top left. This was the

source specified for all cases. The goal was the bottom right point with the

coordinates of (999,999).

For all experiments the Multi-Objective parameters α, β and γ were specified as

0.33 each. The decay constants a, b, c and d for each of the Gaussian curves was

fixed to be 0.3. The PSO constants c1, c2 and c3 were fixed to 1. Momentum

could decrease from 10 to 1.5. The mutation rate was fixed to 0.04 and

crossover rate was fixed to 0.6. Elite count was 5% of the population pool. The

value of threshold η of population diversity was fixed to be 0.03. The radius

constant M of distance to obstacle was kept as 10. The maximum complexity

cmax could vary between 0 and 5. The number of individuals could vary from 1 to

1000. The simulation was continued for a total of 500 generations.

The maps and the path traced by the robot for each of these cases are given in

figure 3(a-d). In all figures the path denoted by straight line denotes the

experimentally computed path as per discussed parameters. The path with a

circular legend at corners shows the computed path with no complexity control

(α, β =0.5, γ =0).

Figure 3(a) shows a simple map with a single obstacle that is a commonly found

situation and tests the capability of the robot to avoid obstacle. The robot was

easily able to pass the obstacle and reach the goal while maintaining a

comfortable distance of separation from the obstacle. Figure 3(b) is a more

complex map with a variety of points. Here as well the robot was able to reach

the goal. It may be seen that the path looks longer at the central region (with

complexity control). This was because of the heavy penalty of complexity added

in the multi-objective function. This path can be greatly smoothened to allow

the robot pass the central region at great speeds. The alternate diagonal path

traversed in the absence of complexity control was shorter but would add an

extra turn. The complexity increased from 2 to 3.

(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

Figure 3: Path traced by robot for various maps with and without complexity

control objective function.

Figure 3(c) shows a very long path being traversed by the robot. This was

because the diagonal short route was too congested and greatly increased the

path length. Without the complexity control also, the robot could not make a

diagonal move due to the highly congested environment, but it was able to

figure out another path with a compromise in complexity from 1 to 2. Figure

3(d) is another graph which clearly states our notion of preference between

path simplicity and total path length. The simple path would be the choice of

fast and compact robots whereas the smaller path would be the natural choice

of slow moving robots.

We further study the best fitness value in all the discussed paths and

configurations. These for all the graphs are given in figure 4. Closely observing

any of the maps, we would be able to observe small oscillations in the fitness

value while the algorithm proceeds. In other words the best fitness value

increases even after the application of elite genetic operator. This is attributed

to the presence of approximate state.

Figure 4: Graph of fitness v/s generations showing convergence in the four

maps.

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

1 101 201 301 401

Fi
tn

e
ss

Generations

Map 1

Map 2

Map 3

Map 4

We further plot the total number of feasible solutions at every generation. This

would give us an idea of how many individuals actually contribute towards the

search of the most optimal path or solution. This is shows in figure 5. Here also

oscillatory behavior may be seen which is mainly due to the occurrence of

condition 2 or approximate state. Also the randomly generated individuals may

be infeasible.

Figure 5: Graph of total number of feasible solutions in population pool v/s

generations for four maps.

We also study the execution time requirement between the generations. The

execution time per generation is plotted against generations in figure 6. As the

generations increase the rise of time may be attributed due to the increase in

number of individuals, increase in number of feasible solutions as well as

decrease in momentum. Generally infeasible solutions take lesser time as

compared to feasible solutions. This is because we stop the traversal as soon as

we meet any obstacle on our way. The effort of rest of the journey is saved. The

oscillatory nature may again be attributed due to the variation in number of

feasible solutions.

0

200

400

600

800

1000

1 101 201 301 401

N
u

m
b

e
r

o
f

fe
as

ab
le

 s
o

lu
ti

o
n

s

Generations

Map 1

Map 2

Map 3

Map 4

Figure 6: Graph of time of execution per generation v/s generations for four

maps.

We earlier stated that an increase in momentum might lead to an incorrect

recording of the path feasibility as well as the distance to obstacle (d). We try to

study the same concept here. A total of 10000 paths of a complexity of 3 were

generated for the map 2. The momentum was varied from 1 to 1000 and all the

parameters were measured. The relation of momentum with time of execution

is given in figure 7. Figure 8 gives the relation between the momentum and the

predicting capability of the fitness function regarding the feasibility of the

solution. Figure 9 shows the relation between the momentum and mean

deviation (or error in measuring) of the minimum distance from robot to

obstacle (d).

0

100

200

300

400

500

600

700

800

1 101 201 301 401

Ti
m

e
 p

e
r

ge
n

e
ra

ti
o

n
 (

m
s)

Generations

Map 1

Map 2

Map 3

Map 4

Figure 7: Graph showing the decrease in execution time per generation with

an increase of momentum.

Figure 8: Graph showing the decrease in correctness of feasibility prediction

with an increase of momentum.

0

200

400

600

800

1000

1200

1400

1600

1 101 201 301 401 501 601 701 801 901

Ti
m

e
 o

f
e

xe
cu

ti
o

n
 (

m
s)

Momentum

0

2000

4000

6000

8000

10000

1 101 201 301 401 501 601 701 801 901

N
u

m
b

e
r

o
f

C
o

rr
e

ct
 F

e
as

ab
ili

ty

P
re

d
ic

ti
o

n
s

Momentum

Figure 9: Graph showing correctness in prediction of distance to closest

obstacle (d) for various values of momentum.

An interesting observation is in figure 9 that reports oscillatory behavior. Here it

may be seen that many times larger jumps may lead the algorithm closer to the

obstacle. Hence it cannot be generalized that the factor d would be having large

errors as momentum increases.

6. Conclusion

The paper proposed a novel algorithm that evolved the robotic path using rising

complexities using HGAPSO. The combined effects of GA and PSO enabled the

generation of path that was optimal based on the set criterion. The basic

motivation was that most robotic paths are simple enough with less number of

turns. The straightness of the path enables a robot to navigate through the map

at high speeds. We also optimized the total path length and the distance to

closest obstacle.

The momentum, number of individuals and maximum allowable path

complexity increased in a Gaussian manner as the number of generations

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

Er
ro

r
in

 d
 P

re
d

ic
ti

o
n

s

Momentum

increased. This helped in optimization of the entire algorithm by enabling the

algorithm to depute only required time for every generation. At the time of

higher generations there are two processes that happen, each occupying some

proportion of the total population. The first is the intent to generate paths of

high complexity, and the other is to further optimize the paths of low

complexity, which may be having good fitness value. Jumping from a lower

complexity to a higher complexity is also carried out.

The algorithm was simulated over four types of maps with all varying

complexities. We saw that the robot was easily able to solve all of the four maps

and return a solution. The solution to all these cases could be visually seen to be

optimal. The solution controlled its complexity based on set multi-objective

parameters. The graphs plotted between convergence of the four maps as well

as the execution time, number of feasible solutions and predicting capability of

d show oscillations. This is a very interesting behavior in the implementation of

the algorithm. The prime reasons for this may be attributed to the approximate

state. Because of this phenomenon many solutions that were claimed to be

feasible in lower generations are now found to be infeasible because of the

reduction in momentum. This changes the complete metrics of the system. The

presence of weakly mutated solutions in the population pool as well as the PSO

and crossover/mutation exploration ensure the generation of better individuals

for an overall convergence.

Using the suggested approach we have been effectively able to generate

optimal paths for a variety of maps. There is still a lot that may be done in the

future. The path generated by this algorithm is a set of guiding points. The work

of smoothening of these points making the path much realizable for the physical

working of the robot may be carried out. The algorithm may be further

extended to the dynamic obstacles as well. More evolutionary techniques may

be tried over the developed problem base.

References

[1] A. Alvarez, A. Caiti, R. Onken, Evolutionary path planning for autonomous

underwater vehicles in a variable ocean, IEEE J. Ocean. Eng. 29 (2) (2004) 418-

429.

[2] K. M. S. Badran, P. I. Rockett, The roles of diversity preservation and

mutation in preventing population collapse in multiobjective genetic

programming, In: Proc. 9th Annual Conf. Genetic and Evolutionary Computation,

GECCO’07, pp 1551 – 1558, 2007.

[3] L. H. Chen, C. H. Chiang, New approach to intelligent control systems with

self-exploring process, IEEE Trans. Systems, Man, and Cybernetics, Part B:

Cybernetics 33 (1) (2003) 56-66.

[4] J. Cortes, L. Jaillet, T. Simeon, Disassembly Path Planning for Complex

Articulated Objects, IEEE Trans. Robotics, 24(2) (2008) 475-481.

[5] P. Dittrich, A. Bürgel, W. Banzhaf, Learning to move a robot with random

morphology, Lecture Notes in Computer Science Vol. 1468, pp 165-178, 1998.

[6] L. Doitsidis, N. C. Tsourveloudis, S. Piperidis, Evolution of Fuzzy Controllers

for Robotic Vehicles: The role of Fitness Function Selection, J. Intelligent and

Robotic Systems 56(4) (2009) 469-484.

[7] S. Garrido, L. Moreno, D. Blanco, Exploration of 2D and 3D Environments

using Voronoi Transform and Fast Marching Method, J. Intelligent and Robotic

Systems 55(1) (2009) 55 – 80.

[8] W. Han, S. Baek, T. Kuc, GA Based On-Line Path Planning of Mobile Robots

Playing Soccer Games, In: Proc. 40th Midwest Symposium Circuits and Systems,

Vol 1, pp. 522-525, 1997.

[9] N. B. Hui, D. K. Pratihar, A comparative study on some navigation schemes of

a real robot tackling moving obstacles, Robotics and Computer-Integrated

Manufacturing 25(4-5)(2009) 810-828.

[10] K. G. Jolly, R. S. Kumar, R. Vijayakumar, A Bezier curve based path planning

in a multi-agent robot soccer system without violating the acceleration limits,

Robotics and Autonomous Systems 57(1)(2009) 23-33.

[11] C. F. Juang, A hybrid of genetic algorithm and particle swarm optimization

for recurrent network design, IEEE Trans. Systems, Man, and Cybernetics Part B:

Cybernetics, 34(2) (2004) 997-1008.

[12] R. Kala, A. Shukla, R. Tiwari, S. Rungta, R. R. Janghel, Mobile Robot

Navigation Control in Moving Obstacle Environment using Genetic Algorithm,

Artificial Neural Networks and A* Algorithm, In: IEEE Proc. World Congress

Computer Science and Information Engineering, CSIE ‘09, pp 705-713. 2009.

[13] R. Kala, A. Shukla, R. Tiwari, Dynamic Environment Robot Path Planning

using Hierarchical Evolutionary Algorithms, Cybernetics and Systems, 41(6)

(2010a) 435-454

[14] R. Kala, A. Shukla, R. Tiwari, Fusion of probabilistic A* algorithm and fuzzy

inference system for robotic path planning, Artificial Intelligence Review,

Springer, 33(4)(2010b) 275-306

[15] R. Kala, A. Shukla, R. Tiwari, Robotic Path Planning using Evolutionary

Momentum based Exploration, Journal of Experimental and Theoretical Artificial

Intelligence (2011) Accepted. In Press.

[16] S. Kambhampati, L. Davis, Multiresolution path planning for mobile robots

2(3)(1986) 135-145.

[17] K. J. O' Hara, D. B. Walker, T. R. Balch, Physical Path Planning Using a

Pervasive Embedded Network, IEEE Trans. Robotics 24(3)(2008) 741-746.

[18] T. Peram, K. Veeramachaneni, C. K. Mohan, Fitness-distance-ratio based

particle swarm optimization, In: Proc. 2003 IEEE Swarm Intelligence Symp., SIS

'03, 2003, pp. 174-181, 2003.

[19] S. K. Pradhan, D. R. Parhi, A. K. Panda, Fuzzy logic techniques for navigation

of several mobile robots, Applied Soft Computing 9(1) (2009) 290-304.

[20] N. Sadati, J. Taheri, Genetic algorithm in robot path planning problem in

crisp and fuzzified environments, In: Proc. 2002 IEEE Int. Conf. Industrial

Technology, ICIT '02, 2002, vol.1, pp. 175-180, 2002.

[21] A. Shukla, R. Tiwari, R. Kala, Mobile Robot Navigation Control in Moving

Obstacle Environment using A* Algorithm, In: Proc. Intl. Conf. Artificial Neural

Networks in Engg., ANNIE’08, ASME Publications, Vol. 18, pp 113-120, 2008.

[22] S. Squillero, A. P. Tonda, A novel methodology for diversity preservation in

evolutionary algorithms, In: Proc. 2008 Conf. companion on Genetic and

Evolutionary Computation, GECCO’08, pp 2223-2226, 2008.

[23] R. Toogood, H. Hong , W. Chi, Robot Path Planning Using Genetic

Algorithms, In: Proc. IEEE Int. Conf. Systems, Man and Cybernetics. Intelligent

Systems for the 21st Century, Vol. 1, 1995, pp 489-494, 1995.

[24] C. H. Tsai, J. S. Lee, J. H. Chuang, Path planning of 3-D objects using a new

workspace model, IEEE Trans. Systems, Man, and Cybernetics, Part C:

Applications and Reviews 31(3)(2001) 405-410.

[25] J. Tu, S. Yang, Genetic algorithm based path planning for a mobile robot, In:

Proc. of IEEE Intl. Conf. Robotics and Automation, ICRS’03, Vol. 1, pp 1221-1226,

2003.

[26] C. Urdiales, A. Bandera, F. Arrebola, F. Sandoval, Multi-level path planning

algorithm for autonomous robots, IEEE Electronics Letters 34(2)(1998) 223-224.

[27] K. Veeramachaneni, T. Peram, C. Mohan, L. A. Osadciw, Optimization Using

Particle Swarms with Near Neighbor Interactions, In: Proc. Genetic and

Evolutionary Computation, GECCO ‘03, vol 2723, pp 110-121, 2003.

[28] C. Wang, Y. C. Soh, H. Wang, H. Wang, A hierarchical genetic algorithm for

path planning in a static environment with obstacles, In: Proc. IEEE Canadian

Conf. Electrical and Computer Engineering, CCECE ’02, vol. 3, pp. 1652-1657,

2002.

[29] J. Xiao, Z. Michalewicz, Z. Lixin, K. Trojanowski, Adaptive evolutionary

planner/navigator for mobile robots, IEEE Trans. Evolutionary Computation 1(1)

(1997)18-28.

[30] S. X. Yang, M. Meng, An efficient neural network approach to dynamic

robot motion planning, Neural Networks 13(2)(2000) 143-148.

Rahul Kala

Rahul Kala did his Integrated Post Graduate (BTech and MTech in

Information Technology) degree at Indian Institute of Information

Technology and Management Gwalior in 2010. He is currently pursuing

PhD in Robotics from School of Cybernetics, University of Reading, UK.

His areas of research are hybrid soft computing, robotic planning, autonomous vehicles,

biometrics, pattern recognition and soft computing. He is the author of two books and has

published about 50 papers in various international and national journals/conferences. He

also takes a keen interest toward free/open source software. He is recipient of

Commonwealth Scholarship 2010 (UK) and winner of Lord of the Code Scholarship

Contest organised by KReSIT, IIT Bombay and Red Hat. He secured All India 8th position

in Graduates Aptitude Test in Engineeging-2008 Examinations.

Prof. Anupam Shukla

Prof. Anupam Shukla is serving as a Professor in Indian Institute of

Information Technology and Management Gwalior. He heads the Soft

Computing and Expert System Laboratory at the Institute. He has 20

years of teaching experience. His research interest includes Speech

processing, Artificial Intelligence, Soft Computing, Biometrics and

Bioinformatics. He has published over 120 papers in various national

and international journals/conferences. He is editor and reviewer in various journals. He

received Young Scientist Award from Madhya Pradesh Government and Gold Medal

from Jadavpur University.

Dr. Ritu Tiwari

Dr. Ritu Tiwari is serving as an Assistant Professor in Indian Institute of

Information Technology and Management Gwalior. Her field of

research includes Biometrics, Artificial Neural Networks, Speech Signal

Processing, Robotics and Soft Computing. She has published over 70

research papers in various national and international

journals/conferences. She has received Young Scientist Award from

Chhattisgarh Council of Science & Technology and also received Gold Medal in her post

graduation.

