
Robotic Path Planning using Multi Neuron Heuristic

Search
Rahul Kala

MTech
Department of Information

Technology, Indian Institute of
Information Technology and

Management Gwalior, Gwalior, India
Ph: +91-9993746487

rahulkalaiiitm@yahoo.co.in

Anupam Shukla
Associate Professor

Department of Information
Technology, Indian Institute of
Information Technology and

Management Gwalior, Gwalior, India
Ph: +91-751-2449811

dranupamshukla@gmail.com

Ritu Tiwari
Assistant Professor

Department of Information
Technology, Indian Institute of
Information Technology and

Management Gwalior, Gwalior, India
Ph: +91-751-2449822

rt_twr@yahoo.co.in

Citation: R. Kala, A. Shukla, R. Tiwari (2009), Robotic Path Planning using Multi Neuron Heuristic Search,
Proceedings of the ACM 2nd International Conference on Interaction Sciences: Information Technology, Culture and
Human, Seoul, Korea, pp 1318-1323.
Final Version Available At: http://dl.acm.org/citation.cfm?id=1656167

ABSTRACT

Robotics is a highly multi-disciplinary field which attracts the

attention of many researchers from diverse fields. One of the

major studied problems in Robotics is the problem of Robotic

Path Planning. The problem deals with finding of the path that

can be used by the robot for navigation purpose without any

collision. The output of this algorithm is then implemented for

physically moving the real robot on the desired path. In this paper

we have used Multi-Neuron Heuristic Search (MNHS) which is

an advanced form of A* algorithm. The MNHS was earlier

proposed by the authors for special cases where the heuristics

changes sharply and it was shown to be a powerful algorithm in

the same context. In this paper we apply the MNHS for the Robot

Path Planning. The motivation is to make the problem robust

against the uncertainties that might arise like the sudden discovery

that the path being followed does not lead to the goal. The MNHS

has better capabilities to solve maze-like maps where the

uncertainty is extremely high. Another such area is when the robot

enters into a highly chaotic area. Here it might be better to go with

a path that is less chaotic or has lesser number of obstacles. We

tested the algorithm for numerous test cases. In all the cases, the

MNHS was able to solve the problem of path planning well.

Categories and Subject Descriptors

I.2.9 [Robotics]: Autonomous Vehicles, Workcell organization

and planning.

General Terms

Algorithms

Keywords

Robotic Path Planning, Multi-Neuron Heuristic Search, Robotics,

Robotic Navigation, Robotic Planning.

1. INTRODUCTION
Robotic Path Planning is one of the problems in the field of

robotics that tries to find and optimize the path from the initial

position to the final position. [1]. Besides optimization, it needs to

be ensured that the robot moves without any collision in the entire

path it follows from the source to the destination. This would

mean that the algorithm avoids all obstacles and reaches the

destination starting from the source in the least time possible. This

is also referred to as the navigation plan of the robot. The problem

is usually studied in two separate heads. These are path planning

under static environment and path planning under dynamic

environment. In static environment the condition of the robotic

map is constant and does not change with respect to time due to

absence of the moving obstacles. In dynamic environment path

planning however, the map keeps changing with the passage of

time. This is due to the presence of dynamic obstacles like other

robots, vehicles, etc.

Path planning is one of the numerous algorithms used in the

problem of robotics. The whole problem of robotics or intelligent

robotics involves the simultaneous contribution of people from

varied backgrounds and disciples. The sensors and sensor data,

the building up of the map, the communication between robots or

between robots and machine, visual processing, multi-robot

coordination are some of the major fields in robotics that require

participation from different people.

The paper proposes the use of Multi Neuron Heuristic Search

(MNHS) for the problem. The algorithm is used to find out the

most optimal path of the robot [2]. This path is the final path that

is used for the purpose of robotic navigation. The algorithm

returns the complete path if one exists between the source and the

destination. If however, no path is possible between the source

and the destination, the algorithm returns null.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

http://dl.acm.org/citation.cfm?id=1656167

The robot may be easily made to follow the path that the

algorithm runs by any robotic controller. The controllers try to

guide the robot in a step by step manner so that it follows the

desired path and traverses the same in the lease possible time.

The elementary model of cognition [5] includes three main cycles.

Among these, the „sensing-action‟ cycle is most common for

mobile robots. This cycle inputs the location of the obstacles and

subsequently generates the control commands for the motors to

set them in motion. The second cycle passes through perception

and planning states of cognition, while the third includes all

possible states including sensing, acquisition, perception,

planning and action [6]. Sensing here is done by ultrasonic

sensors/camera or by both. There are many algorithms for

construction of the robot‟s world map [7]. The term Planning of

Navigation [8] refers to the generation of sequences of action in

order to reach a given goal state from a predefined starting state.

The MNHS [21] is an advanced form of A* algorithm that was

earlier proposed by the authors. The A* algorithm does not give

good results in the absence of good heuristics. If the choice of

heuristics is bad, then the algorithm would normally not perform

well or would take a lot of time. The performance of the A*

algorithm to a large extent is dependent on the heuristics.

It was also earlier shown by the authors that the A* algorithm

gives good results when used in the problem of robotic path

planning [22]. It gave the best results or the shortest results

possible. These were found to be better than those obtained from

the ANN or Evolutionary Algorithms [23]. However, the A*

algorithm is known to be computationally expensive.

Suppose that A* algorithm is used for the solution of the problem

on a maze-like situation. It would expand a lot many nodes, only

to find that the entire region did not generate any path. Then it

would start exploring the other regions which initially looked

would provide bad solutions. This would waste a lot of time.

The motivation behind the use of MNHS is to keep backup paths

ready and explore them also from time to time, so that if some

region completely fails to give a correct solution, the other paths

are already explored to a good extent. If the 2nd backup path also

fails, then the 3rd backup path is also explored to a fair extent.

This is possible due to the inherent nature of the MNHS that

equally respects the various heuristic values from bad to good and

expands all of them. This is because it is possible that the bad

heuristics may suddenly turn good and vice versa.

The paper is organized as follows. In section 2 we discuss the

motivation behind the problem. Section 3 talks about the MNHS

algorithm. Section 4 deals with the application of MNHS in the

problem of robotic path planning. In section 5 we discuss the

results. Section 6 gives the conclusion.

2. RELATED WORKS
The problem of robot navigation control, due to its applicability,

is of a great interest. We have already seen good research in

various modules. A lot of work exists to model the entire problem

[1 - 7]. There exist good algorithms to scan the environment and

represent all the obstacles in form of a grid [3]. Also various

algorithms have been proposed to plan the movement of the robot

using various conditions.

The whole problem till now has been seen under separate heads of

planning navigation control of static environment and planning

navigation control of dynamic environment. If we come to static

environment, many algorithms have been implemented and results

verified [8, 10, 11, 19]. In planning dynamic environment the

steps are a little different, as the environment continuously

changes.

We also have various works of research in which people have

tried to solve the navigation problem using genetic algorithm [8,

10, 11, 16]. The basic principles in all these have been to take a

fixed solution length and find the solutions by using genetic

operators. Also similar work exists in neural network [6, 11, 15].

Here neural network has been applied mainly on static data.

In this paper we have modified the A* algorithm to better handle

uncertainness that happen to be natural whenever we work in

practical scenarios. The work hence is advancement over the

previous works that would give poor results in the presence of

highly uncertain paths.

3. MULTI NEURON HEURISTIC SEARCH
This algorithm can be taken as a betterment over the A* algorithm

where the heuristic function exists, but is bound to change

suddenly. The heuristic and A* approach use the heuristic

function in order to get the search closer and closer to the goal,

but when it changes suddenly, the strategy is destroyed. Hence

these algorithms suffer. A solution may be not to use the

heuristics at all. But if the heuristic function is available, it is

always better to use it rather than not to use it altogether as was

the case with other algorithms.

The algorithm can be applied to the cases where he following

problems occurs in heuristic function:

 The heuristic function keeps improving. As we reach

near goal, it suddenly shows that no way is possible to

reach goal.

 The heuristic function keeps fluctuating from the good

values to bad values making it hard to predict the goal.

 The heuristic function drops suddenly from very high

value to low value.

These conditions can easily be understood from the problem of

maze solving. Suppose the heuristic function of any point (x,y) on

the maze denotes its distance from the goal. We can see that if the

search algorithm reaches last but one position and then finds itself

surrounded by walls, the heuristics increase suddenly. Similarly if

the solution is a series of bad moves followed by another series of

good moves, the heuristics decrease from high to low.

Hence in such problems though we may take the heuristic

function, its performance would be low. The solution is to use the

new algorithm which respects all the good, bad and moderate

values of heuristics, so that no value suffers. Such an algorithm,

due to its parallel nature will take huge benefits from modern

concepts like multi-processor, grid computing etc.

The basic idea of this algorithm is the use of many neurons

working one after the other. Each of these take care of high to low

values of the heuristic functions. The algorithm hence gives

respect to all values of the heuristics. It may be seen as the way of

employing different neurons for different types of works and

whichever finds the target, is rated successful. If you were to find

a treasure, it would be justified to divide your team at various

places, some at high probability places, some at low.

In all we take α neurons. We have a list of heuristic costs each

corresponding to node seen but waiting to be processed. We

divide the cost range into α ranges equally among them. Each of

these neurons is given a particular range. Each neuron selects the

minimum most element of the cost range allotted to it and starts

searching. At one step of each neuron processes its element by

searching and expanding the element. This process is repeated.

The algorithm MNHS is given by the following pseudo code.

MNHS(source, goal)

open ← empty priority queue

closed ← empty list

add a node n in open such that position(n) = source, previous(n) =

null and f(n), g(n), h(n) are as calculated by respective formulas

with priority f(n)

while open is not empty

extract the node n1, n2, n3, n4….. nα from open with the

priority of n1 as highest and the others equally distributed

between other α-1 nodes.

if ni = goal for i=1,2,3,4,5…..α then break

else

nodes ← nodes from the expanding of node ni

 for each node m in nodes

if m is already in open list and is

equally good or better then discard this move

if m is already in closed list and is

equally good or better then discard this move

delete m from open and closed lists

make m as new node with parent n

calculate f(m), h(m), g(m)

Add node m to open with priority

f(m)

Add n to closed

Remove n from open

Here g(n) denotes the historical cost function

h(n) denotes the heuristic cost

f(n) is the cost of the node (=f(n)+g(n))

The algorithm is similar to the A* algorithm. The only difference

is that at each iteration, we take and process α nodes from the

open list one after the other.

Consider the problem of solving a maze. The problem is that we

have to move from the initial position to the final position in the

maze without colliding from walls.

Refer Figure 1(a) for the problem input. Here 0 represents the

region we cannot move (wall) and 1 represents the region we can

move (path). Top left is the start point. Bottom right is the finish

point. The heuristic function is taken as the square of the distance

of the current point to the final point. The solution generated by

the MNHS is given in Figure 1(b). The numbers in results show

the order in which they were discovered. The number of bottom

right corner is the number of nodes explored as shown in Figure

1(b).

4. MNHS IN PATH PLANNING
The research so far has been using path planning for relatively

simple paths. Researchers try to place obstacles in the way and try

to see the behavior of the robots. In practical life, it can never be

assumed that the path would be so simple. The reason is the

numerous possibilities of obstacles in numerous ways. Consider a

robot cleaning a house. There would be multiple paths possible

with numerous obstacles of varying sizes. The robot is supposed

to avoid all of them and reach the destination. The scalability of

these algorithms is quite limited in nature. In the presence of

complex maps they can hence cause problems. An example would

be the maze like structure where a robot has to find its way out of

the maze.

1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1 0 1

1 1 1 1 1 1 0 1 0 1

1 0 0 0 0 1 0 1 0 1

1 1 1 1 0 1 0 1 0 1

1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

Figure 1(a): The maze solving problem input

01 02 04 06 08 09 11 13 15 17

03 00 00 00 00 00 00 00 00 19

05 10 26 28 35 40 00 00 00 21

07 00 00 00 00 00 00 22 00 00

12 32 00 00 00 00 00 00 00 23

14 00 00 00 00 00 00 00 00 25

16 24 38 00 00 00 00 00 00 27

18 00 00 00 00 00 00 00 00 00

20 29 30 31 33 34 26 37 39 41

Figure 1(b): The solution generated by MNHS

The MNHS algorithm takes care of these problems by trying to

exploit each and every path possible. This has a multiplying effect

on the time complexity, but in return is an assurance in case of the

rapid change in heuristics. This is what would come to rescue if

by chance the robot reached quite near to the goal only to find that

there is no way to reach it.

This concept is shown in figure 2. Here the best path has almost

reached the goal. At the same time the other paths have been

expanded to a reasonably good degree that are ready to provide a

backup. The obstacles have not been shown in the figure. The

figure is just meant to explain the general concept of the

algorithm.

For this problem the historical cost is taken as the distance from

the source to the current position. The heuristic cost is the

distance of the current position to the goal position. The total cost

is the sum of both the costs.

Figure 2: The concept of MNHS in path planning

The problem of path planning deals with the determination of a

path which navigates the robot in such a way that no collision

occurs. In order to solve the problem we assume that the input is

already available in form of a map. The map is a representation of

the robotic world that tells where the obstacles are found and

which are the traversable regions. Here we assume that the map is

available in form of grid of size MXN. Each of the cell of this grid

contains 0 or 1. A 0 in such a grid signifies that the region has an

obstacle present. Similarly a 1 signifies that the region is

traversable and may be used for the purpose of travelling. The

obstacles may span across multiple cells.

It is further assumed that the grid given as input is of considerable

size. If the grid exceeds a certain threshold of size, it would

become computationally impossible for the algorithm to find a

result. Hence, we restrict the size of the map according to the

computational capability and time constraints in whatever real life

specific problem is being considered.

The algorithm would generate as its output a path that can be used

by the robot for the navigation purposes. The path may be

traversed using any robotic controller. This is for the execution of

the steps given by the planning algorithm.

There are 2 major issues in the use of MNHS in the problem of

path planning. These are the problem representation in the form of

a graph, fixing the value of parameter α. We discuss both of them

one by one.

4.1 Graphical Representation of Problem
The MNHS is a graph searching algorithm. It is hence necessary

to first formulate the problem in the form of a graph. Every grid of

the map corresponds to a vertex of the graph. A graph vertex may

hence be denoted by (i,j) where i and j refer to the position of the

vertex with respect to the 2 coordinate axis. A vertex exists in the

graph only if it is accessible. In other words if some position is

occupied by some obstacle in the robot map, it is not stated as a

valid graphical vertex.

The edges in this graph are in the form of valid robot moves. An

edge exists between two vertices V1 and V2 only if the robot can

make a direct move between the two vertices. The weight of the

vertex is the total length of the path in between V1 and V2.

Suppose that a robot is presently located at location V(i,j). In our

model the robot can only move to the vertices A(i-1,j), B(i-1,j+1),

C(i,j+1), D(i+1,j+1), E(i+1,j), F(i+1,j-1), G(i,j-1), H(i-1,j-1), I(i-

1,j+2), J(i+1,j+2), K(i+2,j+1), L(i+2,j-1), M(i+1,j-2), N(i-1,j-2),

O(i-2,j-1) and P(i-2,j+1) as shown in Figure 3. The weights of the

edges are 1, √2 or √5. It may be noted that other vertices in the

figure are not connected directly as they may easily be visualized

as a combination of 2 or more moves totaling to same weight.

 I

(i-1,j+2)

 J

(i+1,j+2)

P

(i-2,j+1)

B

(i-1,j+1)

C

(i,j+1)

D

(i+1,j+1)

K

(i+2,j+1)

 A

(i-1,j)

V

(i,j)

E

(i+1,j)

O

(i-2,j-1)

H

(i-1,j-1)

G

(i,j-1)

F

(i+1,j-1)

L

(i+2,j-1)

 N

(i-1,j-2)

 M

(i+1,j-2)

Figure 3: The edges between the vertices in problem graph

Hence any vertex can be connected to a maximum of 8 vertices

around it, subjected to its existence and presence of obstacles.

Here it may also be observed that by converting the problem into

this map we have made the robotic moves discrete. Now the robot

has a limited number of choices of basic moves that it may make.

These choices play a big role in deciding the time and memory

complexity of the MNHS. A higher number of choices may mean

a larger complexity. For the same reason we cannot allow the

robot to make all kinds of moves in the continuous domain.

4.2 MNHS Uncertainty Parameter α
The MNHS has an extra parameter that helps us control the

algorithm. It was earlier shown by the authors that if α is 1, the

algorithm behaves like a conventional A* algorithm and if α is

infinite, the algorithm behaves like the Breadth First Search [21].

In the problem of path planning this factor should be fixed

according to the uncertainty of the map. If the heuristics may

fluctuate very rapidly, this factor must be high. This would be the

situation in case of a maze-like map with large number of

complex obstacles. In most simple graphs, this factor may be kept

low.

5. RESULTS
In order to test the algorithm, we developed a simulation engine

of our own. The engine was made keeping in mind the practical

applicability of the algorithm on the robot. The simulation engine

took as input the map. This was given in the form of an image.

The algorithm then executed the algorithm to compute the path.

The path was shown using JAVA Applets.

We applied various tests to the algorithm in order to ensure that

the algorithm behaves well in each and every condition. These

tests are discussed in the next sections.

5.1 Case I: No Obstacle Condition
Initially we did not place any obstacle in the path from the source

to destination. The algorithm was made to run on a completely

blank map. We observed that the algorithm traced the path from

the source to the destination following a straight line path. This

was the shortest path possible. The results of the algorithm are

shown in Figure 4(a). The robot was supposed to move from the

top left corner to the bottom left corner. The size of the grid was

100X100. The value of α was fixed to be 5.

Figure 4(a): The result of MNHS for Case I

5.2 Case II: Single Obstacle
The second case we considered was of a single obstacle in the

path from the source to destination. The robot easily avoided the

obstacle and marched towards the goal position. This was also the

shortest path possible. The results of the algorithm are shown in

Figure 4(b). The robot was supposed to move from the top left

corner to the bottom left corner. The size of the grid was

100X100. The value of α was fixed to be 5.

Figure 4(b): The result of MNHS for Case II

5.3 Case III: Complex Obstacles
The last case we presented before the algorithm was to test its

ability to handle complex inputs. Various complex obstacles were

placed in the path of the robot from the source to destination. The

robot again easily avoided the obstacle and marched towards the

goal position. This was also the shortest path possible. The results

of the algorithm are shown in Figure 4(c) and 4(d). The robot was

supposed to move from the top left corner to the bottom left

corner. The size of the grid was 100X100. The value of α was

fixed to be 5.

Figure 4(c): The result of MNHS for Case III, 1st map

Figure 4(d): The result of MNHS for Case III, 2nd map

6. CONCLUSIONS
In this paper we proposed the use of MNHS to solve the problem

of robotic path planning. We saw that we were able to solve the

problem in almost all given scenarios well in time. The MNHS

proved to be a great algorithm for the purpose.

The algorithm further needs to be used in practical life scenarios

which are more complex than the cases presented here. Also the

value of α was kept constant in the cases presented. The

determination and setting of the most optimal value of α needs to

be studied in the future.

7. REFERENCES
[1] Hutchinson, S. A. and Kak, A. C., "Planning sensing

strategies in a robot work cell with Multi-sensor

capabilities," IEEE Trans. On Robotics and Automation,

vol.5, no.6, 1989.

[2] Rich, E. and Knight, K., Artificial Intelligence, McGraw-

Hill, New York, pp. 29-98, 1991.

[3] Takahashi, O. and Schilling, R. J., "Motion planning in a

plane using generalized voronoi diagrams," IEEE Trans. on

Robotics and Automation, vol.5, no.2, 1989.

[4] Borenstain, J., Everett, H. R., and Feng, L., Navigating

“Mobile Robots: Systems and Techniques”, A. K. Peters,

Wellesley, 1996

[5] Matlin, W. Margaret, Cognition, Hault Sounders, printed and

circulated by Prism books, India, 1996.

[6] Konar, A. and Pal, S., “Modeling cognition with fuzzy neural

nets” In Fuzzy Systems Theory: Techniques and

Applications, Leondes, C. T., Ed., Academic Press, New

York, 1999.

[7] Pagac, D., Nebot, E. M. and Durrant. W., H., “An evidential

approach to map building for autonomous robots,” IEEE

Trans. On Robotics and Automation, vol.14, no.2, pp. 623-

629, Aug. 1998.

[8] V. Ayala-Ramirez, A. Perez-Garcia, E J. Montecillo-Puente,

R.E. Sanchez-Yanez, “Path planning using genetic

algorithms for mini-robotic tasks”, 2004 IEEE International

Conference on Systems, Man and Cybernetics, Vol 4, pp

3746- 3750

[9] H Fkezza-Buet, F Alexandre “Modeling prefrontal functions

for robot navigation”, IEEE International Joint Conference

on Neural Networks, 1999. IJCNN '99, vol 1, pp 252-257

[10] Theodore W. Manikas, Kaveh Ashenayi, and Roger L.

Wainwright, “Genetic Algorithms for Autonomous Robot

Navigation”, IEEE Instrumentation & Measurement

Magazine December 2007

[11] Du Xin, Chen Hua-hua, Gu Wei-kang, “Neural network and

genetic algorithm based global path planning in a static

environment”, Journal of Zhejiang University Science, 2005

Vol. 6A No. 6, pp 549-554

[12] Zhang Huan-cheng, Zhu Miao-liang, “Self-organized

architecture for outdoor mobile robot navigation”, Journal of

Zhejiang University Science, 2005 Vol. 6A No. 6 p.583-

590

[13] Peter Corke, Ron Peterson, Daniela Rus, “Networked

Robots: Flying Robot Navigation using a Sensor Net”, April

18, 2003

[14] Cory Quammen, “Evolutionary learning in mobile robot

navigation”, The ACM Student Magazine

[15] Yong-Kyun Na & Se-Young Oh, “Hybrid Control for

Autonomous Mobile Robot Navigation Using Neural

Network Based Behavior Modules and Environment

Classification”, Autonomous Robots, Vol 15, Issue 2, pp

193-206

[16] Seyyed Ehsan Mahmoudi, Ali Akhavan Bitaghsir, Behjat

Forouzandeh and Ali Reza Marandi, “A New Genetic

Method for Mobile Robot Navigation”, 10th IEEE

International Conference on Methods and Models in

Automation and Robotics, 30 August - 2 September 2004,

Miedzyzdroje, Poland

[17] Torvald Ersson and Xiaoming Hu, “Path Planning and

Navigation of Mobile Robots in Unknown Environments”,

CiteSeerX - Scientific Literature Digital Library and Search

Engine, doi=10.1.1.111.1668, 2008

[18] László Kiss, Annamária R. Várkonyi-Kóczy, “A Universal

Vision-based Navigation System for Autonomous Indoor

Robots”

[19] Sven Behnke, “Local Multiresolution Path Planning”,

Preliminary version in Proc. of 7th RoboCup Int.

Symposium, Padua, Italy, 2003

[20] S. Veera Ragavan, and V. Ganapathy, “A Unified

Framework for a Robust Conflict-Free Robot Navigation”,

Proceedings of World Academy of Science, Engineering and

Technology, Volume 21 January 2007 ISSN 1307-6884

[21] Shukla, Anupam & Kala, Rahul; “Multi Neuron Heuristic

Search”, International Journal of Computer Science and

Network Security, Vol. 8, No. 6, pp 344-350, June 2008

[22] Shukla, Anupam; Tiwari, Ritu & Kala, Rahul; “Mobile

Robot Navigation Control in Moving Obstacle Environment

using A* Algorithm”, Intelligent Systems Engineering

Systems through Artificial Neural Networks, ASME

Publications, Vol. 18, pp 113-120, Nov 2008

[23] Kala, Rahul; et. al., “Mobile Robot Navigation Control in

Moving Obstacle Environment using Genetic Algorithm,

Artificial Neural Networks and A* Algorithm”, Proceedings

of the IEEE World Congress on Computer Science and

Information Engineering (CSIE 2009), ieeexplore, April

2009, Los Angeles/Anaheim, USA, pp 705-713

