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ABSTRACT 

Robotics is a highly multi-disciplinary field which attracts the 

attention of many researchers from diverse fields. One of the 

major studied problems in Robotics is the problem of Robotic 

Path Planning. The problem deals with finding of the path that 

can be used by the robot for navigation purpose without any 

collision. The output of this algorithm is then implemented for 

physically moving the real robot on the desired path. In this paper 

we have used Multi-Neuron Heuristic Search (MNHS) which is 

an advanced form of A* algorithm. The MNHS was earlier 

proposed by the authors for special cases where the heuristics 

changes sharply and it was shown to be a powerful algorithm in 

the same context. In this paper we apply the MNHS for the Robot 

Path Planning. The motivation is to make the problem robust 

against the uncertainties that might arise like the sudden discovery 

that the path being followed does not lead to the goal. The MNHS 

has better capabilities to solve maze-like maps where the 

uncertainty is extremely high. Another such area is when the robot 

enters into a highly chaotic area. Here it might be better to go with 

a path that is less chaotic or has lesser number of obstacles. We 

tested the algorithm for numerous test cases. In all the cases, the 

MNHS was able to solve the problem of path planning well.  

Categories and Subject Descriptors 

I.2.9 [Robotics]: Autonomous Vehicles, Workcell organization 

and planning.  

General Terms 

Algorithms 

Keywords 

Robotic Path Planning, Multi-Neuron Heuristic Search, Robotics, 

Robotic Navigation, Robotic Planning. 

1. INTRODUCTION 
Robotic Path Planning is one of the problems in the field of 

robotics that tries to find and optimize the path from the initial 

position to the final position. [1]. Besides optimization, it needs to 

be ensured that the robot moves without any collision in the entire 

path it follows from the source to the destination. This would 

mean that the algorithm avoids all obstacles and reaches the 

destination starting from the source in the least time possible. This 

is also referred to as the navigation plan of the robot. The problem 

is usually studied in two separate heads. These are path planning 

under static environment and path planning under dynamic 

environment. In static environment the condition of the robotic 

map is constant and does not change with respect to time due to 

absence of the moving obstacles. In dynamic environment path 

planning however, the map keeps changing with the passage of 

time. This is due to the presence of dynamic obstacles like other 

robots, vehicles, etc.  

Path planning is one of the numerous algorithms used in the 

problem of robotics. The whole problem of robotics or intelligent 

robotics involves the simultaneous contribution of people from 

varied backgrounds and disciples. The sensors and sensor data, 

the building up of the map, the communication between robots or 

between robots and machine, visual processing, multi-robot 

coordination are some of the major fields in robotics that require 

participation from different people.  

The paper proposes the use of Multi Neuron Heuristic Search 

(MNHS) for the problem. The algorithm is used to find out the 

most optimal path of the robot [2]. This path is the final path that 

is used for the purpose of robotic navigation. The algorithm 

returns the complete path if one exists between the source and the 

destination. If however, no path is possible between the source 

and the destination, the algorithm returns null.  
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The robot may be easily made to follow the path that the 

algorithm runs by any robotic controller. The controllers try to 

guide the robot in a step by step manner so that it follows the 

desired path and traverses the same in the lease possible time.  

The elementary model of cognition [5] includes three main cycles. 

Among these, the „sensing-action‟ cycle is most common for 

mobile robots. This cycle inputs the location of the obstacles and 

subsequently generates the control commands for the motors to 

set them in motion. The second cycle passes through perception 

and planning states of cognition, while the third includes all 

possible states including sensing, acquisition, perception, 

planning and action [6]. Sensing here is done by ultrasonic 

sensors/camera or by both. There are many algorithms for 

construction of the robot‟s world map [7]. The term Planning of 

Navigation [8] refers to the generation of sequences of action in 

order to reach a given goal state from a predefined starting state. 

The MNHS [21] is an advanced form of A* algorithm that was 

earlier proposed by the authors. The A* algorithm does not give 

good results in the absence of good heuristics. If the choice of 

heuristics is bad, then the algorithm would normally not perform 

well or would take a lot of time. The performance of the A* 

algorithm to a large extent is dependent on the heuristics.  

It was also earlier shown by the authors that the A* algorithm 

gives good results when used in the problem of robotic path 

planning [22]. It gave the best results or the shortest results 

possible. These were found to be better than those obtained from 

the ANN or Evolutionary Algorithms [23]. However, the A* 

algorithm is known to be computationally expensive. 

Suppose that A* algorithm is used for the solution of the problem 

on a maze-like situation. It would expand a lot many nodes, only 

to find that the entire region did not generate any path. Then it 

would start exploring the other regions which initially looked 

would provide bad solutions. This would waste a lot of time. 

The motivation behind the use of MNHS is to keep backup paths 

ready and explore them also from time to time, so that if some 

region completely fails to give a correct solution, the other paths 

are already explored to a good extent. If the 2nd backup path also 

fails, then the 3rd backup path is also explored to a fair extent. 

This is possible due to the inherent nature of the MNHS that 

equally respects the various heuristic values from bad to good and 

expands all of them. This is because it is possible that the bad 

heuristics may suddenly turn good and vice versa. 

The paper is organized as follows. In section 2 we discuss the 

motivation behind the problem. Section 3 talks about the MNHS 

algorithm. Section 4 deals with the application of MNHS in the 

problem of robotic path planning. In section 5 we discuss the 

results. Section 6 gives the conclusion. 

2. RELATED WORKS 
The problem of robot navigation control, due to its applicability, 

is of a great interest. We have already seen good research in 

various modules. A lot of work exists to model the entire problem 

[1 - 7]. There exist good algorithms to scan the environment and 

represent all the obstacles in form of a grid [3]. Also various 

algorithms have been proposed to plan the movement of the robot 

using various conditions. 

The whole problem till now has been seen under separate heads of 

planning navigation control of static environment and planning 

navigation control of dynamic environment. If we come to static 

environment, many algorithms have been implemented and results 

verified [8, 10, 11, 19]. In planning dynamic environment the 

steps are a little different, as the environment continuously 

changes. 

We also have various works of research in which people have 

tried to solve the navigation problem using genetic algorithm [8, 

10, 11, 16]. The basic principles in all these have been to take a 

fixed solution length and find the solutions by using genetic 

operators. Also similar work exists in neural network [6, 11, 15]. 

Here neural network has been applied mainly on static data.  

In this paper we have modified the A* algorithm to better handle 

uncertainness that happen to be natural whenever we work in 

practical scenarios. The work hence is advancement over the 

previous works that would give poor results in the presence of 

highly uncertain paths. 

3. MULTI NEURON HEURISTIC SEARCH 
This algorithm can be taken as a betterment over the A* algorithm 

where the heuristic function exists, but is bound to change 

suddenly. The heuristic and A* approach use the heuristic 

function in order to get the search closer and closer to the goal, 

but when it changes suddenly, the strategy is destroyed. Hence 

these algorithms suffer. A solution may be not to use the 

heuristics at all. But if the heuristic function is available, it is 

always better to use it rather than not to use it altogether as was 

the case with other algorithms. 

The algorithm can be applied to the cases where he following 

problems occurs in heuristic function: 

 

 The heuristic function keeps improving. As we reach 

near goal, it suddenly shows that no way is possible to 

reach goal. 

 The heuristic function keeps fluctuating from the good 

values to bad values making it hard to predict the goal. 

 The heuristic function drops suddenly from very high 

value to low value. 

 

These conditions can easily be understood from the problem of 

maze solving. Suppose the heuristic function of any point (x,y) on 

the maze denotes its distance from the goal. We can see that if the 

search algorithm reaches last but one position and then finds itself 

surrounded by walls, the heuristics increase suddenly. Similarly if 

the solution is a series of bad moves followed by another series of 

good moves, the heuristics decrease from high to low. 

Hence in such problems though we may take the heuristic 

function, its performance would be low. The solution is to use the 

new algorithm which respects all the good, bad and moderate 

values of heuristics, so that no value suffers. Such an algorithm, 

due to its parallel nature will take huge benefits from modern 

concepts like multi-processor, grid computing etc. 

The basic idea of this algorithm is the use of many neurons 

working one after the other. Each of these take care of high to low 

values of the heuristic functions. The algorithm hence gives 

respect to all values of the heuristics. It may be seen as the way of 



employing different neurons for different types of works and 

whichever finds the target, is rated successful. If you were to find 

a treasure, it would be justified to divide your team at various 

places, some at high probability places, some at low. 

In all we take α neurons. We have a list of heuristic costs each 

corresponding to node seen but waiting to be processed. We 

divide the cost range into α ranges equally among them. Each of 

these neurons is given a particular range. Each neuron selects the 

minimum most element of the cost range allotted to it and starts 

searching. At one step of each neuron processes its element by 

searching and expanding the element. This process is repeated. 

The algorithm MNHS is given by the following pseudo code. 

MNHS(source, goal) 

open  ← empty priority queue 

closed ← empty list 

add a node n in open such that position(n) = source, previous(n) = 

null and f(n), g(n), h(n) are as calculated by respective formulas 

with priority f(n) 

while open is not empty 

extract the node n1, n2, n3, n4….. nα from open with the 

priority of n1 as highest and the others equally distributed 

between other α-1 nodes. 

if ni = goal for i=1,2,3,4,5…..α then break 

else 

nodes ← nodes from the expanding of node ni 

 for each node m in nodes 

if m is already in open list and is 

equally good or better then discard this move 

if m is already in closed list and is 

equally good or better then discard this move 

delete m from open and closed lists 

make m as new node with parent n 

calculate f(m), h(m), g(m) 

Add node m to open with priority 

f(m) 

Add n to closed 

Remove n from open 

 

Here g(n) denotes the historical cost function 

h(n) denotes the heuristic cost 

f(n) is the cost of the node ( =f(n)+g(n) ) 

 

The algorithm is similar to the A* algorithm. The only difference 

is that at each iteration, we take and process α nodes from the 

open list one after the other. 

Consider the problem of solving a maze. The problem is that we 

have to move from the initial position to the final position in the 

maze without colliding from walls.  

Refer Figure 1(a) for the problem input. Here 0 represents the 

region we cannot move (wall) and 1 represents the region we can 

move (path). Top left is the start point. Bottom right is the finish 

point. The heuristic function is taken as the square of the distance 

of the current point to the final point. The solution generated by 

the MNHS is given in Figure 1(b). The numbers in results show 

the order in which they were discovered. The number of bottom 

right corner is the number of nodes explored as shown in Figure 

1(b).  

4. MNHS IN PATH PLANNING 
The research so far has been using path planning for relatively 

simple paths. Researchers try to place obstacles in the way and try 

to see the behavior of the robots. In practical life, it can never be 

assumed that the path would be so simple. The reason is the 

numerous possibilities of obstacles in numerous ways. Consider a 

robot cleaning a house. There would be multiple paths possible 

with numerous obstacles of varying sizes. The robot is supposed 

to avoid all of them and reach the destination. The scalability of 

these algorithms is quite limited in nature. In the presence of 

complex maps they can hence cause problems. An example would 

be the maze like structure where a robot has to find its way out of 

the maze. 

1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 0 1 

1 0 0 0 0 0 0 1 0 1 

1 1 1 1 1 1 0 1 0 1 

1 0 0 0 0 1 0 1 0 1 

1 1 1 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

 

Figure 1(a): The maze solving problem input 

01 02 04 06 08 09 11 13 15 17 

03 00 00 00 00 00 00 00 00 19 

05 10 26 28 35 40 00 00 00 21 

07 00 00 00 00 00 00 22 00 00 

12 32 00 00 00 00 00 00 00 23 

14 00 00 00 00 00 00 00 00 25 

16 24 38 00 00 00 00 00 00 27 

18 00 00 00 00 00 00 00 00 00 

20 29 30 31 33 34 26 37 39 41 

 

Figure 1(b): The solution generated by MNHS 

The MNHS algorithm takes care of these problems by trying to 

exploit each and every path possible. This has a multiplying effect 

on the time complexity, but in return is an assurance in case of the 

rapid change in heuristics. This is what would come to rescue if 

by chance the robot reached quite near to the goal only to find that 

there is no way to reach it. 

This concept is shown in figure 2. Here the best path has almost 

reached the goal. At the same time the other paths have been 

expanded to a reasonably good degree that are ready to provide a 

backup. The obstacles have not been shown in the figure. The 



figure is just meant to explain the general concept of the 

algorithm. 

For this problem the historical cost is taken as the distance from 

the source to the current position. The heuristic cost is the 

distance of the current position to the goal position. The total cost 

is the sum of both the costs. 

 

 

 
 

 

 

 

 

 

 

 

Figure 2: The concept of MNHS in path planning 

The problem of path planning deals with the determination of a 

path which navigates the robot in such a way that no collision 

occurs. In order to solve the problem we assume that the input is 

already available in form of a map. The map is a representation of 

the robotic world that tells where the obstacles are found and 

which are the traversable regions. Here we assume that the map is 

available in form of grid of size MXN. Each of the cell of this grid 

contains 0 or 1. A 0 in such a grid signifies that the region has an 

obstacle present. Similarly a 1 signifies that the region is 

traversable and may be used for the purpose of travelling. The 

obstacles may span across multiple cells.  

It is further assumed that the grid given as input is of considerable 

size. If the grid exceeds a certain threshold of size, it would 

become computationally impossible for the algorithm to find a 

result. Hence, we restrict the size of the map according to the 

computational capability and time constraints in whatever real life 

specific problem is being considered. 

The algorithm would generate as its output a path that can be used 

by the robot for the navigation purposes. The path may be 

traversed using any robotic controller. This is for the execution of 

the steps given by the planning algorithm. 

There are 2 major issues in the use of MNHS in the problem of 

path planning. These are the problem representation in the form of 

a graph, fixing the value of parameter α. We discuss both of them 

one by one. 

4.1 Graphical Representation of Problem  
The MNHS is a graph searching algorithm. It is hence necessary 

to first formulate the problem in the form of a graph. Every grid of 

the map corresponds to a vertex of the graph. A graph vertex may 

hence be denoted by (i,j) where i and j refer to the position of the 

vertex with respect to the 2 coordinate axis. A vertex exists in the 

graph only if it is accessible. In other words if some position is 

occupied by some obstacle in the robot map, it is not stated as a 

valid graphical vertex.  

The edges in this graph are in the form of valid robot moves. An 

edge exists between two vertices V1 and V2 only if the robot can 

make a direct move between the two vertices. The weight of the 

vertex is the total length of the path in between V1 and V2. 

Suppose that a robot is presently located at location V(i,j). In our 

model the robot can only move to the vertices A(i-1,j), B(i-1,j+1), 

C(i,j+1), D(i+1,j+1), E(i+1,j), F(i+1,j-1), G(i,j-1), H(i-1,j-1), I(i-

1,j+2), J(i+1,j+2), K(i+2,j+1), L(i+2,j-1), M(i+1,j-2), N(i-1,j-2), 

O(i-2,j-1) and P(i-2,j+1) as shown in Figure 3. The weights of the 

edges are 1, √2 or √5. It may be noted that other vertices in the 

figure are not connected directly as they may easily be visualized 

as a combination of 2 or more moves totaling to same weight. 
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Figure 3: The edges between the vertices in problem graph 

Hence any vertex can be connected to a maximum of 8 vertices 

around it, subjected to its existence and presence of obstacles. 

Here it may also be observed that by converting the problem into 

this map we have made the robotic moves discrete. Now the robot 

has a limited number of choices of basic moves that it may make. 

These choices play a big role in deciding the time and memory 

complexity of the MNHS. A higher number of choices may mean 

a larger complexity. For the same reason we cannot allow the 

robot to make all kinds of moves in the continuous domain. 

4.2 MNHS Uncertainty Parameter α  
The MNHS has an extra parameter that helps us control the 

algorithm. It was earlier shown by the authors that if α is 1, the 

algorithm behaves like a conventional A* algorithm and if α is 

infinite, the algorithm behaves like the Breadth First Search [21]. 

In the problem of path planning this factor should be fixed 

according to the uncertainty of the map. If the heuristics may 

fluctuate very rapidly, this factor must be high. This would be the 

situation in case of a maze-like map with large number of 

complex obstacles. In most simple graphs, this factor may be kept 

low.  

5. RESULTS 
In order to test the algorithm, we developed a simulation engine 

of our own. The engine was made keeping in mind the practical 

applicability of the algorithm on the robot. The simulation engine 

took as input the map. This was given in the form of an image. 

The algorithm then executed the algorithm to compute the path. 

The path was shown using JAVA Applets. 

We applied various tests to the algorithm in order to ensure that 

the algorithm behaves well in each and every condition. These 

tests are discussed in the next sections. 



5.1 Case I: No Obstacle Condition 
Initially we did not place any obstacle in the path from the source 

to destination. The algorithm was made to run on a completely 

blank map. We observed that the algorithm traced the path from 

the source to the destination following a straight line path. This 

was the shortest path possible. The results of the algorithm are 

shown in Figure 4(a). The robot was supposed to move from the 

top left corner to the bottom left corner. The size of the grid was 

100X100. The value of α was fixed to be 5. 

 

Figure 4(a): The result of MNHS for Case I 

5.2 Case II: Single Obstacle 
The second case we considered was of a single obstacle in the 

path from the source to destination. The robot easily avoided the 

obstacle and marched towards the goal position. This was also the 

shortest path possible. The results of the algorithm are shown in 

Figure 4(b). The robot was supposed to move from the top left 

corner to the bottom left corner. The size of the grid was 

100X100. The value of α was fixed to be 5. 

 

Figure 4(b): The result of MNHS for Case II 

5.3 Case III: Complex Obstacles 
The last case we presented before the algorithm was to test its 

ability to handle complex inputs. Various complex obstacles were 

placed in the path of the robot from the source to destination. The 

robot again easily avoided the obstacle and marched towards the 

goal position. This was also the shortest path possible. The results 

of the algorithm are shown in Figure 4(c) and 4(d). The robot was 

supposed to move from the top left corner to the bottom left 

corner. The size of the grid was 100X100. The value of α was 

fixed to be 5. 

 

Figure 4(c): The result of MNHS for Case III, 1st map 

 

Figure 4(d): The result of MNHS for Case III, 2nd map 

6. CONCLUSIONS 
In this paper we proposed the use of MNHS to solve the problem 

of robotic path planning. We saw that we were able to solve the 

problem in almost all given scenarios well in time. The MNHS 

proved to be a great algorithm for the purpose. 

The algorithm further needs to be used in practical life scenarios 

which are more complex than the cases presented here. Also the 

value of α was kept constant in the cases presented. The 

determination and setting of the most optimal value of α needs to 

be studied in the future. 
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