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Abstract— This paper presents a robotic pick-and-place sys-
tem that is capable of grasping and recognizing both known
and novel objects in cluttered environments. The key new
feature of the system is that it handles a wide range of
object categories without needing any task-specific training
data for novel objects. To achieve this, it first uses a category-
agnostic affordance prediction algorithm to select among four
different grasping primitive behaviors. It then recognizes picked
objects with a cross-domain image classification framework
that matches observed images to product images. Since product
images are readily available for a wide range of objects (e.g.,
from the web), the system works out-of-the-box for novel objects
without requiring any additional training data. Exhaustive
experimental results demonstrate that our multi-affordance
grasping achieves high success rates for a wide variety of objects
in clutter, and our recognition algorithm achieves high accuracy
for both known and novel grasped objects. The approach was
part of the MIT-Princeton Team system that took 1st place in
the stowing task at the 2017 Amazon Robotics Challenge. All
code, datasets, and pre-trained models are available online at
http://arc.cs.princeton.edu

I. INTRODUCTION

A human’s remarkable ability to grasp and recognize

unfamiliar objects with little prior knowledge of them has

been a constant inspiration for robotics research. This ability

to grasp the unknown is central to many applications: from

picking packages in a logistic center to bin-picking in a

manufacturing plant; from unloading groceries at home to

clearing debris after a disaster. The main goal of this work

is to demonstrate that it is possible – and practical – for a

robotic system to pick and recognize novel objects with very

limited prior information about them (e.g. with only a few

representative images scraped from the web).

Despite the interest of the research community, and despite

its practical value, robust manipulation and recognition of

novel objects in cluttered environments still remains a largely

unsolved problem. Classical solutions for robotic picking

require recognition and pose estimation prior to model-based

grasp planning, or require object segmentation to associate

grasp detections with object identities. These solutions tend

to fall short when dealing with novel objects in cluttered

The authors would like to thank the MIT-Princeton ARC team members
for their contributions to this project, and ABB Robotics, Mathworks, Intel,
Google, NSF (IIS-1251217 and VEC 1539014/1539099), and Facebook for
hardware, technical, and financial support.

✓❌ ❌
Fig. 1. Our picking system grasping a towel from a bin full of objects,
holding it up away from clutter, and recognizing it by matching observed
images of the towel to an available representative product image. The entire
system works out-of-the-box for novel objects (appearing for the first time
during testing) without the need for additional data collection or re-training.

environments, since they rely on 3D object models and/or

large amounts of training data to achieve robust performance.

Although there has been some inspiring recent work on de-

tecting grasp affordances directly from RGB-D pointclouds

as well as learning-based recognition systems to handle the

constraints of novel objects and limited data, these methods

have yet to be proven in the constraints and accuracy required

by a real task with heavy clutter, severe occlusions, and

object variability.

In this paper, we propose a system that picks and recog-

nizes objects in cluttered environments. We have designed

the system specifically to handle a wide range of objects

novel to the system without gathering any task-specific

training data for them. To make this possible, our system

consists of two components: 1) a multi-modal grasping

framework featuring four primitive behaviors, which uses

deep convolutional neural networks (ConvNets) to predict

affordances for a scene without a priori object segmentation

and classification; and 2) a cross-domain image matching

framework for recognizing grasped objects by matching them

to product images, which uses a ConvNet architecture that

adapts to novel objects without additional re-training. Both

components work hand-in-hand to achieve robust picking

performance of novel objects in heavy clutter.

We provide exhaustive experiments and ablation studies

to evaluate both components of our system. We demon-
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strate that the multi-affordance predictor for grasp planning

achieves high success rates for a wide variety of objects in

clutter, and the recognition algorithm achieves high accuracy

for known and novel grasped objects. The system combining

these algorithms took 1st place in the stowing task of the

Amazon Robotics Challenge (ARC), being the only system

to have successfully stowed all known and novel objects

from an unstructured tote into a storage system within the

allotted time frame. Fig. 1 shows our robot in action during

the competition.

In summary, our main contributions are:

• An object-agnostic picking framework using four prim-

itive behaviors for fast and robust picking, utilizing

a novel approach for estimating parallel jaw grasp

affordances (Section IV).

• A perception framework for recognizing both known

and novel objects using only product images without

extra data collection or re-training (Section V).

• A system combining these two frameworks for picking

novel objects in heavy clutter.

All code, datasets, and pre-trained models are available

online at http://arc.cs.princeton.edu [1].

II. RELATED WORK

In this section, we briefly review the works related to our

robotic picking system as a whole. Works that are specific

to our grasping (Section IV) and recognition algorithms

(Section V) can be found in their respective sections.

A. Recognition followed by Model-based Grasping

A large number of autonomous pick-and-place solutions

follow a standard approach that involves two steps: object

recognition and pose estimation followed by model-based

grasp planning. For example, Jonschkowski et al. [2] de-

signed object segmentation methods over handcrafted image

features to compute suction proposals for picking objects

with a vacuum. More recent data-driven approaches [3], [4],

[5], [6] use ConvNets to provide bounding box proposals or

segmentations, followed by geometric registration to estimate

object poses, from which motion primitives are determined

using handcrafted heuristics [7], [8]. Nieuwenhuisen et al.

[9] improve many aspects of this pipeline by leveraging

robot mobility, while Liu et al. [10] present a system that

adds to this pipeline with a pose correction stage when

the object is in the gripper. These works typically require

3D models of the objects during test time, and/or training

data with the physical objects themselves. This is practical

for tightly constrained pick-and-place scenarios, but is not

easily scalable to applications that consistently encounter

novel objects, for which only limited data (i.e. representative

product images from the web) is available.

B. Recognition in parallel with Object-Agnostic Grasping

Recently, a number of pick-and-place solutions have also

begun to exploit local features of objects without object

identity to efficiently detect grasps [11], [12], [13], [14],

[15], [16], [17], [18], [19]. Since these methods are agnostic
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Fig. 2. The bin and camera setup. Our system consists of 4 units (top),
where each unit has a bin with 4 stationary cameras: two overlooking the
bin (bottom-left) are used for predicting grasp affordances while the other
two (bottom-right) are used for recognizing the grasped object.

to object identity, they typically work for novel objects and

experience higher picking success rates by eliminating error

propagation from a prior recognition step. Matsumoto et

al. [20] apply this idea in a full picking system by using

a ConvNet to compute grasp proposals, while in parallel

predicting semantic segmentations for a fixed set of known

objects. Although these pick-and-place systems use object-

agnostic grasping methods, they still require some form in-

place object recognition in order to associate grasp proposals

with object identities, which is particularly challenging when

dealing with novel objects in clutter.

C. Active Perception

To make the recognition of novel objects tractable in

clutter, we employ active perception, which is the idea of

exploiting intelligent control strategies for acquiring data

to improve perception [21], [22]. Active perception is a

broad concept that has been explored in many ways. For

example, Jiang et al. [23] describe a robotic system that

actively rearranges objects in the scene (by pushing) in order

to improve recognition accuracy. Many other works [24],

[25] explore next-best-view based approaches to improve

recognition, segmentation and pose estimation results. In-

spired by these works, our system applies active perception

by using a grasp-first-then-recognize paradigm where we

leverage object-agnostic grasping to isolate each object from

clutter in order to significantly improve recognition accuracy

for novel objects.

III. SYSTEM OVERVIEW

We present a robotic pick-and-place system that is capable

of grasping and recognizing both known and novel objects

in cluttered environments. The “known” objects are provided

to the system at training time, both as physical objects and

http://arc.cs.princeton.edu/


Fig. 3. Multi-functional gripper with a retractable mechanism that enables
quick and automatic switching between suction (pink) and grasping (blue).

as representative product images (images of objects available

on the web); while the “novel” objects are provided only at

test time in the form of representative product images.

Overall approach. The system follows a grasp-first-then-

recognize work-flow. For each pick-and-place operation,

it first performs an object-agnostic prediction of the best

affordances, considering multiple different grasping modes

ranging from suction to parallel-jaw grasps (Section IV). It

then selects the best affordance, picks up one object, isolates

it from the clutter, holds it up in front of cameras, recognizes

its category, and places it in the appropriate bin. Although

the object recognition algorithm is trained only on known

objects, it is able to recognize novel objects through a learned

cross-domain image matching embedding between observed

images of held objects and product images (Section V).

Advantages. This system design has several advantages.

First, the affordance prediction algorithm is model-free and

agnostic to object identities and can therefore easily gener-

alize to novel objects without any re-training. Second, the

category recognition algorithm works without task-specific

data collection or re-training for novel objects, which makes

it easily adaptable and scalable for applications in warehouse

automation and service robots where the range of observed

object categories is vast and dynamic. Third, the affordance

prediction algorithm supports multiple grasping modes and

can thus handle a wide variety of objects. Finally, the entire

processing pipeline requires only two forward passes through

deep networks and thus executes very quickly (Table II).

System setup. Our system setup features a 6DOF ABB

IRB 1600id robot arm next to four picking work-cells.

The robot arm’s end-effector is a multi-functional gripper

with two fingers for parallel-jaw grasps and a retractable

suction cup (Fig. 3). This gripper was designed to function

in cluttered environments: finger and suction cup length are

specifically chosen such that the bulk of the gripper body

does not need to enter the cluttered space. Each work-cell

has a storage bin and four statically-mounted RealSense

SR300 RGB-D cameras (Fig. 2): two cameras overlooking

the storage bins are used to predict grasp affordances, while

the other two pointing towards the robot gripper are used to

recognize objects in the gripper. Although our experiments

were performed with this setup, the system was designed to

be flexible for picking and placing between any number of

suction down suction side grasp down flush grasp

Fig. 4. Multiple motion primitives for suction and grasping to ensure
successful picking for a wide variety of objects in any orientation.

reachable work-cells and camera locations. Furthermore, all

manipulation and recognition algorithms in this paper were

designed to be easily adapted to other system setups.

IV. MULTI-AFFORDANCE GRASPING

The goal of the first step in our system is to robustly

grasp objects from a cluttered scene without knowing their

object identities or poses. To this end, we define a set of

motion primitives that are complimentary to each other in

terms of utility across different object types and scenarios

– empirically ensuring that a wide variety of objects in any

orientation can be picked with at least one primitive. Given

RGB-D images of the cluttered scene at test time, we directly

predict a set of affordances to generate grasp proposals with

confidence scores for each primitive, which is then used by

a high-level planner to choose which primitive to use.

A. Motion primitives

We define four motion primitives to achieve robust picking

for typical household objects. Fig. 4 shows example motions

for each primitive. Each of them are implemented as a set of

guarded moves, with collision avoidance and quick success

or failure feedback mechanisms. They are as follows:

Suction down grasps objects with a vacuum gripper ver-

tically. This primitive is particularly robust for objects

with large and flat suctionable surfaces (e.g. boxes, books,

wrapped objects), and performs well in heavy clutter.

Suction side grasps objects from the side by approaching

with a vacuum gripper tilted an an angle. This primitive is

robust to thin and flat objects resting against walls, which

may not have suctionable surfaces from the top.

Grasp down grasps objects vertically using the two-finger

parallel-jaw gripper. This primitive is complementary to

the suction primitives in that it is able to pick up objects

with smaller, irregular surfaces (e.g. small tools, deformable

objects), or made of semi-porous materials that prevent a

good suction seal (e.g. cloth).

Flush grasp retrieves unsuctionable objects that are flushed

against a wall. The primitive is similar to grasp down, but

with the additional behavior of using a flexible spatula to

slide between the target object and the wall.

B. Affordance Prediction

Given the set of pre-defined primitives and RGB-D images

of the scene, we predict pixel-level affordances for each



Rotated Heightmaps

Input RGB-D Images

suction down

suction side

Suction
Affordance

ConvNet

Horizontal
Grasp

Affordance
ConvNet

❌
✓

grasp down

flush grasp❌
✓

Fig. 5. Suction and grasp affordance prediction. Given multi-view RGB-D images, we estimate suction affordances for each image with a fully
convolutional residual network. We then aggregate the predictions on a 3D point cloud, and generate suction down or suction side proposals based on
surface normals. In parallel, we merge RGB-D images into an RGB-D heightmap, rotate it by 16 different angles, and estimate horizontal grasp for each
heightmap. This effectively produces affordance maps for 16 different grasp angles, from which we generate the grasp down and flush grasp proposals.

motion primitive, from which we can generate suction and

grasp proposals. In contrast to model-based manipulation,

our approach relies on the assumption that graspable regions

can be immediate deduced from knowledge of local geome-

try and material properties, which can be inferred from visual

information alone. This is inspired by the more recent data-

driven methods for grasp planning [11], [12], [13], [15], [16],

[17], [18], [19], which no longer rely on object identities or

state estimation. We extend these data-driven approaches by

training models to predict pixel-level affordances for multiple

types of grasps, and employ fully convolutional networks

(FCN) [26] to efficiently obtain dense predictions over a

single image of the scene to achieve faster run time speeds.

In this subsection, we present an overview of how we

predict affordances for our suction and grasping primitives.

For more details about our network architectures, their train-

ing parameters, post-processing steps, and training datasets,

please refer to our project webpage [1].

Predicting Suction Affordances. We define suction pro-

posals as 3D positions where the vacuum gripper’s suction

cup should come in contact with the object’s surface in

order to successfully grasp it. Good suction proposals should

be located on suctionable surfaces, and nearby the target

object’s center of mass to avoid an unstable suction seal

(e.g. particularly for heavy objects). Each suction proposal is

defined as a 3D position x,y,z, its surface normal nx,ny,nz,

and confidence score cs.

We train a fully convolutional residual network (ResNet-

101 [27]), that takes an RGB-D image as input, and outputs

a densely labeled pixel-level binary probability map cs,

where values closer to one imply a more preferable suction

location, shown in Fig. 5 first row. Our network architecture

is multi-modal, where the color data is fed into one ResNet-

101 tower, and 3-channel depth (cloned across channels) is

fed into another ResNet-101 tower. Features from the ends

of both towers are concatenated across channels, followed

by 3 additional convolution layers to merge the features

and output a single binary probability map. We train our

model over a manually annotated dataset of RGB-D images

of cluttered scenes with diverse objects, where pixels are

densely labeled either positive, negative, or neither (using

wide-area brushstrokes from the labeling interface). We train

our network with a learning rate of 0.001, momentum 0.99,

with 0 loss propagation for the regions that are labeled as

neither positive nor negative.

During testing, we feed each captured RGB-D image

through our trained network to generate probability maps

for each view. As a post-processing step, we use calibrated

camera intrinsics and poses to project the probability maps

and aggregate the affordance predictions onto a combined

3D point cloud. We then compute surface normals for each

3D point, which are used to classify which suction primitive

(down or side) to use for the point. To handle objects without

depth, we use a simple hole filling algorithm [28] on the

depth images, and project predicted probability scores onto

the hallucinated depth.

Predicting Grasp Affordances. Each grasp proposal is

represented by the x,y,z position of the gripper in 3D space,

the orientation θ of the gripper around the vertical axis, the

desired gripper opening distance do, and confidence score cg.

To predict grasping affordances, we first aggregate the two

RGB-D images of the scene into a registered 3D point cloud,

which is then orthographically back-projected upwards in the

gravity direction to obtain a “heightmap” image representa-

tion of the scene, with both color (RGB) and height from

bottom (D) channels. To handle objects without depth, we

triangulate no-depth regions in the heightmap using both

views, and fill in the regions with a height of 3cm. We

feed this RGB-D heightmap as input to a fully convolutional

ResNet-101 [27], which densely predicts pixel-level binary

probability maps, which serve as confidences values cg for

horizontally oriented grasps, shown in Fig. 5 second row.

The architecture of this network is similar in structure to

the network predicting suction affordances. By rotating the

heightmap in 16 different orientations and feeding each

individually through the network, we can obtain 16 binary

probability maps, each representing a confidence map for

a grasp in a different orientation. We find this network



architecture to be more flexible to various grasp orientations,

and less likely to diverge during training due to the sparsity

of manual grasp annotations. We train our model over a

manually annotated dataset of RGB-D heightmaps, where

each positive and negative grasp label is represented by a

pixel on the heightmap as well as a corresponding angle

parallel to the jaw motion of the gripper.

Our grasp affordance predictions return grasp locations

(x,y,z), orientations (θ ), and confidence scores (cg). During

post-processing, we use the geometry of the 3D point cloud

to estimate grasp widths (do) for each proposal. We also use

the location of each proposal relative to the bin to classify

which grasping primitive (down or flush) should be used.

V. RECOGNIZING NOVEL OBJECTS

After successfully grasping an object and isolating it from

clutter, the goal of the second step in our system is to

recognize the identity of the grasped object.

Since we encounter both known and novel objects, and we

have only product images for the novel objects, we address

this recognition problem by retrieving the best match among

a set of product images. Of course, observed images and

product images can be captured in significantly different

environments in terms of lighting, object pose, background

color, post-process editing, etc. Therefore, we need a model

that is able to find the semantic correspondences between

images from these two different domains. This is a cross-

domain image matching problem [29], [30], [31].

A. Metric Learning for Cross-Domain Image Matching

To do the cross-domain image matching between observed

images and product images, we learn a metric function

that takes in an observed image and a candidate product

image and outputs a distance value that models how likely

the images are of the same object. The goal of the metric

function is to map both the observed image and product

image onto a meaningful feature embedding space so that

smaller ℓ2 feature distances indicate higher similarities. The

product image with the smallest metric distance to the

observed image is the final matching result.

We model this metric function with a two-stream convo-

lutional neural network (ConvNet) architecture where one

stream computes features for the observed images, and a

different stream computes features for the product images.

We train the network by feeding it a balanced 1:1 ratio of

matching and non-matching image pairs (one observed image

and one product image) from the set of known objects, and

backpropagate gradients from the distance ratio loss (Triplet

loss [32]). This effectively optimizes the network in a way

that minimizes the ℓ2 distances between features of matching

pairs while pulling apart the ℓ2 distances between features

of non-matching pairs. By training over enough examples of

these image pairs across known objects, the network learns a

feature embedding that encapsulates object shape, color, and

other visual discriminative properties, which can generalize

and be used to match observed images of novel objects to

their respective product images (Fig. 6).

Avoiding metric collapse by guided feature embeddings.

One issue commonly encountered in metric learning occurs

when the number of training object categories is small – the

network can easily overfit its feature space to capture only

the small set of training categories, making generalization to

novel object categories difficult. We refer to this problem as

metric collapse.

To avoid this issue, we use a model pre-trained on Ima-

geNet [33] for the product image stream and train only the

stream that computes features for observed images. ImageNet

contains a large collection of images from many categories,

and models pre-trained on it have been shown to produce rel-

atively comprehensive and homogenous feature embeddings

for transfer tasks [34] – i.e. providing discriminating features

for images of a wide range of objects. Our training procedure

trains the observed image stream to produce features similar

to the ImageNet features of product images – i.e., it learns a

mapping from observed images to ImageNet features. Those

features are then suitable for direct comparison to features

of product images, even for novel objects not encountered

during training.

Using multiple product images. For many applications,

there can be multiple product images per object. However,

with multiple product images, supervision of the two-stream

network can become confusing - on which pair of matching

observed and product images should the backpropagated

gradients be based? To solve this problem, we add a module

we call a “multi-anchor switch” in the network. During

training, this module automatically chooses which “anchor”

product image to compare against based on the ℓ2 distance.

We find that allowing the network to select its own criterion

for choosing “anchor” product images provides a significant

boost in performance in comparison to alternative methods

like random sampling.

B. Two Stage Framework for a Mixture of Known and Novel

Objects

In settings where both types of objects are present, we

find that training two different network models to handle

known and novel objects separately can yield higher overall

matching accuracies. One is trained to be good at “over-

fitting” to the known objects (K-net) and the other is trained

to be better at “generalizing” to novel objects (N-net).

Yet, how do we know which network to use for a given

image? To address this issue, we execute our recognition

pipeline in two stages: a “recollection” stage that determines

whether the observed object is known or novel, and a

“hypothesis” stage that uses the appropriate network model

based on the first stage’s output to perform image matching.

First, the recollection stage predicts whether the input

observed image from test time is that of a known object

that has appeared during training. Intuitively, an observed

image is of a novel object if and only if its deep features

cannot match to that of any images of known objects.

We explicitly model this conditional by thresholding on

the nearest neighbor distance to product image features of

known objects. In other words, if the ℓ2 distance between
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Fig. 6. Recognition framework for novel objects. We train a two-stream convolutional neural network where one stream computes 2048-dimensional
feature vectors for product images while the other stream computes 2048-dimensional feature vectors for observed images, and optimize both streams so
that features are more similar for images of the same object and dissimilar otherwise. During testing, product images of both known and novel objects are
mapped onto a common feature space. We recognize observed images by mapping them to the same feature space and finding the nearest neighbor match.

the K-net features of an observed image and the nearest

neighbor product image of a known object is greater than

some threshold k, then the observed images is a novel object.

In the hypothesis stage, we perform object recognition

based on one of two network models: K-net for known ob-

jects and N-net for novel objects. The K-net and N-net share

the same network architecture. However, the K-net has an

additional auxiliary classification loss during training for the

known objects. This classification loss increases the accuracy

of known objects at test time to near perfect performance,

and also boosts up the accuracy of the recollection stage,

but fails to maintain the accuracy of novel objects. On the

other hand, without the restriction of the classification loss,

N-net has a lower accuracy for known objects, but maintains

a better accuracy for novel objects.

By adding the recollection stage, we can exploit both

the high accuracy of known objects with K-net and good

accuracy of novel objects with N-net, though incurring a cost

in accuracy from erroneous known vs novel classification.

We find that this two stage system overall provides higher

total matching accuracy for recognizing both known and

novel objects (mixed) than all other baselines (Table III).

VI. EXPERIMENTS

In this section, we evaluate our multi-affordance prediction

for suction and grasp primitives, our recognition algorithm

over both known and novel objects, as well as our full system

in the context of the Amazon Robotics Challenge 2017.

A. Multi-Affordance Prediction Experiments

Datasets. To generate datasets for affordance predictions, we

designed a simple labeling interface that prompts users to

manually annotate suction and grasp proposals over RGB-D

images. For suction, users who have had experience working

with our suction gripper are asked to annotate pixels of

suctionable and non-suctionable areas on raw RGB-D images

overlooking cluttered bins full of various objects. Similarly,

users with experience using our parallel-jaw gripper are

asked to sparsely annotate positive and negative grasps over

re-projected height maps of cluttered bins, where each grasp

is represented by a pixel on the height map and an angle

parallel to the jaw motion of the gripper. We further augment

TABLE I

MULTI-AFFORDANCE PREDICTION PERFORMANCE

Primitive Method Top-1 Top 1% Top 5% Top 10%

Suction
Baseline 35.2 55.4 46.7 38.5
ConvNet 92.4 83.4 66.0 52.0

Grasping
Baseline 92.5 90.7 87.2 73.8
ConvNet 96.7 91.9 87.6 84.1

% precision of predictions across different confidence percentiles.

each grasp label by adding additional labels with small

jittering (less than 1.6cm). In total, the dataset contains 1837

RGB-D images with suction and grasp labels. We use a 4:1

training/testing split across this dataset to train and evaluate

different models.

Evaluation. In the context of our system, an affordance

prediction method is robust if it is able to consistently

find at least one suction or grasp proposal that works. To

reflect this, our evaluation metric is the precision of predicted

proposals versus manual annotations. For suction, a proposal

is considered a true positive if its pixel center is manually

labeled as a suctionable area. For grasping, a proposal is

considered a true positive prediction if its pixel center is

within 4 pixels and 11.25 degrees from a positive grasp label.

We report the precision of our predicted proposals for

different confidence percentiles in Table I. The precision of

the top-1 proposal is reliably above 90% for both suction

and grasping. We further compare our methods to heuristic-

based baseline algorithms that compute suction affordances

by estimating surface normal variance over the observed

3D point cloud (lower variance = higher affordance), and

computes anti-podal grasps by detecting hill-like geometric

structures in the 3D point cloud. Baseline details and code

are available on our project webpage [1].

Speed. Our suction and grasp affordance algorithms were

designed to achieve fast run-time speeds during test time by

densely predicting affordances over a single image of the

entire scene. In Table II, we compare our run-time speeds to

several state-of-the-art alternatives for grasp planning. Our

own numbers measure the time of each FCN forward pass,

reported with an NVIDIA Titan X on an Intel Core i7-3770K

clocked at 3.5 GHz, excluding time for image capture and

other system-related overhead.



TABLE II

GRASP PLANNING RUN-TIMES (SEC.)

Method Time

Lenz et al. [12] 13.5
Zeng et al. [4] 10 - 15

Hernandez et al. [3] 5 - 40 a

Schwarz et al. [5] 0.9 - 3.3
Dex-Net 2.0 [17] 0.8

Matsumoto et al. [20] 0.2
Redmon et al. [13] 0.07

Ours (suction) 0.06

Ours (grasping) 0.05×n b

a times reported from [20] derived from [3].
b n = number of possible grasp angles.

B. Recognition of Novel Objects Evaluation

We evaluate our recognition algorithms using a 1 vs 20

classification benchmark. Each test sample in the benchmark

contains 20 possible object classes, where 10 are known and

10 are novel, chosen at random. During each test sample, we

feed the recognition algorithm the product images for all 20

objects as well as an observed image of a grasped object.

In Table III, we measure performance in terms of top-1

accuracy for matching the observed image to a product image

of the correct object match. We evaluate our method against

a baseline algorithm, a state-of-the-art network architecture

for both visual search [31] and one shot learning without

retraining [35], and several variations of our method. The

latter provides an ablation study to show the improvements

in performance with every added component:

Nearest Neighbor is a baseline algorithm where we compute

features of product images and observed images using a

ResNet-50 pre-trained on ImageNet, and use nearest neigh-

bor matching with ℓ2 distance.

Siamese network with weight sharing is a re-

implementation of Bell et al. [31] for visual search and Koch

et al. [35] for one shot recognition without retraining. We use

a Siamese ResNet-50 pre-trained on ImageNet and optimized

over training pairs in a Siamese fashion. The main difference

between this method and ours is that the weights between

the networks computing deep features for product images

and observed images are shared.

Two-stream network without weight sharing is a two-

stream network, where the networks’ weights for product

images and observed images are not shared. Without weight

sharing the network has more flexibility to learn the mapping

function and thus achieves higher matching accuracy. All the

later models describe later in this section use this two stream

network without weight sharing.

Two-stream + guided-embedding (GE) includes a guided

feature embedding with ImageNet features for the product

image stream. We find this model has better performance

for novel objects than for known objects.

Two-stream + guided-embedding (GE) + multi-product-

images (MP) By adding a multi-anchor switch, we see more

improvements to accuracy for novel objects. This is the final

network architecture for N-net.

Two-stream + guided-embedding (GE) + multi-product-

TABLE III

RECOGNITION EVALUATION (TOP-1 % ACCURACY)

Method K vs N Known Novel Mixed

Nearest Neighbor 69.2 27.2 52.6 35.0
Siamese ([31], [35]) 70.3 76.9 68.2 74.2

Two-stream 70.8 85.3 75.1 82.2
Two-stream + GE 69.2 64.3 79.8 69.0

Two-stream + GE + MP (N-net) 69.2 56.8 82.1 64.6
N-net + AC (K-net) 93.2 99.7 29.5 78.1

Two-stage K-net + N-net 93.2 93.6 77.5 88.6

images (MP) + auxiliary classification (AC) By adding

an auxiliary classification, we achieve near perfect accuracy

of known objects for later models, however, at the cost of

lower accuracy for novel objects. This also improves known

vs novel (K vs N) classification accuracy for the recollection

stage. This is the final network architecture for K-net.

Two-stage system As described in Section V, we combine

the two different models - one that is good at known objects

(K-net) and the other that is good at novel objects (N-net) - in

the two stage system. This is our final recognition algorithm,

and it achieves better performance than any single model for

test cases with a mixture of known and novel objects.

C. Full System Evaluation in Amazon Robotics Challenge

To evaluate the performance of our system as a whole,

we used it as part of our MIT-Princeton entry for the

2017 Amazon Robotics Challenge (ARC), where state-of-

the-art pick-and-place solutions competed in the context

of a warehouse automation task. Participants were tasked

with designing a robot system to grasp and recognize a

large variety of different objects in unstructured storage

systems. The objects were characterized by a number of

difficult-to-handle properties. Unlike earlier versions of the

competition [36], half of the objects were novel in the 2017

edition of the competition. The physical objects as well as

related item data (i.e. product images, weight, 3D scans),

were given to teams just 30 minutes before the competition.

While other teams used the 30 minutes to collect training

data for the new objects and retrain models, our unique

system did not require any of that during those 30 minutes.

Setup. Our system setup for the competition features several

differences. We incorporated weight sensors to our system,

using them as a guard to signal stop or modify primitive

behavior during execution. We also used the measured

weights of objects provided by Amazon to boost recognition

accuracy to near perfect performance. In the recognition

phase, green screens made the background more uniform to

further boost accuracy of the system. Additionally, we used

the heuristic-based baseline algorithm for predicting parallel-

jaw grasp affordances (evaluated in Table I Row 3 [Grasping

Baseline]). Shortly after the competition, we improved this

component using the data-driven method described in this

paper ([Grasping ConvNet]). We also designed a placing

algorithm that uses heightmaps and object bounding boxes to

determine stable placements for the object after recognition.

Results. During the ARC 2017 final stowing task, we had

a 58.3% pick success with suction, 75% pick success with



grasping, and 100% recognition accuracy during the stow

task of the ARC, stowing all 20 objects within 24 suction

attempts and 8 grasp attempts. Our system took 1st place in

the stowing task, being the only system to have successfully

stowed all known and novel objects and to have finished the

task well within the allotted time frame.

VII. DISCUSSION AND FUTURE WORK

We present a system capable of picking and recognizing

novel objects with very limited prior information about

them (a handful of product images). The system first uses

a category-agnostic affordance prediction algorithm to se-

lect among four different grasping primitive behaviors, and

then recognizing grasped objects by matching them to their

product images. We provide a systematic evaluation of both

components and demonstrate their combination in a robot

system that picks and recognizes novel objects in heavy

clutter, and that took 1st place in the stowing task of the

Amazon Robotics Challenge 2017. Here we summarize some

of the most salient features/limitations of the system:

Object-Agnostic Manipulation. The system finds grasp

affordances directly in the RGBD image. This proved to be

faster and more reliable than doing object segmentation and

state estimation prior to grasp planning [4]. The ConvNet

learns geometric and appearance features that make a region

of an object graspable or suctionable. It also seems to learn

other more complex rules, e.g., that tags are often easier to

suction that the object itself, or that the center of a long

object is preferable than its ends. It would be interesting

to explore the limits of the approach. For example when

attempting to learn affordances for more complex behaviors,

e.g., scooping an object against a wall, which require a more

global understanding of the geometry of the environment.

Pick First, Ask Questions Later. The standard grasping

pipeline is to first recognize and then plan a grasp. In

this paper, however, we demonstrate that it is possible

and sometimes beneficial to reverse the order. Our system

leverages object-agnostic picking to remove the need for

state estimation in clutter, and isolating the picked object

drastically increases object recognition reliability, especially

for novel objects. Accordingly, we conjecture that ”pick first,

ask questions later” is a good approach for applications such

as bin-picking, emptying a bag of groceries, or clearing

debris. However, it is not suited for all applications – for

example, when we need to pick a particular object. In that

case, the system described in this paper needs to be combined

with algorithms that perform state tracking/estimation.

Towards Scalable Solutions. Our system is designed to

pick and recognize novel objects without the need for extra

data collection or retraining. This is a step forward towards

creating robotic solutions that scale to the challenges of

service robots and warehouse automation, where the daily

number of novel objects with which the system might need to

deal with could range from the tens to the thousands, making

data-collection and retraining cumbersome in one case and

impossible in the other. It is interesting to consider what

data besides product images is available that could be used

for recognition using out-of-the-box algorithms like ours.
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