
Robotic Roommates Making Pancakes

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mösenlechner,

Dejan Pangercic, Thomas Rühr and Moritz Tenorth

Intelligent Autonomous Systems

Department of Informatics

Technische Universität München

Email: beetz@cs.tum.edu

Abstract—In this paper we report on a recent public ex-
periment that shows two robots making pancakes using web
instructions. In the experiment, the robots retrieve instructions
for making pancakes from the World Wide Web and generate
robot action plans from the instructions. This task is jointly
performed by two autonomous robots: The first robot opens
and closes cupboards and drawers, takes a pancake mix from
the refrigerator, and hands it to the robot B. The second robot
cooks and flips the pancakes, and then delivers them back to
the first robot. While the robot plans in the scenario are all
percept-guided, they are also limited in different ways and rely
on manually implemented sub-plans for parts of the task. We
will thus discuss the potential of the underlying technologies as
well as the research challenges raised by the experiment.

I. INTRODUCTION

Enabling robots to competently perform everyday manip-

ulation activities such as cleaning up, setting a table, and

preparing simple meals exceeds, in terms of task-, activity-,

behavior- and context-complexity, anything that we have so far

investigated or successfully implemented in motion planning,

cognitive robotics, autonomous robot control and artificial

intelligence at large. Robots that are to perform human-scale

activities will get vague job descriptions such as “clean up“

or “fix the problem“ and must then decide on how to perform

the task by doing the appropriate actions on the appropriate

objects in the appropriate ways in all contexts.

Consider a robot has to perform a task it has not been

programmed for — let’s say making a pancake. First of all,

the robot needs instructions which actions to perform. Such

instructions can be found on webpages such as wikihow.com,

though they are typically incomplete, vague, and ambiguous

because they were written for human rather than robot use.

They therefore require some interpretation before they can be

executed. In addition to this procedural knowledge, the robot

must also find and recognize the ingredients and tools that are

needed for the task. Making pancakes requires manipulation

actions with effects that go far beyond the effects of pick-

and-place tasks in terms of complexity. The robot must pour

the right amount of pancake mix onto the center of the

pancake maker, and monitor the action success to forestall

undesired effects such as spilling the pancake mix. It must

handle the spatula exactly enough to push it under the pancake

for flipping it. This requires the robot to select the appropriate

force in order to push the spatula just strong enough to get

under the pancake, but not too strong to avoid pushing it off

the pancake maker.

In a recent experiment1 we have taken up the challenge

to write a comprehensive robot control program that indeed

retrieved instructions for making pancakes from the world-

wide web2, converted the instructions into a robot action plan

and executed the plan with the help of a second robot that

fetched the needed ingredients and set the table. The purpose

of this experiment is to show the midterm feasibility of the

visions spelled out in the introductory paragraph and more

importantly the better understanding of how we can realize

control systems with these capabilities by building such a

system. We call this an experiment rather than a demonstration

because we tested various hypotheses such as whether the

localization accuracy of a mobile robot suffices to perform

high accuracy tool manipulation such as pushing a spatula un-

der the pancake, whether successful percept-guided behavior

for sophisticated manipulation actions can be generated, and

whether robot plans can be generated from web instructions

made for human use. Indeed, the success of this experiment

and the need for generalization and automation of methods we

identified as essential for the success of the experiment define

the objectives of the current research agenda of our group.

Fig. 1. TUM-Rosie and TUM-James demonstrating their abilities by
preparing pancake for the visitors.

In the remainder of the paper we proceed as follows. We

will start with explaining how the robot interprets the abstract

web instructions and aligns them with its knowledge base, with

the plans in its plan library and with the perceptual knowledge

about the ingredients and objects in its environment. Then

1Accompanying video: http://www.youtube.com/watch?v=gMhxi1CJI4M
2http://www.wikihow.com/Make-Pancakes-Using-Mondamin-Pancake-Mix



we show how we refine that plan and produce executable

control programs for both robots, followed by an explanation

of the generalized pick-and-place actions that we used to

open containers such as drawers and the refrigerator. We then

discuss the action of actually making the pancake, including

the perception techniques and the dexterous manipulation

using a tool. Subsequently, we give a short introduction into

the framework that enables our robots to reason about the

performed actions. The paper is concluded with a discussion

of limitations and open research issues.

II. GENERATING SKETCHY PLANS FROM INSTRUCTIONS

Our robots are equipped with libraries of plans for perform-

ing everyday manipulation tasks. These libraries also include

plans for basic actions such as picking up an object, putting it

down or pouring that are used as basic elements in generated

plans. Whenever the robot is to perform a task that is not

provided by the library, it needs to generate a new plan from

these basic elements for the novel task. The computational

process for generating and executing plans is depicted in

Figure 2. The robot searches for instructions how to perform

the tasks and translates them into robot action plans. This

methods stands in contrast to action planning methods like

those that are used in the AI planning competitions [1].

Fig. 2. Translation of web instructions into a robot plan.

In the experiment, the robots were to make pancakes and

used instructions from wikihow.com to generate a robot plan.

These instructions specify the ingredients, milk and prepared

pancake mix, and a sequence of action steps:

1) Take the pancake mix from the refrigerator

2) Add 400ml of milk (up to the marked line) shake the

bottle head down for 1 minute. Let the pancake-mix sit

for 2-3 minutes, shake again.

3) Pour the mix into the frying pan.

4) Wait for 3 minutes.

5) Flip the pancake around.

6) Wait for 3 minutes.

7) Place the pancake onto a plate.

Generating a plan from such instructions requires the robot

to link the action steps to the appropriate atomic plans in

its library and to match the abstract ingredient and utensil

descriptions with the appropriate objects in its environment. It

further needs to select the appropriate routines for perceiving,

locating and manipulating these objects. Please note that the

robot did not have a control routine for filling milk into a

bottle. We left out this step in the generated control program

and added the milk manually.

Our robots use an ontology that formally describes and

defines things and their relations – descriptions like the ones

that can be found in an encyclopedia, which are thus referred

to as encyclopedic knowledge. Examples of such knowledge

are that a refrigerator is a container (i.e. it can contain other ob-

jects), a sub-class of cooling devices and electrical household

appliances, and a storage place for perishable goods. In our

system, we use KNOWROB [2]3, an open-source knowledge

processing framework that provides methods for acquiring,

representing, and reasoning about knowledge.

Using the encyclopedic knowledge base the translation of

instructions into robot plans is performed by the following

sequence of steps [3]. First, the sentences are parsed using

a common natural-language parser [4] to generate a syntax

tree of the instructions. The branches of the tree are then

recursively combined into more complex descriptions to create

an internal representation of the instructions describing the

actions, the objects involved, locations, time constraints, the

amount of ingredients to be used etc. The words in the

original text are resolved to concepts in the robot’s knowledge

base by first looking up their meanings in the WordNet

lexical database [5], and by then exploiting mappings between

WordNet and the Cyc [6] ontology. Our system employs a

simple method based on the phrase context and on information

about object-action pairs obtained from Cyc to disambiguate

between possible word meanings.

(def-top-level-plan ehow-make-pancakes1 ()

(with-designators (

(pancake (an object ’((type pancake)

(on ,frying-pan))))

(mixforbakedgoods2 (some stuff ’((type pancake-mix)

(in ,refridgerator2))))

(refrigerator2 (an object ’((type refrigerator))))

(frying-pan (an object ’((type pan))))

(dinnerplate2 (an object ’((type plate))))

(location0 (a location ‘((on ,dinnerplate2)

(for ,pancake2)))))

(achieve ‘(object-in-hand ,mixforbakedgoods2))

(achieve ‘(container-content-transfilled

,mixforbakedgoods2

,frying-pan))

(sleep 180)

(achieve ‘(object-flipped ,pancake))

(sleep 180)

(achieve ‘(loc ,pancake ,location0)))))

The code above shows the sketchy plan that has been

generated from the web instructions. The declaration part

creates entity descriptors for the objects referred to in the

instructions. A descriptor consists of an article (definite or

indefinite), an entity type (object, location, stuff, ...) and a set

3http://www.ros.org/wiki/knowrob



Fig. 3. Bottle of pancake mix from GermanDeli.com (left), and the extracted
features to recognize the object (right).

of attribute-value pairs. Stuff refers to homogeneous things

here, such as water, milk, etc. Then the instruction steps

themselves are specified as a sequence of achievement goals,

where the states to be achieved include the object descriptors

they refer to. Thus, instead of specifying the action to take the

pancake mix, the plan specifies the goal of having the pancake

mix in the hand as its corresponding plan step. We will discuss

the reasons in the next section.

III. REFINING THE SKETCHY PLAN

Two aspects of the generated plan deserve further dis-

cussion. First, the plan consists of a declaration part, in

which objects and other kinds of entities are specified, and

second, the action steps in the instructions are substituted by

declarative goal statements.

Ingredients and utensils that are listed in the instructions are

included into the plan as designators, which are descriptions

of entities such as objects or locations. Designators in the

plan are often abstract and incomplete. For example, the robot

has inserted a local plan variable mixforbakedgoods2 that is

bound to the object description (some stuff (type pancake-

mix)), which can be directly inferred from the web instructions

(ingredients: pancake mix). However, as the robot has to fetch

the pancake mix, it needs tools required to recognize and

localize it first.

A. Recognizing Objects

Many ingredients can be recognized based on the images

on the front faces of their packages, which are often pictured

in shopping websites. To use these information resources, we

have downloaded the product descriptions of the web site

GermanDeli.com, which contains about 3500 common prod-

ucts. The products of this website are categorized and include

a picture of the front page of the package. In the robot’s

knowledge base, the product is described as a specialization

of the respective category like DairyProduct.

The product images are used to learn Scale Invariant Feature

Transform (SIFT) [7] features for their recognition. Thus,

when a plan contains an abstract description of an object, the

robot searches its library of object models for a matching SIFT

descriptor. The designator for the object is then extended with

the descriptor. The following code snipped shows an example

designator extended with such a SIFT descriptor.

(an object (type pancake-mix)

(perceptual-appearance sift-descriptor-23))

At execution time, the designator tells the robot’s perception

system that and how it can detect, recognize, and localize the

object. The perception component used for this task is the

so-called ODUFINDER (Objects of Daily Use Finder4).

ODUFINDER first searches for point clusters (object can-

didates) that are supported by horizontal planes [8]. These

point clusters are detected in colored 3D point clouds that

have been generated by combining a scan of a tilting laser

scanner with a camera image of the same scene. The region

of interest corresponding to the object candidates is generated

by back-projecting the point clusters into the image.

To recognize objects ODUFINDER uses a database of object

images which can for example be the ones obtained from

GermanDeli.com. ODUFINDER compares SIFT features ex-

tracted from the region of interest with the object descriptions

in the database. The database search is performed using a

vocabulary tree, a technique that has been developed to search

for text strings in huge text archives and was first applied to

image search in [9]. To achieve higher accuracy, ODUFINDER

first oversegments the regions of interest and then combines

detected object parts to infer the presence of the complete

object. These extensions substantially increase the detection

rate and reliability in the presence of occlusions and difficult

lighting conditions.

B. Finding Objects

In real household environments, objects are typically stored

inside cupboards and drawers, so the robot has to search for

them before it can recognize them. To find the required objects

quickly, a robot should search for the objects at their most

likely places first. Our robots use a semantic 3D object map of

the environment in which structured models of objects, such as

cupboards consisting of the container, the door, the handle and

hinges, are associated with first-order symbolic descriptions

of the objects that mainly come from the robot’s encyclopedic

knowledge base KNOWROB-MAP [10]. The environment map

also contains information about common locations of objects

of daily use.

Figure 4 shows the part of the knowledge base that is

relevant for inferring likely locations for the pancake mix. This

knowledge base describes pancake mix as a perishable item

and a kind of groceries, i.e. a kind of object that can be found

in the GermanDeli online shop. It further contains information

about refrigerators, namely that they are household appliances,

cooling devices, container artifacts, and that they are storage

places for perishable goods. Using the following Prolog rule

that states that a possible location for an object is its storage

place

possibleLocation(Obj,Loc)

:- storagePlaceFor(Obj,Loc)

the robot can infer that the pancake mix can perhaps be found

4http://www.ros.org/wiki/objects of daily use finder



Fig. 4. Reasoning steps to infer a probable storage location for a bottle of pancake mix.

in the refrigerator and update the object descriptor for the

pancake mix accordingly:

(an object

(type pancake-mix)

(perceptual-appearance sift-descriptor-23)

(at (a location (inside refrigerator2))))

As the result of the plan refinement phase, we have com-

bined some of the individual entity descriptors (pancake2, mix-

forbakedgoods2, refrigerator2, and location1) into a combined

descriptor that also includes the knowledge that the pancake

is created by pouring pancake mix onto the pancake maker.

This descriptor is:

(an object

(type bottle)

(contains (some stuff (type pancake-mix)))

(perceptual-appearance sift-descriptor-23)

(at (a location (inside refrigerator2))))

IV. GENERALIZED PICK & PLACE ACTIONS

Another research topic covered in the experiment is the

performance of generalized fetch and delivery tasks. The PR2

robot in our experiment was to pick, carry, and place bottles

of pancake mix, plates, spatulas, and knives and forks. The

objects required different means of perception. Some objects

were perceived using 3D data from structured light stereo and

without prior model knowledge, while others where detected

and recognized by their appearance, and yet others using

3D CAD models. The objects where placed on counters, in

drawers and the fridge. The objects also require different

strategies for picking them up, some of them like the plates

required coordinated bimanual grasping with an additional

constraint of holding the object horizontal.

Performing pick and place tasks in such a general setting

is a surprisingly difficult task. Even a simple pick up action

requires the robot to decide where to stand, which arm to use,

which grasp to apply and where to grasp, to name only a few.

The decision-making tasks become even more complex. Each

of these decisions depend on the context: the objects acted on,

their states, the scene, the task, whether people are present, the

habits and preferences of users, and so on.

Fig. 5. The PR2 opening different containers using the same controller
without knowledge of the mechanism but only of the handle position.

One of the aspects we investigated in more depth in the

experiments was how to open pieces of furniture. Figure 5

shows the robot opening various cupboards, drawers and

appliances in the context of these fetch and delivery tasks.

We developed a general controller that uses the compliance of

the arms and the fingertip sensors to open different types of

containers without a-priori knowledge of the mechanism (e.g.

rotational or prismatic) [11]. The controller moves the robot’s

base during the process of opening containers when necessary.

The trajectory of minimum resistance is followed, initialized

by a direction defined by the furniture surface normal.

As the general routine for opening containers is very slow,

the robot learns an articulation model for the containers when

it opens them for the first time. Later, the robot uses the

recorded trajectory in subsequent runs to open the container

faster, only monitoring deviations from the trajectory for fail-

ure detection. The robot base pose used during manipulation

is chosen optimistically, only regarding principle reachability.

An actual motion plan for the arm is only generated once the

robot is at its manipulation location; if motion planning fails,

the robot navigates to a different pose and tries again.

V. PERCEPTION-GUIDED PANCAKE MAKING

The experiment also includes the realization of a simple

manipulation task that exhibits many characteristics of meal

preparation tasks: cooking a pancake on a pan. Taking au-

tonomous robot control from pick and place tasks to everyday

object manipulation is a big step that requires robots to



Fig. 6. Using the fingertip sensors to maintain a good grasp (left). The
trajectory of the hand while opening the fridge (right).

understand much better what they are doing, much more

capable perception capabilities, as well as sophisticated force-

adaptive control mechanisms that even involve the operation

of tools such as the spatula.

In this section, we consider the process of making the

pancakes by structuring it into the three steps specified in

the instruction: 1) pouring the pancake mix; 2) flipping the

pancake; and 3) putting the finished pancake on the plate.

All steps are performed autonomously through the use of

perception-guided control routines.

A. Pouring the Pancake Mix onto the Pancake Maker

The first step, pouring the pancake mix requires the robot

to 1) detect and localize the cooking pan or pancake-maker as

well as the bottle with the pancake mix, 2) pick up the pancake

mix and position the tip of the bottle above the center of the

pancake maker, and 3) pour the right amount of pancake mix

onto the pancake maker. We will discuss these steps below.

1) Detecting and Localizing the Relevant Objects: The

robot performs the detection and localization of the relevant

objects using object type specific perception routines. The

black color in combination with the metallic surface of the

pancake maker makes the readings of time-of-flight sensors

very noisy, and the heat of the pancake maker requires

particularly high reliability of operation. On the other hand,

the accuracy demands for successful action execution are

less for the destination of the pouring action (roughly in

the center of the object) than for successfully grasping an

object. One basic principle that we used for the realization

of perceptual mechanisms is that we apply a team of context

specific perception mechanisms rather than aiming for a single

but overly general perception mechanism [12].

Thus we equipped the robot with a previously calibrated

planar shape model of the top plane of the pancake maker in

order to roughly detect and localize it. For matching it in the

online phase we used the method proposed by Hofhauser et

al. [13] on images of a RGB-camera, which gives an accurate

result in less than half a second.

The method for localizing the pancake mix also exploits the

task context by using the position where the other robot put

the mix as prior information. Thus, the robot can confine itself

to finding a point cluster at the approximate position with the

approximate dimensions of the pancake mix. This method is

efficient as well as reliable and accurate enough to pick up

the pancake mix (see [14] for details on the cluster detection).

The pancake-mix is grasped with a power grasp coupled with

a validation of the grasp success, which we discuss later.

2) Pouring the Adequate Amount of the Pancake Mix: In

order to make pancakes of the appropriate size the robot has to

pour the right amount of pancake mix onto the pancake maker.

This is accomplished by estimating the weight of the mix that

has been poured onto the pan. After successfully lifting the

pancake-mix, the weight of the bottle is estimated using the

measured joint torques.

To pour the pancake mix onto the pancake maker, the robot

estimates the height of the top of the pancake mix bottle and

uses this information to determine the right pose of the robot

hand. The pouring time is adjusted using a hand crafted linear

formula with the weight of the bottle as a parameter.

In order to validate the success and estimate the effects of

the pouring action the robot applies a blob detection with the

image region corresponding to the pancake maker as the search

window. After a color-based segmentation, all components

which are not similar in intensity to the pan are considered

as pancakes or pancake parts. The noise removal on the

segmentation results then yields a sufficiently good model of

the position (relative to the pan) and form of the pancake. This

perception task is performed in real time and also works in

the presence of the spatula.

B. Flipping the Pancake

The key steps in flipping the pancake are 1) to grasp and

hold the spatula sufficiently well to use it as a tool, 2) to

calibrate the spatula with the hand such that the robot can

control and determine the accurate pose of the spatula through

its internal encoders, and 3) to perform adaptive stiffness

control to push the spatula under the pancake without pushing

the pancake off the pancake maker.

1) Picking Up and Holding the Spatula Properly: The

spatula has been modified to give it a broader handle, so that

the robot can hold it securely in its oversized hand.

The spatula is detected, localized, and approximately re-

constructed through the use of our 3D sensors, in this case

the ToF camera. To match the surface of the spatula with the

current sensor data we use the method proposed by Drost et

al. [15]. To train the object we took the result of a 3D cluster

segmentation of the object in a clutter-free scene as the surface

template.

Fig. 7. A supervision system detects good (left) and bad (right) grasps.



To deal with uncertainty in perception that can lead to sub-

optimal grasps, a simple system is used to evaluate the grasp

quality using measured finger positions and torques. To this

end, the data vector distances between current measurements

and known good and bad grasps are calculated and used as

quality values. A low quality score leads to a retry of the grasp,

and if the score is low again, the object is re-localized and the

complete grasping action is repeated.

Figure 7 shows a grasp that fulfills these properties on the

left, and a failed one on the right. Grasps may fail due to

unexpected contacts with parts of the object or delays in the

control of the fingers.

2) Controlling the Spatula as an End Effector: To lift the

pancake successfully, the robot should treat the spatula as a

body part rather than an object that has to be manipulated. This

means the kinematic model of the arm is extended to include

the spatula, and the algorithms used to detect collisions with

the hand are modified to detect collisions on the spatula.

To use the spatula as a tool, its relative position to the

hand has to be known precisely after the robot has grasped it.

The robot performs an online calibration step using the same

method that is used to localize the pancake maker. In this case,

the planar assumption is valid for the complete top part of our

tool. To gain a higher accuracy, the matching is applied several

times, always matching on two stereo images and validating

the consistency of the results. The results from all matchings

are taken as a set of hypotheses, which are used to calculate a

robust mean value in translation and rotation. Figure 8 shows

the position in which the robot holds the spatula (left), the

intrinsic view of the robot in visualization (middle) and the

camera image at this point in time (right).

Fig. 8. Calibration of the spatula.

3) Movement Control of the Spatula Tip: To flip a pancake

with a spatula, the robot must push the spatula under the center

of the pancake without pushing the pancake off and deforming

or destroying it. To do so, the robot pushes the spatula down

until it touches the pan and the tip is parallel to the surface.

The robot moves the spatula in a straight line between the

point of contact with the pan and the center of the pancake.

Figure 9(b) shows the moment when the robot has lowered

the tool until it touched the pan. This contact produces

measurable force changes in the fingers, so that the event can

be detected reliably.

In order to correctly detect the contact of the tip with the

pan, a band pass filter is applied to the 12 torque streams

coming from the hand at 1kHz, eliminating the constant

torques for holding the object and the high-frequency noise

from the motor controllers. We calculate the dot product of

the filtered torque vectors with a template vector, and a high

value is measured shortly after the collision.

(a) Approach the pancake (reference
frames overlayed).

(b) First contact of the spatula
with the pan.

Fig. 9. Flipping the pancake.

After touching the pan, its height is known precisely, and

the rest of the movements take this into account.

4) Picking and Turning the Pancake: The trajectory to pick

up the pancake, lift and turn it was taught by demonstration

and is only parametrized with the pancake’s position, corrected

by the newly estimated height of the pan. The spatula has to be

positioned under the pancake, then the pancake can be lifted.

Afterwards, the pancake has to be turned and dropped back

to the pan. The pancake tends to stick to the spatula in this

stage, which requires the robot to apply various accelerations

to the spatula to separate the pancake again. This introduces

uncertainty about the position of the pancake after finishing

this action.

5) Checking the Estimated Result: Dropping the pancake

back onto the pan can have three possible outcomes: 1) the

pancake falls back to its original position in the center of the

pan, 2) the pancake drops a little bit off the center (usually

still on the pan) and 3) the pancake keeps sticking on the

spatula. The first two cases can be detected by re-detecting the

pancake on the pan, and the third case follows if the pancake

cannot be detected on the pan anymore. While case one does

not require further actions, the second case is corrected by

centering the pancake with the spatula again. In the third case,

the robot continues moving the arm up and down until the

pancake drops.

VI. REASONING ABOUT ACTION EXECUTION

The last topic of the experiment was the demonstration that

the robot was not only performing the manipulation activity,

but that it also knew what it was doing, when, and why. By this

we mean that the robot could answer queries such as “Why

did you open the fridge door?” with “Because I wanted to

grasp the pancake mix.”. This is achieved by symbolically

interpreting logged data from the sensors, the robot poses and

states, as well as the data from the execution of the plans that

have been recorded during the experiment.

An in-depth description of the framework we used can be

found in [16]. Our robots can perform this kind of reasoning

about plans and executed activities because their control pro-

grams are written in the CRAM Plan Language [17]. Besides

being a programming language with features for parallel action

execution and extensive (local) exception handling, synchro-

nization and reactivity, it provides mechanisms to semantically

annotate control programs (plans) and to record the state of



plan execution at any point in time, including which sub-

processes have been started and terminated, and with which

status and result they terminated.

Competences of our robots are captured in plans, carefully

designed concurrent, reactive, perception-guided control pro-

grams that contain explicit semantic annotations in a first-order

representation. For instance, a plan that places an object Obj

at location Table is annotated with Achieve(Loc(Obj, Table))

and one of its sub-plans is Achieve(ObjectInHand(Obj)) (see

the plan in Section II).

When the robot gets a task such as fetching the pancake mix

from the fridge, it starts executing the corresponding plan and

thereby generates a task tree for the plans and subplans that

it executes. Sensor data and control commands continuously

update the robot’s belief state. To allow for post-execution

reasoning, the task tree and the belief state are stored in an

extensive execution log, which contains enough information

for the post execution reconstruction of the state of program

execution at any point in time.

The reasoning framework works on a first-order predicate

logic abstraction of the generated execution log. Abstractions

are generated on demand, i.e. the implementation of the predi-

cates used in queries accesses the sub-symbolic information of

the execution log and creates a symbolic representation of it.

For instance, to state that a variable should be a task (an object

that corresponds to the internal representation of a plan), we

use the predicate Task(tsk) which matches all nodes in the task

tree. To state that a task is a direct sub-task of another one,

we define the predicate Subtask(tskp, tsks). To reason about

semantics, we need to access the purpose of a plan, i.e. its

annotation. For that, we define the predicate TaskGoal(tsk, o).

To infer complex failure situations from execution logs,

defining predicates to access the task tree and annotations of

plans is not sufficient. We also need access to the (believed)

state of the world and changes in the belief. Consider the

following example where we infer all plans that tried to pick

up the pancake mix bottle but failed:

Task(tsk) ∧ TaskGoal(tsk,Achieve(ObjectInHand(obj)))
∧ TaskStart(tsk, ts) ∧ TaskEnd(tsk, te)
∧ DesignatorPropertyAt(obj, Type(PancakeMix), ts)
∧ ¬Holds(ObjectInHand(obj), At(te))

We use predicates to unify time points when a task has

been started and ended and to access the properties of a

designator. Please note that since the properties of a designator

might change with every detection of the object, the predicate

DesignatorPropertyAt also requires a point in time. Finally,

the Holds predicate is used to reason about the (believed) state

of the world. The Holds predicate is not defined over achieve

assertions in plans, but over events that are generated by sensor

callbacks. This allows us to separate what the robot was to do,

i.e. what was stated in the plan, from what the robot actually

did, i.e. what the robot actually perceived.

The system also records low-level data structures such as

trajectories that have been executed. Figure 6 (right) shows

the trajectory of the right hand the robot was following while

opening the fridge. We can unify the list of points with the

variable traj as shown in the following example:

Task ∧ TaskGoal(tsk,Achieve(ObjectOpened(obj)))
∧ TaskStart(tsk, ts) ∧ TaskEnd(tsk, te)
TrajectoryOfFrame(”r gripper tool frame”, ts, te, traj)

This shows that the system can also directly access all low-

level data structures that have been recorded.

VII. CONCLUSIONS AND RESEARCH ISSUES

In this paper we have presented an experiment in which

robots retrieved a simple instruction for a meal preparation

task from the web and semi-automatically translated it into

a robot plan that was jointly executed by two robots. The

experiment was a feasibility study, and we had to deal with

many of the issues identified in [18]. Many aspects have

been solved specifically and some actions have been hand-

coded. We conclude from the experiment that the generation

of robot plans for complex everyday manipulation tasks from

web instructions and their performance with state of the art

mobile manipulation platforms is feasible.

One important aspect of the experiment was that we inte-

grated previously independent research efforts and validated

that they can be combined effectively and contribute to our

overall goals and systems.

For us, the analysis of web instructions that had originally

been created for human use sheds much light on the problem-

solving capabilities that are needed by autonomous robots to

perform everyday manipulation tasks. Very informative are

the information pieces that are missing in web instructions or

spelled out only abstractly. Web instructions often implicitly

assume the objects to be in the right places and only specify

the manipulation actions. They hardly ever state the actions for

fetching items, so a robot carrying out the actions must infer

where the relevant objects are, how they look like, how they

should be held, etc. Thus, the robot control programs have

to be knowledge-intensive to infer the necessary, but missing,

pieces of information. Apart from filling information gaps in

the instructions, the knowledge is also required to bridge the

gap between the abstract instructions and the routines in the

robot’s plan libraries.

Another interesting aspect is the handling of action pa-

rameterizations. Many necessary action parameters are not

specified, for example the height from which the pancake

mix is to be poured. This implies that a robot must know

how the height might affect the outcome of the pouring

action — whether or not the mix is spilled, and whether the

pancake will be circular. In our opinion, the robot must be

capable of mentally executing actions in order to predict their

consequences. To this end, we investigate physical simulation

as a suitable means to equip the robot with these kinds of

predictive capabilities [19] in combination with constraint- and

optimization-based movement specification and execution, as

for example provided by the iTASC framework [20].

Yet another lesson that we learned is the range of perception

tasks that the robot must accomplish: it must detect objects,

recognize, localize, reconstruct them, it has to calibrate the

tools in its hand, it has to monitor the deformation of the



pancake and so on (cf, [21]). Also the objects and stuff that

are to be perceived vary a lot: some objects are textured, others

have identifiable forms, others are transparent and others, like

plates, are indistinguishable from each other. Robot perception

has to go far beyond the library of methods that is currently

used in the control software. So, our research will investigate

perception systems that reason about the right methods to use

for the perception tasks at hand.

Another conjecture that we make is that it will be probably

very difficult to frame an action, such as pushing the spat-

ula under the pancake, as a motion planning and execution

problem. Performing the action successfully goes well beyond

the capabilities of current motion planning frameworks. For

example, the robot has to push the spatula onto the pancake

maker to determine its height and to achieve the required

accuracy, thereby exploiting the scene context. Many everyday

manipulation actions require a good action execution strategy

for their successful execution. We conclude that if we aim

for generality, we must investigate action planning methods

that can generate specialized action execution strategies and

reason about their physical consequences. This requires a new

generation of robot action planning methods that are capable of

naive physics reasoning and can predict action consequences in

continuous action and scene parameter spaces. First attempts

can be found in [22].

VIII. ACKNOWLEDGMENTS

This work is supported in part within the DFG excellence

initiative research cluster CoTeSys (www.cotesys.org) and

by the EU FP7 Project RoboEarth (grant number 248942).

REFERENCES

[1] M. Fox and D. Long, “PDDL2.1: An extension of PDDL for
expressing temporal planning domains.” Journal of Artificial
Intelligence Research, vol. 20, pp. 61–124, 2003.

[2] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing
for Autonomous Personal Robots,” in IEEE/RSJ International
Conference on Intelligent RObots and Systems., 2009, pp. 4261–
4266.

[3] M. Tenorth, D. Nyga, and M. Beetz, “Understanding and
Executing Instructions for Everyday Manipulation Tasks from
the World Wide Web.” in IEEE International Conference on
Robotics and Automation (ICRA)., 2010, pp. 1486–1491.

[4] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,”
in ACL ’03: Proceedings of the 41st Annual Meeting on Asso-
ciation for Computational Linguistics. Morristown, NJ, USA:
Association for Computational Linguistics, 2003, pp. 423–430.

[5] C. Fellbaum, WordNet: an electronic lexical database. MIT
Press USA, 1998.

[6] D. Lenat, “CYC: A large-scale investment in knowledge in-
frastructure,” Communications of the ACM, vol. 38, no. 11, pp.
33–38, 1995.

[7] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[8] R. B. Rusu, I. A. Sucan, B. Gerkey, S. Chitta, M. Beetz, and
L. E. Kavraki, “Real-time Perception-Guided Motion Planning
for a Personal Robot,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
St. Louis, MO, USA, October 11-15 2009, pp. 4245–4252.

[9] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. Washington, DC, USA: IEEE Computer Society,
2006, pp. 2161–2168.

[10] M. Tenorth, L. Kunze, D. Jain, and M. Beetz, “KNOWROB-
MAP – Knowledge-Linked Semantic Object Maps,” in Proceed-
ings of 2010 IEEE-RAS International Conference on Humanoid
Robots, Nashville, TN, USA, December 6-8 2010.

[11] N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Rühr,
M. Tenorth, and M. Beetz, “Autonomous semantic mapping
for robots performing everyday manipulation tasks in kitchen
environments,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), San Francisco, CA,
USA, September, 25–30 2011, accepted for publication.

[12] I. Horswill, “Analysis of adaptation and environment,” Artificial
Intelligence, vol. 73, pp. 1–30, 1995.

[13] A. Hofhauser, C. Steger, and N. Navab, “Edge-based template
matching with a harmonic deformation model,” in Computer
Vision and Computer Graphics: Theory and Applications -
VISIGRAPP 2008, ser. Communications in Computer and In-
formation Science, vol. 24. Berlin: Springer-Verlag, 2009, pp.
176–187.

[14] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time
cad model matching for mobile manipulation and grasping,” in
9th IEEE-RAS International Conference on Humanoid Robots,
Paris, France, December 7-10 2009, pp. 290–296.

[15] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally,
match locally: Efficient and robust 3d object recognition,” in
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2010.

[16] L. Mösenlechner, N. Demmel, and M. Beetz, “Becoming
Action-aware through Reasoning about Logged Plan Execution
Traces,” in Submitted to the IEEE/RSJ International Conference
on Intelligent RObots and Systems., 2010.

[17] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM – A Cog-
nitive Robot Abstract Machine for Everyday Manipulation in
Human Environments,” in IEEE/RSJ International Conference
on Intelligent RObots and Systems., 2010.

[18] C. Kemp, A. Edsinger, and E. Torres-Jara, “Challenges for
robot manipulation in human environments,” IEEE Robotics and
Automation Magazine, vol. 14, no. 1, pp. 20–29, 2007.

[19] L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz, “Simulation-
based temporal projection of everyday robot object manipula-
tion,” in Proc. of the 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Yolum, Tumer, Stone, and
Sonenberg, Eds. Taipei, Taiwan: IFAAMAS, May, 2–6 2011.

[20] R. Smits, T. D. Laet, K. Claes, H. Bruyninckx, and
J. D. Schutter, “itasc: A tool for multi-sensor integration in
robot manipulation,” in Multisensor Fusion and Integration
for Intelligent Systems, ser. Lecture Notes in Electrical
Engineering, H. K. H. Hahn and S. Lee, Eds. Springer,
2009, vol. 35, pp. 235–254. [Online]. Available: http:
//www.springerlink.com/content/v4j60wx14l087354/fulltext.pdf

[21] K. Okada, M. Kojima, Y. Sagawa, T. Ichino, K. Sato, and
M. Inaba, “Vision based behavior verification system of hu-
manoid robot for daily environment tasks,” in Proceedings of the
6th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2006, pp. 7–12.

[22] L. P. Kaelbling and T. Lozano-Perez, “Hierarchical planning
in the now,” in IEEE Conference on Robotics and Automation,
2011.


