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ABSTRACT Certain species of ants can carry out tasks in dense work spaces while maintaining their

ability to accurately manipulate heavy loads, and these advantages are of interest to the robotics community.

We consider a robotic swarm of N ≥ 6 agents that assumes the task of moving a load through a cluttered

space. This forces the swarm to carefully manipulate the orientation of the load, while transporting it to its

destination point. We model this scenario as a 6-PPSS (Prismatic-Prismatic-Spherical-Spherical) redundant

mobile platform, having six degrees of freedom. As with insects, the multitude of agents enables sharing

the burden of the load in the case that one or more agents are blocked by an obstacle. We model this by a

semi-algebraic set of constraints on the distances between the agents and the load. We apply an Extended

Kalman Filter routine, in order to estimate their relative locations. We show how the estimation-error is

reduced when position-information is shared among the agents. These estimations are then used to calculate

the full configuration and investigate the effect of position estimation error on the platform heading error.

We show howmotion planning can then be calculated in themodel’s full configuration space and demonstrate

this with a distributed control scheme. To reduce the search time, we introduce a variant of the crawling

probabilistic road map motion planning algorithm under a set of kinematic constraints and work-space

obstacles. Finally, we exemplify our algorithms on several simulated scenarios.

INDEX TERMS Swarm, load, extended Kalman filter, parallel platform, crawling probabilistic road map.

I. INTRODUCTION

A. ENTOMOLOGY PARALLELS

Ants demonstrate the ability to cooperatively transport

objects without prior knowledge of the objects’ shape and

mass [1]. Careful observation reveals that their modus

operandi demonstrates substantial adaptability to varying

object sizes and terrains while withstanding failure of indi-

vidual insects. At least in some cases and to some extent,

this may involve information sharing regarding agents’ forces

exerted upon them [2]. An individual insect may hold the

object firmly (e.g. apply force and torque) or alternatively,

may just pull the object (e.g. apply force) ( [3] and [2],

respectively).

B. ROBOTIC SWARMS THAT TRANSPORT LOADS

In the robotics literature (e.g. [4, §9], [5]), a swarm usually

refers to a multitude of agents that assume a cooperative

The associate editor coordinating the review of this manuscript and

approving it for publication was Yilun Shang .

mission and that act individually without a central controller.

In most cases, the agents have limited communication capa-

bilities. Among the tasks investigated are mapping [6], [7],

searching [8], and loads manipulating [9].

In non-prehensile approaches to cooperative manipulation,

the load is transported via pushing or rolling while stabi-

lizing the direction of the movement [10]. Ardakani et al.

investigated the task of transporting a plate by a swarm of

omni-directional mobile robots by means of friction [11].

They assumed Coulomb friction at the contact points between

the robots and the plate. A distributed force and torque con-

troller for such agents was proposed [12]. Rus et al. [13]

investigated global control of a set of agents that can commu-

nicate and that are given the task of pushing objects. A similar

task was studied in [14], in which a decentralized group of

robots moved objects while maintaining ‘‘object closure’’

(that is, the agents enclosed the object so that it could be

manipulated). The incorporation of disc-obstacles was con-

sidered in [15]. There, the researchers constructed an artificial

potential field (APF) that holds the agents at the object’s
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boundary, such that obstacles were avoided, while heading to

the target position using navigation function. Kalat et al. [16]

presented a decentralized, communication-free load carrying

approach where each agent relies on the behavior of a coop-

erative virtual agent, so the real team formation is not needed.

Reference [17] proposed a distributed motion planner for

the task. The agents surrounded the object (which may have

an arbitrary shape) and thus managed to estimate the object’s

centroid. The motion controller proposed in [17] is capable

of both translating and rotating the object, by specifying

the agents’ speed with respect to the centroid of the object.

Cooperative manipulation can also be achieved without com-

munication, using vision occlusion [18], passive caster [19],

and inter-robot force measurements [20], [21].

C. LOAD ORIENTING

Agents that carry a load and orient it can be modeled as

a redundant parallel manipulator, where each of its base

points can traverse the plane. Parallel platform, such as

the Stewart-platform and Delta, have been extensively doc-

umented in the literature (c.f. [22], [23]). It is widely

agreed that for thesemechanisms, the payload-to-weight ratio

(i.e. the load’s weight over the mechanism’s total weight, cal-

culated in a regular configuration) is higher than that of serial

chains, as the payload distributes among the actuators. Accu-

racy is also higher since the joint errors do not accumulate.

Additionally, as the actuators are usually positioned at the

base, they excel also in their structural rigidity [24]. On the

other hand, the work-space of a parallel-platform is limited,

as it is a subspace of the intersection of the work-spaces

of its limbs [25]. To overcome the above, researchers have

suggested several structural modifications, for example, the

6- degree of freedom (DOF) mechanisms with linear base-

point-actuators such as the 3-PRPS parallel-platform [26] by

Shim et al. and the 3RPRS introduced in [27]. Totally mobile

parallel platforms (i.e. those that possess 2-translational

degrees of freedom at their base) have also been investigated.

For example, Ben-Horin and Shoham [24] introduced a

six-DOF 3PPRS mechanism, the 3PPSR platforms, which

were previously introduced by Tahmasebi and Tsai [28] and

by Pernette et al. [29]. The 3-PPSP was built by Byun and

Cho [30], and the 3PPRS by Kim et al. [31].

D. LOCALIZATION

The task of carrying a load using a swarm requires cooper-

ation between the agents. In most cases, an agent’s motion

depends on some/all other agents’ positions. The term local-

ization is used in the literature to denote the process of sensing

the agents’ absolute locations, or sensing their (affine) rela-

tive locations (e.g. to one of the agents which may act as a

leader). For clarity, we shall refer to the latter as the swarm’s

distribution. Information about the swarm’s distribution is

needed in many of the previously described cooperative

manipulation strategies. Basiri et al. [32] suggested a sensing

scheme to detect the agents’ positions – a robot generates

chirps at a predefined rate and frequency. The sound waves

are received by an on-board microphone array and the data is

used to estimate the target’s direction. Soysal and Sahin [33]

studied the possible clustering-configurations (aggregation)

of the swarm’s distribution, when confined to a closed arena.

Using a probabilistic aggregation model inspired by social

insects, they proposed a macroscopic model for predicting

the final distribution of aggregates, in terms of the parameters

of the aggregation behavior, the arena size, and the sensing

characteristics of the robots.

Contribution and Paper Organization: As indicated,

the load carrying swarm problem is of interest to the research

community. A number of papers have described swarms and

mechanical systems that may be considered as swarms of

agents carrying loads (i.e. parallel platforms that are mobile

to some extent). Table 1 compares the main characteristics

of these solutions and swarm solutions with the proposed

solution.

Here we address the problem that arises when the carried

load meets an obstacle (as for example, when insects carry a

load inside a tunnel). To this end, the swarm is capable of fully

controlling the load’s spatial orientation as well as its planar

location. This is addressed in the first column of Table 1.

To avoid obstacles in the work space, redundant mobility is

preferable. This is facilitated by the participation of a large

number of agents in the task. One possibility is that N > 6

agents carry the load; alternatively, agents may disengage

from the load (i.e. an agent translating freely, see Table 1,

fourth column). Note that in a case of a large workspace

obstacle, the agents may address the problem by transporting

the load around the obstacle while moving together and keep-

TABLE 1. Literature review comparison.
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ing the formation. Small obstacles in the workspace necessi-

tate a different approach; in such a case, each agent is forced

to avoid the obstacles on its way while continuing to transport

the load towards the destination. A centralized/decentralized,

local/global motion planner can enable a swarm to overcome

obstacles. Here we introduce a decentralized approach for

local maneuvers, together with global crawling probabilistic

road map (CPRM) [35] motion planning. As such, the road

map (i.e. the way-points) is known to the entire swarm,

as with ant swarms (see Subsection II-B below). The last

three columns of Table 1 refer to this issue. In [2] researchers

introduced a set of experiments in which a single informed ant

leads the entire carrying swarm to the target position. This is

equivalent to saying that that the leading ant provides a set of

load-way-points along the way. Here, we introduce a similar

concept where each given way-point also includes the agents’

positions.

Note that the number of swarm agents that participate in

the task of carrying the load may exceed six. Nevertheless,

to fully determine a spatial load in the non-prehensile case, six

agents will suffice. Thus, we assumed that at each moment,

only six agents are actively carrying the load. We assumed

that the base points (agents) can traverse the plane, and thus

addressed the task of controlling both the agents and the ori-

entation of the load while carrying it. To maximize flexibility

of the solution, the agents are modeled as having the ability to

switch roles from time to time (e.g., nonparticipating agents

can join the transport team in order to help maneuver the load

around an obstacle). This can become essential in congested

environments where agents may reach a dead end. To enable

orientation of the load, the agents should know their location.

Thus, the task of self-locating is also addressed in this paper.

The method introduced here resembles the behavior of coop-

erative transport in ants since it enables more than six agents,

is decentralized by nature, and enables spatial re-orientation

of the load, which is essential.

This paper is organized as follows: Section II introduces

the main assumptions of our model (i.e. the sensors that are

available, the means by which the agents communicate and

estimate their location, and the underlying kinematic model).

In Section III, we show how an Extended Kalman Filter

can be applied to solve the swarm’s distribution problem

(i.e. the means of efficiently extracting position estimations

of the agents). Section IV is dedicated to the swarm-load

kinematic model that we used to move the load in six dimen-

sions. Section V introduces a variant of the CPRM motion

planning scheme that is applied to evade planar obstacles

and spatial obstacles. Section VI provides a set of simulated

experiments that demonstrate our approach and algorithms

in both obstacle-free and congested workspaces. Section VII

concludes the paper.

II. MODEL ASSUMPTIONS

A. SENSORS
We assume that each agent is equipped with a magnetometer

(compass) and a sensory system that measures the relative

angle to all other agents (as with a standard camera). These

measurements enable global orientation for all agents, such

that the coordinate systems of all agents are parallel. The

global configuration of the platform (center-of-gravity and

orientation), or at least the position of one of the connected

robots, is assumed to be known.

B. COMMUNICATION

In the literature, a swarm commonly refers to simple physical

agents with minimal communication needs (or having no

communication needs as in [36]). This applies to ants, up to

the point of global motion planning [2]:

‘‘. . .we describe field experiments of cooperative

transport by P. longicornis ants. By combining the

analysis of the load motion with single-ant trajec-

tory data, we find that while the combined force

of the group determines the speed of the load, it is

individual informed ants that steer the direction of

movement.’’

More precisely, their experimentation shows that informed

ants which carry and steer the load, ‘‘lose’’ their orienta-

tion (as their antenna is obstructed by the load) but may

regain it by disengaging for a while. In other words, no spe-

cific ant stays informed along the way, rather several ants

may steer the load along the trajectory. Nevertheless, for

our purposes it suffices to say that global information is

available.

Here we shall assume that all agents are fully aware of

the (estimated) position of all other agents (i.e. they share only

their estimated position, not their planned velocities). Thus,

in each time-step an agent proceeds towards its own goal posi-

tion (or a way-point) while orienting andmoving the platform

(as much as it can) towards the corresponding desired goal

position (or a way-point) of the platform. This is of course

donewhile avoiding obstacles and satisfyingmechanical con-

straints (e.g., avoiding collisions between rods).

C. THE KINEMATIC MODEL

An agent i, located at xi ∈ R
2, which holds the load at point

x
p
i ∈ R

3, may drop the load, provided that another agent j,

located at xi 6= xj, replaces it by holding the load at x
p
j , which

is not necessarily equal to x
p
i . We apply a non-prehensile

approach, in which the agents may only apply forces upon the

load. To prevent an individual agent from applying torques

upon the load, the connection may be modeled as a sphere

joint (S), while the agents that carry the load can traverse the

plane. This sums to a 6-PPSS model of a redundant mobile

platform (as the mobility equals 12), having six degrees of

freedom. In this model, each of the 6 base points can traverse

the plane (PP) - these are the agents that carry the load at a

given moment. As the inverse kinematics of mobile platform

is often hard to calculate, and since this is not the main

focus of this paper, differential kinematic formalism will

be used.
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III. LOCALIZATION AND THE SWARM DISTRIBUTION

In what follows, the set {1, . . . ,N } of all agents in the swarm

is denoted byA. A tilde decoration ζ̃ indicates an estimation

of a quantity ζ . The time-step k is indicated in parentheses

and a ith ∈ A agent related quantity, by a subscript ζi(k).

Locations and measurements are marked by x ∈ R
2 and

z ∈ R, respectively, and a Gaussian distribution with an

expected valueµ and a covariance σ will be denoted through-

out the paper by N (µ, σ ).

A. THE STATE MODEL

In every time-step k , each agent i measures the set of N − 1

angles Zi(k) := {zi,j(k)}i,j∈A towards all other agents j ∈ A

with respect to a global x-axis. This is essential for the estima-

tion process during which the measurement-updates assume

estimated locations X̃ (k) = [x̃1(k), x̃2(k), . . . , x̃N (k)], which

are obviously given in a predetermined local coordinate-

system. The agents communicate only their estimated

positions, so each agent knows the estimated positions of all

other agents.

For real world implementations, a stochastic scenario

(i.e. the agents’ position can only be estimated) is more

realistic than a deterministic one. In such scenarios, the noise

of the odometry measurements di(k), i ∈ A, as well as the

measured angles, must be considered.

We assume a discrete-time state model as the location

equation for the ith agent:

xi(k) = xi(k − 1)+ di(k)+ νi(k) (1)

where di(k) is a single time-step translation vector, νi(k) ∼

N (0, 6i) is the process-noise and 6i is a semi-positive-

definite two-dimensional square matrix that is assumed to

be known. The measured angle from one agent to another

is a random variable that should be summed with the

measurement-noise ω(k) ∼ N (0, σθ ). Therefore, the angle

measured between the ith agent located at xi = (ai, bi) and

some other agent j located at xj = (aj, bj) is given by:

zi,j(k) = atan2(bi − bj, ai − aj)+ ω(k) (2)

Thus, the measurement function for agent i is:

Zi(k) = h(X (k)) (3)

Here h(X ) returns the vector of all relative angles between

the agents (see Eq.2). Our algorithm considers the locations

of all agents as benchmarks for the estimation process. Since

the agents’ locations are random variables, and the estimated

angles h(X̃ (k)) depend on these locations, the uncertainties

can be thought of as inflated measurement noises, resulting

in location-uncertainty, as well as in sensor-noise.

The position uncertainties can be thought of as noise.

So, we add the position covariance to the noise covariance.

This results in an ‘‘inflated’’ Gaussian.

To account for the location uncertainties of the ith and jth

agents, their location distributions must be combined by a

convolution (see [37] for further discussion). For a normal

distribution, the convolution product distribution covariance

is the sum of the distributions’ covariance. Thus, the approx-

imated standard deviation of the measurement-noise (i.e. the

angle measured from the ith agent to the jth agent) can be

selected as:

σi,j = σθ +
λmax(Pi(k))+ λmax(Pj(k))

di,j
(4)

where λmax(A) is the maximal eigenvalue of the matrix A,

Pi(k) is the estimation error covariance matrix of the ith agent

at time k and di,j is the estimated distance between the ith

agent and the jth agent.

Themost common estimation algorithm for non-linear sys-

tems is the ExtendedKalman Filter (EKF).We apply a variant

of this filter for the purpose of position estimation.We assume

that the location uncertainty is the error-estimation matrix Pi,

which is assumed to be normally distributed and computed

by the EKF, as described below. So the matrix Pi(k) is a 2×2

symmetric semi-positive definite matrix.1

B. ESTIMATION PROCEDURE

The estimated set of locations of all agents ∈ A at time k

(estimated by the agent r) is the ordered set (x̃1(k),x̃2(k), . . .).

The estimation procedure, calculated for an agent i, is as

follows: at each time-step, the agent’s estimated location

x̃i(k) is propagated based on the measured locomotion and

using Eq.1. The estimation error propagated covariance is

Pi(k) = Pi(k − 1)+6i. The prediction step follows

xi(k) = xi(k − 1)+ di(k)

the state is then updated:

Ki(k) = Pi(k)Hi(k)
⊤(Hi(k)Pi(k)Hi(k)

⊤ + Ri(k))
−1

and

x̃i(k) 7→ x̃i(k)+ Ki(k)(Zi(k)− h(X̃ (k))

whereRi is a (N−1)-dimensional square diagonalmatrix with

the diagonal σi,j for all j ∈ A \ i. Here Hi(k) is the Jacobian

of h(X ) at X̃ (k).

Assume for simplicity N = 3 and assume for discussion

that the location-uncertainty of the second agent is relatively

small. The locations of all agents can be estimated at once

(the entire state). But note that such a strategy would in some

sense average the covariance of all agents to find the best fit

of the measured angles and would then miss the opportunity

to use the accurate estimation of the second agent. A better

choice would be to estimate the agents’ locations one at a

time. That is, the first agent would estimate the (say) second

agent’s location and then (say) the third’s. In this case, accu-

rate estimation of the second agent would be used to better

estimate the third’s. In the general case, the Rao-Blackwell

theorem states that the variance of the conditional distribution

is less or equal to the variance of the estimator of the entire

1 Here we discuss only the planar case. The spatial case will be discussed
in an extended paper.
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FIGURE 1. The forward kinematics of the six agents that carry the load:
A mobile agent at the base is connected by a passive sphere joint to a
rod, which is connected by a second passive sphere joint to the load. This
is equivalent to a 6PPSS parallel platform. The rods are passive prismatic
joints which attain their minimal length due to the platform’s weight.
These prismatic joints are allowed to extend in the simulation to enable
the agents ‘‘to lose grip’’ of the platform in cases where N > 6.

state (see [38, pp. 475]). This is exactly the foundation of our

algorithm. Note that if the implementation is involved with

communication failure, the EKF estimation error increases

until this failure is solved. In Section VI, we shall examine

the sufficiency of the resulting accuracies for a load carrying

swarm.

IV. LOAD ORIENTATION

Figure 1 defines the vectors xi, x
p
i , li and p, which are given

in global coordinates, with vector bi written in the load coor-

dinate system. The 3× 3 load’s rotation matrix R sets:

xi + li = p+ Rbi

for all i = 1, 2, . . . , 6. Differentiating with respect to time

and noting that |li| = const , yields:

l⊤i ẋi = l⊤i ṗ+ l
⊤
i Ṙbi

which can be written in the matrix form:

J1

(

ṗ

ω

)

= J2ẋ

where we define the gripper’s Jacobian matrix J1 as
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the load angular velocity vector as ω = (ψ̇, θ̇ , φ̇)⊤ (Euler

angular velocities) and the actuation Jacobian matrix as

J2 = diag
(

l⊤1 , l
⊤
2 , . . . , l

⊤
6

)

.

V. MOTION PLANNING

A problem arises as we assume that the agents do not com-

municate their decision making (direction of motion), while,

on the other hand, the load’s configuration obviously com-

plies with the agent’s position. Following the notion that all

the swarm’s members act ‘‘together’’, we solve the motion

planning scheme in the configuration space. The second

computational complexity problem arises since we apply a

probabilistic road map to a multidimensional configuration

space. These two problems are mitigated in this Section.

A. THE CONFIGURATION SPACE

The motion planner will be formulated in the configuration

space C to include all N > 6 agents. Recall that a con-

figuration c is a vector that fully defines the posture of a

mechanism (for a rigorous discussion on this matter see [39]).

The configuration space C is the space of all configurations of

the mechanism, which is usually also equipped with a metric

(here we shall use the Euclidean metric). In the current case,

a configuration c ∈ C is defined as an ordered set of the

planar coordinates of all the agents, followed by the spatial

coordinates of all the nodes of the load (i.e. points on the

load that the agents hold). Thus, for N agents, a configuration

c ∈ C ⊂ R
5N is:

(x1, . . . , xN , x
p
1, . . . , x

p
N ) (5)

for some N ≥ 6. This is obviously a redundant description

of C. To ensure rigidity of the load, we added 4 diagonal

constraints. Note that 3N − 6 distance constraints should be

imposed to enable all rigid transformations of the load. The

platform is modeled as a planar N polygon embedded in R
3,

so 3N − 6 constraints will rigidify the platform leaving 6

DOF for the load transformation. Since rod lengths constitute

N more constraints, each configuration must hold a set of

distance constraints G = {gi(c)}
4N−6
i=1 , where gi : C → R is

the Euclidean norm. We added the work-space obstacles Oi

to G, which keeps the system from: (1) agent-agent collision;

(2) rod-rod collision; (3) platform-obstacle collision; (4)

agent-obstacle collision; (5) rod-obstacle collision. The for-

ward kinematics problem is:

Let A = {a ∈ C|gi(a) = ℓi,∀i ∈ {1, 4N−6}} be the

set of all admissible configurations with the desired

set of lengths {ℓi}
4N−6
1 . Find a configuration c ∈ A

such that 8(c) = max{8(a),∀a ∈ A}, where 8 :

C → R is the proximity to singularity.

Here ℓi = ‖li‖. In this way, we confine the motion in C

to the boundary of the fixed-valued constraint functions. This

is also essential for avoiding configurations in which small

movements of the agents result in large changes in the plat-

form’s orientation (see Subsection VI-A below).

B. RATIONALE

Our approach may be summarized according to the

pseudo-code presented in Algorithm 1, which is a variant

of the CPRM crawling strategy (see [35]). The CPRM is a
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probabilistic road map that entails the additional trait that in

order to populate an arc between way-points c(m) and c(n),

the local planner crawls on the obstacles that obscure the

path between the way-points. Here we assume that the agents

do not communicate their decision making: each agent

advances on its own without knowing what the other

agents will do. In other words, the motion planning algo-

rithm discussed here differs from the CPRM in that in every

time-step, all elements in the direction vector in the config-

uration space C are set to be zero except in two dimensions;

that is, the two corresponding coordinates of one agent.

In Algorithm 1, we define the objective function for the ith

agent as:

ζi := v
(m,n)
i − (ℓi − L)∇ĝi

where v
(m,n)
i is the projection πi of the vector from c(m) to

c(n) onto the ith agent’s coordinates. ∇ĝi is the i
th rod length

gradient. L indicates the minimal rod’s length. We define

the matrix Grods such that its ith column is the ith rod length

gradient. η (in Algorithm 1) is the number of agents available

to hold the load. In other words, a free agent (i.e. one that does

not carry the load) traverses towards its goal configuration

while reducing its rod’s length. We defined the subspace

Cfree ⊂ C as the set of obstacle-free configurations.

Algorithm 1 Swarm-CPRM. Note That the Individual

Agents Are Not Aware of the Actions of the Other Agents

Result: find a path between c0 to cf .

initialize a road map Ŵ := (E,V );

V (Ŵ)← the initial configuration;

V (Ŵ)← the goal configuration;

for all pairs of way-points m, n in Ŵ do

for each agent i do

v
(m,n)
i ← πi(c

(m) − c(n));

compute ζi;

if the line from c(m) to c(n) is ∈ Cfree then
advance in ζi direction;

else

crawl on the obstacle minimizing ‖v
(m,n)
i ‖,

if η > 6 release load if needed;
end

end

E(Ŵ)← E(c(m), c(n)) if succeeded;
end

find shortest path on Ŵ.

Such an approach is preferable when the configuration

space is of high dimension, especially when it is also con-

gested with obstacles as in the given case. The number

of randomly chosen way-points that are required to suffi-

ciently model the configuration space increases rapidly with

the dimension. Applying such a crawling scheme reduces

this number substantially. The described scheme increases

the chances of finding a connecting arc between a pair of

way-points in cases where a straight line would fail. In many

cases, this may mean reduction by a few orders of magnitude

in the number of road-map arcs and consequently in the

required calculation time.

As described in Subsection II-B, Algorithm 1 enables

non-synchronized motion, while maneuvering between two

way-points c(m) and c(n). In this case, each agent translates

at a predefined step-size ε separately (i.e. independent of

the actions of other agents) in the direction of the projection

πi(c
(n) − c(m)), onto its own coordinates. Notably, in the case

of individual-decision making, the step-size is equal for all

agents. This contrasts with a cooperative decision scheme,

by which the step-sizes of the agents differ since the projec-

tion of (c(n) − c(m)) onto each agent’s position coordinates is

generally different.

C. LOCAL MOTION PLANNER

Assume a configuration c1, a neighboring configuration c2,

and the set of constraints gi ∈ G. Motion from c1 to c2,

restricted to the boundary ofG, can bemaintained by calculat-

ing∇gi at a current c, and restricting motion to their joint null

spaceKG. Explicitly, setting a desired instantaneous direction

vector Vd , and projecting it onto the null space K̂ yields:

V =
∑

i∈N+6−M

K̂
⊤
i · Vd · K̂i (6)

where M is the number of obstacles to crawl on at c, and

K̂i is the ith base vector of KG. Thus, at each time-step,

advancement is by

c(k + 1) = c(k)+ ǫV (7)

where ǫ ≪ 1 is a predetermined step size in C. Here, Vd
can be a vector in C that is associated with movement of the

agents that does notmove the load (for the forward kinematics

calculation). Clearly, the load would eventually comply with

the agent’s motion, as V is constrained by G. Alternatively,

Vd can be a vector in C that is associated to motion of the

load alone (for the inverse kinematics); also here, the agents

should eventually comply. Hence, motion in C is obtained by

applying a configuration spacemotion planner and repeatedly

calculating (Equations 7 and 6) until reaching the desired load

configuration.

We expect an infinite solution set; hence, the proximity

8(c) to a singular configuration will also be incorporated.

To estimate the proximity to singularity at c ∈ C, the condi-

tion number of the associated Jacobian J1 may be calculated.

However, since, as mentioned, a redundant coordinate sys-

tem is chosen for the configuration space (i.e. that includes

the platform’s anchoring points), we defined a configura-

tion space Jacobian JC , and calculated its condition number

8(c) = cond(JC) to estimate the proximity to singularity

(for the 6 carrying agents, the following applies):

JC ,
[

Gagents, Grods, Gload
]

30×30

where Gagents columns are simply the standard basis. This

implies that the agents may traverse only on the plane. The
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column vectors ofGrods andGload are the 30-dimensional gra-

dients of the distance map (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2,

which expresses that the ith and the jth nodes are confined

by a rigid rod. For regular configurations, the null-space

of these vectors is an empty set. However, a configuration

c ∈ C, in which a node (of the load/agents/rods) may alter its

position while all others hold theirs, is singular.

Assume N agents are carrying a regular polygon. For

each configuration in C, N − 1 identical configurations can

represent the rotation of the robot in the plane, such that each

robot i replaces the location of its neighboring robot. During

each step, we calculated these congruent configurations and

proceeded in the direction towards the closest one (in terms

of Euclidean metric in C).

D. GLOBAL MOTION PLANNER

We used the CPRM as a motion planner [35]. Note that this is

a rather congested configuration space. Obviously, themotion

in Cfree is confined to maintain the mechanical constraints,

as described above. As in a standard Probabilistic Road Map,

we began by generating k random way-point configurations

in Cfree. The direction vector between these configurations

is defined as the straight line in C, connecting a pair of

way-point configurations.

The case in whichN > 6 is statically indeterminate. As we

are interested in the N > 6 case, we changed the alge-

braic constraints of the fixed rod lengths to a semi-algebraic

constraint; that is, the distance ℓi between an agent and the

corresponding node at the load-platform is in a predetermined

range ℓi ∈ [L,L+1L] for every i = 1, . . . ,N (here,1L was

set to be 20% of the rod’s minimal length). In other words,

we assume the rods are passive prismatic elements which are

effective as long as their length is L, but can extend in order to

enable the agents to lose grip of the platform in cases where

N > 6. Thus, in any configuration, at least six rods are under

a compression force due to the weight of the load. In such

a case, their lengths assume the minimum value. All other

N−6 agents are free to change their distance from their corre-

sponding load nodes. Hence, during such amotion, the swarm

moves towards the goal configuration while decreasing rod

lengths to the minimum value. This is done by subtracting

vectors gi ∈ Grods from the direction vector, towards the goal

configuration. Subsequently, the vector −gi reduces the i-th

rod length.

VI. SIMULATION RESULTS

A. SWARM’s DISTRIBUTION STUDY

To demonstrate the efficiency of the proposed swarm’s distri-

bution algorithm, a simulated experiment was implemented.

The scene workspace of size 100× 100 [cm] with 10 agents

traverses in random directions. Each agent is equipped with

a sensor that measures the relative angle to all other agents,

with sensor-noise variance σθ = 5◦. The process-noise cor-

responds to the error in the direction and the length of the

step size in each time-step, simulated as a normal distributed

FIGURE 2. A Fanplot of the algorithm performances for N = 10 over
time-steps. The middle solid line indicates the mean estimated error,
which after 1000 steps (∼ 30 seconds for a standard camera) converges
to 8mm.

vector with variance of 1[mm], while the step size is ‖di‖ =

10[mm]. In the initialization stage, the locations of the agents,

and of the estimated states, were randomly chosen over the

entire space. The results for N = 10 agents are depicted

in Figure 2. The graph presents the statistics of 50 simulation

runs for 1, 500 time-steps. Notably, the estimation error con-

verges properly. A set of tests shows that this robust property

does not depend on the initial conditions.

The estimation error of the agents’ position converges

rapidly to 8mm. We then performed a set of 10, 000 simu-

lation experiments to examine the applicability of such accu-

racies to a load carrying swarm. In each experiment, a random

configuration c was chosen. Then, the estimation errors {ǫ}i
were added to the agents’ positions.

We defined the heading error angle as the angle between

the platform’s normal with the estimation errors included, and

the platform’s normal without the estimation errors. Simi-

larly, we defined the load’s position error. Note that singu-

lar configurations may result in large heading error angles.

Recall that the condition number constraint 8(c) < 80,

imposed onmotion planning, was determined exactly to avoid

such a configuration (80 was chosen by generating random

configurations and averaging the condition number of the

chosen ones). The Jacobian condition number is a useful tool

for avoiding mechanism singularities. These may result in

instabilities of the whole mechanism in some cases or require

the agents to apply forces beyond their ability in others.

The underlying logic behind the condition number is that

it relates to the mechanism’s sensitivity to erroneous input

actuation. So, in order to overcome the kinematic instability,

it suffices to set an arbitrary bound for the condition number

which we set to 2000. This was found satisfactory during our

experimentation.

Generalized force analysis may be provided also by the

Jacobian formalism. Nevertheless, note that since agents are

free to move on the plane, our mathematic formalism is

redundant (think of an agent traversing a base of a cone

around its anchoring point). The Jacobian formalism should,
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therefore, be altered such that the radial distance to the cone

center would constitute the inputs. Yet, as we focus our

attention here to the kinematic problem we make do with

a simple force analysis where the load which the platform

experiences is of its own weight.

FIGURE 3. The histogram of the load’s position and orientation
errors (smoothed) due to the estimation errors of the position of the
agents depicted in Figure 2.

FIGURE 4. Eight agents carrying a load with 15 ground-obstacles.
Throughout the motion, exactly six agents hold the load while others
follow the group. An agent may withdraw (dashed line) from the load to
avoid an obstacle (see k = 100 time-step) while another agent attaches
to it.

The resulting heading angle error histogram, excluding the

configuration that violates the condition number constraint,

is presented in Figure 3. These are χ2 distributed with a

mean orientation error of µ ∼ 0.14◦. The resulting position

error histogram, excluding the configuration that violates

FIGURE 5. Six agents are carrying a load with 20 ground-obstacles and a
hovering sphere obstacle. A solution was attained with only 4 way-points.
Top: Isometric view. Bottom: Overhead view.

the condition number constraint, is presented in Figure 3.

These are also χ2, distributed with mean position error

of µ ∼ 1.4mm.

Thus, to evade platform obstacles, these obstacles should

be ‘‘inflated’’ accordingly by means of the Minkowski Sum.

The position error was calculated as the error of the load’s

CoG. So, to avoid the load’s obstacle one should ‘‘inflate’’

the obstacle twofold - by the position error value and the load

radius multiplied with the orientation error as well as by the

load geometry at all possible orientations.

B. EVADING PLANAR OBSTACLES WHILE MAINTAINING

THE LOAD’s HORIZONTAL ORIENTATION

We simulated eight agents; at each time-step, six were

actively carrying a load-platform, while others were moving

freely and were available for a ‘‘switch’’. The frame sequence

in Figure 4 presents the swarm in a work space having 15

ground obstacles.
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FIGURE 6. A swarm that assumes the task of picking up a load and
transferring it through a cluttered work-space.

Here we constrained the platform to horizontal orientation

throughout the motion. Minimal rod lengths were set as 0.3

of a unit length. Throughout the scenario, agents that actively

carry the load are thosewhose prismatic-rods attain aminimal

length L. Other agents, (i.e. those that do not carry the load

at that given moment) are simulated as being connected to

the load via prismatic rods that were not at their minimal

length. The algorithm proceeds such that all agents pursue the

target configuration while shortening their rods to the mini-

mal length. To be more precise, we simplified this statically

undetermined problem by setting the rods of N − 6 agents to

be of length L + ε. This enables any N − 6 agent to release

the load at will.

A ‘‘switch’’ between agents may occur when an agent

meets an obstacle and is unable to proceed at the pace of

the other agents. The rod related to this agent would thus

lengthen, transferring the carrying task to the other agents.

This may repeat until exactly six agents are left to carry

the load. Figure 4 in the k = 100 time-step depicts such a

scenario.

Note that since the load is carried by the agents via rods

with spherical joints at their ends, an agent may move in a

circle that maintains its distance from the load, such that the

load stays still. Such a maneuver is carried out throughout the

motion and is notable in the (f) frame of Figure 4.

C. EVADING SPATIAL OBSTACLES

We simulated six agents carrying the load. For convenience,

other agents wandering around freely are not depicted. The

frame sequence in Figure 5 presents a swarm that assumes

the task of evading 20 ground obstacles and a large r = 0.4

spherical obstacle, with its center hovering at z = 0.55 of

a unit length. Motion is achieved by applying Algorithm 1.

Here, we allow the platform to tilt freely up to 12◦. To over-

come the dense obstacle space, the agents may change the

platform orientation as in Figure 5. Figure 6 presents a swarm

that assumes the task of picking up a load and transferring it

through a cluttered work-space.

VII. CONCLUSION

We introduced a load carrying swarm that is capable of avoid-

ing spatial and planar obstacles. Inspired by insects that have

low communication capabilities, we showed how a robotic

swarm may transport a load while evading obstacles, and

while communicating only their position estimations.

Our discussion was limited to scenarios in which ≥ 6

agents participate in the load carrying task. Alternative carry-

ing models such as caging are efficient, according to a purely

kinematic perspective. However, the kinematic model applied

here concurs better with the entomological case in which

insects reorient a load while avoiding obstacles (i.e. the piano

movers problem).

Thus, knowing the next desired way-point cm in the

road-map graph, each agent moves towards its own

(projected) goal configuration in cm, while avoiding obstacles

in its way and while controlling the load as much as it can.

To realize this, individual agents receive, by turn, the oppor-

tunity to advance. Apparently, the order in which the agents

act should be considered (c.f. [40]). Nevertheless, our experi-

ments indicate that randomly setting this order suffices, such

that one of the agents may communicate and randomly set

the motion’s order. Future work will include implementation

of the algorithms introduced in this paper to a real robotic

swarm.
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