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 Robotic TCF and rigid-body calibration methods
 *Xuguang Wang and  † Edward Red
 ( R e c e i v e d   i n   F i n a l   F o r m :   J a n u a r y   8 ,   1 9 9 7 )

 SUMMARY
 For of f-line programming to work ,  systematic methods
 must be developed to account for non-ideal performance
 of the parts and devices in the manufacturing cell .
 Although much of the literature focuses on robot
 inaccuracy ,  this paper considers practical methods for the
 tool control frame (TCF) calibration and rigid-body
 compensation required to close the inverse kinematics
 loop for target driven tasks .

 In contrast to contemporary estimation methods ,  a
 closed-form ,  easily automated ,  solution is introduced for
 calibrating the position and orientation (pose) of
 orthogonal end-ef fectors when the distal robot joint is
 revolute .  This paper also considers methods for
 measuring and compensating the small rigid-body
 perturbations that result from non-repeatable part
 delivery systems or from geometric distortion .  These
 methods are designed to eliminate  r θ   error from the
 rigid-body prediction and can be conducted in real-time .
 Without accurate TCF calibration and rigid-body
 compensation ,  even the most accurate robot will fail to
 complete an of f-line programmed task if the task
 tolerances are stringent .

 KEYWORDS :  Tool and sensor calibration ;  Of f-line program-
 ming ;  Rigid-body compensation

 INTRODUCTION
 Of f-line programming uses computers to program
 physical mechanisms such as robots without direct access
 to the equipment when the programming is performed .
 Obviously ,  on-line programming limitations ,  such as the
 visual limitations faced by operators using a teach
 pendant ,  are potentially eliminated by of f-line methods .
 While on-line programming depends on robot re-
 peatability ,  robot accuracy is extremely important for
 of f-line programming ,  where the coordinates that define
 a target pose (position and orientation) are obtained
 from a database .

 Unfortunately ,  compensating robot inaccuracy is only
 a necessary condition for successful of f-line program-
 ming .  Several additional issues must be addressed for
 of f-line programming to be practical ,  namely the
 automation of
 $  TCF calibration procedures for orthogonal end-

 ef fectors .  This paper introduces a closed-form solution
 that dif fers from contemporary estimation methods
 which estimate the TCF pose ,  command some motion

 *  Cimetrix ,  Inc .  (U . S . A . )
 †  Dept .  of Manufacturing Engineering and Engineering

 Technology ,  Brigham Young Univ .,  Provo ,  UT 84602 (USA) .

 relative to a part feature ,  then measure the resulting
 error ,  which is then used to provide a better estimate .
 Once the error approaches the robot repeatability ,  the
 process is terminated .

 $  rigid-body correction of rigid-body deviations with
 multiple measurement devices .  Rigid-body deviations
 are normal because of variability in part delivery
 systems ,  and variability in the manufacture of the parts
 themselves .

 $  calibration control methods which use a real-time
 database to automate the calibration sequence based
 on application features which have been defined in an
 of f-line programmed task .  These procedures are briefly
 considered in this paper .  Refer to Wang 1  for more
 detail .
 This research has been motivated by the dif ficulty

 encountered in trying to make of f-line methods actually
 work .  These methods require an understanding of the
 significant research in robot calibration ,  usually directed
 towards positioning accuracy improvement .  Global
 calibrations methods are considered by Hollerbach , 2

 Ziegart , 3  and Roth , 4 , 5  whereas Davies 6  and Red 7 , 8

 present local calibration techniques .
 Global calibration ,  though concerned with modifying

 the robot kinematic model to account for errors inherent
 to the robot ,  does not easily lend itself to an automated
 approach to of f-line programming for a number of
 reasons :
 $  a robot’s corrected kinematic model does not easily

 adapt to time-variable error sources such as com-
 pliance under variable loads ,  or thermal distortion ;

 $  global calibration does not focus on integrating the
 other critical elements of the manufacturing process ,
 such as the tools and parts ;

 $  global calibration procedures are time consuming and
 may require the cell to be taken of f-line .
 In contrast ,  local calibration is concerned with

 measuring and modifying robot performance relative to
 parts by modifying target poses to account for relative
 pose (position and orientation) error .  Local methods are
 less concerned with global accuracy ,  but instead fit
 statistical models to the robot error measured relative to
 parts or part templates by sensors such as vision systems .

 By lumping numerous error sources into the local
 models ,  local calibration can adapt to changes in part
 geometry or in the environment ,  and can be applied
 on-line within minutes .  Local methods are particularly
 compatible with the tool calibration methods introduced
 in this paper ,  once the methods are integrated with a
 workcell model database ,  which can be updated in
 real-time .  Local methods are more suitable for tasks
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 conducted in defined and smaller work volumes ,  such as
 robotic assembly .

 Substantial research in robot calibration is directed
 towards improving autonomous robot performance and
 accuracy ,  rather than an integrated approach to cell
 calibration .  In an industrial cell ,  robot performance is
 typically more stable than the dynamic tool and sensor
 environment .  And even the parts being operated on may
 experience geometric deviations due to subtle changes in
 upstream manufacturing processes .  Thus ,  a well calib-
 rated robot may not be suf ficient to make of f-line
 programming practical .

 A dominant research theme for TCF calibration is to
 solve the  AX  5  XB  equation of homogeneous transfor-
 mations .   A  represents the relative change of the last joint
 frame and  B  the relative change of the tool or sensor
 frame as the robot moves between two configurations .   X
 represents the unknown tool / sensor homogeneous
 transformation which is to be determined relative to the
 last joint frame .

 Park 9  solves the  AX  5  XB  equation using Lie theory ,
 demonstrating that the method works with experimental
 data from a previously published paper .  The authors fail
 to consider the dif ficult problems of measuring the
 homogeneous transformations .

 Although Preising 1 0  presents a unique inverse
 measurement approach ,  the general measurement
 complexity for solving the  AX  5  XB  equation is apparent
 in their methods .  A backlit calibration plate is attached
 to the robot distal frame ,  and a vision camera is fixed in
 space (generally ,  the calibration plate is fixed and the
 camera is attached to the robot) .  The robot moves the
 calibration plate having multiple features within the
 camera’s field of view to generate the multiple
 configurations required to solve the  AX  5  XB  equation .
 Although using Shiu’s 1 1  algorithm successfully to solve
 for  X ,  the author’s note that their methods may
 experience application dif ficulties in a real industrial
 cell .

 It is not surprising to see new approaches arise that
 circumvent the TCF calibration problem .  For example ,  in
 the paper by Yoshimi 1 2  a camera is attached to the end
 of the robot to view the gripper motion relative to some
 known feature on a part .  As the robot rotates the camera
 about the gripper’s rotational axis ,  the camera views the
 path of the gripper relative to some feature .  The relative
 shape of the path is used to change the relative pose of
 the gripper relative to the feature .  For example ,  an
 elliptical path indicates non-orthogonality .  Pose modifi-
 cation continues until the gripper to feature path
 becomes a point ,  at which time the gripper has achieved
 the target pose .

 The purpose of this paper ,  then ,  is to demonstrate a
 practical on-line calibration method that can be
 integrated as a real-time process .  It is limited to
 orthogonal end-ef fectors and sensors ,  which are common
 to many robotic applications ,  particularly robotic
 assembly .

 The following sections derive the closed form
 equations for locating a tool frame with respect to a

 measurement sensor ,  either attached to or external to the
 robot .  Rigid-body compensation procedures are also
 considered for parts which experience small deviations in
 the range up to 5 8 .  Finally ,  application results are
 presented which demonstrate the real-time ef ficiency of
 these methods when integrated with local calibration
 methods .

 TCF CALIBRATION
 Sensors such as vision cameras and probes ,  and
 end-ef fectors such as vacuum tools and welding torches
 are synonomously referred to as tools ,  sensors ,  or
 end-ef fectors in this paper .  In data-driven tasks tools and
 sensors have attached XYZ frames represented mathe-
 matically by homogeneous transformations—we call
 these operational frames the tool / terminal control frame
 or simply TCF .

 The command  mo y  e tool to target with  10  mm  Z of fset
 requires an accurate pose for the TCF and an accurate
 pose for the target frame .  This section introduces an
 easily automated and closed-form method for determin-
 ing the TCF pose used in the kinematic loop closure
 equations .  Having a closed-form method reduces the
 number of iterations required to get a good estimate of
 the TCF pose ,  in light of other statistical variations that
 naturally occur in the measurement process (such as
 robot repeatability) .

 The methods herein assume that the distal (terminal)
 robot joint is revolute and that the robot can orient the
 joint  Z  axis normal to the part surface .  This is not a
 limiting assumption since most 6-axis ,  cylindrical ,  and
 Scara robots have a distal joint of this type .  Calibration
 will typically determine the TCF relative to the last joint
 frame .  Orthogonal end-ef fectors are oriented so that
 either the TCF  X , Y ,  or  Z  axis is parallel to the joint  Z
 axis .

 Of f-line task planning for more sophisticated tasks ,
 such as the welding ,  may require TCF calibration for a
 non-orthogonal end-ef fector such as the tip of a welding
 gun ,  but these methods are not considered here .  See
 Wang 1  for a discussion of these methods ,  including a
 discussion of TCF calibration for non-axisymmetric tools .

 For any particular robot configuration typical robot
 controllers will configure the robot terminal frame
 ( XYZ ) e   in robot base coordinates (Cartesian space) or in
 the form of robot joint values (joint space)  –  see Figure
 1 .

 A given TCF configuration can be represented in
 either Cartesian space or joint variable space ,  and
 mapped from one space to the other using forward
 kinematics or inverse kinematics .  However ,  the robot
 controller does not by default know where the attached
 tool or measurement device is located .  The function of
 TCF calibration is to determine the mathematical
 transformation which relates an end-ef fector TCF frame
 ( XYZ ) T   to the parent joint frame ( XYZ ) e  .  Given such
 information ,  the robot can be commanded to move a tool
 or sensor to poses that are either obtained from a
 database and which may be continually updated by a
 sensor measurement .
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 Fig .  1 .  Manipulator frames .

 Automated TCF calibration methods require robot
 relative movement in localized regions and statistical
 methods for TCF calibration .  The end-ef fector is treated
 as a rigid-body ;  therefore ,  the displacement of the tool
 from the parent joint frame is constant ,  which can be
 determined from the relative robot movement or the
 dif ferences between corresponding robot configurations .

 To explain the necessary transformations and transfor-
 mation equations used for automatic TCF calibration ,
 the following convention regarding the homogeneous
 transformation between two space frames will be used
 throughout this paper .  A bold face letter  T  with
 superscript  a  and subscript  b ,  or  T  a

 b ,  represents the
 homogeneous transformation that locates frame ( XYZ ) a

 relative to frame ( XYZ ) b .  This 4  3  4 matrix can be
 expressed as a 3  3  3 rotational submatrix and a position
 vector as shown in equation (1) .

 T a
 b  5 3

 r 1 1

 r 2 1

 r 3 1

 0

 r 1 2

 r 2 2

 r 3 2

 0

 r 1 3

 r 2 3

 r 3 3

 0

 p x

 p y

 p z

 1
 4  5 F R a

 b

 0 T

 p a
 b

 1
 G  (1)

 where :

 rotational  submatrix :  R a
 b  5 3  r 1 1  r 1 2  r 1 3

 r 2 1  r 2 2  r 2 3

 r 3 1  r 3 2  r 3 3
 4  (2)

 position  vector :  p a
 b  5 3  p x

 p y

 p z
 4  (3)

 zero vector transposed :   0 T  5  [0  0  0]  (4)

 a .  TCF Calibration for a  y  ision camera
 Although described for a camera ,  the TCF calibration
 methods presented in this section are applicable for tools
 or sensors which have a frame attached to them and can
 have their motion measured with respect to part
 geometry or sensor reference geometry .  When a vision
 camera is attached to a robot link and used to monitor
 part pose deviations ,  its coordinate frame needs to be

 calibrated relative to the link frame to which it is
 attached ,  typically the robot distal (last) joint frame .

 In this section we assume that methods to calibrate the
 internal parameters of a vision camera such as pixel ratio
 (pixel height to pixel width) and pixel size (pixels per
 standard linear measure) can be applied to calibrate the
 camera .  The camera is mounted so that the TCF  Z  axis is
 parallel to the joint  Z  axis .  The TCF is not located on the
 camera ,  but at the object plane of the lens .

 The aperture and focal length on the camera are set
 according to need .  It may be necessary to set a larger
 focal length because of obstructions in the robot’s path .
 A large focal length also gives a larger viewing area on
 the display monitor .  A small focal length allows a
 close-up view of a small object for measurements
 requiring a finer tolerance .  The aperture is set to allow
 the desired amount of light into the camera .  The smaller
 the aperture ,  the less light the camera will see .  Once the
 focal length and aperture have been set ,  they will
 typically not be changed .

 The automatic TCF calibration procedures presented
 here only require a  single vision sensitive dot  which will
 hereafter be referred to simply as a dot or calibration
 dot .  The calibration dot provides a reference point in the
 robot workspace for relative robot end-ef fector move-
 ment in localized in localized regions .  The relative
 motion of the robot is then used to calibrate the relative
 rigid displacement between the camera coordinate frame
 and the robot link frame to which the sensor is attached .

 The following steps are required to complete the TCF
 calibration operation .  Note that these steps can be easily
 automated since the calibration feature is a simple dot .
 1 .  Place a calibration plate having a calibration dot in

 the robot workspace .
 2 .  Adjust the camera such that the camera is near

 normal to the calibration surface (one time process) .
 Camera orthogonalization routines may be necessary
 for high tolerance applications .

 3 .  Move the robot arm to a position such that the
 calibration dot is near the center of the vision
 window .  Call this configuration 1 in Figure 2 .

 4 .  Activate the vision system to take a picture of the
 calibration dot ,  process the image ,  then record the
 dot coordinate ( X y  1  ,  Y y  1 ) in the vision coordinate
 frame ( XYZ ) y   at configuration 1 .

 5 .  Record the robot configuration either as a set of joint
 angles or as a homogeneous transformation relating

 Fig .  2 .  Camera TCF calibration configuration 1 .
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 Fig .  3 .  Camera TCF calibration configuration 2 .

 the last joint frame ( XYZ ) e   relative to base frame
 ( XYZ ) m .

 6 .  Move the robot in the  X  -axis direction of its last
 joint frame .  While moving the robot arm ,  make sure
 the dot is still inside the vision window .  The dot is
 now in vision screen position 2 .  Call this configura-
 tion 2 ,  Figure 3 .

 7 .  Activate the vision system to take and process the
 image ,  and record the dot coordinate ( X y  2  ,  Y y  2 ) in
 the vision coordinate frame ( XYZ ) y   at configuration
 2 .

 8 .  Move the robot arm such that its last joint frame is at
 a dif ferent orientation from that of configuration 1 .
 Make sure the calibration dot is inside the vision
 window .  The dot is now at vision screen
 configuration 3 ,  Figure 4 .  Initial calibration requires
 the robot to move relative to its last joint frame a
 small amount to guarantee that the dot is inside the
 vision window .  Later calibration can move the robot
 relative to the initially calibrated vision camera
 frame ,  and guarantee that the dot is almost at the
 center of the vision window .

 9 .  Activate the vision system to take and process the
 image ,  and record the dot coordinate ( X y  3  ,  Y y  3 ) in
 the vision coordinate frame ( XYZ ) y   at configuration 3 .

 10 .  Record current robot configuration in the form of a
 set of joint angles or a homogeneous transformation
 relating the last joint frame ( XYZ ) e   relative to the
 robot base frame ( XYZ ) m .

 11 .  Carry out TCF calibration calculation using data
 collected in steps 4 to 10 .

 From Figure 2 the relative transformation of the
 calibration dot with respect to the robot base frame can
 be found ,  equation (5) .  The calibration dot can only
 define the origin of a dot coordinate frame whose

 Fig .  4 .  Camera TCF calibration configuration 3 .

 orientation is arbitrary .
 T dot

 m  5  T 1
 m  5  1 T e

 m T y
 e T 1

 y  (5)

 Representing the transformations on the right side of
 (5) in the form of a rotational submatrix and a position
 vector gives

 T dot
 m  5 F 1 R e

 m

 0

 1 p e
 m

 1
 G F R y

 e

 0
 p y

 e

 1
 G F R 1

 y

 0
 p 1

 y

 1
 G

 5 F 1 R e
 m R y

 e

 0

 1 R e
 m p y

 e  1  1 p e
 m

 1
 F R 1

 y

 0
 p 1

 y

 1
 G

 5 F 1 R e
 m R y

 e R 1
 y

 0

 1 R e
 m R y

 e p 1
 y  1  1 R e

 m p y
 e  1  1 p e

 m

 1
 G  (6)

 Similarly ,  from Figure 4 the relative transformation of
 the calibration dot with respect to the robot base frame
 can be found ,  equation (7) .

 T dot
 m  5  T 3

 m  5  3 T e
 m T y

 e T 3
 y

 5 F 3 R e
 m

 0

 3 p e
 m

 1
 G F R y

 e

 0
 p y

 e

 1
 G F R 3

 y

 0
 p 3

 y

 1
 G

 5 F 3 R e
 m R y

 e

 0

 3 R e
 m p y

 e  1  3 p e
 m

 1
 G F R 3

 y

 0
 p 3

 y

 1
 G

 5 F 3 R e
 m R y

 e R 3
 y

 0

 3 R e
 m R y

 e p 3
 y  1  3 R e

 m p y
 e  1  3 p e

 m

 1
 G  (7)

 Notice that even though the calibration dot appears in
 dif ferent positions 1 ,  2 ,  and 3 in the vision window ,  it is
 fixed relative to the robot base frame ( XYZ ) m   during the
 calibration process .  The position components of equa-
 tions (6) and (7) are ,  therefore ,  equal .

 1 R e
 m R y

 e p 1
 y  1  1 R e

 m p y
 e  1  1 p e

 m  5  3 R e
 m R y

 e p 3
 y  1  3 R e

 m p y
 e  1  3 p e

 m  (8)

 Rearranging (8) ,
 ( 1 R e

 m  2  3 R e
 m ) p y

 e  5  3 R e
 m R y

 e p 3
 y  2  1 R e

 m R y
 e p 1

 y  1  3 p e
 m  2  1 p e

 m  (9)

 Since the robit is moved in its last joint  X  -axis
 direction in automatic TCF calibration step 6 ,  vector  v
 formed by calibration dot images 1 and 2 on the vision
 window has the same orientation as that of the  X  -axis
 direction of the robot last joint frame ( XYZ ) e  .
 Therefore ,  the relative orientation between the vision
 coordinate frame ( XYZ ) y   and the robot last joint frame
 ( XYZ ) e   is readily available from equations (10) and (11) :

 R y
 e  5 3  cos  θ

 2 sin  θ
 0

 sin  θ
 cos  θ

 0

 0
 0
 1
 4  (10)

 where

 θ  5  tan 2 1  S  Y y  2  2  Y y  1

 X y  2  2  X y  1
 D  (11)

 Knowing  R y
 e  ,  the orientation components of the vision

 camera TCF ,  equation (9) can then be solved for the
 position components of the TCF ,  namely ,   p y

 e  .  Equation
 (9) suggests that to have a non-singular solution ,   1 R e

 m   and
 3 R e

 m   must be dif ferent .  In other words ,  the robot last joint
 frame must have dif ferent orientations for configurations
 1 and 3 in calibration steps 3 and 8 ,  which can be
 implemented automatically .

 Due to robot inaccuracy ,  vision system resolution and
 numerical roundof f ,  calibration steps 3 to 11 can be
 repeated a number of times to establish statistical
 certainty .  The statistical average can then be used to
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 predict more accurate TCF values and the standard
 deviations used to quantitatively verify the TCF
 calibration accuracy .

 Note that estimation methods use a convergence
 process and thus are not likely to improve the TCF
 location beyond the repeatability of the robot and other
 process variables .  In contrast ,  by not depending on
 convergence to determine the TCF coordinates ,  exact
 methods may not be limited by the robot repeatability in
 locating the TCF coordinates and thus TCF location
 accuracy will improve on the estimation methods .

 b .  TCF Calibration for an axisymmetric tool
 Unlike a vision camera ,  an axisymmetric tool (e . g .,  a
 vacuum tool) requires an external reference frame which
 can measure relative changes in pose of robot
 end-ef fectors or devices attached to the end-ef fectors .
 Typical measurement devices include a digitizing tablet ,
 a vision camera ,  or a laser triangulation system .

 The automated TCF calibration procedures presented
 in this research employ a digitizing tablet and a
 non-contact stylus (probe) .  Even though a digitizing
 tablet is used to present the automatic TCF calibration
 methods ,  this method itself is general and has been
 demonstrated successfully using a fixed vision camera as
 the measurement device ,  which may be the easier
 method to automate ,  if cost is not an issue .

 A digitizing tablet is an electronic device that transmits
 the relative position of a stylus to software running on a
 host computer .  Modern digitizing devices have resolution
 of 0 . 001 inches and an accuracy of 0 . 01 inches or better .
 A stylus probe is also an electronic device which is used
 to activate digitizing tablet components for transmitting
 its coordinates on the tablet .  A typical stylus probe is
 composed of an excitable LC circuit .  The coordinate
 system of the digitizing tablet will be used as an
 intermediate reference calibration frame .  Unique relative
 robot movements establish close loop transformation
 equations which are then solved for the tool TCF origin .

 A physical interface is used to attach and align the
 probe on the tool being calibrated .  If high calibration
 accuracy is required ,  the interface must be built to the
 appropriate tolerances .  The  Z  axis of the probe should
 be parallel to the tool TCF  Z  axis ,  which is the axis of
 symmetry .  TCF calibration of an axisymmetric tool only
 requires the TCF  origin  relative to the joint to which it is
 attached .

 Together ,  the probe and the digitizing tablet determine
 the  X  and  Y  probe positions .  The interface should be
 capable of positioning the probe frame origin in line with
 the TCF  Z  axis within the desired tolerances .  The
 interface should be designed to place the probe frame as
 close to the TCF as possible .  Figure 5 shows an example
 of an interface for an axisymmetric touch probe with the
 probe attached to it .  Set screws may be required to
 prevent sliding of the interface along the  Z  axis .  This
 would not be necessary if we are calibrating a vacuum
 tool ,  since proper design of the interface would use the
 vacuum to suck up the probe .

 The centering pin of the probe unit is designed to

 Fig .  5 .  Probe attached to axisymmetric tool .

 align the probe electronic center (center of the stylus
 coil) with the tool axis of symmetry .  For improved TCF
 calibration accuracy ,  the interface could permit the probe
 to be rotated 180 8  from its original position ,  and
 calibrated for a second set of TCF values .  Averaging the
 two TCF values minimizes misalignment errors .

 Since the TCF of an axisymmetric tool does not have a
 unique orientation ,  it will be convenient to assume that
 the TCF is parallel to the robot last joint frame ( XYZ ) e  .
 The detailed calibration procedures then follow :
 1 .  Attach the axisymmetric tool to be calibrated to the

 robot distal link either manually or through a tool
 changer .

 2 .  Attach the stylus interface unit to the axisymmetric
 tool .

 3 .  Place the digitizing tablet in an appropriate location
 in the robot workspace .

 4 .  Adjust the digitizing tablet or the robot such that the
 stylus  Z  axis is near normal to the digitizing tablet .

 5 .  Move the robot such that the stylus is near the center
 of the digitizing tablet ,  designated configuration 1 ,
 Figure 6 .

 6 .  Record the stylus position ( X  1  ,  Y 1 ) in the digitizing
 tablet frame ( XYZ ) D   at configuration 1 .

 7 .  Record the current robot configuration in the form
 of a set of joint angles or a homogeneous
 transformation relating the last joint frame ( XYZ ) e

 to the robot base frame ( XYZ ) m .
 8 .  Move the robot in the  X  -axis direction of its last

 joint frame .  While moving the robot arm ,  make sure

 Fig .  6 .  Axisymmetric tool TCF calibration configuration 1 .
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 Fig .  7 .  Axisymmetric tool TCF calibration configuration 2 .

 the stylus is within the active area of the digitizing
 tablet .  The stylus is now at configuration 2 relative to
 the digitizing tablet ,  Figure 7 .

 9 .  Record the stylus position ( X  2  ,  Y 2 ) in the digitizing
 tablet frame ( XYZ ) D   at configuration 2 .

 10 .  Move the robot arm such that its last joint frame is at
 a dif ferent orientation from that of configuration 1 .
 Make sure the stylus is within the active area of the
 digitizing tablet .  The stylus is now on the digitizing
 tablet at configuration 3 ,  Figure 8 .  Initial calibration
 requires the robot to move relative to its last joint
 frame a small amount to guarantee that the stylus is
 within the active area of the digitizing tablet .  After
 an initial estimate ,  later calibration can move robot
 relative to the initially calibrated axisymmetric tool
 frame ,  and guarantee that the stylus remains close to
 the center of the digitizing tablet .

 11 .  Record the stylus position ( X  3  ,  Y 3 ) in the digitizing
 tablet frame ( XYZ ) D   at configuration 3 .

 12 .  Record the current robot configuration in the form
 of a set of joint angles or a homogeneous
 transformation relating the last joint frame ( XYZ ) e

 to the robot base frame ( XYZ ) m .
 13 .  Carry out TCF calibration calculation using data

 collected in steps 6 ,  7 ,  9 ,  11 ,  and 12 .
 Notice that during the calibration processes the

 digitizing tablet reference frame is fixed with respect to
 the robot base frame ( XYZ ) m .  This allows us to merge
 configurations in Figures 6 to 8 into one configuration by
 matching frames ( XYZ ) D   and ( XYZ ) m  ,  Figure 9 .

 To form the closed loop transformation equations for
 TCF calibration ,  an artificial frame ( XYZ ) 3 9  with the

 Fig .  8 .  Axisymmetric tool TCF calibration configuration 3 .

 Fig .  9 .  Axisymmetric tool TCF calibration merging configur-
 ation .

 origin of frame ( XYZ ) 3  and orientation of frame ( XYZ ) 1
 is created .  The relative transformation between frame
 ( XYZ ) 3 9   and the robot base frame ( XYZ ) m   can be
 represented by either (12) or (13) :

 T 3 9
 m  5  1 T e

 m T 1
 e T 3 9

 1  (12)

 T 3 9
 m  5  3 T e

 m T 3
 e T 3 9

 3  (13)

 From equations (12) and (13) ,  we get
 1 T e

 m T 1
 e T 3 9

 1  5  3 T e
 m T 3

 e T 3 9
 3  (14)

 The transformation from the axisymmetric tool
 ( XYZ ) 1   or ( XYZ ) 3  to the robot last joint frame ( XYZ ) e

 is a constant transformation because both frames are
 attached to the same rigid-body .  As a matter of fact ,  this
 is the TCF transformation to be calibrated .

 T 1
 e  5  T 3

 e  5  T tcf
 e  5 F R tcf

 e

 0
 p tcf

 e

 1
 G  5 F  I

 0
 p tcf

 e

 1
 G  (15)

 Combining equations (14) and (15) ,  and representing
 the transformations equation (14) in the form of rotation
 submatrices and position vectors gives

 F 1 R e
 m

 0

 1 p e
 m

 1
 G F  I

 0
 p tcf

 e

 1
 G F  I

 0
 p 3 9

 1

 1
 G

 5 F 3 R e
 m

 0

 3 p e
 m

 1
 G F  I

 0
 p tcf

 e

 1
 G F R 3 9

 3

 0
 0
 1
 G  (16)

 Multiplying the transformation matrix on both sides of
 the equation (16) gives

 F 1 R e
 m

 0

 1 R e
 m p 3 9

 1  1  1 R e
 m p tcf

 e  1  1 p e
 m

 1
 G

 5 F 3 R e
 m R 3 9

 3

 0

 3 R e
 m p tcf

 e  1  3 p e
 m

 1
 G  (17)

 For the position components ,  we get
 1 R e

 m p 3 9
 1  1  1 R e

 m p tcf
 e  1  1 p e

 m  5  3 R e
 m p tcf

 e  1  3 p e
 m  (18)

 Rearranging equation (18) gives the TCF calibration
 equation

 ( 1 R e
 m  2  3 R e

 m ) p tcf
 e  5  3 p e

 m  2  1 p e
 m  2  1 R e

 m p 3 9
 1  (19)

 Notice that frames 3 9  and 1 are parallel .  Since the
 origins of the two frame are known with respect to the
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 digitizing tablet coordinate frame ( XYZ ) D  ,  the stylus
 position 3 9  relative to the coordinate frame 1 can be
 found by the following equations ;

 T 3 9
 1  5 F R 3 9

 1

 0
 p 3 9

 1

 1
 G  5  T D

 1  T 3 9
 D  5  [ T 1

 D ] 2 1 T 3 9
 D  (20)

 Carrying out the 4  3  4 homogeneous matrices on the
 right side of the equation ,  we get

 T 3 9
 1  5 3

 cos  θ
 sin  θ

 0
 0

 2 sin  θ
 cos  θ

 0
 0

 0
 0
 1
 0

 X  1

 Y 1

 0
 1
 4

 2 1

 3 3
 cos  θ
 sin  θ

 0
 0

 2 sin  θ
 cos  θ

 0
 0

 0
 0
 1
 0

 X  3

 Y 3

 0
 1
 4

 5 3
 cos  θ

 2 sin  θ
 0
 0

 sin  θ
 cos  θ

 0
 0

 0
 0
 1
 0

 2 X  1  cos  θ  2  Y 1  sin  θ
 X  1  sin  θ  2  Y 1  cos  θ

 0
 1

 4
 3 3

 cos  θ
 sin  θ

 0
 0

 2 sin  θ
 cos  θ

 0
 0

 0
 0
 1
 0

 X  3

 Y 3

 0
 1
 4

 5 3
 1  0  0
 0  1  0
 0  0  1
 0  0  0

 ( X  3  2  X  1 )  cos  θ  1  ( Y 3  2  Y 1 )  sin  θ
 2 ( X  3  2  X  1 )  sin  θ  1  ( Y 3  2  Y 1 )  cos  θ

 0
 1

 4  (21)

 and therefore ,

 p 3 9
 1  5 3  ( X  3  2  X  1 )  cos  θ  1  ( Y 3  2  Y 1 )  sin  θ

 2 ( X  3  2  X  1 )  sin  θ  1  ( Y 3  2  Y 1 )  cos  θ
 0

 4  (22)

 where

 θ  5  tan 2 1  S  Y 2  2  Y 1

 X  2  2  X  1
 D  (23)

 To have a non-singular solution ,  equation (19) suggests
 that  1 R e

 m   and  3 R e
 m   must be dif ferent .  In other words ,  the

 robot last joint frame must assume dif ferent orientations
 for configurations 1 and 3 in calibration steps 5 and 10 .
 Due to robot inaccuracy ,  digitizing tablet resolution and
 numerical roundof f ,  calibration steps 5 to 13 can be
 repeated a number of times to establish a statistical
 average .

 RIGID-BODY CORRECTION
 Rigid-body correction refers to the updating of an ideal
 workcell geometry database using part rigid-body
 deviations measured in the workcell .  The accuracy of the
 extracted rigid-body pose depends on the sensor
 resolution and the measurement noise ,  particularly

 orientation noise .  Positional error due to orientation
 noise is proportional to the distance  r  between the target
 frame and the rigid-body updating frame .  This ef fect is
 hereafter referred to as  r θ   error (often referred to as
 Abbe error) .

 Because of  r θ   error ,  the orientation information
 obtained directly by sensor systems may not be used for
 rigid-body correction or database rigid-body updating
 unless  r  is small .  This makes rigid-body pose extraction
 non-trivial since only positional information obtained by
 sensor systems may be used .

 Local calibration methods map various error sources
 which contribute to robot positioning inaccuracy in
 localized regions .  Robot inaccuracy can then be
 corrected for any target within the mapped region .  If the
 parts on which the robot operates are delivered to the
 robot workcell to within specific tolerances ,  inaccuracy
 compensation need only be applied one time to the
 targets .  Otherwise ,  the part rigid-body deviation must be
 detected with measurement devices ,  the database
 corrected ,  and the target recompensated in real-time .
 This section will consider 2-D and 3-D rigid-body pose
 extraction algorithms ,  along with correction algorithms
 for compensating small rigid-body deviations in the range
 of 1 8 – 5 8 .  Larger deviations are considered by Wang . 1

 a .  3 - D rigid - body correction
 In this section the detailed 3-D derivation of a generic
 rigid-body extraction method is presented .  This method
 assumes that the rigid-body deviations are small ( , 5 8 ) ,
 and a dif ferential homogeneous transformation can be
 used to represent the rigid-body perturbation of a target
 coordinate frame .  Non-linear equations are linearized to
 obtain a general linear equation for the rigid-body
 perturbation detected by the sensors .

 Figure 10 represents a perturbed rigid-body in 3-D
 space ,  defined by

 F  5  part reference frame ,  used to update
 the  rigid-body  pose .

 F  9  5  perturbed  part  reference  frame .

 M i  5  measurement  feature  frame  for  feature  i .

 M 9 i  5  perturbed  measurement  feature  frame
 for  feature  i .

 S i  5  sensor  frame  for  feature  i .

 Fig .  10 .  Rigid-body perturbation in 3-D space .
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 To update the geometry database using the new
 rigid-body pose ,  this perturbation will be represented in
 the form of a homogeneous transformation  T F

 F ,  as
 determined by various sensors .  The transformation
 equation of the closed loop  M 9 i  5  M i  5  F  5  F  9  5  M 9 i
 follows :

 T F  9
 F  T M 9 i

 F  9  5  T M i
 F  T M 9 i

 M i
 (24)

 The transformation from frame  M 9 i    to  F  is the same as
 that from frame  M i   to  F ,  equation (25) ,  because  M 9 i    and
 F  9   are the corresponding perturbed frames of frames  M i

 and  F  which are attached to the same rigid-body .

 T M i 9
 F  5  T M i

 F  (25)

 Substituting equation (25) into equation (24) and
 representing the transformations in the form of rotation
 submatrices and position vectors gives

 F R F  9
 F

 0
 p F  9

 F

 1
 G F R M i

 F

 0
 p M i

 F

 1
 G  5 F R M i

 F

 0
 p M i

 F

 1
 G F R M i 9

 M i

 0
 p M i 9

 M i

 1
 G  (26)

 Carrying out matrix multiplication ,

 F R F  9
 F  R M i

 F

 0
 R F  9

 F  p M i
 F  1  p F  9

 F

 1
 G  5 F R M i

 F  R M i 9
 M i

 0
 R M i

 F  p M i 9
 M i

 1  p M i
 F

 1
 G  (27)

 Using positional perturbations only ,

 R F  9
 F  p M i

 F  1  p F  9
 F  5  R M i

 F  p M i 9
 M i

 1  p M i
 F  (28)

 Rearranging equation (28) and singling out the
 positional perturbations results in (29) ,  the rigid-body
 pose extraction equation in matrix form becomes

 p M i 9
 M i

 5  [ R M i
 F  ] 2 1 [ R F  9

 F  p M i
 F  1  p F  9

 F  2  p M i
 F  ]

 5  [ R M i
 F  ] 2 1 [( R F  9

 F  2  I ) p M i
 F  1  p F  9

 F  ]  (29)

 The screw rotation transformation  R  represents a
 rotation around an arbitrary unit vector  k  through the
 origin ,  equation (30) :

 R  5 3  k x k x  vers  θ  1  cos  θ
 k x k y  cos  θ  1  k z  sin  θ

 k x k z  vers  θ  2  k y  sin  θ

 k y k x  vers  θ  2  k z  sin  θ
 k y k y  vers  θ  1  cos  θ

 k y k z  vers  θ  1  k x  sin  θ
 k z k x  vers  θ  1  k y  sin  θ
 k z k y  vers  θ  2  k x  sin  θ
 k z k z  vers  θ  1  cos  θ

 4  (30)

 where  k x  , k y  , k z   are the direction cosines of  k ,  and

 vers  θ  5  1  2  cos  θ  .  (31)

 For small rotational perturbations ,   θ  5  d θ  ,  sin  d θ  5
 d θ  ,  and cos  d θ  5  1 .  Let the origin perturbation be
 represented by  d x  , d y  ,  and  d z  ,  and let  d x  5  k x d θ  ,
 d y  5  k y d θ  ,  d z  5  k z d θ   represent the rotational perturba-
 tion .  This results in the dif ferential transformation

 d T  5 3
 1
 d z

 2 d y

 0

 2 d z

 1
 d x

 0

 d y

 2 d x

 1
 0

 d x

 d y

 d z

 1
 4  (32)

 For rigid-body perturbation ,  equation (32) relates the
 perturbed part reference frame  F  9  to the part reference
 frame  F .  The transformation from the measurement
 feature frame for feature  i  to the part reference frame  F

 is stored in the ideal database ,  and represented by

 T M i
 F  5 3

 r 1 1

 r 2 1

 r 3 1

 0

 r 1 2

 r 2 2

 r 3 2

 0

 r 1 3

 r 2 3

 r 3 3

 0

 p x

 p y

 p z

 1
 4

 i

 (33)

 Cell initialization establishes the ideal value rep-
 resented by (33) when the part first enters the processing
 station .  Thereafter ,  rigid-body deviations ,  sometimes
 referred to as of fsets ,  are measured by external sensors .
 Positional deviations of the measurement feature frame
 M i   can be determined by sensors ,  either attached to the
 robot or attached externally :

 p M i 9
 M i

 5 3  D x i

 D y i

 D z i
 4  (34)

 Generalizing for any measurement frame (dropping
 the  i  subscript for simplification) ,  and substituting
 equations (32) – (34) into equation (29) ,  we get

 3  D x
 D y

 D z
 4  5 3  r 1 1  r 1 2  r 1 3

 r 2 1  r 2 2  r 2 3

 r 3 1  r 3 2  r 3 3
 4

 2 1

 5 1 3  1
 d z

 2 d y

 2 d z

 1
 d x

 d y

 2 d x

 1
 4

 2 3  1  0  0
 0  1  0
 0  0  1

 4 2 3 p x

 p y

 p z
 4  1 3  d x

 d y

 d z
 4 6

 5 3  r 1 1  r 2 1  r 3 1

 r 1 2  r 2 2  r 3 2

 r 1 3  r 2 3  r 3 3
 4 5 3  0

 d z

 2 d y

 2 d z

 0
 d x

 d y

 2 d x

 0
 4

 3 3  p x

 p y

 p z
 4  1 3  d x

 d y

 d z
 4 6

 5 3  r 1 1  r 2 1  r 3 1

 r 1 2  r 2 2  r 3 2

 r 1 3  r 2 3  r 3 3
 4 3  2 d z  p y  1  d y  p z  1  d x

 2 d x  p z  1  d z  p x  1  d y

 2 d y  p x  1  d x  p y  1  d z
 4  (35)

 The unknowns  d x  ,  d y  ,  d z  , d x  , d y  ,  and  d z  ,  can be
 determined by measuring six positional deviations from
 at least three measurement frames to generate six
 linearly independent equations of the type shown in (36) ,
 where  D x i   is used to represent a position deviation in the
 x , y ,  or  z  direction as measured in the  i th measurement
 frame .

 D x i  5  ( r i 3  p y  2  r i 2  p z ) d x  1  ( r i 1  p z  2  r i 3  p x ) d y

 1  ( r i 2  p x  2  r i 1  p y ) d z  1  O 3
 j 5 1

 r i j d x j  (36)

 In the next section we demonstrate how equation (36)
 can be implemented for a typical 2-D application .

 b .  2 - D rigid - body application
 Consider a rigid-body lying the  X  – Y  plane ,  Figure 11 ,
 such that  d x  5  d y  5  d x 3  5  0 , r 1 3  5  r 2 3  5  r 3 1  5  r 3 2  5  0 ,  and
 r 3 3  5  1 .  The three unknowns ,   d x  , d y  ,  and  d z  ,  can be
 determined from three independent equations of type
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 Fig .  11 .  Small rigid-body perturbation in 2-D space .

 (36) ,  measured in at least two measurement frames .  A
 vision camera can measure  D x ,  D y ,  and  D θ  .  We assume
 that  r  is too large to use  D θ   in the rigid-body correction .
 Using two vision cameras we determine perturbations
 D x 1  ,  D y 1  ,  D x 2  ,  and  D y 2 .  Since only three are required ,  we
 could use multiple combinations to statistically improve
 our solution or handle special cases that may occur .

 First apply  D x 1  ,  D y 1  ,  and  D x 2  in the form of (36) to get

 D x 1  5  ( r 1 2  p x  2  r 1 1  p y ) d z  1  r 1 1 d x  1  r 1 2 d y  (37a)

 D y 1  5  ( r 2 2  p x  2  r 2 1  p y ) d z  1  r 2 1 d x  1  r 2 2 d y  (37b)

 D x 2  5  ( r 1 2 9 p 9 x  2  r 1 1 9 p 9 y ) d z  1  r 9 11 d x  1  r 9 12 d y  (37c)

 where the prime refers to the second measurement
 frame .  The three unknowns  d x  , d y  ,  and  d z   can now be
 determined ,  provided the equations are linearly
 independent .

 For the special case where frames  M 1  , M 2  ,  and  F  are
 parallel ( r 1 2  5  r 2 1  5  r 9 12  5  r 9 21  5  0 ,  and  r 1 1  5  r 2 2  5  r 9 11  5  r 9 22  5
 1) ,  equations (37) reduce to

 D x 1  5  2 p y d z  1  d x  (38a)

 D y 1  5  p x d z  1  d y  (38b)

 D x 2  5  2 p 9 y d z  1  d x  (38c)

 Solving these equations ,

 d z  5
 D x 1  2  D x 2

 p 9 y  2  p y
 (39a)

 d x  5  D x 1  1  p y d z  (39b)

 d y  5  D y 1  2  p x d z  (39c)

 It is obvious that there will be no solution if  p 9 y  5  p y  ,  or
 if frames  M 1  and  M 2  sit on a line which is parallel to the
 X  -axis of frame  F .  In this case ,  we apply  D x 1  ,  D y 1  ,  and
 D y 2   to get

 D x 1  5  2 p y d z  1  d x  (40a)

 D y 1  5  p x d z  1  d y  (40b)

 D y 2  5  p 9 x d z  1  d y  (40c)

 Solving this set of equations ,

 d z  5
 D y 1  2  D y 2

 p x  2  p 9 x
 (41a)

 d x  5  D x 1  1  p y d z  (41b)

 d y  5  D y 1  2  p x d z  (41c)

 Again ,  there will be no solution if  p 9 x  5  p x  ,  or if frames
 M 1   and  M 2  sit on a line which is parallel to the  Y -axis of
 frame  F ,  but in this case we resort back to equations (39) .

 APPLICATIONS
 TCF calibration accuracy depends on the accuracy and
 repeatability of the calibration measurement devices and
 the robot on which the end-ef fectors are attached .  For
 example ,  vision camera TCF calibration accuracy
 depends on the repeatability and accuracy of the robot ,
 the resolution of the CCD array ,  and the accuracy of the
 pixel calibration which in turn is a function of the camera
 resolution and manufacturing tolerance of the image
 features used .

 TCF calibration utilizing the digitizing tablet depends
 on the resolution and accuracy of the tablet ,  and the
 repeatability and accuracy of the robot .  Fortunately ,
 robot inaccuracy in localized regions is relatively small
 and deterministically distributed .  The methods employed
 here move the robot in small regions (e . g .,  the field of
 view of a camera) .  Statistical methods can then average
 out the uncertainty ,  and the final TCF calibration results
 meet the desired tolerance requirements .

 One is always interested in how accurately these
 methods actually locate the TCF and how this accuracy
 relates to the robot repeatability .  Of f-line assembly tests
 using an RT3000 robot successfully placed cylinders
 and blocks into holes and slots with accuracy near the
 robot’s repeatability (within 0 . 03  mm clearance for the
 cylinder and 0 . 05  mm clearance for the block) ,  without
 failure .  Before local inaccuracy compensation ,  the
 robot demonstrated an inaccuracy propagation of 0 . 5  mm
 in about 150  mm ;  see Davies 6  and Red 7 .

 a .  TCF calibration results
 The automated TCF calibration methods introduced in
 this paper have been implemented using an X-window
 user interface and tested in a robotic assembly workcell
 using a SEIKO RT3000 robot with repeatability of
 0 . 025  mm (0 . 001 0 ) .  Table I and Table II list typical TCF
 calibration results for a low resolution (240  3  300) vision
 camera and a vacuum gripper ,  respectively .  The results
 represent a statistical average of 10 independent tests .

 From Table I ,  it can be seen that the methods are
 quite stable ,  with a 3 s   standard deviation of the TCF
 origin location of about 0 . 025  mm and a 3 s   orientation
 deviation of 0 . 23 8 .  Likewise ,  from Table II ,  it can be
 concluded that the vacuum gripper has a 3 s   standard
 deviation of the origin of 0 . 1  mm .  Comparing the two
 methods ,  the vision camera results appear more stable
 than the digitizing tablet .  But ,  with statistical averaging ,
 both methods proved reliable in locating the camera and
 tool TCF’s .

 The TCF calibration process is fast ,  requiring less than
 a minute per end-ef fector .  Using a high resolution
 camera will reduce the calibration time to seconds per
 end-ef fector .  And at the conclusion of each TCF
 calibration ,  the newly acquired TCF pose data
 automatically updates a process database contained in
 the ROBLINE Of f-Line Task Planning System de-
 veloped at Brigham Young University .  The assembly
 task can now be conduced as a set of target moves with
 the new TCF pose contained in the database .
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 Table I .  TCF calibration results for a vision camera .

 Test No  X  (mm)  Y  (mm)  θ   (degree)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 46 . 350300
 2 46 . 356750
 2 46 . 359779
 2 46 . 354568
 2 46 . 348026
 2 46 . 363510
 2 46 . 362331
 2 46 . 364265
 2 46 . 353237
 2 46 . 357750

 2 88 . 038078
 2 88 . 047714
 2 88 . 046516
 2 88 . 052582
 2 88 . 066490
 2 88 . 061516
 2 88 . 056442
 2 88 . 041992
 2 88 . 046227
 2 88 . 059761

 2 27 . 048596
 2 26 . 946753
 2 26 . 797978
 2 27 . 017435
 2 26 . 997996
 2 26 . 992614
 2 26 . 852039
 2 26 . 900480
 2 26 . 961149
 2 27 . 009386

 Average  2 46 . 357052  2 88 . 051732  2 26 . 952443
 Standard
 Deviation

 0 . 005264  0 . 008692  0 . 075597

 b .  Assembly application
 Figure 12 depicts the layout of the robotic vertical
 assembly workcell .  Two tasks are developed to observe
 robot performance ,  with and without inaccuracy
 compensation .  The first task commands the robot to
 move the vision camera (or simply camera) to several
 mapping features ,  with compensation on and of f .  This
 allows us to verify quantitatively the robot inaccuracies ,
 and then prove that these inaccuracies can be
 compensated to within satisfactory tolerances .  The
 second task uses the vacuum gripper to pick / place blocks
 and IC chips .  The parts (IC chips 1 and 2 ,  cylinder 3 ,  and
 square blocks 4 ,  5 ,  and 6) are picked up from the part
 board and placed in the corresponding locations on the
 assembly board .  The operations require positioning
 tolerances of 0 . 002 0   (0 . 0508  mm) and 0 . 2 8  for orientation .

 The  Z  distance for the vacuum gripper  Z y  a c   can be
 directly measured by a vertical caliper relative to the
 robot’s physical tool interface surface .  The  Z  distance for
 the vision camera  Z c a m   can also be measured directly ,
 except that the distance between the object plane and the
 last joint frame (LJF) needs to be measured when the
 camera is focused on features on the object plane .  The
 Z c a m   distance for the vision camera is calibrated by the
 following steps :
 1 .  Jog the robot such that the vacuum gripper is touching

 the object plane .
 2 .  Save LJF position in  Z  axis direction ,   Z LJF  1 .
 3 .  Jog the robot such that the camera is focused on

 features on the object plane .

 4 .  Save LJF position in  Z  axis direction ,   Z LJF  2 .
 5 .  Calculate camera  Z c a m  5  Z y  a c  1  Z L J F 2  2  Z L J F 1  .

 The robot tasks are conducted in two local areas
 bounded by the part board and the assembly board .  As
 part of the initial rigid-body updating of the part and
 assembly boards ,  the vacuum gripper is used to touch of f
 the parts ,  automatically adjusting the  Z  component of
 the part frames in the dabatase .  The two local areas of
 interest have been defined as local regions p – region (for
 part board) and a – region (for assembly board) .  These
 procedures are only conducted one time at cell
 initialization .

 The vision camera and the vacuum gripper are
 attached to the SEIKO RT-3000 robot distal link ,  then
 the vision camera TCF and the vacuum gripper TCF are
 calibrated for  x , y ,  and  θ   using the automatic TCF
 calibration techniques introduced earlier .

 The calibration procedures require that the end-
 ef fector TCF  Z  distances be calibrated first .  Direct
 contact measurement can be applied to calibrate the TCF
 Z  distances for the vision camera and the vacuum
 gripper ,  Figure 13 .

 Mapping features are set in the database through a
 workcell editing panel .  For regions p – region and
 a – region ,  eight mapping features are available ,  namely
 p – ref ,  p1 ,  p2 ,  p3 ,  a – ref ,  a1 ,  a2 ,  and a3 .  Features p – ref
 and a – ref are defined as the rigid body reference frames
 for regions p – region and a – region respectively .  Figure 14
 shows the features ,  feature frames and working targets
 (frames) in the regions .

 Table II .  TCF calibration results for a vacuum gripper .

 Test No  X  (mm)  Y  (mm)  Test No  X  (mm)  Y  (mm)

 1
 2
 3
 4
 5

 2 54 . 047077
 2 54 . 063084
 2 54 . 048439
 2 54 . 140965
 2 54 . 085217

 2 17 . 161591
 2 17 . 177086
 2 17 . 152706
 2 17 . 193359
 2 17 . 215057

 6
 7
 8
 9

 10

 2 54 . 137531
 2 54 . 123566
 2 54 . 116657
 2 54 . 066551
 2 54 . 066856

 2 17 . 248152
 2 17 . 174816
 2 17 . 165077
 2 17 . 164625
 2 17 . 141228

 Average :
 Standard Deviation :

 X  a v  5  2 54 . 089594
 s x  5  0 . 034777

 Y a y  5  2 17 . 179370
 s y  5  0 . 030215
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 Fig .  12 .  Vertical assembly workcell .

 The SEIKO robot is then calibrated using the local
 calibration techniques by Wang , 1  resulting in the
 accuracy improvements shown in Table III .  Table III
 presents a statistical summary of the robot inaccuracies
 without compensation and with compensated positioning
 accuracy for 12 of the robot configurations .  Among the
 12 configurations ,  four configurations result from the
 camera acquiring features on the assembly board ,  while
 the rest of the configurations result from the camera
 acquiring features on the part board .

 As verified experimentally the SEIKO RT-3000 has
 advertised positioning repeatability of  Ú 0 . 001 0
 (0 . 0254  mm) .  From Table III ,  it can be concluded that
 local compensation along with the TCF and rigid-body
 calibration methods improved the robot positioning
 accuracy to near the repeatability of the robot ,  about a
 15 times decrease in the robot positioning inaccuracy .
 The orientation accuracy improved from 0 . 05 8  ,  0 . 06 8  to
 about 0 . 02 8 .

 The assembly task was then carried out with
 inaccuracy compensation .  All six components (IC chips
 and pegs of dif ferent shapes) were picked up from the
 part board ,  and successfully placed into holes or pockets
 on the assembly board .  The IC chips ,  parts 1 and 2 ,

 Fig .  13 .  TCF  Z  distance for a vision camera and a vacuum
 gripper .

 Fig .  14 .  Features in Regions ‘‘p – region’’ and ‘‘a – region’’ .

 require  Ú 0 . 005 0   (0 . 127  mm) positioning accuracy and
 orientation compensation .  The cylindrical peg ,  part 3 ,
 required  Ú 0 . 0015 0   (0 . 0381  mm) positioning accuracy .
 Obviously ,  no orientation compensation was necessary .
 The square blocks 4 ,  5 and 6 required dif ferent
 positioning accuracy ,   Ú 0 . 006 0   (0 . 1524  mm) ,   Ú 0 . 004 0
 (0 . 1016  mm) ,  and  Ú 0 . 002 0   (0 . 0508  mm) respectively ,  with
 orientation compensation .  Without fail ,  the parts were
 assembled correctly .  Tolerance stackup analysis ,  which
 accounts for tool repeatability ,  camera resolution ,  part
 geometry database error ,  part delivery system re-
 peatability ,  robot repeatability ,  and robot inaccuracy
 correction error ,  demonstrates that the TCF pose
 prediction is better than the robot’s repeatability .

 CONCLUSIONS
 Of f-line programming can only work if a robot is
 accurate and repeatable ,  or ,  if not ,  methods can be
 applied to correct for its inaccuracy .  But this is a
 necessary condition ,  since uncertainties in the tool pose
 and the part rigid-body pose will make it impossible for
 the kinematic loop to be closed .  This paper presented a
 closed form solution for TCF calibration of orthogonal
 end-ef fectors .  The methods considered TCF calibration
 for a camera and for a simple vacuum gripper .  The
 measurement methods successfully locate a TCF origin
 with 3 s   standard deviations near the repeatability of the
 robot and the frame orientation with 3 s   orientation
 deviations of about 0 . 25 8 .

 The TCF calibration methods are easily automated
 and require less than a minute of relative moves to
 predict the TCF accurately .  Assembly tests have been
 successfully conducted with tolerances approaching the
 robot repeatability .  These tests were programmed
 of f-line and did not use a teach pendant .

 This paper also considered methods for measuring and
 compensating small rigid-body perturbations ( , 5 8 ) that
 result from non-repeatable part delivery systems or from
 geometric distortion .  These methods are designed to
 eliminate  r θ   error from the rigid-body prediction and can
 be conducted in real-time .  Without accurate TCF
 calibration and rigid-body compensation ,  even the most
 accurate robot will fail to complete an of f-line
 programmed task if the task tolerances are stringent .
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 Table III .  Seiko RT-3000 robot performance in a – region and p – region
 with compensation ON and OFF .

 TEST  4 1
 Compensation  D X

 (mm)
 D Y

 (mm)
 D θ

 (degree)

 OFF (worst case)
 OFF (average)
 OFF (standard deviation)
 ON (worst case)
 ON (average)
 ON (standard deviation)

 0 . 6985
 0 . 1829
 0 . 3327

 2 0 . 0330
 0 . 0000
 0 . 0203

 2 0 . 6198
 2 0 . 0051

 0 . 3531
 2 0 . 0229

 0 . 0000
 0 . 0127

 2 0 . 1254
 0 . 0530
 0 . 0567

 2 0 . 0443
 0 . 0009
 0 . 0228

 TEST  4 2
 Compensation  D X

 (mm)
 D Y

 (mm)
 D θ

 (degree)

 OFF (worst case)
 OFF (average)
 OFF (standard deviation)
 ON (worst case)
 ON (average)
 ON (standard deviation)

 0 . 6756
 0 . 1803
 0 . 3302
 0 . 0483
 0 . 0025
 0 . 0203

 0 . 6248
 0 . 0000
 0 . 3556

 2 0 . 0305
 0 . 0025
 0 . 0127

 2 0 . 1251
 2 0 . 0289

 0 . 0625
 0 . 0517
 0 . 0040
 0 . 0218
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