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ABSTRACT 
Industrial robotics users, integrators, and manufacturers 

are implementing advanced monitoring, diagnostics, and 

prognostics (collectively known as Prognostics and Health 

Management (PHM)) techniques and technologies. PHM can 

take many different forms when implemented, and measures of 

effectiveness are highly dependent on the techniques 

implemented. A test bed has been built, and a use case designed, 

to represent common manufacturing tasks performed in robot 

work cells where PHM can provide greater equipment and 

process health intelligence. The physical and functional 

relationships within the work cell are mapped using a 

hierarchical deconstruction method to gain a better 

understanding of the propagation of effects of both equipment 

and process degradation. The test bed has been built so PHM 

techniques and technologies can be integrated and tested in a 

realistic scenario. Data is recorded for post processing and 

analysis for the verification and validation (V&V) of the 

implemented PHM techniques. The test bed will serve as a 

platform to develop, test, verify, and validate PHM techniques at 

the National Institute of Standards and Technology (NIST), and 

provide industry participants a standard platform for testing 

their PHM technologies. Having a common testing platform will 

provide industry a foundation for sets of tests to evaluate PHM. 

This paper presents the test bed and use case, the relationships 

therein, and the data management and collection approaches 

used to enable future research. 

INTRODUCTION 
Once a robot system is implemented in a manufacturing 

environment, it must maintain a level of health to meet its 

necessary performance targets [1-3]. As with most automation 

technologies, robot system effectiveness is measured using 

metrics tailored to the process that is being performed [4, 5]. 

Different metrics are used by the manufacturing community to 

increase awareness of a robot system’s health state and the 

operation(s) it performs. Most metrics present current and/or 

historical information.  If any predictive performance metrics are 

used, they often do not consider future health degradations of 

system components [6-9].  

The manufacturing community is motivated to monitor the 

degradation and predict the future health states of their robot 

systems to prevent faults and failures which ultimately impact 

performance [10, 11]. Advanced monitoring, diagnostics, and 

prognostics (collectively known as Prognostics and Health 

Management (PHM)) is an active area of research to support 

robot manufacturers, integrators, and users [7, 12-15]. There is a 

need to develop techniques to verify and validate (V&V) PHM 

technologies for robotics within manufacturing operations. 

Across the manufacturing robot systems community, there 

is no uniform way to implement PHM. Similarly, there is no 

standard means of performing V&V of PHM methods as applied 

to robot systems. Standards do exist for some PHM methods, yet 

they are often specific to a piece of equipment (i.e., machine tool 

monitoring and diagnostics) or an application within the robotics 

community [12, 16-18]. The lack of broad PHM standards for 

industrial robot systems is in part due to the inherent complexity 

of robot systems and their wide use across many applications 

with supporting automation and peripheral equipment. There are 

many complex elements that interact with one another to form 

an industrial robot. To integrate a robot into a system adds more 

complexity, physical interactions, and functional relationships 

that influence system health. PHM can also be applied at 

multiple levels within a system. Examples of the various levels 

where PHM can be applied within a manufacturing process 

include components (e.g., actuators, robots), work cells, 

assembly lines, and factories [2, 6, 19]. 

The National Institute of Standards and Technology (NIST) 

is conducting research to develop the necessary means to V&V 

PHM technologies. A part of this research is focused on PHM for 

an industrial robot work cell. A robot work cell is defined as a 

system, including robot(s), controller(s), safety equipment, and 

other peripherals [20]. Parts typically flow into a work cell where 

they are manipulated and/or transformed before leaving the work 

cell. Common types of industrial robot work cells include 

material handling (e.g., machine tending, sortation), dispensing 

(e.g., adhesive dispensing), and assembly (e.g., welding).  
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There is no widely-accepted metric that assesses the health 

of a robot work cell. However, overall equipment effectiveness 

(OEE) is a commonly-used metric that can provide some insight 

on the value of maintaining work cell health. OEE is derived 

from three critical metrics: quality, performance (or 

productivity), and availability [21, 22]. All manufacturers seek 

to maximize their OEE. Because of this, OEE is used as a starting 

point in selecting what data is collected in the test bed to ensure 

that PHM methods being verified detect degradations which 

impact the metrics and measures that contribute to OEE. System 

health can either increase OEE (under healthy conditions) or 

decrease OEE (under degraded conditions). Quality of part 

output is related to robot position accuracy in work cells where 

the relationship between a part and tool is critical to the operation 

being performed. This is visible in operations such as dispensing, 

welding, and deburring. In this case, the robot’s end effector is 

the tool and works directly on the part or the part is moved by a 

robot around a static tool. Performance is tied to the operational 

speed of components within a work cell including robot joints, 

conveyors, other moving parts, and the signals that control event-

based movement [23, 24]. A reduction in speed has a clear impact 

on material handling tasks where the timing of movements is 

critical to maintain throughput. Availability is directly related to 

the health of a robot work cell. A robot that is not available is 

either not healthy or the robot is adversely impacted by a 

relationship it may have with an unhealthy element. Ideally, 

implementing PHM will maximize availability of a system by 

minimizing unplanned downtime and reducing planned 

downtime [25, 26].  

The health of a robot work cell is dictated by the health of 

the components that comprise the work cell. In most work cells, 

there are complex relationships and interactions between 

components. These relationships and interactions can influence 

process time and quality. Part production can be influenced by 

almost any component of the system and generally requires 

every component to perform as intended to yield parts within 

specification. Mechanical components must be dimensionally 

accurate, parts must be within design tolerance, sensors must 

operate properly, sensor signals must be interpreted properly, and 

the algorithms (programming) that processes information must 

operate as designed. With the possibility of any component 

degrading, the relationships between the components must be 

understood. 

This paper presents a test bed designed and constructed at 

NIST to serve as a platform to develop, test, and V&V PHM 

techniques and technologies. The following (second) section 

presents the test bed configuration and use case. The third section 

briefly discusses a hierarchical decomposition methodology and 

its preliminary application to the use case. The fourth section 

introduces the data management and collection approach to 

capture performance, process, and quality data. The fifth section 

presents sample data captured from the test bed. The final section 

concludes the paper and highlights next steps in this NIST 

research effort. 

 

 
FIGURE 1. LAYOUT OF THE PHM TEST BED 

TEST BED CONFIGURATION AND USE CASE 
A test bed has been built to develop, test, verify, and validate 

PHM methods [27]. The test bed is configured to perform a 

process comprised of tasks that are similar to those found in 

common industrial robot applications. while making data (sensor 

data, robot data, etc.) available for PHM method V&V. The test 

bed is capable of real-time monitoring and control, and recording 

data for post processing and analysis. The test bed includes two 

industrial robots, end effectors for each robot, parts, and fixtures 

integrated to form a work cell (Fig. 1). The use case is a work 

cell that performs the following actions: receives parts, moves 

parts to a position to be drawn on, draws on the parts, then moves 

the parts to an output to be removed from the work cell. There is 

a single input location and a single output location. There are two 

available work fixtures where parts can be drawn on. 

The use case process can be decomposed into three main 

tasks that are performed by the two industrial robots in the 

following order (per part): 1) the material handling robot 

performs a pick and place operation, moving a raw part from the 

input to a work fixture; 2) the drawing robot draws on the part, 

transforming the raw part into a completed part; 3) the material 

handling robot performs a pick and place operation, moving a 

completed part from a work fixture to the output (Fig. 2). A 

gravity-driven ramp inputs parts within reach of the material 

handling robot; the output consists of a box that parts can be 

dropped into where they are considered removed from the work 

cell. Once a part is placed on a work fixture by the material 

handling robot, the part is held in place by locating pins integral 

to the fixture. These pins mate with cylindrical locating holes on 

the bottom of the parts (Fig. 3). The locating pins have tapered 

ends to allow the part to self-center when there is a slight 

misalignment between part and fixture during part placement.  
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FIGURE 2. THREE TASKS PERFORMED BY ROBOTS IN 

THE TEST BED: 1) MOVE PART TO THE WORK FIXTURE, 2) 
DRAW ON THE PART, AND 3) MOVE PART TO OUTPUT. 

 
FIGURE 3. WORK FIXTURE WITH LOCATING PINS AND 

PART (BOTTOM SHOWN) WITH LOCATING HOLES. 

The material handling robot is equipped with an electrically-

actuated parallel finger gripper-type end effector. Tasks 

(including waypoints) and task frames (i.e., coordinate systems) 

are preprogrammed in the robot controller before task execution. 

The task frames are programmed for each possible pick and place 

location (i.e., input(s), output(s), and work fixtures). Tasks are 

assigned to the robot by assigning a pick frame and a place  

 

 
FIGURE 4. COMPLIANT PEN HOLDING END EFFECTOR: A) 

NOT DRAWING (RESTING POSITION), B) DRAWING 
(COMPLYING TO PART) 

frame. The drawing robot is equipped with a spring-loaded pen 

holder end effector. The spring-loaded end effector can be seen 

in the natural resting state (A) and in the drawing state where the 

spring is compressed (B) in Fig. 4. The drawing robot’s task, 

including all waypoints, are hard-coded relative to a frame 

dictated by the work fixture (task frame) specified in the task 

assignment. This results in the same programmed motion profile 

taking place relative to the work fixture specified by the task 

assignment. The frame of each work fixture which holds the 

parts is programmed in the robot controller before task 

execution. The drawing robot’s motion profiles are similar to 

motion profiles of glue dispensing, deburring, and other 

processes requiring robot trajectory accuracy. 

Coordination, including task assignment, part position 

monitoring, and process state tracking, is managed by a 

programmable logic controller (PLC). The PLC tracks the status 

of each part by monitoring robot task events. Each robot task is 

composed of three distinct activities: 1) the robot moving into a 

‘ready’ position to perform an action (moving to the start position 

for drawing or into position to grasp a part); 2) the robot 

performing the action (drawing, or picking, moving, and 

releasing a part); 3) the robot moving to a position clear of the 

part, completing the task, and enabling the robot to be ready to 

receive a new task. Robot tasks are assigned by transmitting the 

part number for the task along with pick and place location for 

the material handling robot or work fixture and task number (i.e., 

drawing profile, if multiple profiles or part types exist) for the 

drawing robot. For the current test bed configuration and use 

case, there is a single part type and single drawing task available 

for operations (Fig. 5). 
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FIGURE 5. COMPLETED PART (LEFT) AND PART AS IT 

ENTERS THE WORK CELL (RIGHT) 

Future configuration plans include the addition of part 

presence detection at each work fixture, the input, output, and on 

the material handling robot’s end effector to add greater 

awareness for part tracking and to provide additional data for 

PHM methods. Though not currently being used, the test bed is 

designed to accommodate a tray or batch style input and output 

where a tray with multiple raw parts in multiple locations is fed 

into the work cell. Additionally, the gravity fed input can be 

replaced with a motorized conveyor for a more complex input 

configuration. 

HIERARCHICAL DECOMPOSITION 
Robot work cells can be complex, posing challenges when 

designing, deploying, verifying, and validating PHM techniques. 

Ongoing robot work cell research includes the development of a 

hierarchical decomposition method to promote advanced 

monitoring, diagnostic, and prognostics within a robot work cell. 

The decomposition method is actively being developed and can 

offer insight where PHM should be implemented within the test 

bed and use case. The insight gained from the decomposition 

method will lead to increased equipment and process health 

awareness which should further inform the PHM evaluation 

process with the understanding of relationships between 

elements of the work cell.  

The application of this hierarchical decomposition method 

to the use case is motivated by the desire to bring transparency 

to how a work cell’s physical elements, functional tasks, and 

corresponding health metrics relate to one another to enhance 

PHM efficiency [28]. As noted earlier, the initial use case and 

test bed configuration are purposefully relatively simple as a 

starting point to prove the overall approach. As this effort 

continues to make progress, both the complexity of the use case 

and test bed will expand making it much more difficult to 

determine the influences and impacts that the health of specific 

physical elements have on functional tasks along with health 

metrics.  

The overall objective of the hierarchical decomposition 

method is to develop a cost-effective, methodical approach to 

guiding the manufacturing community through the PHM design 

and deployment process when all possible fault and failure 

modes are not known ahead of time. This method is based upon 

the Multi-Relationship Evaluation Design framework which 

generates test-plan blueprints from several categories of input to 

quantitatively and qualitatively evaluate advanced and emerging 

technologies at the system, component, and capability levels [29, 

30]. The hierarchical decomposition method’s foundational 

elements are helping to manage use case and test bed complexity. 

At a relatively high level, the steps of the method are: 

 

1. Physical Decomposition – decompose the physical work 

cell into its constituent components, sub-components, etc. 

based upon the maintenance-driven boundaries 

2. Functional Decomposition – decompose the overall process 

into its constituent tasks, sub-tasks, etc. based upon control 

strategy, modularity of the tasks and sub-tasks for 

reconfiguration or improvement, and what is important to 

monitor 

3. Process and Task Metric Identification – identify all metrics 

that are captured (or should be captured when a new 

manufacturing system is being designed) at the overall 

process level and constituent task and sub-task levels. This 

task also includes identifying the relationships between 

these metrics (e.g., which lower level metrics are rolled up 

into higher level metrics).  

4. Risk Identification – identify the sources of risk in the robot 

work cell in terms of what has been known to go wrong, 

what could potentially go wrong, the likelihood of 

something going wrong, and impact of something going 

wrong. 

5. Risk Reduction – explore ways to reduce the risk of work 

cell faults and failures. Reductions can range from 

eliminating the potential for the fault or failure altogether 

(e.g., a robot is known to fail so removing the robot from the 

design would eliminate this failure) to incorporating 

preventative (scheduled) maintenance plans and being ready 

to perform reactive maintenance if something does fail 

6. Data to Collect and Collection Approach – identify the 

necessary data to be collected and the best strategy (e.g., 

sensor selection, sensor location) in which to do this. 

7. Physical Element Metric Identification – identify metrics 

and measures that can inform on physical system, 

component, and sub-component health and relate these 

metrics back to the previously-identified process metrics.  

8. Relationship Mapping and Quantification – form the 

connections up-and-down and across the three (physical, 

functional, and metric) hierarchical dimensions to document 

both the influences and the impacts faults and failures can 

cause throughout the multiple dimensions of a work cell.  
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FIGURE 6. PHYSICAL DECOMPOSITION FOR THE USE CASE 

 

 
FIGURE 7. FUNCTIONAL DECOMPOSITION FOR THE USE CASE 

It should be noted that the first time a user encounters Step 

6, they will determine the necessary data to collect based upon 

the metrics identified in Step 3. Proceeding to Step 7, metrics 

that are solely focused on physical elements are identified (which 

may include metrics identified in Step 3). After Step 7, the user 

returns to Step 5 to determine if risk can be further reduced and 

Step 6 to identify additional data for collection based upon any 

metrics identified in Step 5 and the previous iteration of Step 7. 

The user proceeds to Step 8 after no additional metrics can be 

identified in Step 7. Step 6 is not the last step because it is 

possible that the desired data, and corresponding collection 

strategy, may be unattainable. In that case, the user is going to be 

limited in the metrics that can be captured and must narrow the 

focus to specific physical elements. 

The first two steps, physical and functional decompositions, 

are completed for the robot work cell use case and presented at a 

high-level.  

Figure 6 shows the physical element decomposition and 

begins with the PLC being physically connected to the 

controllers of both the material handling and drawing robots. The 

solid lines between the PLC and these two robot controllers 

indicate that this physical connection is continuous and fixed so 

long as the work cell is in operation. Both robot controllers are 

directly connected to their respective robot arms. In turn, both 

robot arms have a physical connection to their respective end-

effectors, the gripper for the material handling robot and the 

drawing end effector for the drawing robot. Solid lines are used 

to indicate the fixed connection between these elements. Both 

the gripper and the drawing end effector directly interact with the 

parts that enter and exit the work cell. These interactions are 

dynamic and temporary, based upon the specific task (i.e., 

material handling, drawing) at hand, so these connections are 

represented with dashed lines. Several of the physical systems 

presented in Fig. 6 can be decomposed into constituent 

components and sub-components based upon their physical 

construction and what is commonly monitored in a 

manufacturing environment. For example, both robot arms can 

be decomposed into each of their six joints, J1 through J6. At 

minimum, each joint is comprised of numerous sub-components 

including a motor, a gear reduction, and an encoder. If data is 

available at a deeper sub-component level, diagnostic and 

maintenance activities can also be done at this deeper level. 

Additional details of this physical decomposition will be 

presented in future efforts. 

Figure 7 presents the functional decomposition for the use 

case at the task and sub-task levels. The overall process is broken 

down into three specific tasks identical to what was presented in 

the Test Bed Configuration and Use Case Section of this paper. 

Each task (1, 2, 3) is then broken down further into three specific 

sub-tasks (1.1 – 1.3, 2.1 – 2.3, 3.1 – 3.3). Similar to how metrics 

can be captured to isolate the health of each task level, metrics 

can also be generated to determine the health of each sub-task. 

Several fault or failure conditions may warrant sub-task-level 

inspection to determine where, specifically in the process, errors 

are occurring. For example, suppose that the cycle time for the 

overall process is longer than the expected baseline. Upon 

examination at the task level, a determination could be made as 

to which specific task(s) are taking longer than expected. 

Additional examination at the sub-task level can reveal more 

details of the problem and likely lead to the root cause (e.g., 

closer inspection of an anomaly in a pick and place operation 

reveals that sub-task 1.2 – MH robot gripping part is taking 

longer than expected because the gripper is moving slower than 

baseline expectations. This could reveal a problem with the 
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gripper and not the positioning of the gripper). Depending upon 

the information conveyed by the metrics and the inherent 

complexity of a given process, it is possible that a task, sub-task, 

and deeper-level investigation may need to occur. Some of the 

sub-tasks can be broken down further (e.g., 2.2 ‘Drawing robot 

draws on part’ can be broken down into granular drawing 

motions). This will be presented in future work. 

The remaining steps of the hierarchical decomposition 

method will be applied to the use case in future efforts. This 

preliminary application of the method demonstrates some of the 

expected value of deconstructing the physical features of the 

work cell and the functional process it enables, providing a 

foundation on which PHM can be designed and implemented. 

Applying the next step, ‘Process and Task Metric Identification,’ 

requires an understanding of the data that can be captured to 

inform on the overall process. This leads to the development of 

a data management and collection approach. 

DATA MANAGEMENT AND COLLECTION APPROACH 
Devising an appropriate data management and collection 

strategy is critical to capture PHM data, generate necessary 

intelligence, and verify its effectiveness. Due to the 

reconfigurable nature and broad target applications of 

automation and robotics equipment, there is a large amount of 

data generated by equipment commonly found in robot work 

cells for use in PHM methods. The data being generated across 

automation equipment, and in the test bed, has many data types, 

units, and sample frequencies. The test bed uses a PLC as both a 

data aggregator and real-time processor for the data. The PLC is 

managing two categories of data: 1) external sensor (e.g., 

discrete presence sensor) and component-generated (e.g., robot) 

data that is not processed outside the components’ internal 

processing implemented by the original equipment 

manufacturer. This includes robot-generated data such as joint 

positions and velocities, temperatures, and controller status; and 

2) process-generated data based upon programming on the PLC 

or other user programmable devices. This data includes part 

status information, task assignments, and any other calculated 

values. All PLC data, whether from internal or external sources, 

is capable of being used in real-time processing within PHM 

methods being tested and can be recorded for post processing. 

Though the PLC in the test bed is configured to have access to 

all data published by the robot controllers in real-time or near-

real-time, the controllers do not publish all the data they generate 

to external devices. Data generated by the robots but unavailable 

to the PLC is logged (if possible) on the robot controllers and 

accessible for post processing and analysis.  

Specific PLC-generated data that is recorded in the test bed 

is discussed in the following sub-sections. This internally-

generated data includes the building blocks for the OEE metric 

and can be split into three categories: performance, process, and 

quality data. Raw data generated by the robots and their 

controllers will be discussed when the data applications in PHM 

methods are presented in future work.  

 
 

Performance Data 
Performance measurement can provide data for PHM 

methods and enable verification of system performance during 

PHM method testing. Performance is a metric based upon the 

timing of events in the context of OEE. Performance can be 

measured at many levels of the system (e.g., the work cell, each 

robot task, each part). If events, which influence performance of 

a system, occur on time and/or at a defined rate, the system is 

performing to specification. The test bed is designed to record 

timestamps of many state changes and events throughout the 

execution of the use case.  

Timestamps are recorded at predefined state changes and 

events on the PLC and robot controllers, respectively. Each robot 

controller and the PLC have their own internal clocks and, due 

to hardware limitations, the timestamps recorded on each device 

are relative to their own internal clocks. All timestamp data 

collected on the PLC is available for real-time calculations and 

is recorded. The timestamps collected on the robots are only 

available as recorded data for post-processing and analysis.  

The timestamps collected on the PLC correspond to 14 part 

state changes (to be presented in detail in future work) 

throughout the processing of a part (see the ‘Part State Changes’ 

row in Fig. 8). Timestamps are recorded when PLC-monitored 

triggers are activated by internal processing (PLC trigger origin) 

or after the PLC receives an input from a robot controller (robot 

trigger origin) (see the ‘Trigger Origin’ row in Fig. 8). Records 

generated from PLC-originated triggers include parts entering 

the work cell, assignment of robot tasks, and parts leaving the 

work cell. PLC-originating triggers are activated by either 

internal algorithms or sensors which are monitored directly in 

the PLC Inputs/Outputs (I/O). Records generated from a robot-

originated trigger include when a robot begins operating on a 

part, when the task operation is complete, and when the robot has 

physically cleared the fixture area and is ready for a new task 

assignment. Robot-originating triggers are activated by PLC I/O. 

In addition to the part state changes that are recorded on the 

PLC, for each robot task, four events which correspond to unique 

part state changes are recorded on the robot controllers. The 

material handling robot records four events for each pick and 

place operation. There are two pick and place operations for each 

part, one instance to place the part in the work fixture and another 

instance to remove the part from the work fixture (see ‘Material 

Handling Robot Events’ row in Fig. 8). The drawing robot 

records four events for the drawing task on each part. The four 

events correspond to the beginning and end of the three parts of 

a robot task discussed in the Test Bed Configuration and Use 

Case section (see the ‘Drawing Robot Events’ row in Fig. 8).  

Each part to be processed is assigned a unique part number 

as it enters the work cell. The part number is transmitted to the 

robot controllers when tasks are assigned and each record on the 

robot includes the part number which is an element in the 

timestamp records. All timestamp records use the part number as 

a common index. Records from the individual robot controllers 

and the PLC can be compiled in post-processing to allow for any 

individual process segment performance to be calculated. 
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FIGURE 8. TIMELINE OF PART STATE CHANGES AND ROBOT EVENTS. 

Process Data 
Analysis at the work cell level requires an understanding of 

the variability of the process taking place to differentiate 

designed variability vs. degradation variability (caused by 

process/equipment health changes). In a variable process like the 

test bed use case, process data is required to provide context to 

performance data. For example, if a part is being moved by the 

material handling robot from the input to work fixture 1, it will 

take a different amount of time as moving a part from the input 

to work fixture 2 because work fixture 1 and 2 are in different 

physical locations and the robot moves with constant speed 

constraints. This timing differential will be seen in timestamps 

recorded based upon the movement of parts. It may also result in 

a different total part processing time (from part entering work 

cell to part leaving work cell) but that is not guaranteed 

depending on the process, slack time allowance, and existence of 

bottlenecks. 

Process data collected in the test bed are the variable pieces 

of process information. This includes the input location (single 

option in the initial configuration presented in this paper), the 

output location (single option in the initial configuration 

presented in this paper), the work fixture location, the part 

number counted from startup, and the part type (task number for 

drawing robot). A summary of part-related process data being 

recorded is presented in Table 1. As the test bed is used and more 

variability is identified and introduced, it is anticipated that more 

process data will be captured. 

 
TABLE 1. RECORDED PROCESS DATA 

Recorded Data Description 

Part 

Number 

Unique identifier for each part processed. 

Input Number Identifies the numbered location where a 

part entered the work cell. This number is 

unique to a specific physical location. 

Output Number Identifies the numbered location where a 

part is placed to be removed from the work 

cell. This number is unique to a specific 

physical location. 

Work Fixture  

Number 

Identifies the numbered location of the 

work fixture where the part was placed for 

the drawing task. This number is unique to 

a specific physical location. 

Part Completed Boolean identifier if part was completed 

(PLC interpreted the successful 

completion of the drawing task) 

Part Type Part-type identifier reserved for the 

possibility of part type variable processes. 
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Quality Data 
Similar to performance measurement, quality measurement 

can provide data for PHM methods as well as enable the 

verification of part quality degradation, or lack thereof, 

throughout the testing of PHM methods. As work cell 

components degrade, there may be a direct impact on part 

quality. This is due to the mechanical allowances built into the 

system [27]. Quality measures are use case-specific and present 

differing challenges in their measurement. Many automated 

processes use some form of automated inspection which 

generates quality data that is usable in PHM method 

implementation and assessment. 

In this use case, because there is a passive compliance 

device holding a pen, a degradation of the drawing robot which 

manifests itself as a positioning error in-line with the compliance 

will not impact part quality until the deviation from nominal is 

greater than the allowance provided by the end effector. 

However, if the robots’ degradation manifests itself as a 

positioning error in the plane parallel with the parts drawing 

surface, the quality will be directly and immediately impacted. 

Two measures of quality have been identified for the current 

use case: 

1. Position of the drawing on the 2D surface 

2. Quality of line drawn (e.g., solid continuous, discontinuous) 

 

Two manual measurement methods have been developed. These 

measurements will provide data that can be used in an offline 

process to verify the success or failure of PHM methods designed 

to detect degradations that impact quality. In the test bed, 

inspections will be done during post processing making the data 

available for method verification. 

To measure the position of the 2D drawing, a transparent 

template is mated with the completed part, covering the drawing. 

(see Fig. 9) The transparent template presents a copy of the 

drawing in the nominal position. The deviation of the completed 

drawing on the part to the template’s nominal position can be 

measured at any segment of the drawing. For the task currently 

implemented in the use case, the drawing includes four locations 

where lines intersect, creating crosshairs for measurement. 

Alternatively, position can be gauged using a series of 

transparent templates which have gauging areas on them where 

if the drawn crosshair is within the gauging lines, the line is at 

least as accurate as that gauge specification. The quality of the 

line is manually measured by a person inspecting the completed 

part. 

The quality measures developed will measure the final 

product and capture both the expected deviations from nominal 

that are present due to the tolerance stack of physical component 

position error as well as any additional deviations due to 

degradations. The nominal variance due to the tolerance stack 

will be made up of multiple possible component variances 

including robot repeatability, part-to-fixture mating variation, 

and the part’s quality (is the drawing surface where it should be). 

For the use case in this test bed, the drawing program is 

hardcoded with waypoints in a fixed relationship to each other.  

 

 
FIGURE 9. QUALITY MEASUREMENT TRANSPARENT 
GAUGE SHOWN ON AND OFF A COMPLETED PART. 

Both fixture and part locations are hardcoded and do not change. 

Any measure of quality correlates to the repeatability of the robot 

or the location of the part/drawing surface (this will be further 

evident upon complete application of the hierarchical 

decomposition method). This use case was designed to limit the 

number of potential points of degradation that can impact 

completed part quality by forcing the robot to perform a 

repetitive task with hardcoded waypoints. 

In a use case where there is dynamic programming, 

additional sources of error can impact part quality. For example, 

a vision system could be used to localize a part in a work area. 

One scenario could dictate the vision system transmit the part’s 

position to the drawing robot which the robot would then use to 

calculate its kinematics and determine specific waypoints. It 

would be expected that there would be slight variance in the 

vision system’s interpretation of the part position which would 

then create greater variation in the completed part. Another 

example is if the drawing robot did not have a spring-loaded 

compliance device and instead used force feedback to control 

pen pressure on the part, any variation in the force feedback 

could create variation in pen pressure and the final product 

quality. The domino effect of added variability poses real 

challenges in monitoring work cell health. It is anticipated that 

as the research progresses, future test bed configurations and use 

cases will include vision-based part localization while 

addressing the challenges of additional variance. 

SAMPLE DATA 
A sample dataset was collected on the test bed by processing 

a single part through all 14 state changes presented in the 

performance data section. Robot and process data were collected 

as described. In depth analysis of this data and the meaning of it 

is scheduled for a future publication. Fig. 10 is comprised of  
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FIGURE 10. TIMESERIES PLOTS OF A SINGLE PART 

PROCESS SHOWING (TOP TO BOTTOM) PART STATE 
CHANGES, DRAWING ROBOT JOINT POSITIONS, AND 

MATERIAL HANDLING ROBOT JOINT POSITIONS. 

timeseries plots of a subset of the sample data collected, showing 

the time of each part state change (vertical lines) along with the 

positions of each of the six joints on both robots throughout the 

part process. By capturing part state changes, specific 

operational regimes can be isolated making it possible to analyze 

each segment independently and in the context to its operation. 

In this example each robot is stationary for a position of its time. 

During these stationary times, any position fluctuations in joint 

position may be indicative of a degradation of that joint. 

This sample was collected without a second part being 

processed simultaneously to allow a clear view of the expected 

movements of each robot joint for a single part process. When 

multiple work fixtures and parts are active within the work cell, 

timeseries data segments will not be as clear to an observer due 

to robots performing multiple tasks on multiple parts in a 

variable order and frequency.  The process data collected 

differentiates the individual segments of robot data and how they 

correlate to the parts and process. This allows a link to be made 

between all physical and functional components within the work 

cell during analysis. 

CONCLUSION 
A test bed has been built at NIST to collect work cell level 

data that can be used to verify PHM methods. The use case has 

been designed as a relatively simple process representative of 

articulated arm robots performing industrial operations. The data 

recording structure is such that raw and processed data can be 

accessed both in real-time and after-the-fact to implement and 

verify PHM methods. Events throughout the use case process 

have been defined and allow the recording of timestamps for use 

in performance measurement. Quality measures have been 

developed and defined. Process information has been identified 

and is recorded to contextualize data and the combination of 

these types of data can be used to inform, monitor, diagnose, and 

predict failure of elements found in robot work cells. The test bed 

has been built to serve as a platform to test and evaluate PHM 

methods developed both at NIST and in industry. This platform 

has the potential to enable the development of device-agnostic 

monitoring, diagnostic, and prognostic techniques to enhance 

manufacturing asset availability. Likewise, the platform 

promotes unbiased verification and validation of emerging PHM 

techniques to further inform industry on the capabilities of 

available technologies.  Future work includes characterizing the 

variability of performance and quality metrics in the base 

(undegraded) use case, adding capabilities to induce degradation 

through physical manipulation of components and/or simulation 

of known degradations, and further applying the hierarchical 

decomposition method to produce a greater understanding of the 

physical, functional, and metric relationships within the work 

cell. 

NIST DISCLAIMER 
The views and opinions expressed herein do not necessarily 

state or reflect those of NIST. Certain commercial entities, 

equipment, or materials may be identified in this document to 

illustrate a point or concept. Such identification is not intended 

to imply recommendation or endorsement by NIST, nor is it 

intended to imply that the entities, materials, or equipment are 

necessarily the best available for the purpose. 
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