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The synthesis of human motion is a complex procedure that involves accurate reconstruction of move-

ment sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization

of reliable performance criteria. Many of these processes have much in common with the problems found

in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculo-

skeletal modeling methods and physiologically accurate performance predictions. In this paper, we pres-

ent (i) a new method for the real-time reconstruction of human motion trajectories using direct marker

tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance met-

rics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through

the control of a simulated humanmodel to follow the captured marker trajectories in real-time. The oper-

ational space control and real-time simulation provide human dynamics at any configuration of the per-

formance. A new criteria of muscular effort minimization has been introduced to analyze human static

postures. Extensive motion capture experiments were conducted to validate the new minimization crite-

rion. Finally, new human performance metrics were introduced to study in details an athletic skill. These

metrics include the effort expenditure and the feasible set of operational space accelerations during the

performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as

muscle routing kinematics and force generating capacities. The developments draw upon an advanced

musculoskeletal modeling platform and a task-oriented framework for the effective integration of biome-

chanics and robotics methods.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of robotics, the motivation to emulate human move-

ment is driven by the proliferation of humanoid robots and the de-

sire to endow them with human-like movement characteristics

(Nakamura et al., 2003). Inspired by human behaviors, our early

work in robot control encoded tasks and diverse constraints into

artificial potential fields capturing human-like goal-driven behav-

iors (Khatib and Le Maitre, 1978). This concept was later formalized

in the task oriented operational space dynamic framework (Khatib,

1986, 1987). More recently, this formulation was extended to

address whole-body control of humanoid robots and successfully

validated on physical robots (Khatib et al., 2004). The framework

provides multi-task prioritized control architecture allowing the

simultaneous execution of multiple objectives in a hierarchical

manner, analogous to natural human motion (see Fig. 1).

One of the major difficulties associated with the prediction and

synthesis of human movement is redundancy resolution. Whether

the goal is to gain an understanding of human motion or to enable

synthesis of natural motion in humanoid robots a particularly

relevant class of movements involves targeted reaching. Given a

specific target the prediction of kinematically redundant limb

motion is a problem of choosing one of a multitude of control solu-

tions all of which yield kinematically feasible solutions. It has been

observed that humans resolve this redundancy problem in a rela-

tively consistent manner (Kang et al., 2005; Lacquaniti and Soech-

ting, 1982). For this reason, mathematical models have proven to

be valuable tools for motor control prediction (Hermens and

Gielen, 2004; Vetter et al., 2002). These models frequently charac-

terize some element of musculoskeletal effort.

Robotics-based effort models frequently utilize quantities that

are derivable purely from skeletal kinematics and that are not spe-

cific to muscle actuation. It is thus useful to consider an analogous

measure that encodes information about the overall musculoskel-

etal system to account for muscle actuation and its redundancy.

Activation, which represents the normalized exertion of muscles,

provides a natural starting point for constructing such a measure.
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Specifically, the magnitude of muscle activation vector has been

used as an optimization criterion in both static and dynamic opti-

mizations (Thelen et al., 2003). The utilization of a model-based

characterization of muscle systems, which accounts for muscle

kinematic and strength properties, is critical to authentically sim-

ulating human motion since human motions are frequently linked

by physiological constraints.

In this paper, a robotic approach for the synthesis of human

motion using a task-space framework is presented. For this pur-

pose, the direct marker control for human motion reconstruction,

a criterion of task-driven effort minimization and new metrics for

dynamic characterization of human performance were introduced.

The result is a dynamic biomechanical profile of human perfor-

mance that facilitates the modeling of human motion. These ap-

proaches were tested through extensive motion capture

experiments on human subjects including a martial art master

and a professional football player. The results showed that these

skillful practitioners tend to minimize the muscular effort while

following the lines of maximum feasible accelerations when per-

forming a task. These results support our prediction that task-dri-

ven human motions emerge from the use of physiomechanical

advantage of the human musculoskeletal system under physiolog-

ical constraints.

1.1. Task dynamic behavior and control

For a given desired whole-body task of a human-like robot, the

motion behaviors should be specified to be controlled during the

execution of the motion. Hand location, balance, effort minimiza-

tion, and obstacle and joint limit avoidance are common choices,

but the exhaustive list depends upon the motion to be performed.

Considering each behavior as an independent task, the number of

degrees of freedom describing each task is typically less than the

number of joints in the robot. For these situations, there are multi-

ple ways of performing the task. This redundancy is labeled in

solutions as the posture space of the task, containing all possible

motions that do not affect task performance (Khatib et al., 2004).

As such, other tasks may be controlled by selectively choosing

the path within the posture space.

In this section, the dynamic model of the task/posture decom-

position and the model describing the motion of the subtask within

the posture space (Khatib et al., 2004) are reviewed. Combination

of these two models provides a control structure that compensates

for the dynamics in both spaces, significantly improving perfor-

mance and responsiveness for multiple tasks.

A task can be defined to be any formal description of desired

activity that can be explicitly represented as a function of the joint

coordinates, q, _q and €q. Multiple tasks, xi’s, can be combined into a

single task definition in a higher dimensional space, as long as they

are kinematically consistent with each other. The task coordinates

are denoted by xt ¼ xtðqÞ.

The joint space equations of motion can be expressed as,

AðqÞ€qþ bðq; _qÞ þ gðqÞ ¼ C; ð1Þ

where q is the n� 1 vector of generalized coordinates, AðqÞ is the

n� n mass matrix, bðq; _qÞ is the n� 1 vector of centrifugal and Cori-

olis terms, gðqÞ is the n� 1 vector of gravity terms, and C is the

n� 1 vector of generalized control forces (torques). For conciseness

we will often refrain from explicitly denoting the functional depen-

dence of these quantities on q and _q.

The Jacobian matrix associated with the task, xt , is denoted by

JtðqÞ. The task dynamic behavior can be obtained by projecting

the skeletal dynamics (1) into the space associated with the task,

using the generalized inverse of the Jacobian, Jt . This generalized

inverse of the Jacobian has been showed to be unique and dynam-

ically consistent (Khatib, 1987, 1995) and given by,

Jt , A�1JTt JtA
�1JTt

� ��1

: ð2Þ

The dynamic behavior associated with the task, xt can be ob-

tained by,

JTt ðA€qþ bþ g ¼ CÞ ) Kt€xt þ lt þ pt ¼ Ft: ð3Þ

In this space, Kt is the m�m task inertia matrix, and lt ; pt , and

Ft are, respectively, the centrifugal and Coriolis forces, gravity ef-

fect, and generalized force acting along the direction of the task, xt .

This process provides a description of the dynamics in task

coordinates rather than joint space coordinates (while joint space

coordinates are still present in (3), the inertial term involves task

space accelerations rather than joint space accelerations).

The control framework defined in terms of the relevant task

coordinates, xt , can be represented using a relevant operational

space force, Ft , acting along the same direction. The forces acting

along given task coordinates can be mapped to a joint torque,

Ctask, by the relationship,

Ctask ¼ JTt Ft: ð4Þ

For a given task, there is a unit inertial behavior, It€xt ¼ F�
t and

Ip€xp ¼ F�
p. The nonlinear dynamic control force of the task, Ft , is gi-

ven by,

Fig. 1. Task-space framework allows the articulated skeleton to maintain balance while accomplishing a manual task (Khatib et al., 2004).
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Ft ¼ bKtF
�
t þ l̂t þ p̂t ; ð5Þ

where b: denotes the estimates of the components of the dynamic

models and F� is the desired force.

The generalized torque/force relationship (Khatib, 1987, 1995)

allows for the decomposition of the total torque into two dynami-

cally decoupled torque vectors: the torque corresponding to the

commanded task behavior and the torque that only affects posture

behaviors in the null space provided by the kinematic redundancy

of the musculoskeletal system,

C ¼ Ctask þ Cposture: ð6Þ

The operational space formulation determines the torque com-

ponent for the task to compensate for the dynamics in the task

space,

C ¼ Ctask þ Cposture ¼ JTt Ft þ NT
t Cp; ð7Þ

where Nt is the null space associated with the task.

Dynamically consistent posture control guarantees posture

behaviors to be performed without projecting any acceleration

onto the task (Khatib, 1995). Any acceleration associated with

the posture that would affect the task is filtered by its null space,

Nt .

Postures can be represented by minimal sets of independent

posture coordinates,

Cp ¼ JTpFp: ð8Þ

The task consistent posture Jacobian Jpjt can be defined through

the relation,

Jpjt ¼ JpNt: ð9Þ

The task description and whole-body dynamic control through

prioritization can be obtained by,

JTpjt½A€qþ bþ g ¼ Ctask þ Cposture� ) Kpjt€xpjt þ lpjt þ ppjt ¼ Fpjt; ð10Þ

and the force/torque relationship,

Cposture ¼ JTpjtFpjt: ð11Þ

Using these dynamic behavior models, a dynamically decoupled

control to perform both tasks can be formulated. The control force

for the decoupled system, Fpjt , is given by,

Fpjt ¼ bKpjtF
�
pjt þ l̂pjt þ p̂pjt; ð12Þ

where F�
pjt is the desired force for the decoupled system.

Using the task-dependent torque decomposition and the force/

torque relationship, the resulting control torque, C, is,

C ¼ Ctask þ Cposture ¼ JTt Ft þ JTpjtFpjt: ð13Þ

The task can be controlled by a task field Ut that determines the

desired behavior by its gradient F�
t ¼ �rxtUt . Similarly, the posture

behavior F�
p can be specified by a posture field Ut . In the study of

human motion, the strategies humans follow to perform skills

can be expressed by these energy potentials.

1.2. Human motion reconstruction by direct marker control

The motion capture is an effective tool to investigate human

kinematics in a given motion. However, a number of post process-

ing steps need to be performed to convert the rawmarker positions

into useful kinematic data. The most significant step is to convert

the marker trajectories, x, _x and €x, into joint space trajectories, q,
_q and €q. This hascommonly been done using inverse kinematic

techniques and an efficient motion analysis requires also solving

for human dynamics.

Recently, using the task-oriented control framework we pro-

posed a new approach to reconstruct human movement in real-

time through direct control of optical marker trajectory data

(Demircan et al., 2008), what we term as direct marker control.

The direct marker control is achieved by mapping a scaled dynamic

human model to the experimental marker locations in Cartesian

space and simulating it along the desired trajectories in real-time.

In order to accurately reconstruct human motion, the direct mar-

ker control algorithm solves the problem of redundancy in having

much marker position data than needed to resolve the joint angles

and ensures marker decoupling.

The markers mounted on the same body link are rigidly con-

strained to each other and the relative motion between markers

on adjacent links is limited by the freedom in the connecting joints.

In order to solve the motion dependencies, we group the markers

into independent sets and form a hierarchy of tasks associated

with each set. In this marker space, a priority is assigned to each

task and the tasks that have lower priorities in the hierarchy are

projected into the null space of the tasks that have higher priori-

ties. This process is recursively iterated and the human model is

tracked to the desired motion configurations.

In order to have kinematically consistent motion patterns, the

human model is scaled to the subject’s anthropometry. Kinemati-

cally correct human model is then simulated in real-time to gener-

ate the motion dynamics at any state of the performance. The

direct marker control algorithm constitutes an effective tool by

extending our dynamic environment to identify the characteristics

describing natural human motion which can be mapped into

humanoid robots for real-time control and analysis.

1.2.1. Direct marker control framework

The task/posture decomposition used in the operational space

method provides an effective method that allows us to represent

the dynamics of a simulated human subject in a relevant task

space that is complemented by a posture space (7). For an arbi-

trary number of tasks, the torque decomposition (13) can be gen-

eralized to,

C ¼ JTt1Ft1 þ JTt2 jt1Ft2 jt1 þ � � � þ JTtn jtn�1 j���jt1
Ftn jtn�1 j���jt1 : ð14Þ

In our direct marker control framework, task space is defined as

the space of Cartesian coordinates for the motion capture markers.

However, the dependency between marker descriptions is a prob-

lem. To accommodate for the marker coupling, we start by select-

ing an independent set, m1, of markers and a task, xm1
, associated

with this set. The control of the remaining markers is achieved in

a manner consistent with the first set by projecting the associated

control in the null space of m1. We continue this process recur-

sively in order to control the remaining markers without interfer-

ing with each other and we build a hierarchy of decoupled marker

tasks, xm1
; . . . ; xmn , where xmi

denotes the task for a particular mar-

ker set, mi. The overall control torque defined in marker space is

then,

C ¼ JTm1
Fm1

þ JTm2 jm1
Fm2 jm1

þ � � � þ JTmn jmn�1 j���jm1
Fmn jmn�1 j���jm1

: ð15Þ

The Jacobian and the force associated with marker space are de-

duced from the above equation as follows,

J� ,

Jm1

Jm2 jm1

.

.

.

Jmn jmn�1 j���jm1

2

666664

3

777775
and F� ,

Fm1

Fm2 jm1

.

.

.

Fmn jmn�1 j���jm1

2

66664

3

77775
: ð16Þ

So, Eq. (15) can be written as,

C ¼ JT�F�: ð17Þ
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1.2.2. Experimental validation

To test the direct marker control algorithm, a series of move-

ments performed by a tai chi master were captured using an 8-

camera motion capture system. The motion was then recon-

structed in the control and simulation framework, SAI (Khatib

et al., 2002) by tracking the marker trajectories in real-time. Prior

to tracking, our existing human model which consists of 25 joints,

was first scaled to match the anthropometry of the tai chi master.

The human motion reconstruction was then executed using sets of

decoupled marker trajectories. Fig. 2 illustrates the scaled muscu-

loskeletal model together with the marker sets selected for direct

control.

The commanded and tracked positions of the controlled mark-

ers (Fig. 3), as well as the joint angles (Fig. 4), were recorded during

real-time simulation. The results demonstrated the effectiveness of

the direct marker control algorithm in ensuring smooth tracking of

marker trajectories and for the extraction of joint angles without

inverse kinematics computations.

An analysis on the bounds of the joint space errors can be per-

formed using the Jacobian associated with the marker space, by:

Dx� ¼ J�Dq: ð18Þ

Fig. 5 shows the margin of marker position errors and the mar-

gin of joint angle errors, respectively. Maximum and minimum

joint angle error magnitudes vary stably over the trajectory, sug-

gesting well bounded errors on the joint angles.

2. Human muscular effort characterization

The ability of humans to move and coordinate their limbs in the

performance of common tasks is remarkable. When holding a hea-

vy object or applying a force to the environment through a tool, the

arms and body of a skillful human are configured in the most effec-

tive fashion for the task. The human selection of specific postures

among the infinity of possibilities is the result of a long and com-

plex process of learning. Through learning, humans seem to come

to discover the properties of their bodies and how best to put them

to use when performing a task. Exploiting the body kinematic char-

acteristics, humans are effectively using the body mechanical

advantage to improve the transmission of the tension of muscles

into task required forces. However, the efficiency of this transmis-

sion is also affected by the human muscle actuation physiology. By

also adjusting the body configurations to maximize this transmis-

sion of muscle tensions to resulting task forces, humans are in fact

exploiting what can be termed the physiomechanical advantage of

their musculoskeletal system. If confirmed, this would corresponds

simply to the overall minimization of the human muscular effort.

Consider a limb with one muscle and let m designate the force

generated by this muscle. The potential energy, E, associated with

the effort minimization can be expressed in the form,

E ¼ cm2
; ð19Þ

where c is a weighting coefficient used to account for the muscle

force generating capacity, when adding the effects of other muscles.

For a multi-muscle musculoskeletal system, the muscular forces

take the form of a vector. The corresponding joint torque associ-

ated with m is given by the relationship,

C ¼ LTðqÞm; ð20Þ

where L is the r � n muscle Jacobian matrix (moment arms) for a

system of n joints and r muscles.

As a criteria for natural human motion, the human posture is

continuously adjusted to reduce muscular effort (Khatib et al.,

2004). For a given task, the muscle effort measure, EðqÞ, can be gi-

ven by the constituent terms using the generalized operational

space force, F, and the relationship (4), as,

EðqÞ ¼ FT JðqÞ LTðqÞN2
c LðqÞ

� ��1

JTðqÞF; ð21Þ

where Nc is the r � r muscle capacity matrix and satisfies the rela-

tion c ¼ N�2
c .

In (21) the terms inside the parentheses reflect the role of mus-

cle physiology including the muscle moment arms and force gen-

erating capacities, while the Jacobian, J, reflects the kinematics.

In dynamic skills, the inertial forces can be part of the effort mea-

sure (21) and are taken into account.

For posture-based analysis the static form of the instantaneous

muscle effort measure can be constructed by noting that overall

torque is reduced to g, and (21) takes the form as,

Fig. 2. Scaled human model of a tai chi master. Markers of the right shoulder and the left wrist are selected to form the first marker set to be controlled (dark spheres). The

second set is formed by the left elbow and the right wrist markers (light spheres) (Demircan et al., 2008). The musculoskeletal model was derived from models of the upper

extremity (Holzbaur et al., 2005) and lower extremity (Delp et al., 1990).
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EðqÞ ¼ gTðqÞ LTðqÞN2
c LðqÞ

� ��1

gðqÞ: ð22Þ

2.1. Human musculoskeletal model

In order to evaluate the posture-based muscle effort criterion, a

musculoskeletal model must be implemented. Fidelity in predict-

ing muscle lines of action and moment arms was an important

requirement for this model. In particular, proper kinematics of

the shoulder complex are critical in generating realistic muscle

paths and associated joint moments of the upper limb. For this rea-

son the upper extremity model of (Holzbaur et al., 2005) has been

employed, with some modification, in this work. This model is

characterized by coupled motion between the shoulder girdle

and the glenohumeral joint. An extensive analysis of this model,

in particular the impact of shoulder girdle motion on the muscle

routing kinematics and moment arms about the glenohumeral

joint, is provided in (De Sapio et al., 2006).

The model, consisting of a constrained shoulder complex and a

lower arm, was implemented in the SIMM environment (Delp and

Loan, 1995). A minimal set of seven generalized coordinates were

chosen to describe the configuration of the shoulder complex (3),

elbow (1), and wrist (3). A set of 50 musculotendon units were de-

fined to span each arm (Holzbaur et al., 2005). The kinematic

parametrization and musculotendon paths are depicted in Fig. 6.

2.2. Experimental validation

A set of motion capture experiments were conducted with sub-

jects performing static tasks designed to isolate upper limb reach-

ing motion. While seated each subject was instructed to pick up a

weight and move it to five different targets and hold a static con-

figuration at each target for 4 s. The posture-based muscle effort

criterion (22) was then computed. SIMM was used to generate

the maximum muscle induced moments. The results of this analy-

sis showed that the subject’s chosen configuration was typically

within several degrees of the predicted configuration associated

with minimizing the computed muscle effort (De Sapio et al.,

2006). Fig. 7 depicts the results of the muscle effort computations

for one of the subject trials with no weight in hand.

3. Performance characteristics in human dynamic motion

This section introduces an extended methodology for identify-

ing physiological characteristics that shape human movement.

Fig. 3. Tracked and goal trajectories of markers. The tracked trajectories (solid

lines) are shown for markers attached to the wrist, shoulder, and elbow segments.

The tracked trajectories closely match the goal (experimental) trajectories (dotted

crosses) (Demircan et al., 2008).

Fig. 4. Right arm joint angles obtained through direct control of marker data.

Smooth joint space trajectories are obtained as a natural output of the marker

tracking methodology (Demircan et al., 2008).
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For this purpose, previously explained human effort minimization

strategy (21) was generalized for dynamic skills. As an example

illustrating a dynamic skill, we characterized the throwing motion

of a football player. In our approach, the performance that suits the

footballer can be defined as the ability to achieve maximal ball

velocity given the physiological constraints of the system (i.e. limb

length, joint range of motion, and muscle strength and contraction

velocity). The physiological constraints that affect human motion

include the joint constraints (the range of motion at a joint), the

segment constraints (the lengths of each segment) and the muscle

constraints including physiological cross-section of a muscle, max-

imum contraction velocity, moment arm and line of action. The

football throwing motion was recorded using an 8-camera Vicon

motion capture system (OMG plc, Oxford UK) at a capture rate of

120 Hz and the simulation was generated in OpenSim (Delp

et al., 2007) and SAI (Khatib et al., 2002) frameworks for the

analysis.

In order to investigate the muscular effort in dynamic skills in

terms of the musculoskeletal parameters, Eq. (21) can be written

in the form,

E ¼ FT
UðqÞF; ð23Þ

where F represents the task requirements and,

UðqÞ , J LTðqÞN2
c LðqÞ

� ��1

JT : ð24Þ

Here, the function UðqÞ captures the spacial characterization of

the muscular effort measure by connecting the muscle physiology

to the resulting task, F, through the Jacobian, J.

We studied the dynamic performance characterization and used

a graphical representation of the muscular effort function (24) by

computing its eigenvalue and eigenvector at a given configuration.

The ellipsoids corresponding to the muscular effort were calcu-

lated in SAI using the ellipsoid expansion model (Khatib and Bur-

dick, 1987). Results of this analysis showed that the direction of

the function (24) was minimized in space, which was equivalent

to the minimization of the instantaneous effort in the performance

of the throwing skill. Fig. 8 shows the ellipsoids corresponding

to task-based muscle effort calculations for selected five

configurations.

The current approach involves scaling a musculoskeletal model

to match an individuals’ anthropometry and provide subject-spe-

cific muscle-tendon and joint parameters, such as; muscle-tendon

lengths, moment arms, lines of action, and joint topology. As such,

Fig. 5. Margin of marker position errors and margin of joint angle errors over the trajectory. Joint angle error magnitudes show a stable variation over the trajectory, thus

ensuring well bounded errors on the joint angles (Demircan et al., 2008).

Fig. 6. Kinematic parametrization of the upper extremity model. (Left) A set of seven generalized coordinates were chosen to describe the configuration of the shoulder

complex (3), elbow (1), and wrist (3). (Right) A set of 50 musculotendon units were defined to span each arm (Holzbaur et al., 2005).
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this technique inherently accounts for differences between indi-

viduals due to changes in body size. The technique would, there-

fore, predict that subjects of different stature would perform the

same task (i.e. maximum velocity throwing) with slightly different

joint kinematics.

Dynamic characterization of human performance needs also to

include the analysis of the operational space accelerations. This is

motivated by the successful extension of operational space control

to analyze the dynamic performance of robotic systems (Khatib

and Burdick, 1987). In this framework, the idea is to map the anal-

ysis of bounds on joint torques to the resulting end-effector accel-

erations in the workspace of the manipulator (see Fig. 9). Similar

model can be applied to characterize and analyze human dynamic

skills shaped by the skeletal mechanics as well as the physiological

parameters.

For this system of n equations and r muscles, C is the r � 1 vec-

tor of muscle induced joint torques and A is the n� n mass matrix.

Using the operational space acceleration/muscle force relationship,

€x ¼ JðqÞA�1ðqÞðC� bðq; _qÞ � gðqÞÞ; ð25Þ

Fig. 7. Muscle effort variation for one of the subject trials with no weight in hand. Each plot depicts the muscle effort for one of the five target configurations. The locations of

the subject’s chosen configurations are depicted with a ‘‘+”. The full range of motion is depicted by the black silhouettes (±90 from nominal) (De Sapio et al., 2006).

Fig. 8. Task-based analysis of muscular effort. The muscle effort variation for

selected five configurations during a football throwing motion represented by

ellipsoid expansion model (Khatib and Burdick, 1987). The throwing hand

trajectory follows the direction of the ellipsoid associated with the minimum

instantaneous effort.
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where bðq; _qÞ and gðqÞ are, respectively, the centrifugal and Coriolis

torque vector and the gravity torque vector.

The feasible range of accelerations can be determined using (25)

given the bounds on the muscle induced torque capacities by,

0 < C < LTðqÞmmax: ð26Þ

The musculoskeletal model was implemented in SAI control and

simulation environment (Khatib et al., 2002) which provided the

position Jacobian, J, the muscle Jacobian, L, as well as the muscle

induced torques capacities, C, and the feasible set of operational

accelerations, €x, for a given configuration, q.

The bounds on the feasible set of acceleration were calculated

by the convex hull of the affine transformation of a hypercube

for r muscles. The hypercube describing the set of allowable mus-

cle induced torques has 2r vertices. Fig. 10 illustrates the feasible

set of accelerations produced by 12 muscles that contributed most

to the resulting acceleration of the hand for selected five

configurations.

4. Discussion

A robotics-based approach for the synthesis of human motion

using task-level control was presented. Concurrent tools in biome-

chanics and robotics communities enabled our effort to explore

natural human motion having benefits in rehabilitation and facili-

tating development of human-inspired robots. For this purpose,

our existing robotic tools were applied to reconstruct and analyze

human skills, introducing the approaches of direct marker control,

muscle effort criteria and dynamic characterization of human

performance.

For human motion reconstruction, an extension of operational

space control (Khatib, 1987) to account for the marker space from

human motion capture was presented. The direct marker control

algorithm was tested by reconstructing a sequence of motions of

a tai chi master and extracting the joint angles in real-time. This

algorithm which currently assumes rigid body dynamics will be

extended to account for elastic body links in order to better match

subject specific anthropometry.

For muscular effort minimization, a new posture-based muscle

effort criterion was implemented. This criterion is a generalization

of the joint decoupled measure used previously (Khatib et al.,

2004). The new criterion properly accounts for the cross-joint cou-

pling associated with multi-articular muscle routing kinematics.

Through a set of subject trials good correlation between natural

reaching postures and those predicted by our posture-based mus-

cle effort criterion were shown.

What distinguishes our muscle effort criterion is not its imple-

mentation as a posture-based or trajectory-based model, since it is

amenable to both, but that it characterizes effort expenditure in

terms of musculoskeletal parameters, rather than just skeletal

parameters. For the characterization of effort expenditure in terms

of both skeletal parameters and the muscle physiology, the muscle

effort criterion was implemented to analyze a throwing motion of

a football player. The results showed that during the performance

of the motion the subject tends to minimize the muscular effort

defined by the combination of the force generating kinetics of

the muscles as well as the mechanical advantage, as determined

by the muscle routing kinematics and limb mechanics. Addition-

ally, available set of the operational space accelerations of the

throwing hand were used to support the characterization of the

same dynamic skill.

One might expect localized muscle fatigue or differences in

muscle strength to alter movement patterns when performing

the same task. Muscle fatigue, atrophy, or strength can be simu-

lated within our muscular effort criteria by altering the muscle

parameters within the model (muscle capacity, c). In the case of fa-

tigue, for example, the force producing capacity of a muscle group

can be altered, and the generalized approach would predict a

slightly different movement trajectory to compensate for this re-

duced capacity. As such, the methods presented are generalized

and not limited solely to optimal movements.

Accurate modeling and detailed understanding of human mo-

tion will have a significant impact on a host of domains: from

the rehabilitation of patients with physical impairments to the

training of athletes or the design of machines for physical therapy

and sport. In the case of rehabilitation, a patient would benefit

from knowing what movement pattern might influence loads on

a specific joint or tissue. For example, a patient who has undergone

arthroscopic knee meniscectomy is at high risk of developing knee

joint osteoarthritis, particularly if they walk with large knee adduc-

tion (varus) moments. In this scenario, the patient would benefit

from knowing what movement pattern could be used to reduce

loading on the medial compartment of the knee during walking,

thus alleviating the stresses on the articular surface of the knee

and reducing the risk of developing osteoarthritis. An additional

term describing the loads at the knee could easily be added to

the current optimization criteria and the generalized robotics tech-

nique could be used to predict a novel gait pattern for the patient

that minimizes energy expenditure during walking as well as

reducing the loads on the knee. The patient would then be taught

this new gait pattern using visual or haptic feedback. This scenario

is currently being investigated by the authors.

In spite of the great complexity of natural human motion, the

robotic-based analysis of human performance provides substantial

Fig. 10. The feasible set of operational space accelerations bounded by the subject’s

physiological constraints for selected five configurations of a football throwing

motion. Accelerations of the throwing hand can be used for the performance

characterization of human dynamic skills.

Fig. 9. (a) The bounds on the joint torques of a multi-degrees of freedom

manipulator are mapped to the bounds on the resulting accelerations to evaluate

its dynamic behavior (Khatib and Burdick, 1987). (b) The acceleration boundaries of

the wrist of a 6 degree of freedom robotic system: Puma 560. The 3-D parallel-

epipeds represent the feasible sets of operational space accelerations for different

end-effector configurations.
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benefits to researchers focused on restoring or improving human

movement. Human motor performance depends on skilled motor

coordination as well as physical strength. Optimal movements

such as those exhibited by highly skilled practitioners in sports

and the martial arts provide inspiration for developers of human-

oid robots. This dual dependency motivates our work on the anal-

ysis and synthesis of human motion.
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