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Dexterous manipulation, especially dexterous grasping, is a primitive and crucial ability

of robots that allows the implementation of performing human-like behaviors. Deploying

the ability on robots enables them to assist and substitute human to accomplish more

complex tasks in daily life and industrial production. A comprehensive review of the

methods based on point cloud and deep learning for robotics dexterous grasping from

three perspectives is given in this paper. As a new category schemes of the mainstream

methods, the proposed generation-evaluation framework is the core concept of the

classification. The other two classifications based on learning modes and applications

are also briefly described afterwards. This review aims to afford a guideline for robotics

dexterous grasping researchers and developers.
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INTRODUCTION

In the last decades, there has been an enormous proliferation in robotic community, both at in
terms of research and attracting boundless varieties of imagination of general public, due to its
diverse possibilities. The vast majority of robots in operation today consist of 6 degree of freedom
(6-DOF) which are either rotary (articulated) or sliding (prismatic), with a simple end effector
for interacting with the workpieces (Murray et al., 1994). Robot manipulation means it can use
and control different objects according to certain specifications and essentials through the end
effector to achieve the effect of making the best use of playing the role of object itself (Okamura
et al., 2000; Saut et al., 2007). Grasping, as one of the most primitive manipulations, almost all
high-level operations and complex tasks that people expect robots to complete are inseparable
from the assistance of it. With the in-depth development of robotics, researchers begin to facilitate
the transition from simple or even crude grasping of robots with less discrimination of objects to
object-oriented dexterous grasping. Unlike simple grasping, dexterous grasping is able to determine
which posture to be employed to grasp where of the object to ensure a higher grasping success rate
(Ciocarlie et al., 2007; Prattichizzo et al., 2008; Ciocarlie and Allen, 2009).

The research on dexterous manipulation and grasping can be traced back to the 1980s. In the era
when deep learning methods were not yet established, researchers came up with ideas for dexterous
manipulations from the perspective of physics and geometry. Through the kinematic modeling
of robots, plenty of research results that attracted widespread attention at the time were born
(Moreno et al., 2011; Fischinger et al., 2015; Chen et al., 2016; Zhou Z. et al., 2018; Zito et al., 2019;
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Monica and Aleotti, 2020). However, robot grasping algorithms
based on physics and geometry presuppose many assumptions,
making these methods hard to generalize. With the substantial
increase in computing power from hardware, the artificial
intelligence surge represented by deep learning methods has
quickly penetrated into various research fields. Free from
the limitation of manually extracting features, the grasping
algorithms based on deep learning have achieved insurmountable
effects in all aspects by traditional approaches, taking the robot’s
intelligence to a higher level. Specifically, with RGB images or
depth images as input, robotic grasping based on convolutional
neural network (CNN) which is a dominant deep learning
framework in the field of computer vision, has obtained high
grasping success rates in many tasks (Lenz et al., 2015; Varley
et al., 2015; Johns et al., 2016; Finn and Levine, 2017; James
et al., 2017; Kumra and Kanan, 2017; Zhang et al., 2017; Dyrstad
et al., 2018; Levine et al., 2018; Schmidt et al., 2018; Schwarz
et al., 2018). As shown in Figure 1, nowadays, based on visual
information, robot dexterous grasp learning can be roughly
divided into two categories based onwhether the learning process
is based on trial and error. Dexterous grasping learning that is
not based on trial and error will determine the best grasp posture
based on the visual information of the scene, and then execute it.
On the contrary, the dexterous grasping learning based on trial
and error is to accumulate the experience of grasping from failure
through the interaction between the robot and the environment
to improve grasping dexterity.

As a commonly used 3D visual data form, point cloud can be
generated by 3D laser scanner (LIDAR), depth sensors or RGB-
D images (Liu W. et al., 2019; Guo Y. et al., 2020; Lu and Shi,
2020). Compared with RGB or depth images, 3D point clouds can
store more spatial information as their higher dimensions. With
the improvement of point cloud processing methods (Fischler
and Bolles, 1981; Rusu et al., 2010; Rusu and Cousins, 2011;
Aldoma et al., 2012; Chen et al., 2016) and the introduction

FIGURE 1 | Recent dexterous grasp pipeline.

of CNN based on point cloud as input (Wu et al., 2015; Qi
et al., 2017a,b), point clouds have become increasingly common
for those tasks based on visual perception. Meanwhile, as more
and more contributions on datasets of grasping based on point
cloud (Goldfeder et al., 2009; Calli et al., 2015a,b, 2017; Kappler
et al., 2015; Mahler et al., 2016, 2017; Depierre et al., 2018; Bauza
et al., 2019; Bottarel et al., 2020; Fang H.-S. et al., 2020), robotic
dexterous grasping based on point cloud and deep learning set off
a tremendous wave of research in the field of robotics.

Based on the current work of robot dexterous grasping
combining with point cloud and deep learning, this paper
summarizes relevant important work from 2015 to present. As
the earliest state-of-the-art work in related research, grasp pose
detection (GPD) (Pas and Platt, 2015; Gualtieri et al., 2016; Pas
et al., 2017) samples various grasp poses (candidate generation)
in the point cloud and employ a deep learning method to assess
these grasps (candidate evaluation) to obtain the optimal grasp
pose. Inspired by this efficient pipeline, most subsequent works
followed this framework to ameliorate generation or evaluation
stages. From this perspective, this survey proposes a more
generalized framework and summarizes relevant work as one
or both of these two stages, that is, in which step the work
contributes more. The articles reviewed in this paper are all based
on deep learning framework. If deep learning strategy is not
utilized in the generation stage, it will appear in evaluation stage,
and vice versa. Remaining uncategorized models are provided
in a separate section afterwards. The taxonomies from different
perspectives of learning modes and applications are also briefly
described. This paper aims to provide valuable insights and
inspirations through the proposed taxonomy.

The remainder of the paper is organized as follows. Section
Proposed Taxonomy presents related surveys and proposed
category scheme. Section Grasping Candidate Generation and
Grasp Candidate Evaluation are about the methodologies of
grasp candidate generation and evaluation respectively. The
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TABLE 1 | The related surveys and corresponding topics.

References Review topic Journals

Du et al., 2020 Vision methods facilitate grasp estimation Artificial intelligence review

Ruiz-del-Solar et al., 2018 Deep learning methods for robot vision arXiv

Luo et al., 2017 Robotic tactile perception Mechatronics

Wang C. et al., 2020 Feature sensing and robotic grasping Sensors

Caldera et al., 2018 Deep learning methods in grasp detection Multimodal technologies and interaction

Kroemer et al., 2019 Learning-based methods in robot manipulation arXiv

Kleeberger et al., 2020 Learning-based robotic grasping Current robotics reports

Li and Qiao, 2019 Robotic grasping and assembly tasks IEEE Transactions on mechatronics

Mohammed et al., 2020 Deep reinforcement learning-based grasping IEEE Access

Zhao W. et al., 2020 Sim-to-real problems of reinforcement learning arXiv

Billard and Kragic, 2019 Trends and challenges in robot manipulation Science

uncategorized papers out of proposed framework are described
in section End-to-End and Others. Section Learning Modes
summarizes the methods from learning modes. In section
Applications, it mainly introduces the applications of related
approaches from perspectives of end effectors and operating
scenarios. Section Challenges and Future Directions provides the
challenges and future direction of this field. Section Conclusion
is the conclusion of the paper.

PROPOSED TAXONOMY

As listed in Table 1, there are already numerous surveys in
the field of robotics learning. Some surveys elaborate the
perception techniques of robotics, and some others introduce
approaches of robot manipulation. Ruiz-del-Solar et al. (2018)
and Du et al. (2020) pay attention to the vision methods for
robot manipulations. With the exception of visual perception
approaches, Luo et al. (2017) and Wang C. et al. (2020) exhibit
there are many other perception methods can help improve
robot performance. Caldera et al. (2018), Kroemer et al. (2019),
Li and Qiao (2019), and Kleeberger et al. (2020) focus on the
overview of robot manipulationmethods based on deep learning.
Mohammed et al. (2020) and Zhao W. et al. (2020) introduce
the techniques in robot learning on the basis of reinforcement
learning. Billard and Kragic (2019) describes the trends and
challenges in robot manipulation.

Unlike the works mentioned above, this paper focuses on
the methods of robotic dexterous grasping based on point cloud
and deep learning. Compared with previous related reviews, this
paper narrows the reviewed works scope through the limitation
of inputs and methods, aiming to provide a more detailed
description in a specific direction. For the robotic grasping
algorithms, the following four classifications have appeared in
past researches but not entirely suitable for the topic in this paper.
(1) Analytic-based and empirical-based: because this survey pays
attention to the use of deep learning, traditional analytic methods
are not within the scope of the review, so this classification
is not applicable. (2) Task-agnostic and task-specific: this will
complicate the classification of reviewed approaches mainly
focus on grasping in this paper. Some task-specific papers
will outperform under some specific circumstances, but don’t

have generalization ability, which cannot support a category.
(3) Vision-based and vision-free: since this paper is specifically
aimed at point cloud-based robotic grasping, most of the
networks used are CNN-based, even numerous methods don’t
explicitly perform object recognition, segmentation, or pose
estimation. In other word, the reviewed articles in this paper can
be said use visual information explicitly or implicitly. Therefore,
this classification is not appropriate. (4) Learning-based and
learning-free: this classification is similar to (1). If each stage in
the proposed pipeline is not based on learning, this method will
not be taken into account in this survey.

In order to elaborate the subject more comprehensively,
instead of adopting the existing classification methods,
this survey classifies related work from three perspectives:
generation-evaluation, learning modes, and applications as
shown in Figure 2. The proposed generation-evaluation
framework is the core part of this paper. In the stage of
grasp candidate generation, the methods can be divided into
geometry-based sampling and learning-based sampling. In
geometry-based sampling, methods are categorized into object-
agnostic sampling and object-aware sampling. In object-aware
sampling, object detection and segmentation are the most
basic methods, object affordance detection and object shape
complement are the further improvements. The learning-based
sampling can also be divided into object-agnostic sampling and
object-aware sampling. Unlike the methods in geometry-based
object-aware sampling, there is no more classifications in the
branch of learning-based object-aware sampling. In the grasp
candidate evaluation stage, methods are split into learning-free
and learning-based. This paper will use two separate sections
to elaborate the methods of grasp candidate generation and
evaluation. The following section will introduce some work that
cannot be classified as this framework. They fall into end-to-end
learning-based, reinforcement learning-based and others. Two
remaining classifications will be briefly explained afterwards.

GRASPING CANDIDATE GENERATION

Grasp candidate generation, also called grasp pose sampling,
refers to randomly sampling the parameters (the approaching
direction of the end effector, opening size, joint angle, etc.) of
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FIGURE 2 | Robotics dexterous grasping methods based on point cloud and deep learning.

the end effector on the target object within a specific range to
obtain a large number of possible grasp gestures as shown in
Figure 3. In order to ensure the optimal or suboptimal grasp
posture can be found, the final executed grasp pose is commonly
not directly calculated, but a large number of grasp candidates are

sampled on numerous points in point cloud with random grasp
configurations, so as to promise the reliability of results on the
basis of quantitative advantages (Eppner et al., 2019). In general,
sampling can be roughly divided into geometry-based sampling
and learning-based sampling. In these two categories, approaches
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FIGURE 3 | The general pipeline of grasp candidate generation.

can be deeply split into object-agnostic sampling and object-
aware sampling. The papers mainly contribute to generation
stage are provided in this section.

Geometry-Based Sampling
In the early work, researchers try to apply random sampling
to gain grasp candidates, the feasibility of sampling method
to generate reliable and reasonable grasping candidates is
discovered and verified afterwards (Boularias et al., 2014, 2015).
Based on this, with superior interpretability and intuitiveness, the
geometry-based grasp pose sampling came into being (Pas and
Platt, 2015;Wang and Ling, 2016; Pas et al., 2017). Thesemethods
add geometric restrictions to the sampling process, such as the
grasp position as close as possible to the center of gravity of the
object, or the size of the object in the grasp approaching direction
cannot exceed the maximum width of the end effector, so that
make the random generation more reasonable. The idea behind
this method is to introduce manually calculated features into the
hypothesis space of grasping candidates, improves the possibility
of finding the optimal or suboptimal grasp posture. Thanks to
its generation process is based on the modeling of the grasping
model from the real world (Murray et al., 1994), although it
is an earlier branch of the generation method, geometry-based
sampling is still being adopted by a lot of work.

In general, the current work using geometry-based grasping
pose sampling can be divided into two categories based on
whether it has the specific information of the object to be grasped,
namely, object-agnostic sampling and object-aware sampling.
Since the point cloud describes the spatial information of the
scene, for the object-agnostic sampling methods, even if there is
no specific information of the object, they can also obtain suitable
sampling points for generating grasping poses by the spatial
information. For the methods of object-aware sampling, they
will first extract the specific information of the object through
the methods of computer vision, relying on pure point cloud or
combining the information of RGB images and depth images,
and then perform sampling on these higher-level information.

Object-Agnostic Sampling
Sampling based on physical and geometric constraints could
have an impressive performance on robotic grasping, especially
in the two parallel-jaw grippers community since mathematical

models of robotic grasping was well-defined in the past few
years (Murray et al., 1994; Okamura et al., 2000; Prattichizzo
et al., 2008; Prattichizzo and Trinkle, 2016). Researchers propose
numerous sampling methods by combining the established
mathematical theories and task-specific conditions. Since the
specific information of the object is not used to help the sampling,
this kind of object-agnostic grasping pose sampling must rely on
complete grasping mathematical modeling and a large number
of physical and geometric constraints in specific tasks to achieve
grasping candidate generation. For example, only points higher
than the operating plane calculated through the point cloud may
be belonging to the object, and then it is possible to result in some
feasible grasping poses by sampling at these points. Although
the calculation steps are relatively cumbersome and plenty of
limitations are based on experience and modeling, in the age
when deep learning has not yet been developed, there are still
many attempts at this sampling method.

Pas and Platt (2015) and Wang and Ling (2016) define
hypotheses contain position and orientation information of the
graspable point, as well as its neighborhood points calculated
by Taubin quadric fitting (Taubin, 1991; Pas and Platt, 2013).
To make the sampling process more flexible, GPD (Pas et al.,
2017) selects N points uniformly at random from the region
of interest (ROI) of point cloud and then perform grid search
on picked points to extract grasp configurations that satisfy the
geometric reasoning. Several research works obtain impressive
experimental results by adopting this idea (Mahler and Goldberg,
2017; Mahler et al., 2017, 2018; Viereck et al., 2017; Liang
et al., 2019). Lou et al. (2020) takes a further step by randomly
associate a pose with each sampled point. There are also some
methods not using uniformly sampling strategy. Gualtieri et al.
(2016) and Kiatos and Malassiotis (2019) calculate a surface
normal and an axis of major principal curvature of the object
surface in the neighborhood of the sampled point. Grasp
candidates are then generated at regular orientations orthogonal
to the curvature axis. Zhou et al. (2019) samples the grasping
candidates based on the depth descriptor Depth Likelihood
Volume (Zhou Z. et al., 2018).

Since the specific information of the target object is not
required, the advantages of the object-agnostic sampling method
in some aspects are very obvious. These methods do not require
object segmentation, thereby avoiding errors caused in the
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segmentation stage that will affect the accuracy of subsequent
grasp candidate generation. At the same time, these methods do
not need to know the identity, class and shape of the target object,
which also makes it possible to apply the grasp poses sampling
algorithms on unknown objects in an open environment. Finally,
these methods do not try to register a CAD model of the object
to the point cloud, which could be very challenging. However,
the strategy of not combining the specific information of the
object will also bring inevitable shortcomings to these methods.
First of all, these methods have high requirements for input. The
quality of the point cloud will immediately affect the reliability
of the candidate sampling results. This also indirectly causes the
result of sampling on the point cloud extracted by the monocular
camera to be much worse than that of the multi-view camera.
Since the algorithm does not segment the objects, it can detect
“grasps” that treat multiple objects as a single atomic object. This
type of error is unusual with small-aperture hands, but one would
expect it to become a more significant problem when the hand
is physically capable of grasping larger objects. This also makes
it reasonable for the algorithm’s sampling results to perform
poorly in cluttered scenes and collision detection. Moreover,
these methods are going to become infeasible for the multi-finger
robots. Almost all of techniquesmentioned above focus on robots
with a vacuum cup or parallel-jaw gripper for their end-effectors.
Multi-finger end-effectors will introduce a rich-contact points
problem which is more difficult for these methods to handle.

Object-Aware Sampling
Even object-agnostic sampling is able to find numerous grasp
candidates, it doesn’t use the complete information in point
cloud. The drawback causes the low sampling accuracy and time-
consuming sampling process. To avoid these defects, researchers
propose object-aware sampling which aims to combine the
specific information of the object to enhance the reasonability
of search space in point cloud (Boularias et al., 2015; Zapata-
Impata et al., 2017; Lopes et al., 2018). The search space refers
to the points that need to be considered in the point cloud
space for the grasping pose sampling algorithm. Since the object-
agnostic sampling does not have the pose information of the
object, those methods have to calculate all the points in the
scene point cloud one by one. This is undoubtedly a brute
force search method, and the efficiency of the algorithm itself
cannot be ideal. The object-aware sampling method combined
with the object pose information will eliminate the points that
are impossible to generate grasp candidate from the point cloud
based on the corresponding extracted features, that is, reduce
the sampling space from the entire point cloud space to a
specific space, cut down the number of invalid sampling and
searching, improves the efficiency of the algorithm. According to
the different acquisition of object pose information, the object-
aware sampling method can be divided into three branches:
object detection and segmentation, object affordance, and object
shape complement. The three methods not only outperform
object-agnostic sampling method in general scenarios, but can
generate highly reliable pose candidates in their respective
applicable environments. The pipelines of the relevant methods
are provided in Figure 4.

Object Detection and Segmentation
The method based on object detection and segmentation is the
earliest one of the three branches. This method first extracts the
pose features of the object in the scene by taking the RGB images
or the depth images of the scene or directly using the point cloud
as input, and then segment the point cloud space to obtain a
smaller and more reliable search space based on these features.
Due to the introduction of the specific information of the object,
this type of sampling algorithm has a significant improvement
in the performance of the cluttered environment and collision
detection. At the same time, with the rapid development of object
detection and segmentation algorithms, YOLO (Redmon et al.,
2016) and other efficient and easy-to-deploy backbone networks
are widely used in this sampling method, and there is still a lot of
work around its ideas.

By adopting sampling method in GPD proposed by Pas et al.
(2017), Lopes et al. (2018), Schnaubelt et al. (2019), Bui et al.
(2020), Chen et al. (2020), and Deng et al. (2020) sample the
grasp points in point cloud for candidates generation. Lopes
et al. (2018) find the largest planar surfaces which is infeasible
for grasping by using RANSAC (Fischler and Bolles, 1981) and
isolates the closest object to the camera from the rest of the scene
to obtain object segmentation based on min-cut (Golovinskiy
and Funkhouser, 2009). This work compares the experiments
before and after reducing the point cloud search space, and
proves that the grasping success rate has increased from 45 to
90%. Although the object’s pose information is extracted with
the help of object segmentation methods that are not based on
deep learning, the impressive results show that the improvement
is considerable. This shows that reducing the point cloud search
space is a very reasonable and correct direction. Subsequently,
more grasp candidate sampling methods integrated with object
segmentation based on deep learning have been used in the
development of this branch. Schnaubelt et al. (2019) segments the
depth image by using Maskfusion (Runz et al., 2018) combined
with increased noise robustness (Ückermann et al., 2012) and Bui
et al. (2020) extracts object segmentation from point cloud with
region of interest (ROI) obtained from YOLOv3 (Redmon and
Farhadi, 2018). Deng et al. (2020) detects and segments the object
from RGB-D images based on PoseCNN (Xiang et al., 2017),
then a sampling method in Eppner et al. (2019) is adopted to
generate 100 candidates for assessment and execution. Chen et al.
(2020) utilizes object segmentation for mask-guide to improve
the precision of sampling. Lin and Cong (2019), Lin et al. (2019),
Sun and Lin (2020), and Yu S. et al. (2020) follow the same
idea in GPD with additional physical or geometric constraints.
Lin and Cong (2019) and Yu S. et al. (2020) adopt variant of
PointNet (Qi et al., 2017a) and RANSAC for object segmentation
respectively, then sample the grasp candidates with integrating
physical and geometric constraints. In specific, the former work
mainly considers the mechanical constraints in physics other
than paying more attention to spatial constraints in the latter
work. Lin et al. (2019) and Sun and Lin (2020) achieve object
estimation via PPR-net (Dong et al., 2019) and Mask R-CNN (He
et al., 2017) correspondingly followed by sampling the candidates
based on using the closest ring of the centroid of the object. The
main contribution and grasping accuracy are provided inTable 2.
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FIGURE 4 | Entire pipelines of three classifications in object-aware sampling. Object detection and segmentation is the most basic method. Inputs are commonly

RGB images, which are detected or segmented by networks to extract the object point clouds. Extracted point cloud can either be utilized to sample the grasp

candidates immediately or fed into object affordance or shape complementation methods. Object affordance methods take extracted point cloud as inputs to obtain

the affordance of object to reduce the sampling search space. On the contrary, object shape complementation aims to acquire the entire object point cloud to

improve the grasp candidate generation confidence (The hammer point cloud is from YCB datasets).

Object Affordance
Affordance is introduced by Gibson (2014), which describes how
likely the agent is capable to execute an action based on its
surrounding environment. In robotics community, affordance,
as a new physical and geometric property of objects, refers to
the part of the objects with high probability to be operable.
Specifically, affordance refers to the most likely part of the
objects to make the grasping successful determined based on
the knowledge of human grasping habits. Image that, people
will always hold the handle of the hammer instead of the
hammerhead when picking up a hammer, or hold the apple in
the hand instead of grasping the apple stem when picking up
an apple. Grasping pose sampling based on object affordance
is an advanced method developed from object detection and
segmentation methods. This method will determine the operable
part with high possibility on the detected object. Since the search
space in the point cloud is further reduced, the sampling results
are more reasonable than that of grasp candidate sampling on the
entire object. Concretely, if the target is a knife, if grasp sampling
is performed on the entire object, those candidate grasps located
on the blade will inevitably cause damage to the end effector
of robots or other objects in the environment. Based on several
methods to learn and understand object affordance proposed by

prior art (Varadarajan and Vincze, 2012; Koppula et al., 2013;
Katz et al., 2014; Zhu et al., 2014, 2015; Do et al., 2018), there has
also been a lot of work in the grasp candidate generation based
on the direction of object affordance.

Inspired by sampling integrated with traditional affordance
detection methods (Pas and Platt, 2016; Kanoulas et al., 2017;
Liu C. et al., 2019), diverse deep learning-based affordance-
based sampling techniques are proposed. Qian et al. (2020)
employs ResNet101 (He et al., 2017) with feature pyramid
network (FPN) (Lin et al., 2017) to perform affordance detection
and applies the sampling method proposed in Pas et al. (2017)
with refined local reference frame computation. Instead, Fang
K. et al. (2020) finds object affordance implicitly based on
Mar et al. (2017) with a multi-dimensional continuous action
space and uniformly samples grasps from the object surface
using antipodality constraints (Mahler et al., 2017). Manuelli
et al. (2019) detects keypoints of object affordance together with
local dense geometric information instead of segmenting entire
affordance, the reduced search space is able to guarantee a high-
quality grasp candidates sampling (Gualtieri et al., 2016; Mahler
et al., 2016, 2019).

Affordance learning is an advanced variant of basic
segmentation method. Different forms of affordance such
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TABLE 2 | The summary of geometry-base object-aware grasp candidate generation.

Method category Work Method backbone Success rate

(%)

End-effector Environment Simulation

/reality

Object

arrangement

Object

number

Object

shape

Test novel

object

Object detection and

segmentation

Less is More (Lopes et al., 2018) RANSAC 90 – Single object 1 Irregular No R

(Schnaubelt et al., 2019) Maskfusion – – Cluttered 5 Irregular No R

RED (Chen et al., 2020) Mask-RCNN + PointNet 84 (S) 82 (R) Parallel-jaw gripper Cluttered 7 Irregular Yes S/R

(Bui et al., 2020) YOLOv3 – Parallel-jaw gripper Single object 1 Regular No S/R

(Deng et al., 2020) PoseCNN 86.7 Parallel-jaw gripper Cluttered – Irregular Yes R

(Lin and Cong, 2019) PointNet 90 Parallel-jaw gripper Cluttered 5 Irregular No R

(Yu S. et al., 2020) RANSAC + VGG – Parallel-jaw gripper Single object 1 Irregular No R

(Lin et al., 2019) PPR-net 78 Parallel-jaw gripper Cluttered 30 Regular No R

(Sun and Lin, 2020) Mask R-CNN 71.1 Parallel-jaw gripper Single object – Regular No R

Object affordance (Qian et al., 2020) ResNet101 + FPN 95 Parallel-jaw gripper Single object 1 Regular No R

TOG-Net (Fang K. et al., 2020) SOM 80 Parallel-jaw gripper Single object 1 Irregular No R

kPAM (Manuelli et al., 2019) Integral human pose

regression

– Parallel-jaw gripper Single object 1 Regular No R

Object shape

complement

(Varley et al., 2017) CNN 93.33 Three fingers Cluttered – Irregular No R

(Lundell et al., 2019) CNN 59 Parallel-jaw gripper Cluttered 10 Irregular No R

(Yan et al., 2019) CNN 61 Parallel-jaw gripper Cluttered – Irregular Yes R

(Torii and Hashimoto, 2018) DNN 85.6 Parallel-jaw gripper Cluttered – Regular No S

(Liu and Cao, 2020) CNN 94.06 Parallel-jaw gripper Cluttered – Irregular Yes R
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FIGURE 5 | Learning-based sampling (The spatula point cloud is from YCB datasets).

as semantic labels (Zhu et al., 2014), spatial maps (Jiang et al.,
2012), and motion trajectories (Zhu et al., 2015) are suitable to
diverse tasks, which is in a position to further reduce the search
space and improve the confidence of candidates generation.

Object Shape Complement
Shape complementation is another improved variant of
segmentation method. Unlike affordance learning attempts to
understand the graspable components from detected objects,
shape complement pays more efforts on “looking” the entire
target object more completely. As another advanced branch
developed from object detection and segmentation methods,
shape complement and object affordance have completely
different thoughts. Grasp candidate sampling based on object
affordance is to reduce the sampling space to the area where the
grasp is most likely to succeed, while shape completion is to try to
minimize the occurrence of unreasonable sampling by obtaining
more information about the shape of the object. In particular, for
the point cloud captured by a monocular camera, it is impossible
to outline the shape of the object where the light cannot reach.
For symmetric objects, the effect of shape complement may not
be so obvious, but for asymmetric objects, this type of methods
is particularly conducive.

Varley et al. (2017) proposes a convolutional neural network
which takes voxelized partial mesh of object as input and
output the complemented shape. After a few post-preprocessing,
GraspIt! (Miller and Allen, 2004) is used to generate grasp
candidates. Lundell et al. (2019) improves the network
architecture based on the method in Dai et al. (2017) by
adding Monte-Carlo (MC)-Dropout (Gal and Ghahramani,
2016), an advanced dropout layer (Srivastava et al., 2014), into
both training and run-time step to generate a set of shape
samples. Grasp candidates sampling by GraspIt! is employed
on the mean of shape samples. Yan et al. (2019) reconstructs
object point cloud by integrating the segmentation via Mask
R-CNN and several encoder-decoder modules (Fan et al., 2017)
inspired by single-view 3D-object reconstruction (Jiang et al.,
2018). Differ from complementing point cloud of object, Liu
and Cao (2020) and Torii and Hashimoto (2018) leverage object
primitives to simplify object shape under the detection output
of convolutional neural network. Compared with GPD, their
experiment results increased by 10.56 and 18%, respectively.

Although existing shape complement methods commonly
accompany with high uncertainty, being aware of object shape
is capable of incredibly facilitating the accuracy, robustness, and
confidence of grasp proposals generation.

Object-aware methods aim to reduce the search space by
being aware of the specific object, which improve the sampling
performance. As shown in Table 2, the summary of geometry-
based object-aware sampling method is listed.

Learning-Based Sampling
Geometry-based sampling methods generate candidate grasp
poses by changing the grasp configuration randomly under
physical and geometric constraints in specific task, however,
sampling a number of grasps poses proposals is computationally
expensive. Furthermore, sampling the rotational or translational
dimension possibly produce some unstable and unreasonable
grasp configurations since the conditions in the grasp modeling
are only artificially extracted. More recently, deep learning
techniques improve performances in many traditional analytic
tasks greatly based on more powerful feature extraction abilities
compared to human handcraft. On the strength of deep learning,
some researchers move from physical and geometric reasoning-
based sampling to deep learning-based sampling as example in
Figure 5. Different from the geometry-based sampling method,
the learning-based sampling method will complete the learning
based on a dataset during training. The learning-based methods
can be divided into supervised learning or unsupervised learning
according to the learning model. For sampling methods based
on supervised learning, it takes scene point clouds or RGB
images as input to obtain sampling results directly or extract
appropriate grasp points first and then place the grasp posture
on these points. It compares the prediction result with the
ground truth to calculate the difference in sampling point
determination, the difference in hand posture prediction. The
sampling method based on unsupervised learning learns the
distribution of sampling from the training data by the generative
model, reducing the KL divergence or JS divergence to reduce
the distribution difference between the data generated by the
model and the training data. The trained model will be used
for sample the grasp poses. Similar to geometry-based sampling,
learning-based sampling methods fall into object-agnostic and
object-aware group.
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Object-Agnostic Sampling
Object-agnostic methods take the point cloud as input and
generate the proposals by learned models without detecting
the object in the point cloud. Compared with geometry-based
object-agnostic sampling, although the learning-based object-
agnostic sampling method also searches in the entire scene
point cloud, it has the following improvements on the thoughts:
(1) Geometry-based sampling determines whether the point
is feasible to generate grasp pose only based on the spatial
information in the point cloud (three coordinate values of x,
y, z), while learning-based sampling can learn more high-level
information through the models or networks to help improve
accuracy. (2) the generalization of geometry-based sampling is
not strong, especially for cluttered scenes, it often regards two
very close objects as one, which leads to unreasonable results of
grasp sampling. The learning-based sampling method is able to
significantly improve this problem through the benefits of more
extracted features. (3) Geometry-based sampling is essentially a
simple random combination of various parameters. Although it
has an advantages in amount, it also caused a sharp increase in
the number of negative samples. In contrast, the sampling process
of learning-based generation method is actually obtained by the
prediction of the model, and the sampling result will contain
more information about the effect of high-level features. With
the development of deep learning, some researchers try in the
direction of learning-based object-agnostic sampling methods
using neural networks.

Jiang et al. (2020) proposes a deep convolutional neural
network (DCNN) to predict the set of grasp points from the input
depth-image. Inspired by Varley et al. (2015) that obtains grasps
on pixels, Morrison et al. (2018a) presents a Generative Grasping
CNN (GG-CNN) which generates candidates immediately on
pixelwise. GG-CNN treats each pixel of image liberally without
any hypothetical searching space, which may assure a higher
probability of finding a global optimal grasp pose. Guan et al.
(2019) adopt Fully Convolutional Neural Network (FCNN)
(Long et al., 2015) to take four channels images synthesized by
an RGB image and depth image as input and output three maps
contain all information of potential grasp poses.

Theoretically, the learning-based object-agnostic sampling
method should be better than the geometry-based grasp
candidate generation method, but there is not much work in
this direction. Moreover, in addition to some advantages in
the efficiency of algorithm operation, there is no remarkable
improvement in other aspects. This is mainly due to the
limitations of this method: (1) The training dataset is difficult
to generate. Since the grasping pose needs to be sampled by the
prediction of the model, the ground truth label of the sample
is difficult to represent. This results in the difficulty of model
training. Although the careful design of the loss function and
network structure can slightly improve this shortcoming, it may
also cause a decrease in efficiency during training and testing.
And some work is done by simplifying the objects in the dataset
to complete the training, but this causes the generalization of
the model to be very poor. (2) Although the model is used
to complete the sampling process, due to the lack of specific
information of the object, the essence of the algorithm is to

perform a brute force search in the entire point cloud space.
(3) The neural network-based model can indeed extract higher-
level features, but because of the difficulty of ground truth
representation and the lack of object specific information, the
extracted features may not be too satisfactory, which leads to the
performance of the algorithm is not outstanding.

Object-Aware Sampling
Geometry-based object-aware sampling first utilizes computer
vision techniques to localize and segment object, then samples
the candidates based on the reduced searching space. This
method has shown the reliability and reasonability of generated
candidates is improved observably, however, adopting handcraft
constraints in sampling step may cause generating some unstable
grasp poses and computationally expensive. To further address
these issues, learning-based object-aware generation modes are
proposed by researchers. These methods acquire several grasp
candidates with the help of trained model after localizing and
segmenting object.

Mousavian et al. (2019) and Murali et al. (2020) employ a
sampler ground on variational autoencoders (VAE) (Kingma
and Welling, 2013). The sampler’s architecture is similar to
GANs (Goodfellow et al., 2014), which takes in PointNet++ (Qi
et al., 2017b) as encoder and decoder, aiming to generate several
grasp candidates and determine how likely they are successful.
Yu H. et al. (2019) doesn’t localize and segment the object
explicitly. The author presents regression network and refine
network to regress an optimal grasp region, and sample and
sort grasp candidates correspondingly. Zhao B. et al. (2020) uses
two neural networks to segment the point cloud and generate
grasp proposals correspondingly. FangH.-S. et al. (2020) presents
an end-to-end grasp pose prediction network given N point
coordinates as input. Inspired by anchor-based progress in 2D
object detection (Ren et al., 2015; Liu et al., 2016), Wu et al.
(2020) adopts PointNet++ as backbone to build up a Grasp
Proposal Network (GPNet) to generate a set of grasps. The
generated proposals are pruned via two physical schemes which
are removing grid corners not locate on the object surface and the
contact points antipodal constraint (Chen and Burdick, 1993). Li
Y. et al. (2020) proposes a Deep Residual U-Nets on the basis of
residual modules (He et al., 2016) to predict the graspable region
of object, which is followed by a K-means (Lloyd, 1982) model
clusters the graspable point cloud and the center of each cluster
is leveraged as a grasp point. Ardón et al. (2019) employs Markov
logic networks (MLN) (Richardson and Domingos, 2006) for
knowing the relationship between diverse objects and a pre-
trained Res-Net (He et al., 2016) is utilized to accomplish object
perception and feature extraction for querying grasp affordances
by Gibbs sampling (Kim and Nelson, 1999). The main thought
back Ardón et al. (2019) is sampling several grasp affordances
and evaluate them, the affordance with highest possibility will
be selected and corresponding grasp configuration is calculated.
Inspired by leveraging rectangle represent grasp part (Jiang et al.,
2011; Lenz et al., 2015), Vohra et al. (2019) and Yu Q. et al.
(2020) sample numerous rectangles to characterize candidate
graspable parts and gain the optimal grasp pose by filtering and
scoring candidates. After catching sight of high efficiency and
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easy implementability of pixelwise sampling (Morrison et al.,
2018a), Yu Y. et al. (2020) first detects the object via SSD
(Liu et al., 2016), the detection results will be checked if the
target object is occluded through clustered point cloud from K-
means and an image inpainting and recognition network (IRNet)
which is inspired by Yu et al. (2018) combined with light-
weighted recognition network MobileNet (Howard et al., 2017).
The detection and confirmation output are feed into a deep
grasping guidance network (DgGNet) to generate and qualify the
grasp in each pixel.

As shown in the table, the table compares the learning-
based object-aware methods with GPD and GG-CNN, which are
representative work of the geometry-based object-agnostic and
learning-based object-agnostic samplingmethod. Although there
is no universally applicable benchmark, based on the comparison
of the success rate in the same grasp operating environment,
it can be seen that the learning-based object-aware sampling
methods have a significant improvement in the final grasp success
rate in a cluttered environment. At the same time, the grasp
success rate will be further improved for the single object.

Benefitting from the progress of several data-driven
methodologies, learning-based object-aware models have
the highest potential to fulfill grasp proposals selection. However,
this type of method also has some drawbacks. One is that
the sampling results obtained through prediction usually only
consider the pre-shape of the end effector, which probably leads
to unavoidable collisions during the motion planning process.
The other is for multi-finger end effectors (excluding suction
cups and parallel-jaw gripper), it is usually difficult for the model
to predict the contact point of each finger, which will make the
model perform satisfactorily in a cluttered environment tougher.

Applicable Scene
Generally speaking, these grasp candidate generation methods
can be tried on all tasks. But because the ideas of these methods
are not the same, for some specific tasks, some methods will
theoretically perform better than others.

Geometry Based or Learning Based?
Geometry-based grasp candidate generation is to extract the
constraints in the mathematical modeling of the grasp to sample
the possible feasible grasp poses in the point cloud. For scenes
that are not very cluttered, this method is sufficient to sample
a lot of reasonable grasp pose candidates, but if the operating
environment is too cluttered, this type of method will be easy
to wrongly judge two close objects as an object for sampling.
Moreover, geometry-based grasp sampling requires additional
conditions for collision detection. Although poor results may
not necessarily occur, the efficiency of the algorithm will be
greatly reduced.

The learning-based grasp candidate generation is based on a
trained model, especially a neural network, which takes point
cloud as input, and obtains the sampling result of the grasp pose
according to the prediction of its output. Although this method is
less interpretable and intuitive than the geomery-based method,
the neural network is able to extract richer features in the hidden
layer to help sampling, thereby reducing the computational

difficulty of collision detection. However, the common problem
of the learning-based sampling model is it often requires a lot
of data to train a robust model. Collecting data and fabricate a
dataset is expensive, which leads to the preparation process of the
method time-consuming.

As shown in the Table 3, according to some experimental
conditions, the recommendation of which grasp generation
method to use is listed. This table only makes recommendations
for the specific stage of grasp candidate generation. If combined
with the evaluation stage, which is detailed in section Grasp
Candidate Evaluation, there is no guarantee that geometry-based
sampling will perform worse than learning-based sampling.

Object Agnostic or Object Aware?
As far as the current development in the field of robotic grasp
is concerned, the object-agnostic sampling method is highly
unrecommended. Object-agnostic sampling was proposed in the
age when visual detectionmethods were not effective, but the lack
of object information has a great influence on the generation of
reliable grasp poses. Therefore, no matter what the task is, it is
indispensable to add object information to the algorithm.

In the method of object-aware sampling, it can be subdivided
into three branches: object detection and segmentation, object
affordance, and shape complement. If it is only for a single object
and its shape is regular, then the difference between these three
methods will not be too obvious. But in reality, the operating
environment of robots is not so ideal and simple. As the earliest
developed branch, the method based on object detection and
segmentation has a high degree of applicability. Regardless of
the operation scenario, the pose information of the object can be
extracted through the detection and segmentation of the grasped
object, thereby helping the generation of grasping candidates.
This kind of method is highly adaptable and can be used as
a preliminary attempt in various tasks. Object affordance is to
reduce the entire object in the sampling space to a more reliable
local area. For simple regular objects, this type of method may
not make much sense. However, this method is particularly
important for objects that have a large deviation of the center
of gravity or damage to the end effector of the robot. The shape
complement method can be used as a solution to the poor quality
of the input point cloud. The generation of the point cloud
depends largely on the light conditions in the experimental scene.
Sometimes the point cloud of some objects is very sparse due
to poor lighting or the scene is too cluttered. In this case, direct
sampling is not advisable. The shape complement is to restore the
original shape of the object, so as to improve the information of
the object and help the generation of the grasp candidate.

As shown in the Table 4, according to the experimental
conditions, the recommendation of which grasp generation
method to use is listed.

GRASP CANDIDATE EVALUATION

To execute the optimal grasp, a necessary step is to evaluate
the generated grasp candidates previously. Evaluation is a latter
portion aims to score grasp success probability or classify
graspability of grasp proposals. By considering whether the
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TABLE 3 | Geometry-based and learning-based recommendation under different conditions.

Condition Recommendation reason Recommendation

Single object environment Easy to sample grasp pose Geometry-based

Collision-regardless More constraints required to detect collision

Hard to generate dataset No training process based on large-scale dataset

Cluttered environment Sample grasp pose based on advanced features Learning-based

collision-concern No need to build hand-craft collision detection

constraints

easy to generate dataset Suitable for training a model

TABLE 4 | Object-aware sampling branches recommendation.

Condition Recommendation reason Recommendation

Preliminary attempts Highly adaptable Object detection and segmentation

Regular object Easy to detect and segment

Harmless irregular object Easy to detect and segment, no need to consider unsafe

grasp pose

Regular object Able to detect more reasonable grasp Object affordance

Irregular object Able to detect where to grasp

Harmful object Able to detect a safe grasp

Poor lighting condition Restore object shape Shape complement

Sparse point cloud Restore object shape

Irregular object Filter unreasonable grasp pose with symmetric shape

assumption

approach is data-driven or not, evaluation methods can be
divided into learning-free and learning-based. Learning-free
determine each grasp a good or bad one based on geometry
information or control system flow. On the other hand, learning-
based attempts to acquire a model to perform as an evaluator
trained from datasets.

Learning-Free Candidate Evaluation
Learning-free candidate evaluation determine each grasp a good
or bad one mainly based on geometry information. Since
approaches in this group don’t utilize learned models to carry
out the assessment, they put efforts into converting proposals
evaluation to an optimization problem. The thoughts behind
this transformation is inspired by the optimal control theory in
control system or reinforcement learning fields.

Zapata-Impata et al. (2017) presents a function to assess grasp
configurations stability by considering the distance, direction and
geometric shape of the grasp. On the contrary, Mahler et al.
(2016) prefers to rank each grasp candidate based on physical
conditions, especially force closure (Weisz and Allen, 2012; Kim
et al., 2013; Laskey et al., 2015; Mahler et al., 2015). Following
previous works solved the problem via Monte-Carlo integration
(Kehoe et al., 2012; Weisz and Allen, 2012) or Multi-Armed
Bandits (MAB) (Laskey et al., 2015), Mahler et al. (2016) takes
in latter method to find the best grasp. Adopting the thoughts
back of reinforcement learning, Manuelli et al. (2019) transforms
the evaluation to an optimization problem which is used to find
the desired robot action. The constraints of the optimization are
established based on geometry, especially the distance of it.

Since learning-free approach normally perform the grasp
selection under several assumptions and constraints which are
simulated by geometry, causing the lack of flexibility and
generality. There are only few works in mainstream take in this
evaluation technique. In contrast, learning-based assessment has
a wider variety.

Learning-Based Candidate Evaluation
Learning-based are widely used in evaluation step among
numerous works. Due to assessing the grasp quality based
on trained model from large datasets, learning-based methods
are more robust and generalized than learning-free one with
prior knowledge instead of complex analysis. Learning-based
candidate evaluation pipeline example is provided in Figure 6.
The learning-based grasp evaluation method is essentially a
model that completes the binary classification task. The general
pipeline at this stage is to first extract representation of grasp pose
and grasp part, then use the learned model to finish evaluation.
Whether it is based on SVM in the early days and later based on
CNN, the essence of model training has not changed, which is
to reduce the classification loss. From hinge loss to cross-entropy
or other classification loss, the difficulty at this stage is not how
to design the loss function, but how to effectively represent the
grasp and use it as the input of the model for evaluation.

At early of the first, Le et al. (2010), Jiang et al. (2011),
and Pas and Platt (2015) evaluate the grasp points by utilizing
support vector machine (SVM) (Boser et al., 1992). SVM-
based approaches are able to classify the suitable grasps with a
good result in some simple cases or trivial problems. With the
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FIGURE 6 | Learning-based candidate evaluation (The scissors point cloud is from YCB datasets).

complexity growth of grasp scenarios, SVM, or other traditional
data-driven techniques are decreasingly robust. To ensure the
evaluation methods’ capability of determining or scoring grasp
candidates with noisy inputs, more researchers move their
attention to deep learning-based evaluation methods.

Compared with traditional data-driven techniques, deep
learning-based evaluation is more precise and robust. Kappler
et al. (2016) first indicates the feasibility of evaluating based
on CNN. Inspired by this, Gualtieri et al. (2016), Wang and
Ling (2016), and Pas et al. (2017) use LeNet (LeCun et al.,
1998) to classify the grasp proposals and achieve an impressive
performance. Even LeNet architecture is shallow and are not
robust to noisy grasp proposals, CNN-based classifier’s potentials
of evaluating grasps attracts large amounts of interests in
robotic community. Following prior arts (Lenz et al., 2015;
Gualtieri et al., 2016; Mahler et al., 2016), Mahler et al.
(2017) and Mahler et al. (2018) propose a Grasp Quality
Convolutional Neural Network (GQ-CNN) to evaluate grasp
and suction task respectively. Depending on flexibility of
modification, comprehensibility of architecture and simplicity of
implementation, GQ-CNN becomes a wide preference among
several works. Jaśkowski et al. (2018) utilizes a new CNN
architecture and add batch normalization (Ioffe and Szegedy,
2015) to refine GQ-CNN. Mahler and Goldberg (2017) models
bin picking on the basis of Partially Observable Markov Decision
Process (POMDP) (Astrom, 1965) and fine-tunes GQ-CNN with
a new dataset to evaluate actions instead of grasp configurations,
which improves the generalization of GQ-CNN. Satish et al.
(2019) further enhances GQ-CNN by designing a FC-GQ-CNN
through fully convolutional network. Fang K. et al. (2020)
proposes a Task-Oriented Grasping Network (TOG-Net) by
making progress on GQ-CNN via residual network layers (He
et al., 2016) to obtain task-agnostic grasp quality, conditioned
task-oriented grasp quality and manipulation action. Although

GQ-CNN achieve an impressive performance, it currently
requests high-quality depth sensors to obtain desirable point
cloud, which limits the deployment in many cases.

Except from GQ-CNN, other works also propose some novel
evaluators to figure out grasp candidate assessment. Following
3D CNN predictor designed in Choi et al. (2018), Lou et al.
(2020) passes voxelized point cloud of each grasp candidate
into networks and fortify a reachability predictor to strengthen
selected grasp robustness. Inspired by the work in Varley et al.
(2015) and Lu et al. (2020) utilizes a patches-CNN to gain
the information from different patches in images to calculate
a suitable grasp. Van der Merwe et al. (2020) takes a further
step by way of signed distance functions (SDF) to earn object
reconstruction. The extracted point cloud embedding is set as
the input to the success probability predictor (Lu et al., 2020)
extended by collision-free strategy (Zhou and Hauser, 2017;
Lu and Hermans, 2019; Lu et al., 2020). Qian et al. (2020)
modifies fully connected layer by a novel pooling layer in R-FCN
(Dai et al., 2016) which is able to perceive object localization
change precisely. Yu Q. et al. (2020) classifies grasp rectangles
via a 7-layer CNN. Although these variants of 2D CNN achieve
impressive performances, a common drawback is it’s hard for
them to handle imperfect observed point cloud and extract
sufficient and stable information.

Profiting from studies on point cloud (Rusu and Cousins,
2011; Guo Y. et al., 2020; Lu and Shi, 2020), PointNet and
PointNet++ are two extraordinary and widespread models
which make a further promotion on evaluation networks.
Liang et al. (2019), Mousavian et al. (2019), and Yan et al.
(2019) use PointNet to directly take point cloud as input and
output the grasp candidate evaluation. The points within the
closing area of the gripper are utilized to represent the grasp.
Immediately transform grasp to the points in corresponding
area addresses unstable prediction results from imperfect local
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observed point cloud and carries out an acceleration of evaluation
process. Stimulated by PointNetGPD (Liang et al., 2019), Singh
et al. (2018) tries to replace PointNet with PointNet++, KD-
Networks (Klokov and Lempitsky, 2017) and Dynamic Graph
Convolutional Neural Networks (DGCNN) (Wang Y. et al.,
2019) to obtain a better result. By considering parallel structure
utilized in some works ignores grasp candidate generation
errors result in unreliable evaluation, Grasp Proposal Networks
(GPNet) (Wu et al., 2020) adopts GraspNet (Mousavian et al.,
2019) and designs a structure which is able to allow generator
and evaluator to be trained jointly. Fang H.-S. et al. (2020)
utilizes PointNet++ as their ApproachNet to obtain suitable
grasps. In contrast with traditional 2D-input CNN, methods
based on PointNet or PointNet++ are capable to handle noisy
inputs and assess grasp candidate probability and stability with
higher confidence.

Approaches presented by other arts are not in line with CNN-
based methods but still achieve good performance. Enlightened
by wide & deep model in recommender system (Cheng et al.,
2016), Context-Aware Grasping Engine (CAGE) (Liu et al.,
2020) treats discovering a feasible grasp configuration as a
recommendation problem. Based on the prior knowledge, the
model predicts suitable grasp by finding grasp configuration in
the similar situation. On the contrary, Wu et al. (2019) utilizes
a reinforcement learning pipeline, which assesses and refines the
action taken in each time stamp based on reward function via
policy gradient (Sutton et al., 1999).

END-TO-END AND OTHERS

Except from those works can be categorized into grasp generation
or evaluation part, there still has numerous arts out of this
framework. By adopting the advantages of end-to-end learning,
some researchers attempt to concatenate two parts to enable
training the network jointly. Instead of using supervised learning,
some works empower grasping ability of robots through
interacting with environments on the basis of reinforcement
learning. Other proposed models are based on approaches not
in mainstream.

End-to-End Learning
With the development of deep learning, end-to-end learning
gradually becomes one of the most outstanding learning
mode, which is seemingly natural consequence of deep neural
architectures blurring the classic boundaries between learning
machine and other processing components by casting a possibly
complex processing pipeline into the coherent and flexible
modeling language of neural networks (Glasmachers, 2017).
Deep learning based on end-to-end mode is capable of
training and generating a more powerful model via a holistic
object function.

S4G (Qin et al., 2020) proposes a single-shot grasp proposal
network based on PointNet++which assigns each point in point
cloud a grasp configuration and its quality score. Non-maximum
suppression (NMS) and weighted random sampling are applied
to the output to select a grasp to be executed. Based on the
network in (Choi et al., 2018), Liu M. et al. (2019) improves its

performance through introducing a new combined loss which
is composed of consistency loss and collision loss. These two
losses aim to resolve grasp pose ambiguity and penalizes the
penetrations respectively. Yu Y. et al. (2019) preprocesses the
input via utilizing FPN with ResNet50 and K-means by taking
RGB images and point cloud as inputs correspondingly to extract
the multi-scale masks of target object. Then a DrGNet takes
masks as inputs to perform depthwise separable convolution. The
encoded results fromDrGNet are refined by RefineNet (Nekrasov
et al., 2018) and sSE (Roy et al., 2018) to obtain a desirable
grasp. Provided by object mask, grayscale and depth images as
input, Tosun et al. (2020) trains grasp proposal network (GPNet)
(Tosun et al., 2019) and shape reconstruction network (SRNet)
(Mitchell et al., 2019) parallelly to acquire grasp proposal and
reconstructed point cloud. The embeddings from GPNet and
SRNet are combined to refine the detected grasp. PointNetRGPE
(Wang Z. et al., 2020) first predicts the corresponded class
number from object point cloud data, which is used to fuse
with point coordinates to pass into grasping pose estimation
network. The network has three sub-networks based on PointNet
to acquire the translation, rotation and rotation sign of grasp
pose. Other than generate the grasp configuration parameters,
GraspCNN (Xu et al., 2019) treats the grasp estimation as an
object detection problem. It takes RGB images as input and
outputs an oriented diameter circle. The circle and oriented
diameter indicate the grasp area and gripper open width and
closing orientation respectively. Obtained circle on RGB image
is calculated to project into the point cloud.

Instead of designing end-to-end framework based on
supervised learning, some arts propose their end-to-end models
through the methodologies of reinforcement learning. Zeng
et al. (2018a) attempts to jointly train two FCNs in Q-learning
framework to extract the visual state representations and obtain
the push and grasp from the policy. Compared with the demands
of a large amounts of manually labeled data in supervised
learning, approach presented in Zeng et al. (2018a) is totally
self-supervised. Wu et al. (2019) takes depth images as input
and obtain 10 2D maps after flowing in an FPN. Ten maps
represent current state of end-effector and objects and are
utilized to sample the action. Policy is learned based on policy
gradient during the action execution. Manuelli et al. (2019)
segments and detects the keypoints of object via Mask R-CNN
and pose estimation network (Sun et al., 2018). The grasp
planner (Gualtieri et al., 2016; Zeng et al., 2018b; Mahler et al.,
2019) is selected to generate a pose and refined by proposed
optimization method.

End-to-end models are capable of learning a complete
function maps from visual inputs to grasp poses. Although
there is not much work based on an end-to-end approach,
this direction has great potential for development. Since it
takes the point cloud as input, and then directly outputs
the grasp pose, this omits the consideration of the features
extracted from the connection in the multi-step method. At
the same time, the efficiency of the end-to-end algorithm
is usually better than that of the multi-stage model, which
makes it possible for the robot to operate in real time in a
dynamic environment.
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FIGURE 7 | The deep reinforcement learning framework of robotic grasp learning based on point cloud. In order to reduce the cost of trial and error, the current robot

grasping based on reinforcement learning is to first train the model in a simulation environment and then migrate to the real robot (Sim to real).

Reinforcement Learning
Reinforcement learning is another interesting solution of grasp
pose detection. Although the work on reinforcement learning
has been mentioned in the end-to-end method, what mentioned
earlier is end-to-end learning based on the reinforcement
learning framework. Generally speaking, reinforcement learning
methods do not necessarily adopt end-to-end thinking, and vice
versa. As shown in Figure 7, RL approaches enable robot to
interact with environments to study the policy maps from visual
inputs to actions. In contrast with supervised learning, trial
and error thoughts back of RL capacitate robots to learn self-
exploration ability, which makes robots have higher dexterity.
The reason why reinforcement learning makes robots more
dexterous than supervised learning is because the training ideas
of the two are completely different. Supervised learning is to
update the model parameters through sample and label pairs
until the loss function is minimized. But the biggest drawback
of this training method is that its dataset usually has only one
label per sample. That is, for a grasp point, it can only correspond
to one grasp pose, which actually adds a lot of restrictions to the
model. Image that a robot wants to grasp a block or a ball, the
same scene can have hundreds of thousands of grasp poses for
humans because the deviation of the hand and joint angle has no
effect on the successful grasp of such objects. However, there is
only one correct answer in supervised dataset. On the contrary,
reinforcement learning is to obtain the policy of grasping objects
through trial and error. Since the robot may have explored many

grasping possibilities during training, and the reward function
value of each grasp pose is not bad, the algorithm will add these
possibilities to the policy function, so that the possible answers
for the operation become more.

Ficuciello et al. (2019) first take point cloud as input, an object
recognition module is utilized to accomplish object detection
and pose estimation. Acquired features are feed into a pretrained
neural network to obtain the robot grasp initial configuration.
Then a RL loop is used to refine the initialized parameters by
assigning the executed grasp a cost to update the policy. Inspired
by DeepQ-learning network (DQN) (Mnih et al., 2015), Gualtieri
and Platt (2018) trains a CNN to learn Q-function and utilizes
gradient Monte Carlo (Sutton and Barto, 2018) to update the
rule. At each time stamp, it generate several grasp candidates
based on hierarchical sampling and then one pose will be chosen
by the learned policy. Chen et al. (2020) adopts RL to obtain
an appropriate viewpoint based on the mask-guided award to
perform GPD module. Rather than deploying RL strategy on
grasp planner, this model focuses on acquire a better view sight
to improve the grasp accuracy.

RL-based approaches empower robot ability of self-
exploration from trial and error, successfully trained models are
capable of planning grasping dexterously. However, methods
based on reinforcement learning, especially when used for
robot operations, will have a serious problem – the exploration
space of the algorithm will become extremely large, or the grasp
poses that require trial and error are innumerable. This will
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make the learning efficiency become very slow, and because the
exploration space is too large, the positive and negative samples
will be extremely imbalanced. The robot may not be able to
increase the reward function value after many trial and error,
and the policy cannot be updated. Besides, due to the necessity
of a mass of sampling during training, the data collection process
is also time-consuming. In addition, it still needs more time to
transfer the model in simulation to real world since the cost of
each trial may be extremely high.

Others
Aside from end-to-end learning and reinforcement learning,
some other works achieve the goal through some unique and
creative methods.

Zhu et al. (2019) first obtains the graspable area via performing
ellipse fitting method on segmented mask from Mask R-
CNN. Then RANSAC is utilized to acquire the orientation of
the grasp from the pixel mask and point cloud. Instead of
generating the grasp pose parameters, Shao et al. (2020) attempts
to predict the grasp contact points. It not only extracts the
feature of object point cloud, but also pays attention to gripper
properties. An unsupervised autoencoder adopts the structure
of PointNet to learn a low-dimensional latent space of gripper
representation and construct robotic hand representation from
URDF file. Then the gripper representation and object point
cloud features extracted by PointNet++ are combined to feed
into a proposed Point Set Selection Network (PSSN) to generate
correspond number of contact points based on beam search.
Kokic et al. (2017) employs two CNNs, one for affordance
detection and another one for classification and orientation
estimation. Extracted parameters are used to compute a grasp by
Haustein et al. (2017).

Approaches proposed in this group can achieve an impressive
performance in some special cases, however, generalization of
these methods are not approving.

LEARNING MODES

There are numerous types of machine learning algorithms, which
aim to solve problems in different situations or under diverse
demands. In the robot grasp learning field, learningmodes can be
mainly divided into supervised learning, unsupervised learning
and reinforcement learning even some arts may be outside of
these three categories. Nowadays, due to the challenge of grasp
pose detection with high dexterity, it facilitates the fusion of
different learning modes to integrate the merits of each other
to improve the model performance. The descriptions of three
main modes are provided first, and then the fusion models are
discussed based on three primitive modes.

Supervised Learning
Supervised learning is the machine learning task of learning a
function that maps an input to an output based on example
input-output pairs (Russell and Norvig, 2002). The most
prominent property of supervised learning is the datasets used
to train the models have the labels for each sample. Supervised
learning models are the most widely used since they are simple

to implement, easy to train and suitable for most tasks. In robot
grasp learning task, supervised learning methods can be used
for candidate either generation or evaluation. Many end-to-end
learning approaches are also based on the thoughts back of
supervised learning.

Initially, supervised learning models without deep learning
techniques are only used for grasp candidate evaluation since
extensive demands of handcraft feature preprocessing cause low
performance of candidate generation. Pas and Platt (2015) uses
SVM to assess the quality of grasp proposals and acquires
an incredible performance. With the development of deep
learning, supervised learning models based on neural networks
outperform and replace traditional techniques in many tasks.
Gualtieri et al. (2016), Wang and Ling (2016), and Pas et al.
(2017) try to evaluate the grasp pose candidates based on LeNet
for the first time. Astonished by the power of neural network,
deep learning models attract dramatically substantial interests
from researchers. Mahler and Goldberg (2017) and Mahler
et al. (2017, 2018) propose CNN-based evaluators with more
complex architecture.

Inspired by several state-of-arts works in computer vision
(Ren et al., 2015; He et al., 2016, 2017; Liu et al., 2016; Redmon
et al., 2016), researchers begin to move the attention to grasp
candidate generation. Someworks attempt to use object detection
and instance segmentation approaches to reduce the search space
in the point cloud (Lopes et al., 2018; Schnaubelt et al., 2019; Bui
et al., 2020) or regress the grasp part using rectangle bounding
boxes directly (Vohra et al., 2019; Yu Q. et al., 2020). Specifically,
models designed to process point cloud furtherly accelerate the
progress of candidate generation (Lin and Cong, 2019; Yu S.
et al., 2020) and evaluation (Singh et al., 2018; Mousavian et al.,
2019; Yan et al., 2019; Fang H.-S. et al., 2020; Qian et al., 2020).
Moreover, end-to-end learning models mentioned in section
End-to-End Learning follow the supervised learning framework
as well.

By adopting supervised learning methods, especially those in
deep learning field, feature extraction of robot grasp learning
has transformed from handcraft to learning-based. Supervised
learning methods is capable of learning the models to accomplish
specific tasks with only needs of regarding datasets. However,
training an efficient supervised learning model requires a large
amount of data. Data collection is very expensive and time-
consuming in many cases which cause the model not able
to learn enough knowledge to perform as expect, which is
known as underfitting. In addition, incomplete training set
also probably result in overfitting of models due to samples
cannot represent the entire rules to be learned. For end-to-end
learning, incorrect-design architecture has higher potentials to
be overfitting. Besides, generalization of grasp learning is still a
challenge. Model trained on one case is commonly hard to be
transferred to other cases.

Unsupervised Learning
In contrast with supervised learning, unsupervised learning takes
unlabeled data as input aims to find the internal relationship
of samples which allows for modeling of probability densities
over inputs (Hinton et al., 1999). Two of the main techniques
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in unsupervised learning are dimensionality reduction and
clustering. Clustering is used to group or segment the
datasets to numerous clusters, which is adequate for processing
the point cloud. Some works adopt K-means as clustering
method to segment the point cloud as their desirable features
for downstream.

Different from classical unsupervised learning approaches,
VAE and GAN are the product of the growth of deep learning.
Both VAE and GAN are generative models, which are to model
the real data distribution from the training data, and then use
the learned model and distribution to generate and model new
data in turn. They are similar in two respects. One is that
random noise is used in the data generation mode (such as
Gaussian distribution is commonly used), and the other is that
when modeling the distribution, it is necessary to measure the
difference between the distribution of noise and training data.
The difference between the two is essentially that the distribution
measurement criteria are different (that is, the loss is different).
VAE uses a more explicit measurement method, assuming that
the training data is generated by another distribution, and
directly measures the KL divergence of the training data and
noise. From this, the ELBO theory, reparameterization trick and
so on have been developed. The GAN cleverly avoids the direct
measurement of the distribution difference, but lets the neural
network learn this distance through confrontation. When the
discriminator cannot distinguish between the two distributions,
it is considered that the two distributions are consistent. The
emergence of VAE and GAN makes neural networks also usable
in tasks based on random sampling. Some works have adopted
this strategy in the stage of grasp candidate generation. Inspired
by GAN, Mousavian et al. (2019) and Murali et al. (2020)
utilize VAE to sample multiple grasp proposals to speed up
candidate generation.

Robot grasp learning is hard to be accomplished only based
on unsupervised learning methods since study on unlabeled data
is not trivial to acquire sufficient knowledge to drive robots
perform dexterous grasp poses as human. However, unsupervised
learning can efficiently segment point cloud or sample grasp
candidates with satisfying results even using fairly simple models.

Reinforcement Learning
Differs from demands of labeled and unlabeled data
for supervised and unsupervised learning respectively,
reinforcement learning (RL) aims to learn a policy maps from
agent’s states to actions and maximizes reward by interacting
with environment. The core problem of RL is to find a balance
between exploration and exploitation. The motivation of RL
is letting the agent cumulate knowledge by trial and error. As
mentioned in section Reinforcement Learning, there are few RL
works achieve robot grasp goal based on point cloud and deep
learning. The reason is the difficulty of transferring point cloud
to visual state representation during robot exploration.

Fusion
More recently, increasingly number of researchers begin to fuse
different modes to adopt and integrate their advantages. Fused
models enable employing the most appropriate learning types

in each part of architecture, which allows a great promotion of
grasp learning. It is very tough to model and accomplish a task
only based on single learning modes. In addition, sometimes
single mode perhaps complicates the problem and reduces the
solving efficiency.

As mentioned in section Unsupervised Learning, it is hard
to design a pipeline only based on unsupervised learning.
K-means (Yu Y. et al., 2019, 2020; Li Y. et al., 2020)
or GAN-analogous (Mousavian et al., 2019; Murali et al.,
2020) methods only serves one functional part in entire
architecture. On the other hand, like the discussion in section
Reinforcement Learning, it is significant to acquire valid state
representation to obtain a powerful reinforcement learning
model. By integrating the visual perception, it is intuitive
to utilize the input RGB images or point cloud to extract
state information. Object localization and segmentation are
almost achieved by numerous supervised learning-based CNN.
Therefore, reinforcement learning techniques are naturally
fused with supervised learning. However, large-scale datasets
are commonly demanded in supervised learning to obtain a
high-performance model, which request time-consuming data
collection and annotation.

Self-supervised learning is a new mode in machine learning.
Instead of paying expensive cost of gathering and labeling data,
as a subset of unsupervised learning, self-supervised learning
aims to study the labels represented by features based on
provided unlabeled data. In robot learning, it’s pretty costly to
collect datasets and annotate each sample manually. In addition,
defining, labeling and representing ground-truth for each sample
may be challenging and wrong annotation can cause the model
hard to train. Self-supervised learning is able to extract the
feature-based labels during studying to avoid inaccuracy of
handcraft. Zeng et al. (2018a), Deng et al. (2020) and Fang K. et al.
(2020) adopt self-supervised framework to learn the model with
a few data to pretrain or without any data to train from scratch.
The results are surprisingly good and exhibit the great potential
to employ self-supervised learning into robot learning research.
Moreover, since training process is on the basis of unannotated
data, the model performance can become cumulatively better
with growth of learning time. Self-supervision is looked forward
to promoting the continual learning of robotics.

APPLICATIONS

There are numerous applications of robot grasping based on
point cloud and deep learning. Generally, as shown in Figure 8,
these methods can be categorized from two different concepts.
From the perspective of end effector, approaches can be divided
into suction cup, two fingers (parallel-jaw gripper) and multi
fingers. In terms of operating scenarios, approaches fall into
life-oriented and industry-oriented.

End Effector
Due to grasping mechanisms and DOFs vary from single
suction cup (one finger) to five-finger hand, end effector
plays an important role in grasp learning algorithm design.
With more fingers assembled on end effector, the dexterity of
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FIGURE 8 | End effector, system and applications for robotics dexterous grasping. End effector is divided into simple end-effectors and advanced end-effectors. The

former group contains suction cup and parallel-jaw gripper, the latter class indicates those multi-finger hands. Grasping system is first designed, deployed, and

matured on simple end-effectors, then transferred and improved on advanced end-effectors. Developed systems are applied in different scenarios, life-oriented, or

industry-oriented.

grasp increases dramatically to allow robot to accomplish more
complicated tasks.

Suction Cup
The suction manipulation based on vacuum cup has an
unparalleled advantage over other multi-finger operation, which
just request detect one feasible contact point to perform object
picking. Single contact operation is not only convenient, and
there is no need to worry too much about the collision
between the end effector and other objects, especially in
cluttered environment. Jiang et al. (2020), Mahler et al.
(2018), and Mahler et al. (2019) pay efforts to pick the

object through suction and obtain 98, 95, and 97.5% success
rate respectively.

Parallel-Jaw Gripper
Robots equipped with parallel-jaw gripper are more favored
in research and real life than humans grasp an object using
movable joints index finger and thumb. Compared with suction
manipulation, parallel-jaw gripper is able to perform more
dexterous operations even if it demands more consideration of
collision. The main reasons are grippers are easy to model in
physical simulation environment and sample the grasp poses in
point cloud. By knowing the grasp configuration and location
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in operating space, it is straightforward to calculate the contact
points via geometrically symmetric shape to detect the collision.
Pas and Platt (2015), Gualtieri et al. (2016), Mahler et al. (2017),
Pas et al. (2017), and Liang et al. (2019) are fairly representative
arts in the field of two-finger grasping.

Multi Fingers
There are merely few works focus on multi-finger grasp learning,
not only is it difficult to model in the simulation environment,
but also because of its overhigh DOFs and contact points
make the sampling-based candidate generation strategy more
sophisticated. Despite this, there are still some works focus
on multi-finger grasping have achieved satisfactory results.
Guan et al. (2019), Lin and Cong (2019), Liu C. et al. (2019), Wu
et al. (2019), Shao et al. (2020), and Yu Y. et al. (2019), Yu Y.
et al. (2020) utilize three-finger hand as their end effectors and
Ficuciello et al. (2019) and Yu Q. et al. (2020) adopt five-finger to
design grasp learning algorithm.

Operating Scenarios
To categorize approaches in terms of operating scenarios, they
can generally be divided into life-oriented and industry-oriented
groups. Life-oriented methods aim to design a robot system
can serve or help people to accomplish tasks in their daily
life. Industry-oriented methods are designed to complete those
dangerous and arduous tasks in industry.

Life-Oriented
Grasp is one of the most primitive and core manipulations of
robot, many advanced operations are variant of grasping. With
the growth of robot grasp learning, more and more tasks can be
finished by robot in people’s daily life, which improves quality
of people’s life. Gualtieri et al. (2017) and Zhang and Demiris
(2020) propose robot systems to assist disabled people grab
objects and dress cloths. Llopart et al. (2017), Zhou et al. (2019),
Yang et al. (2020) and Zeng et al. (2020) aim to learn grasping
capability to accomplish opening doors, grabbing glasses, picking
objects from human’s hands and throwing arbitrary objects.More
interestingly, Parhar et al. (2018), Guo N. et al. (2020), and Kang
et al. (2020) utilizes robot grasp ability to help completing crops
harvesting in the farm. Zhang et al. (2020) enables robot grasping
to be controlled by a smartphone. Hu et al. (2019) creatively
integrates robotic grasp with surgery, which may help doctors
during surgical operation. Nishikawa et al. (2019) and Schnaubelt
et al. (2019) let the robot learn the knowledge to aid rescuers clean
up disaster scene.

Industry-Oriented
Some works are aimed at industrial scenarios and propose
algorithms for robot grasping learning to further promote
productivity. Tian et al. (2017), Antonova et al. (2018), Li et al.
(2018), Li H. et al. (2020), Song et al. (2019), Bui et al. (2020),
and Liu et al. (2020) present some system design idea based on
robot grasping that can be used in industrial production. Amazon
Picking Challenge (APC) is a competition to provide a challenge
problem to robotics community (Wurman and Romano, 2015)
that spawns numerous excellent works based on the combination

of point cloud and deep learning. Hernandez et al. (2016),
Zeng et al. (2017), Morrison et al. (2018b), and Matsumoto
et al. (2020) are some typical picking systems designed
in top teams.

CHALLENGES AND FUTURE DIRECTIONS

Robot grasp learning based on 3D point cloud provides more
potentials to estimate and execute more precise grasp pose on the
target objects. Deep learning growth also brings more promising
strategies on grasping system design. Applications mentioned in
section Applications exhibit the great probability of dexterous-
grasping ability can be closely integrated with tasks in a variety of
industries. However, due to sparse and unstructured properties
of point cloud, training difficulty and low generalization of
deep learning and ambiguity of dexterous grasping definition,
the challenges of robot grasp learning are provided. Some
future directions are also discussed based on these unresolved
problems. Challenges and directions can mainly be divided into
three groups, improving perception and manipulation abilities of
robots, promoting the intelligence of robots and enabling abilities
of transferring.

Easy-Vision and Complicated-Dexterity
To achieve successful grasp goal, proposed methods heretofore
commonly utilize multi viewpoints input and simplified grasp
definition. Suppose deploying floor mopping robots, it is difficult
to install a camera in each room. Instead, the camera will
be equipped on robot which is able to barely provide partial
observation of many objects. Hence, easy vision becomes
increasingly useful. “Easy” means robots only take partial
observation of objects from single viewpoint to detect the
grasp pose. Concerning the grasp definition, lots of works are
on ground of multiple hypothesizes and posture restrictions,
which are not the true sense of 6-DOF grasping. Moreover, as
mentioned in section End Effector, most arts focus on grasp
learning with parallel-jaw gripper, which cannot be said as
genuine dexterous grasping.

Single-View Grasping
Considering training a formidable grasping models, numerous
works capacitate robot’s visual perception ability by offering
visual training data collected from multi-viewpoints. In spite of
this can achieve a high grasping accuracy in special cases, these
approaches have an important assumption which is robot has
a complete knowledge of the environments to perform grasp
poses. As a result of impossibility and hardness of providing
entire object observation in diverse task scenarios, single-view
grasp learning plays an increasingly important role. Shape
complementation (Watkins-Valls et al., 2019; Van der Merwe
et al., 2020) or taking partial observation as input immediately
(Yan et al., 2019; Qian et al., 2020; Qin et al., 2020) are tried by
researchers. Even sophisticating the model design and training,
single-view grasp learning enhances algorithm robustness and
reduces data collection cost.

Frontiers in Neurorobotics | www.frontiersin.org 19 June 2021 | Volume 15 | Article 658280

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duan et al. Robotics Dexterous Grasping Methods Review

6-DOF Grasping
To accomplish grasping task in a simple way, many works
stipulate the end effector can only grasp objects along the axis
perpendicular to workspace. However, these restrictions make
performed grasps lose the so-called 6-DOF. In addition, these
analogous 6-DOF grasps are hard to achieve a satisfying accuracy
in cluttered environment. 6-DOF grasping should be flexible that
is capable of approaching the detected grasp point from any
directions. With the progress of grasping learning models and
robot hardware, the problem of quasi-6-DOF grasping has been
gradually improved (Gualtieri and Platt, 2018; Lin and Cong,
2019; Mousavian et al., 2019; Lou et al., 2020; Murali et al., 2020).

Multi-Finger Grasping
The ultimate goal of robot grasp learning is to give the robot
an anthropomorphic grasping ability, and it is a particularly
important step to evolve the end effector from parallel-jaw
gripper to five fingers. Thanks to the simple characteristics of
modeling and physical analysis of parallel-jaw gripper, many
works have achieved incredible results on the problem of two-
finger grasping. However, as for multi-finger robots, especially
five-finger robots, effective work is still lacking (Ficuciello et al.,
2019; Yu Q. et al., 2020). High hands DOF and computational
complexity caused by multi-contact points and multi-joints
remain to the difficult enhancement of five-finger grasping.

Fusion, Self-Exploration, and Continual
Learning
Promoting the intelligence of robots is an appealing and core
field in the future directions. Learning algorithms give robot
intelligence, and the quality of the algorithms is the most
prominent dependent factor for accurately and dexterously
grasping objects. In order to design more complementary
algorithms, fusion has become the current general trend. Fusion
not only includes the integration of multiple learning modes, but
also the integration between multiple modalities. Furthermore,
enabling robots to have the ability of self-exploration and
continual learning with a few prior knowledges has also become
a hot Research Topic.

Fusion
As mentioned in section Fusion, the fusion of learning modes
adopts the most appropriate learning modes at each part of
the method architecture to improve model performance and
reduce learning costs. In the contrast with multi-mode fusion,
multimodal fusion not only relies on point cloud itself to improve
the ability of grasp learning, it also utilizes language or tactile
sense to enrich the features extracted in the learning process so
that the robot has more grasping knowledge (Sung et al., 2017;
Zhou Y. et al., 2018; Abi-Farraj et al., 2019; Kumar et al., 2019;
Ottenhaus et al., 2019; Wang T. et al., 2019; Watkins-Valls et al.,
2019).

Self-Exploration
Self-exploration refers to the method in which the robot
learns to grasp through interacting with environments. Self-
exploration breaks away from traditional approaches of relying

on supervision but turns the problem into learning a policy
maps from states to actions via trial and error. Reinforcement
learning is currently the most powerful tool for self-exploration.
As mentioned in section Reinforcement Learning, some works
have been carried out around RL and achieved impressive results.
Nevertheless, because the reward function is difficult to design,
the deep reinforcement learning training requires a large-scale
dataset support and the generalization performance is poor, there
is still a lot of room for development of robot self-exploration
based on RL.

Continual Learning
Continual learning (CL) is a machine learning paradigm where
the data distribution and learning objective change through
time, or where all the training data and objective criteria are
never available at once (Hadsell et al., 2020; Lesort et al.,
2020). Even for a grasping task, it is currently tough to grasp
different types of objects in different scenes by a single robot.
Continual learning allows the robot to learn new manipulation
knowledge while not forgetting what has learned before. This
ability makes it possible for a robot to complete multiple tasks.
However, due to the demands for a large amount of memory
to store the learned knowledge, and to adapt to the changes
in the data distribution at any time, there is not much work
in related fields as present. Moreover, continual learning and
self-exploration complement each other. As the number of
trial and error increases, robots will learn more and more
knowledge. How to ensure that new knowledge doesn’t overlap,
conflict and cover the previous knowledge will require continual
learning strategy.

Sim-to-Real and Generalization
Designing, training, and deploying a grasp learning model is
often time-consuming and laborious. Researchers expect to apply
transfer learning strategies (Pan and Yang, 2009) to the learned
model, so that similar grasping tasks don’t need to be restarted
from scratch. At present, there are three crucial problems in
robot learning have not been well-solved. First is the problem of
sample efficiency. Because the data for training robots is difficult
to collect and a lot of collected data will not be helpful to the
promotion of model learning due to unrepresentative. The other
is the generalization ability of the model. Since the robot’s end
effectors are diverse and grasp learning is for specific tasks, the
generalization ability is mostly poor. Finally, sim-to-real is also
a challenge. Unlike traditional artificial intelligence tasks, robot
learning commonly involves training and testing algorithms in
a physical simulation environment and then transplanting to
real robots. However, because the simulation environments are
based on the ideal physical situation, it is quite different from the
reality. Moreover, the migration of visual algorithms obtained in
the simulation environments to reality will have cross-domain
problems, which will cause the performance of the algorithms
drop significantly after migration.

Sample Efficiency
In robot learning, especially those methods based on
reinforcement learning, sample efficiency is particularly
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significant due to the particularity of the data. The low sample
efficiency will not only increase the cost of data collecting and
model training, but also cause the model to easily underfit.
For the off-policy reinforcement learning approaches, since the
policy is improved based on training samples, models with high
sample efficiency can quickly learn appropriate policy from the
data (Gualtieri and Platt, 2018; Zeng et al., 2018a; Zeng, 2019).

Model Generalization and Transfer
The methods mentioned in sections Grasping Candidate
Generation and Grasp Candidate Evaluation based on CNN
to generate and evaluate grasp candidates show the potentials
of generalization (Mahler et al., 2017, 2018; Yan et al., 2019;
Chen et al., 2020; Shao et al., 2020). However, for the proposed
approaches based on reinforcement learning are hard to be
transferred to other tasks. Even if there are already someworks on
the integration of transfer learning and reinforcement learning
(Tirinzoni et al., 2018; Ammanabrolu and Riedl, 2019; Gamrian
and Goldberg, 2019; Liu Y. et al., 2019; Xu and Topcu, 2019),
the work related to the robot grasping is lacking. The essence
of transfer learning is the registration problem at the task level,
including not only the task itself, but also its input and output.
If robot grasping can be defined from a higher level, if will make
transfer learning possible.

Sim-to-Real
Simulation-based training provides data at low-cost, but involves
inherent mismatches with real-world settings (Zhao W. et al.,
2020). At present, domain randomization and domain adaptation
are widely used in sim-to-real problems. In order to not
degrading the performance, these methods attempt to make the
data distribution from the simulation environments and real-
world environments more similar to each other. Nonetheless,
the low interpretability of domain randomization approaches
and non-real hypothesis of domain adaption still make the
sim-to-real hard to solve. Imitation learning, meta-learning and
knowledge distillation are also supposed to have probability to
facilitate the solution, however, more time is requested to achieve
the goals.

CONCLUSION

The current researches on robot dexterous grasp learning based
on point cloud and deep learning can be divided into grasp
candidate generation and grasp candidate evaluation. On the
basis of this effective and reliable two-stage algorithmmodel, this
survey proposes a more generalized learning framework. Most
of the work can be summarized as a substantial contribution
to one of these two stages. For work that does not belong
to this framework, aside from the end-to-end model, the
most prominent part is reinforcement learning framework.
Although reinforcement learning is not summarized in the
main framework of this review, sampling grasping actions from
policy and assessing grasping actions from reward function
can actually be regarded as the idea of proposed framework.
But in order to respect the original motivation of the authors,
RL-based approaches are not categorized. This survey aims to
provide valuable insights and inspiration ground of sufficient
bibliographical contents. Although there are still numerous
challenges and limitations, methods with point cloud and
deep learning have proven their potentials in promoting the
improvement of robot dexterous grasping.
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Jaśkowski, M., Swiatkowski, J., Zajac, M., Klimek, M., and Potiuk, J., Rybicki, P.,
et al. (2018). Improved GQ-CNN: deep learning model for planning robust
grasps. arXiv [Preprint]. arXiv:1802.05992.

Jiang, L., Shi, S., Qi, X., and Jia, J. (2018). “Gal: Geometric adversarial
loss for single-view 3d-object reconstruction,” in Proceedings of the

European Conference on Computer Vision (ECCV) (Munich), 802–816.
doi: 10.1007/978-3-030-01237-3_49

Jiang, P., Ishihara, Y., Sugiyama, N., Oaki, J., Tokura, S., Sugahara, A., et al.
(2020). Depth image–based deep learning of grasp planning for textureless
planar-faced objects in vision-guided robotic bin-picking. Sensors 20:706.
doi: 10.3390/s20030706

Jiang, Y., Lim, M., and Saxena, A. (2012). Learning object arrangements in 3d
scenes using human context. arXiv [Preprint]. arXiv:1206.6462.

Jiang, Y., Moseson, S., and Saxena, A. (2011). “Efficient grasping from rgbd
images: Learning using a new rectangle representation,” in 2011 IEEE

International Conference on Robotics and Automation (Shanghai: IEEE),
3304–3311. doi: 10.1109/ICRA.2011.5980145

Johns, E., Leutenegger, S., and Davison, A. J. (2016). “Deep learning a grasp
function for grasping under gripper pose uncertainty,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Daejeon:
IEEE), 4461–4468. doi: 10.1109/IROS.2016.7759657

Kang, H., Zhou, H., Wang, X., and Chen, C. (2020). Real-time fruit recognition
and grasping estimation for robotic apple harvesting. Sensors 20:5670.
doi: 10.3390/s20195670

Kanoulas, D., Lee, J., Caldwell, D. G., and Tsagarakis, N. G. (2017).
Visual grasp affordance localization in point clouds using curved contact
patches. Int. J. Humanoid Robot. 14:1650028. doi: 10.1142/S02198436165
00286

Kappler, D., Bohg, J., and Schaal, S. (2015). “Leveraging big data for grasp
planning,” in 2015 IEEE International Conference on Robotics and Automation

(ICRA) (Seattle, WA: IEEE), 4304–4311. doi: 10.1109/ICRA.2015.7139793
Kappler, D., Schaal, S., and Bohg, J. (2016). “Optimizing for what matters:

the top grasp hypothesis,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA) (Stockholm: IEEE), 2167–2174.
doi: 10.1109/ICRA.2016.7487367

Katz, D., Venkatraman, A., Kazemi, M., Bagnell, J. A., and Stentz, A. (2014).
Perceiving, learning, and exploiting object affordances for autonomous pile
manipulation. Auton. Robots 37, 369–382. doi: 10.1007/s10514-014-9407-y

Kehoe, B., Berenson, D., and Goldberg, K. (2012). “Toward cloud-based
grasping with uncertainty in shape: estimating lower bounds on achieving
force closure with zero-slip push grasps,” in 2012 IEEE International

Conference on Robotics and Automation (St Paul, MN: IEEE), 576–583.
doi: 10.1109/ICRA.2012.6224781

Kiatos, M., and Malassiotis, S. (2019). “Grasping unknown objects by
exploiting complementarity with robot hand geometry,” in International

Conference on Computer Vision Systems (Thessaloniki: Springer), 88–97.
doi: 10.1007/978-3-030-34995-0_8

Kim, C.-J., and Nelson, C. R. (1999). State-Space Models With Regime Switching:

Classical and Gibbs-Sampling Approaches With Applications. Cambridge;
London: MIT Press Books 1.

Kim, J., Iwamoto, K., Kuffner, J. J., Ota, Y., and Pollard, N. S. (2013). Physically
based grasp quality evaluation under pose uncertainty. IEEE Trans. Robot. 29,
1424–1439. doi: 10.1109/TRO.2013.2273846

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv
[Preprint]. arXiv:1312.6114.

Kleeberger, K., Bormann, R., Kraus, W., and Huber, M. F. (2020). A
survey on learning-based robotic grasping. Curr. Robot. Rep. 1, 239–249.
doi: 10.1007/s43154-020-00021-6

Klokov, R., and Lempitsky, V. (2017). “Escape from cells: deep kd-networks for the
recognition of 3d point cloud models,” in Proceedings of the IEEE International

Conference on Computer Vision (Venice), 863–872. doi: 10.1109/ICCV.2017.99
Kokic, M., Stork, J. A., Haustein, J. A., and Kragic, D. (2017). “Affordance

detection for task-specific grasping using deep learning,” in 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids) (Birmingham:
IEEE), 91–98. doi: 10.1109/HUMANOIDS.2017.8239542

Koppula, H. S., Gupta, R., and Saxena, A. (2013). Learning human activities
and object affordances from rgb-d videos. Int. J. Robot. Res. 32, 951–970.
doi: 10.1177/0278364913478446

Kroemer, O., Niekum, S., and Konidaris, G. (2019). A review of robot
learning for manipulation: challenges, representations, and algorithms. arXiv
[Preprint]. arXiv:1907.03146.

Kumar, V., Herman, T., Fox, D., Birchfield, S., and Tremblay, J. (2019). Contextual
reinforcement learning of visuo-tactile multi-fingered grasping policies. arXiv
[Preprint]. arXiv:1911.09233.

Kumra, S., and Kanan, C. (2017). “Robotic grasp detection using deep
convolutional neural networks,” in 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Vancouver, BC: IEEE), 769–776.
doi: 10.1109/IROS.2017.8202237

Laskey, M., Mahler, J., McCarthy, Z., Pokorny, F. T., Patil, S., Van Den Berg, J., et al.
(2015). “Multi-armed bandit models for 2d grasp planning with uncertainty,”
in 2015 IEEE International Conference on Automation Science and Engineering

(CASE) (Gothenburg: IEEE), 572–579. doi: 10.1109/CoASE.2015.7294140
Le, Q. V., Kamm, D., Kara, A. F., and Ng, A. Y. (2010). “Learning to

grasp objects with multiple contact points,” in 2010 IEEE International

Conference on Robotics and Automation (Anchorage, AK: IEEE), 5062–5069.
doi: 10.1109/ROBOT.2010.5509508

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–2324.
doi: 10.1109/5.726791

Lenz, I., Lee, H., and Saxena, A. (2015). Deep learning for detecting robotic grasps.
Int. J. Robot. Res. 34, 705–724. doi: 10.1177/0278364914549607

Frontiers in Neurorobotics | www.frontiersin.org 23 June 2021 | Volume 15 | Article 658280

https://doi.org/10.1109/ICCAR.2019.8813502
https://doi.org/10.1016/j.compag.2020.105818
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1016/j.tics.2020.09.004
https://doi.org/10.1109/ICRA.2017.7989392
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-68792-6_51
https://doi.org/10.7551/mitpress/7011.001.0001
https://doi.org/10.1016/j.measurement.2019.03.010
https://doi.org/10.1007/978-3-030-01237-3_49
https://doi.org/10.3390/s20030706
https://doi.org/10.1109/ICRA.2011.5980145
https://doi.org/10.1109/IROS.2016.7759657
https://doi.org/10.3390/s20195670
https://doi.org/10.1142/S0219843616500286
https://doi.org/10.1109/ICRA.2015.7139793
https://doi.org/10.1109/ICRA.2016.7487367
https://doi.org/10.1007/s10514-014-9407-y
https://doi.org/10.1109/ICRA.2012.6224781
https://doi.org/10.1007/978-3-030-34995-0_8
https://doi.org/10.1109/TRO.2013.2273846
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1109/ICCV.2017.99
https://doi.org/10.1109/HUMANOIDS.2017.8239542
https://doi.org/10.1177/0278364913478446
https://doi.org/10.1109/IROS.2017.8202237
https://doi.org/10.1109/CoASE.2015.7294140
https://doi.org/10.1109/ROBOT.2010.5509508
https://doi.org/10.1109/5.726791
https://doi.org/10.1177/0278364914549607
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duan et al. Robotics Dexterous Grasping Methods Review

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., and Díaz-
Rodríguez, N. (2020). Continual learning for robotics: definition, framework,
learning strategies, opportunities and challenges. Inform. Fusion 58, 52–68.
doi: 10.1016/j.inffus.2019.12.004

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning
hand-eye coordination for robotic grasping with deep learning and large-scale
data collection. Int. J. Robot. Res. 37, 421–436. doi: 10.1177/0278364917710318

Li, H., Tan, J., and He, H. (2020). MagicHand: Context-Aware Dexterous

Grasping Using an Anthropomorphic Robotic Hand. Paris: IEEE.
doi: 10.1109/ICRA40945.2020.9196538

Li, P., DeRose, B., Mahler, J., Ojea, J. A., Tanwani, A. K., and Goldberg,
K. (2018). “Dex-net as a service (dnaas): a cloud-based robust robot
grasp planning system,” in 2018 IEEE 14th International Conference on

Automation Science and Engineering (CASE) (Munich: IEEE), 1420–1427.
doi: 10.1109/COASE.2018.8560447

Li, R., and Qiao, H. (2019). A survey of methods and strategies for high-precision
robotic grasping and assembly tasks—some new trends. IEEE ASME Trans.

Mechatron. 24, 2718–2732. doi: 10.1109/TMECH.2019.2945135
Li, Y., Schomaker, L., and Kasaei, S. H. (2020). Learning to grasp 3D

objects using deep residual U-nets. arXiv [Preprint]. arXiv:2002.03892.
doi: 10.1109/RO-MAN47096.2020.9223541

Liang, H., Ma, X., Li, S., Görner, M., Tang, S., Fang, B., et al. (2019).
“Pointnetgpd: detecting grasp configurations from point sets,” in 2019

International Conference on Robotics and Automation (ICRA) (Montreal, QC:
IEEE), 3629–3635. doi: 10.1109/ICRA.2019.8794435

Lin, H.-I., and Cong, M. N. (2019). “Inference of 6-DOF robot grasps
using point cloud data,” in 2019 19th International Conference on

Control, Automation and Systems (ICCAS) (Chongqing: IEEE), 944–948.
doi: 10.23919/ICCAS47443.2019.8971464

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).
“Feature pyramid networks for object detection,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Honolulu, HI),
2117–2125. doi: 10.1109/CVPR.2017.106

Lin, Y., Zeng, L., Dong, Z., and Fu, X. (2019). “A vision-guided robotic
grasping method for stacking scenes based on deep learning,” in 2019

IEEE 3rd Advanced Information Management, Communicates, Electronic

and Automation Control Conference (IMCEC) (Chongqing: IEEE), 91–96.
doi: 10.1109/IMCEC46724.2019.8983819

Liu, C., Fang, B., Sun, F., Li, X., and Huang, W. (2019). Learning to grasp familiar
objects based on experience and objects’ shape affordance. IEEE Trans. Syst.

Man Cybern. Syst. 49, 2710–2723. doi: 10.1109/TSMC.2019.2901955
Liu, H., and Cao, C. (2020). “Grasp pose detection based on point cloud shape

simplification,” in IOP Conference Series: Materials Science and Engineering

(Wuhan: IOP Publishing), 012007. doi: 10.1088/1757-899X/717/1/012007
Liu, M., Pan, Z., Xu, K., Ganguly, K., and Manocha, D. (2019). Generating

grasp poses for a high-dof gripper using neural networks. arXiv [Preprint].

arXiv:1903.00425. doi: 10.1109/IROS40897.2019.8968115
Liu,W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). “Ssd:

single shot multibox detector,” in European Conference on Computer Vision

(Amsterdam: Springer), 21–37. doi: 10.1007/978-3-319-46448-0_2
Liu, W., Daruna, A., and Chernova, S. (2020). CAGE: Context-Aware Grasping

Engine. (Paris: IEEE). doi: 10.1109/ICRA40945.2020.9197289
Liu, W., Sun, J., Li, W., Hu, T., andWang, P. (2019). Deep learning on point clouds

and its application: a survey. Sensors 19:4188. doi: 10.3390/s19194188
Liu, Y., Hu, Y., Gao, Y., Chen, Y., and Fan, C. (2019). Value function transfer

for deep multi-agent reinforcement learning based on N-step returns in IJCAI

(Macao), 457–463. doi: 10.24963/ijcai.2019/65
Llopart, A., Ravn, O., and Andersen, N. A. (2017). “Door and cabinet

recognition using convolutional neural nets and real-time method fusion
for handle detection and grasping,” in 2017 3rd International Conference

on Control, Automation and Robotics (ICCAR) (Nagoya: IEEE), 144–149.
doi: 10.1109/ICCAR.2017.7942676

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Trans. Inform. Theory

28, 129–137. doi: 10.1109/TIT.1982.1056489
Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks

for semantic segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Boston, MA), 3431–3440.
doi: 10.1109/CVPR.2015.7298965

Lopes, V., Alexandre, L. A., and Fernandes, M. (2018). ““Less is more”: Simplifying
point clouds to improve grasping performance”, in 2018 IEEE International

Conference on Autonomous Robot Systems and Competitions (ICARSC)

(Torres Vedras: IEEE), 256–260. doi: 10.1109/ICARSC.2018.8374192
Lou, X., Yang, Y., and Choi, C. (2020). Learning to Generate 6-

DoF Grasp Poses With Reachability Awareness. Paris: IEEE.
doi: 10.1109/ICRA40945.2020.9197413

Lu, H., and Shi, H. (2020). Deep learning for 3D point cloud understanding: a
survey. arXiv [Preprint]. arXiv:2009.08920.

Lu, Q., Chenna, K., Sundaralingam, B., and Hermans, T. (2020). “Planning multi-
fingered grasps as probabilistic inference in a learned deep network,” in Robotics
Research, eds N. M. Amato, G. Hager, S. Thomas, and M. Torres-Torriti
(Puerto Varas: Springer), 455–472. doi: 10.1007/978-3-030-28619-4_35

Lu, Q., and Hermans, T. (2019). Modeling grasp type improves
learning-based grasp planning. IEEE Robot. Autom. Lett. 4, 784–791.
doi: 10.1109/LRA.2019.2893410

Lundell, J., Verdoja, F., and Kyrki, V. (2019). Robust grasp planning
over uncertain shape completions. arXiv [Preprint]. arXiv:1903.00645.
doi: 10.1109/IROS40897.2019.8967816

Luo, S., Bimbo, J., Dahiya, R., and Liu, H. (2017). Robotic tactile
perception of object properties: a review. Mechatronics 48, 54–67.
doi: 10.1016/j.mechatronics.2017.11.002

Mahler, J., and Goldberg, K. (2017). “Learning deep policies for robot bin picking
by simulating robust grasping sequences,” in Conference on Robot Learning

(Mountain View, CA), 515–524.
Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., et al. (2017).

Dex-net 2.0: deep learning to plan robust grasps with synthetic point
clouds and analytic grasp metrics. arXiv [Preprint]. arXiv:1703.09312.
doi: 10.15607/RSS.2017.XIII.058

Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., and Goldberg, K. (2018). “Dex-
Net 3.0: computing robust vacuum suction grasp targets in point clouds
using a new analytic model and deep learning,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 1–8.
doi: 10.1109/ICRA.2018.8460887

Mahler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S., et al.
(2019). Learning ambidextrous robot grasping policies. Sci. Robot. 4:eaau4984.
doi: 10.1126/scirobotics.aau4984

Mahler, J., Patil, S., Kehoe, B., Van Den Berg, J., Ciocarlie, M., Abbeel, P., et al.
(2015). “Gp-gpis-opt: Grasp planning with shape uncertainty using gaussian
process implicit surfaces and sequential convex programming,” in 2015 IEEE

International Conference on Robotics and Automation (ICRA) (Seattle, WA:
IEEE), 4919–4926. doi: 10.1109/ICRA.2015.7139882

Mahler, J., Pokorny, F. T., Hou, B., Roderick, M., Laskey, M., Aubry, M., et al.
(2016). “Dex-net 1.0: a cloud-based network of 3d objects for robust grasp
planning using a multi-armed bandit model with correlated rewards,”
in 2016 IEEE International Conference on Robotics and Automation

(ICRA) (Stockholm: IEEE), 1957–1964. doi: 10.1109/ICRA.2016.74
87342

Manuelli, L., Gao, W., Florence, P., and Tedrake, R. (2019). kpam:
Keypoint affordances for category-level robotic manipulation. arXiv

[Preprint]. arXiv:1903.06684.
Mar, T., Tikhanoff, V., Metta, G., and Natale, L. (2017). “Self-supervised learning of

tool affordances from 3D tool representation through parallel SOM mapping,”
in 2017 IEEE International Conference on Robotics and Automation (ICRA)

(Singapore: IEEE), 894–901. doi: 10.1109/ICRA.2017.7989110
Matsumoto, E., Saito, M., Kume, A., and Tan, J. (2020). “End-to-end learning of

object grasp poses in the Amazon Robotics Challenge,” in Advances on Robotic

Item Picking, eds A. Causo, J. Durham, K. Hauser, K. Okada, and A. Rodriguez
(Berlin; Heidelberg: Springer), 63–72. doi: 10.1007/978-3-030-35679-8_6

Miller, A. T., and Allen, P. K. (2004). Graspit! a versatile simulator
for robotic grasping. IEEE Robot. Autom. Magaz. 11, 110–122.
doi: 10.1109/MRA.2004.1371616

Mitchell, E., Engin, S., Isler, V., and Lee, D. D. (2019). Higher-order
function networks for learning composable 3D object representations. arXiv
[Preprint]. arXiv:1907.10388.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.
(2015). Human-level control through deep reinforcement learning.Nature 518,
529–533. doi: 10.1038/nature14236

Frontiers in Neurorobotics | www.frontiersin.org 24 June 2021 | Volume 15 | Article 658280

https://doi.org/10.1016/j.inffus.2019.12.004
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1109/ICRA40945.2020.9196538
https://doi.org/10.1109/COASE.2018.8560447
https://doi.org/10.1109/TMECH.2019.2945135
https://doi.org/10.1109/RO-MAN47096.2020.9223541
https://doi.org/10.1109/ICRA.2019.8794435
https://doi.org/10.23919/ICCAS47443.2019.8971464
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/IMCEC46724.2019.8983819
https://doi.org/10.1109/TSMC.2019.2901955
https://doi.org/10.1088/1757-899X/717/1/012007
https://doi.org/10.1109/IROS40897.2019.8968115
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICRA40945.2020.9197289
https://doi.org/10.3390/s19194188
https://doi.org/10.24963/ijcai.2019/65
https://doi.org/10.1109/ICCAR.2017.7942676
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/ICARSC.2018.8374192
https://doi.org/10.1109/ICRA40945.2020.9197413
https://doi.org/10.1007/978-3-030-28619-4_35
https://doi.org/10.1109/LRA.2019.2893410
https://doi.org/10.1109/IROS40897.2019.8967816
https://doi.org/10.1016/j.mechatronics.2017.11.002
https://doi.org/10.15607/RSS.2017.XIII.058
https://doi.org/10.1109/ICRA.2018.8460887
https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.1109/ICRA.2015.7139882
https://doi.org/10.1109/ICRA.2016.7487342
https://doi.org/10.1109/ICRA.2017.7989110
https://doi.org/10.1007/978-3-030-35679-8_6
https://doi.org/10.1109/MRA.2004.1371616
https://doi.org/10.1038/nature14236
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duan et al. Robotics Dexterous Grasping Methods Review

Mohammed, M. Q., Chung, K. L., and Chyi, C. S. (2020). Review of
deep reinforcement learning-based object grasping: techniques, open
challenges and recommendations. IEEE Access 8, 178450–178481.
doi: 10.1109/ACCESS.2020.3027923

Monica, R., and Aleotti, J. (2020). Point cloud projective analysis for
part-based grasp planning. IEEE Robot. Autom. Lett. 5, 4695–4702.
doi: 10.1109/LRA.2020.3003883

Moreno, P., Hornstein, J., and Santos-Victor, J. (2011). Learning to Grasp From

Point Clouds. Lisboa: Instituto Superior Tecnico and Instituto de Sistemas
e Robotica.

Morrison, D., Corke, P., and Leitner, J. (2018a). Closing the loop for robotic
grasping: a real-time, generative grasp synthesis approach. arXiv [Preprint].

arXiv:1804.05172. doi: 10.15607/RSS.2018.XIV.021
Morrison, D., Tow, A. W., Mctaggart, M., Smith, R., Kelly-Boxall, N., Wade-

Mccue, S., et al. (2018b). “Cartman: the low-cost cartesian manipulator that
won the amazon robotics challenge,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 7757–7764.
doi: 10.1109/ICRA.2018.8463191

Mousavian, A., Eppner, C., and Fox, D. (2019). “6-dof graspnet: variational
grasp generation for object manipulation,” in Proceedings of the IEEE

International Conference on Computer Vision (Seoul), 2901–2910.
doi: 10.1109/ICCV.2019.00299

Murali, A., Mousavian, A., Eppner, C., Paxton, C., and Fox, D. (2020). “6-
dof grasping for target-driven object manipulation in clutter,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA) (Paris: IEEE),
6232–6238. doi: 10.1109/ICRA40945.2020.9197318

Murray, R. M., Li, Z., Sastry, S. S., and Sastry, S. S. (1994). A Mathematical

Introduction to Robotic Manipulation. Boca Raton, FL: CRC Press.
Nekrasov, V., Shen, C., and Reid, I. (2018). Light-weight refinenet for real-time

semantic segmentation. arXiv [Preprint]. arXiv:1810.03272.
Nishikawa, K., Ohya, J., Ogata, H., Hashimoto, K., Matsuzawa, T., Imai, A.,

et al. (2019). Automatic estimation of the position and orientation of the
drill to be grasped and manipulated by the disaster response robot based
on analyzing depth camera information. Electron. Imaging 2019, 452–457.
doi: 10.2352/ISSN.2470-1173.2019.7.IRIACV-452

Okamura, A. M., Smaby, N., and Cutkosky, M. R. (2000). “An overview of
dexterous manipulation,” in Proceedings 2000 ICRA. Millennium Conference.

IEEE International Conference on Robotics and Automation. Symposia

Proceedings (Cat. No. 00CH37065) (San Francisco, CA: IEEE), 255–262.
Ottenhaus, S., Renninghoff, D., Grimm, R., Ferreira, F., and Asfour, T. (2019).

“Visuo-haptic grasping of unknown objects based on gaussian process
implicit surfaces and deep learning,” in 2019 IEEE-RAS 19th International

Conference on Humanoid Robots (Humanoids) (Toronto, ON: IEEE), 402–409.
doi: 10.1109/Humanoids43949.2019.9035002

Pan, S. J., and Yang, Q. (2009). A survey on transfer learning. IEEE Trans. Knowl.

Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191
Parhar, T., Baweja, H., Jenkins, M., and Kantor, G. (2018). “A deep learning-

based stalk grasping pipeline,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 1–5.
doi: 10.1109/ICRA.2018.8460597

Pas, A. T., Gualtieri, M., Saenko, K., and Platt, R. (2017). Grasp pose detection
in point clouds. Int. J. Rob. Res. 36, 1455–1473. doi: 10.1177/02783649177
35594

Pas, A. T., and Platt, R. (2013). Localizing grasp affordances in 3-D points clouds
using taubin quadric fitting. arXiv [Preprint]. arXiv:1311.3192.

Pas, A. T., and Platt, R. (2015). Using geometry to detect grasps in 3d point clouds.
arXiv [Preprint]. arXiv:1501.03100.

Pas, A. T., and Platt, R. (2016). “Localizing handle-like grasp affordances
in 3d point clouds,” in Experimental Robotics, eds M. A. Hsieh, O.
Khatib, and V. Kumar (Marrakech; Essaouira: Springer), 623–638.
doi: 10.1007/978-3-319-23778-7_41

Prattichizzo, D., and Trinkle, J. C. (2016). “Grasping,” in Springer Handbook of

Robotics, eds B. Siciliano andO. Khatib (Berlin; Heidelberg: Springer), 955–988.
doi: 10.1007/978-3-319-32552-1_38

Prattichizzo, D., Trinkle, J. C., Siciliano, B., and Khatib, O. (2008). “Springer
handbook of robotics,” in Grasping, eds B. Siciliano and O. Khatib (Berlin;
Heidelberg: Springer), 671–700. doi: 10.1007/978-3-540-30301-5_29

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). “Pointnet: deep learning
on point sets for 3d classification and segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Honolulu, HI),
652–660.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural

Information Processing Systems (Long Beach, CA), 5099–5108.
Qian, K., Jing, X., Duan, Y., Zhou, B., Fang, F., Xia, J., et al. (2020). Grasp

pose detection with affordance-based task constraint learning in single-view
point clouds. J. Intellig. Robot. Syst. 100, 145–163. doi: 10.1007/s10846-020-
01202-3

Qin, Y., Chen, R., Zhu, H., Song, M., Xu, J., and Su, H. (2020). “S4g: amodal single-
view single-shot se (3) grasp detection in cluttered scenes,” in Conference on

Robot Learning (Osaka: PMLR), 53–65.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look

once: unified, real-time object detection,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Las Vegas, NV), 779–788.
doi: 10.1109/CVPR.2016.91

Redmon, J., and Farhadi, A. (2018). Yolov3: an incremental improvement. arXiv
[Preprint]. arXiv:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster r-cnn: towards real-
time object detection with region proposal networks,” in Advances in Neural

Information Processing Systems (Montreal, QC), 91–99.
Richardson, M., and Domingos, P. (2006). Markov logic networks. Mach. Learn.

62, 107–136. doi: 10.1007/s10994-006-5833-1
Roy, A. G., Navab, N., and Wachinger, C. (2018). “Concurrent spatial and channel

‘squeeze and excitation’in fully convolutional networks,” in International

Conference on Medical Image Computing and Computer-Assisted Intervention

(Granada: Springer), 421–429. doi: 10.1007/978-3-030-00928-1_48
Ruiz-del-Solar, J., Loncomilla, P., and Soto, N. (2018). A survey on deep learning

methods for robot vision. arXiv [Preprint]. arXiv:1803.10862.
Runz, M., Buffier, M., and Agapito, L. (2018). “Maskfusion: Real-time recognition,

tracking and reconstruction of multiple moving objects,” in 2018 IEEE

International Symposium on Mixed and Augmented Reality (ISMAR) (Munich:
IEEE), 10–20. doi: 10.1109/ISMAR.2018.00024

Russell, S., and Norvig, P. (2002). Artificial Intelligence: A Modern Approach, 2nd

Edn. Prentice Hall
Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). “Fast 3d recognition and

pose using the viewpoint feature histogram,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Taipei: IEEE), 2155–2162.
doi: 10.1109/IROS.2010.5651280

Rusu, R. B., and Cousins, S. (2011). “3d is here: Point cloud library (pcl),” in 2011

IEEE International Conference on Robotics and Automation (Shanghai: IEEE),
1–4. doi: 10.1109/ICRA.2011.5980567

Satish, V., Mahler, J., and Goldberg, K. (2019). On-policy dataset synthesis for
learning robot grasping policies using fully convolutional deep networks. IEEE
Robot. Autom. Lett. 4, 1357–1364. doi: 10.1109/LRA.2019.2895878

Saut, J.-P., Sahbani, A., El-Khoury, S., and Perdereau, V. (2007). “Dexterous
manipulation planning using probabilistic roadmaps in continuous grasp
subspaces,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems (San Diego, CA: IEEE), 2907–2912. doi: 10.1109/IROS.2007.4399090

Schmidt, P., Vahrenkamp, N., Wächter, M., and Asfour, T. (2018). “Grasping of
unknown objects using deep convolutional neural networks based on depth
images,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA) (Brisbane, QLD: IEEE), 6831–6838. doi: 10.1109/ICRA.2018.8463204
Schnaubelt, M., Kohlbrecher, S., and von Stryk, O. (2019). “Autonomous

assistance for versatile grasping with rescue robots,” in 2019 IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR) (Würzburg: IEEE),
210–215. doi: 10.1109/SSRR.2019.8848947

Schwarz, M., Lenz, C., García, G. M., Koo, S., Periyasamy, A. S., Schreiber,
M., et al. (2018). “Fast object learning and dual-arm coordination for
cluttered stowing, picking, and packing,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 3347–3354.
doi: 10.1109/ICRA.2018.8461195

Shao, L., Ferreira, F., Jorda, M., Nambiar, V., Luo, J., Solowjow, E., et al. (2020).
UniGrasp: learning a unified model to grasp with multifingered robotic hands.
IEEE Robot. Autom. Lett. 5, 2286–2293. doi: 10.1109/LRA.2020.2969946

Frontiers in Neurorobotics | www.frontiersin.org 25 June 2021 | Volume 15 | Article 658280

https://doi.org/10.1109/ACCESS.2020.3027923
https://doi.org/10.1109/LRA.2020.3003883
https://doi.org/10.15607/RSS.2018.XIV.021
https://doi.org/10.1109/ICRA.2018.8463191
https://doi.org/10.1109/ICCV.2019.00299
https://doi.org/10.1109/ICRA40945.2020.9197318
https://doi.org/10.2352/ISSN.2470-1173.2019.7.IRIACV-452
https://doi.org/10.1109/Humanoids43949.2019.9035002
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/ICRA.2018.8460597
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1007/978-3-319-23778-7_41
https://doi.org/10.1007/978-3-319-32552-1_38
https://doi.org/10.1007/978-3-540-30301-5_29
https://doi.org/10.1007/s10846-020-01202-3
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1007/978-3-030-00928-1_48
https://doi.org/10.1109/ISMAR.2018.00024
https://doi.org/10.1109/IROS.2010.5651280
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/LRA.2019.2895878
https://doi.org/10.1109/IROS.2007.4399090
https://doi.org/10.1109/ICRA.2018.8463204
https://doi.org/10.1109/SSRR.2019.8848947
https://doi.org/10.1109/ICRA.2018.8461195
https://doi.org/10.1109/LRA.2020.2969946
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duan et al. Robotics Dexterous Grasping Methods Review

Singh, N., Blum, Z., and Renjith, N. (2018). Point Cloud Grasp Classification for

Robot Grasping. Stanford, CA: Stanford University.
Song, K.-T., Chang, Y.-H., and Chen, J.-H. (2019). “3D vision for object grasp and

obstacle avoidance of a collaborative robot,” in 2019 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM) (Hong Kong: IEEE),
254–258. doi: 10.1109/AIM.2019.8868694

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res. 15, 1929–1958.

Sun, G.-J., and Lin, H.-Y. (2020). “Robotic grasping using semantic segmentation
and primitive geometric model based 3D pose estimation,” in 2020 IEEE/SICE

International Symposium on System Integration (SII) (Honolulu, HI: IEEE),
337–342. doi: 10.1109/SII46433.2020.9026297

Sun, X., Xiao, B., Wei, F., Liang, S., and Wei, Y. (2018). “Integral human pose
regression,” in Proceedings of the European Conference on Computer Vision

(ECCV) (Munich), 529–545. doi: 10.1007/978-3-030-01231-1_33
Sung, J., Lenz, I., and Saxena, A. (2017). “Deep multimodal embedding:

Manipulating novel objects with point-clouds, language and trajectories,” in
2017 IEEE International Conference on Robotics and Automation (ICRA)

(Singapore: IEEE), 2794–2801. doi: 10.1109/ICRA.2017.7989325
Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge; London: MIT Press.
Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient

methods for reinforcement learning with function approximation. Adv. Neural
Inform. Process. Syst. 12, 1057–1063.

Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with applications to edge and range
image segmentation. IEEE Trans. Pattern Anal. Mach. Intellig. 11, 1115–1138.
doi: 10.1109/34.103273

Tian, N., Matl, M., Mahler, J., Zhou, Y. X., Staszak, S., Correa, C., et al.
(2017). “A cloud robot system using the dexterity network and berkeley
robotics and automation as a service (brass),” in 2017 IEEE International

Conference on Robotics and Automation (ICRA) (Singapore: IEEE), 1615–1622.
doi: 10.1109/ICRA.2017.7989192

Tirinzoni, A., Sessa, A., Pirotta, M., and Restelli, M. (2018). Importance
weighted transfer of samples in reinforcement learning. arXiv

[Preprint]. arXiv:1805.10886.
Torii, T., and Hashimoto, M. (2018). “Model-less estimation method for robot

grasping parameters using 3D shape primitive approximation,” in 2018 IEEE

14th International Conference on Automation Science and Engineering (CASE)

(Munich: IEEE), 580–585. doi: 10.1109/COASE.2018.8560417
Tosun, T., Mitchell, E., Eisner, B., Huh, J., Lee, B., Lee, D., et al. (2019). Pixels

to plans: learning non-prehensile manipulation by imitating a planner. arXiv
[Preprint]. arXiv:1904.03260. doi: 10.1109/IROS40897.2019.8968224

Tosun, T., Yang, D., Eisner, B., Isler, V., and Lee, D. (2020). Robotic grasping
through combined image-based grasp proposal and 3D reconstruction. arXiv
[Preprint]. arXiv:2003.01649.

Ückermann, A., Elbrechter, C., Haschke, R., and Ritter, H. (2012). “3D scene
segmentation for autonomous robot grasping,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Vilamoura-Algarve: IEEE),
1734–1740. doi: 10.1109/IROS.2012.6385692

Van der Merwe, M., Lu, Q., Sundaralingam, B., Matak, M., and Hermans, T.
(2020). “Learning continuous 3d reconstructions for geometrically aware
grasping,” in 2020 IEEE International Conference on Robotics and Automation

(ICRA) (Paris: IEEE), 11516–11522. doi: 10.1109/ICRA40945.2020.91
96981

Varadarajan, K. M., and Vincze, M. (2012). “Afrob: The affordance network
ontology for robots,” in 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (Vilamoura-Algarve: IEEE), 1343–1350.
doi: 10.1109/IROS.2012.6386232

Varley, J., DeChant, C., Richardson, A., Ruales, J., and Allen, P. (2017).
“Shape completion enabled robotic grasping,” in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Vancouver, BC: IEEE),
2442–2447. doi: 10.1109/IROS.2017.8206060

Varley, J., Weisz, J., Weiss, J., and Allen, P. (2015). “Generating multi-fingered
robotic grasps via deep learning,” in 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Hamburg: IEEE), 4415–4420.
doi: 10.1109/IROS.2015.7354004

Viereck, U., Pas, A. T., Saenko, K., and Platt, R. (2017). Learning a visuomotor
controller for real world robotic grasping using simulated depth images. arXiv
[Preprint]. arXiv:1706.04652.

Vohra, M., Prakash, R., and Behera, L. (2019). “Real-time grasp pose
estimation for novel objects in densely cluttered environment,” in
2019 28th IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN) (New Delhi: IEEE), 1–6.
doi: 10.1109/RO-MAN46459.2019.8956438

Wang, C., Zhang, X., Zang, X., Liu, Y., Ding, G., Yin, W., et al. (2020). Feature
sensing and robotic grasping of objects with uncertain information: a review.
Sensors 20:3707. doi: 10.3390/s20133707

Wang, H.-Y., and Ling, W.-K. (2016). “Robotic grasp detection using deep
learning and geometry model of soft hand,” in 2016 IEEE International

Conference on Consumer Electronics-China (ICCE-China) (Guangzhou: IEEE),
1–6. doi: 10.1109/ICCE-China.2016.7849757

Wang, T., Yang, C., Kirchner, F., Du, P., Sun, F., and Fang, B. (2019). Multimodal
grasp data set: a novel visual–tactile data set for robotic manipulation. Int. J.
Adv. Robot. Syst. 16:1729881418821571. doi: 10.1177/1729881418821571

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M.
(2019). Dynamic graph cnn for learning on point clouds. ACM Trans. Graph.

38, 1–12. doi: 10.1145/3326362
Wang, Z., Xu, Y., He, Q., Fang, Z., Xu, G., and Fu, J. (2020). Grasping pose

estimation for SCARA robot based on deep learning of point cloud. Int. J. Adv.
Manuf. Technol. 108, 1217–1231. doi: 10.1007/s00170-020-05257-2

Watkins-Valls, D., Varley, J., and Allen, P. (2019). “Multi-modal geometric
learning for grasping and manipulation,” in 2019 International Conference

on Robotics and Automation (ICRA) (Montreal, QC: IEEE), 7339–7345.
doi: 10.1109/ICRA.2019.8794233

Weisz, J., and Allen, P. K. (2012). “Pose error robust grasping from contact
wrench space metrics,” in 2012 IEEE International Conference on Robotics and

Automation (St Paul, MN: IEEE), 557–562. doi: 10.1109/ICRA.2012.6224697
Wu, B., Akinola, I., and Allen, P. K. (2019). Pixel-attentive policy gradient for

multi-fingered grasping in cluttered scenes. arXiv [Preprint]. arXiv:1903.03227.
Wu, C., Chen, J., Cao, Q., Zhang, J., Tai, Y., Sun, L., et al. (2020). Grasp proposal

networks: an end-to-end solution for visual learning of robotic grasps. arXiv
[Preprint]. arXiv:2009.12606.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., et al. (2015). “3d
shapenets: a deep representation for volumetric shapes,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Boston, MA),
1912–1920.

Wurman, P. R., and Romano, J. M. (2015). The amazon picking challenge 2015.
IEEE Robot. Autom. Magaz. 22, 10–12. doi: 10.1109/MRA.2015.2452071

Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017). Posecnn: a
convolutional neural network for 6d object pose estimation in cluttered scenes.
arXiv [Preprint]. arXiv:1711.00199. doi: 10.15607/RSS.2018.XIV.019

Xu, Y., Wang, L., Yang, A., and Chen, L. (2019). GraspCNN: real-time grasp
detection using a new oriented diameter circle representation. IEEE Access 7,
159322–159331. doi: 10.1109/ACCESS.2019.2950535

Xu, Z., and Topcu, U. (2019). Transfer of temporal logic formulas in reinforcement
learning. arXiv [Preprint]. arXiv:1909.04256.

Yan, X., Khansari, M., Hsu, J., Gong, Y., Bai, Y., Pirk, S., et al. (2019). Data-efficient
learning for sim-to-real robotic grasping using deep point cloud prediction
networks. arXiv [Preprint]. arXiv:1906.08989.

Yang, W., Paxton, C., Cakmak, M., and Fox, D. (2020). Human grasp classification
for reactive human-to-robot handovers. arXiv [Preprint]. arXiv:2003.06000.
doi: 10.1109/IROS45743.2020.9341004

Yu, H., Lai, Q., Liang, Y., Wang, Y., and Xiong, R. (2019). “A cascaded deep
learning framework for real-time and robust grasp planning,” in 2019 IEEE

International Conference on Robotics and Biomimetics (ROBIO) (Dali: IEEE),
1380–1386.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2018). “Generative image
inpainting with contextual attention,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Salt Lake City, UT), 5505–5514.
doi: 10.1109/CVPR.2018.00577

Yu, Q., Shang, W., Zhao, Z., Cong, S., and Li, Z. (2020). “Robotic grasping of
unknown objects using novel multilevel convolutional neural networks: from
parallel gripper to dexterous hand,” in IEEE Transactions on Automation Science

and Engineering (New York, NY).

Frontiers in Neurorobotics | www.frontiersin.org 26 June 2021 | Volume 15 | Article 658280

https://doi.org/10.1109/AIM.2019.8868694
https://doi.org/10.1109/SII46433.2020.9026297
https://doi.org/10.1007/978-3-030-01231-1_33
https://doi.org/10.1109/ICRA.2017.7989325
https://doi.org/10.1109/34.103273
https://doi.org/10.1109/ICRA.2017.7989192
https://doi.org/10.1109/COASE.2018.8560417
https://doi.org/10.1109/IROS40897.2019.8968224
https://doi.org/10.1109/IROS.2012.6385692
https://doi.org/10.1109/ICRA40945.2020.9196981
https://doi.org/10.1109/IROS.2012.6386232
https://doi.org/10.1109/IROS.2017.8206060
https://doi.org/10.1109/IROS.2015.7354004
https://doi.org/10.1109/RO-MAN46459.2019.8956438
https://doi.org/10.3390/s20133707
https://doi.org/10.1109/ICCE-China.2016.7849757
https://doi.org/10.1177/1729881418821571
https://doi.org/10.1145/3326362
https://doi.org/10.1007/s00170-020-05257-2
https://doi.org/10.1109/ICRA.2019.8794233
https://doi.org/10.1109/ICRA.2012.6224697
https://doi.org/10.1109/MRA.2015.2452071
https://doi.org/10.15607/RSS.2018.XIV.019
https://doi.org/10.1109/ACCESS.2019.2950535
https://doi.org/10.1109/IROS45743.2020.9341004
https://doi.org/10.1109/CVPR.2018.00577
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duan et al. Robotics Dexterous Grasping Methods Review

Yu, S., Zhai, D.-H., Wu, H., Yang, H., and Xia, Y. (2020). “Object recognition and
robot grasping technology based on RGB-D data,” in 2020 39th Chinese Control

Conference (CCC) (Shenyang: IEEE), 3869–3874.
Yu, Y., Cao, Z., Liang, S., Geng, W., and Yu, J. (2020). A novel vision-

based grasping method under occlusion for manipulating robotic
system. IEEE Sensors J. 20, 10996–11006. doi: 10.1109/JSEN.2020.29
95395

Yu, Y., Cao, Z., Liang, S., Liu, Z., Yu, J., and Chen, X. (2019). “A grasping CNNwith
image segmentation formobile manipulating robot,” in 2019 IEEE International
Conference on Robotics and Biomimetics (ROBIO) (Dali: IEEE), 1688–1692.

Zapata-Impata, B. S., Mateo Agulló, C., Gil, P., and Pomares, J. (2017). “Using
geometry to detect grasping points on 3D unknown point cloud,” in Proceedings
of the 14th International Conference on Informatics in Control, Automation and

Robotics (Madrid), 154–161. doi: 10.5220/0006470701540161
Zeng, A. (2019). Learning Visual Affordances for Robotic Manipulation (doctoral

dissertation). Princeton University.
Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2020). Tossingbot:

Learning to throw arbitrary objects with residual physics. IEEE Trans. Robot.
36, 1307–1319. doi: 10.15607/RSS.2019.XV.004

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2018a).
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Madrid: IEEE), 4238–4245.
doi: 10.1109/IROS.2018.8593986

Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza, M., et al. (2018b).
“Robotic pick-and-place of novel objects in clutter with multi-affordance
grasping and cross-domain image matching,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 1–8.
doi: 10.1109/ICRA.2018.8461044

Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker, E., Rodriguez, A., et al.
(2017). “Multi-view self-supervised deep learning for 6d pose estimation
in the amazon picking challenge,” in 2017 IEEE International Conference

on Robotics and Automation (ICRA) (Singapore: IEEE), 1386–1383.
doi: 10.1109/ICRA.2017.7989165

Zhang, F., and Demiris, Y. (2020). “Learning grasping points for garment
manipulation in robot-assisted dressing,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA) (Paris: IEEE), 9114–9120.
doi: 10.1109/ICRA40945.2020.9196994

Zhang, H., Ichnowski, J., Avigal, Y., Gonzales, J., Stoica, I., and Goldberg, K. (2020).
“Dex-Net AR: distributed deep grasp planning using an augmented reality
application and a smartphone camera,” in IEEE International Conference on

Robotics and Automation (ICRA) (Paris: IEEE). doi: 10.1109/ICRA40945.2020.
9197247

Zhang, Q., Qu, D., Xu, F., and Zou, F. (2017). “Robust robot grasp detection in
multimodal fusion,” in MATEC Web of Conferences: EDP Sciences (Chengdu),
00060. doi: 10.1051/matecconf/201713900060

Zhao, B., Zhang, H., Lan, X., Wang, H., Tian, Z., and Zheng, N. (2020). REGNet:
REgion-based grasp network for single-shot grasp detection in point clouds.
arXiv [Preprint]. arXiv:2002.12647.

Zhao, W., Queralta, J. P., and Westerlund, T. (2020). Sim-to-real transfer
in deep reinforcement learning for robotics: a survey. arXiv [Preprint].

arXiv:2009.13303. doi: 10.1109/SSCI47803.2020.9308468
Zhou, Y., Chen, M., Du, G., Zhang, P., and Liu, X. (2018). Intelligent

grasping with natural human-robot interaction. Indus. Robot 45, 44–53.
doi: 10.1108/IR-05-2017-0089

Zhou, Y., and Hauser, K. (2017). “6dof grasp planning by optimizing a deep
learning scoring function,” in Robotics: Science and Systems (RSS) Workshop

on Revisiting Contact-Turning a Problem into a Solution (Cambridge, MA), 6.
Zhou, Z., Pan, T., Wu, S., Chang, H., and Jenkins, O. C. (2019). Glassloc: plenoptic

grasp pose detection in transparent clutter. arXiv [Preprint]. arXiv:1909.04269.
doi: 10.1109/IROS40897.2019.8967685

Zhou, Z., Sui, Z., and Jenkins, O. C. (2018). “Plenoptic monte carlo object
localization for robot grasping under layered translucency,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Madrid:
IEEE), 1–8. doi: 10.1109/IROS.2018.8593629

Zhu, S., Zheng, X., Xu, M., Zeng, Z., and Zhang, H. (2019). “A
robotic semantic grasping method for pick-and-place tasks,” in 2019

Chinese Automation Congress (CAC) (Hangzhou: IEEE), 4130–4136.
doi: 10.1109/CAC48633.2019.8996328

Zhu, Y., Fathi, A., and Fei-Fei, L. (2014). “Reasoning about object affordances in
a knowledge base representation,” in European Conference on Computer Vision,
eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Zurich: Springer), 408–424.
doi: 10.1007/978-3-319-10605-2_27

Zhu, Y., Zhao, Y., and Chun Zhu, S. (2015). “Understanding tools: task-
oriented object modeling, learning and recognition,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Boston, MA),
2855–2864. doi: 10.1109/CVPR.2015.7298903

Zito, C., Ortenzi, V., Adjigble, M., Kopicki, M., Stolkin, R., and Wyatt, J.
L. (2019). Hypothesis-based belief planning for dexterous grasping. arXiv
[Preprint]. arXiv:1903.05517.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Duan, Wang, Huang, Xu, Wei and Shen. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 27 June 2021 | Volume 15 | Article 658280

https://doi.org/10.1109/JSEN.2020.2995395
https://doi.org/10.5220/0006470701540161
https://doi.org/10.15607/RSS.2019.XV.004
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1109/ICRA.2018.8461044
https://doi.org/10.1109/ICRA.2017.7989165
https://doi.org/10.1109/ICRA40945.2020.9196994
https://doi.org/10.1109/ICRA40945.2020.9197247
https://doi.org/10.1051/matecconf/201713900060
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1108/IR-05-2017-0089
https://doi.org/10.1109/IROS40897.2019.8967685
https://doi.org/10.1109/IROS.2018.8593629
https://doi.org/10.1109/CAC48633.2019.8996328
https://doi.org/10.1007/978-3-319-10605-2_27
https://doi.org/10.1109/CVPR.2015.7298903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning
	Introduction
	Proposed Taxonomy
	Grasping Candidate Generation
	Geometry-Based Sampling
	Object-Agnostic Sampling
	Object-Aware Sampling
	Object Detection and Segmentation
	Object Affordance
	Object Shape Complement


	Learning-Based Sampling
	Object-Agnostic Sampling
	Object-Aware Sampling

	Applicable Scene
	Geometry Based or Learning Based?
	Object Agnostic or Object Aware?


	Grasp Candidate Evaluation
	Learning-Free Candidate Evaluation
	Learning-Based Candidate Evaluation

	End-to-End and Others
	End-to-End Learning
	Reinforcement Learning
	Others

	Learning Modes
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Fusion

	Applications
	End Effector
	Suction Cup
	Parallel-Jaw Gripper
	Multi Fingers

	Operating Scenarios
	Life-Oriented
	Industry-Oriented


	Challenges and Future Directions
	Easy-Vision and Complicated-Dexterity
	Single-View Grasping
	6-DOF Grasping
	Multi-Finger Grasping

	Fusion, Self-Exploration, and Continual Learning
	Fusion
	Self-Exploration
	Continual Learning

	Sim-to-Real and Generalization
	Sample Efficiency
	Model Generalization and Transfer
	Sim-to-Real


	Conclusion
	Author Contributions
	Funding
	References


