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Abstract

The field of nanotechnology and personalised medicine is undergoing drastic changes in the approach and efficiency of 

experimentation. The COVID-19 pandemic has spiralled into mass stagnation of major laboratories around the globe and 

led to increased investment into remote systems for nanoparticle experiments. A significant number of laboratories now 

operate using automated systems; however, the extension to nanoparticle preparation and artificial intelligence–dependent 

databases holds great translational promise. The strive to combine automation with artificial intelligence (AI) grants the 

ability to optimise targeted therapeutic nanoparticles for unique cell types and patients. In this perspective, the current and 

future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods.
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Effect of the global pandemic on science

The detrimental effect of the global pandemic has revolu-

tionised experimental methods and academic learning in all 

sciences. For the first time, hands-on experimental applica-

tions were brought to a standstill due to the inability to access 

laboratories. Furthermore, 1.3 billion school and university 

students in 186 countries cannot attend classrooms and are 

currently pursuing education online [1]. However, while this 

shift allowed students to learn from any point on the globe, 

the main complication arises when students are not able 

to enter laboratories and acquire experience in performing 

experiments. The recent demand for remote experimentation 

using robotic appliances can potentially establish a work-

ing model for students and scientists despite the global pan-

demic. Nanoparticle (NP) synthesis is typically carried out 

using manual manipulations and methods requiring more 

staff, resources and time. A fully functional robotic system 

will allow overcoming these hurdles by creating a ‘closed-

loop’ for NP synthesis, immediate analysis and optimisa-

tion (Fig. 1). By integrating AI into software-operated lab 

machinery and establishing a remote access to a computer, 

anyone from any part of the world will be able to partici-

pate in experimental procedures and gain valuable research 

skills. With this, however, comes a separate responsibility of 

maintaining the integrity of the computational system, pro-

tecting the users’ Intellectual Property (IP) and reducing the 

threat of unauthorised network access. Mitigation of network 

security breaches require multiple network protection meas-

ures, such as strengthened user access control, up-to-date 

and standardised software, two-factor authentication, firewall 

access restrictions, enabled network level authentication and 

employee network security protocol training [2].

Nanotechnology in drug and siRNA delivery

Implementation of NPs dates back to the 1970s when 

nanoscale liposomes were loaded with medication and deliv-

ered to diseased cells [3–7]. The application of nanotechnol-

ogy to numerous fields is becoming increasingly realised, 

especially in personalised medicine [8–10]. NPs grant the 

ability to overcome biological barriers and allow effec-

tive delivery of drugs and other compounds whilst prom-

ising to preferentially target drugs to specific biomarkers 
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in individual patients [11–15]. However, the formulation 

of NPs comes with numerous challenges [16]. The proper-

ties of NPs are determined by several key characteristics, 

including size, surface morphology and charge, chemistry 

and drug release profile [17–19]. Subtle changes in the for-

mulation process and composition can alter the properties 

of the nanomedicine leading to unwanted consequences and 

hurdles in reproducing experiments [18–21]. Hence, having 

better control of the stages involved in manufacturing NPs 

is crucial. Aside from the delivery of small-molecule drugs, 

NPs are increasingly being used in the delivery of biolog-

ics, including small interfering RNA (siRNA) and proteins 

[22–29]. NPs help to overcome the challenge of biological 

instability and poor cellular penetration of genetic payloads 

[30–32]. The applications of siRNA-nanoparticle complexes 

encompass numerous diseases like cancer and viral infec-

tions [33–37]. There are various siRNA and drug combina-

tions complexed with different compositions of lipid NPs 

(LNPs) and other NPs [38–40]. Therefore, careful selection 

and formulation of particles is key in the complexation step. 

Establishing a system that screens for optimal nanoparticle 

preparation will pave the way for more efficient siRNA and 

drug delivery and its implementation as personalised medi-

cine tool.

Microfluidics and automated synthesis 
of nanoparticles

Microfluidics, the study and manipulation of fluids at micro- 

and nanoscale levels, allows improved control of particle char-

acteristics and ensuring that variation between synthesised 

batches is reduced [41]. Due to these benefits, it is becoming 

increasingly used within laboratories. Microfluidic chips are a 

type of microfluidic device that allows for tiny amounts of liq-

uids containing particles to be processed and visualised [42]. 

The chips are a combination of micro-pumps, micro-valves, 

micro-mixers, micro-separators and micro-sized channels 

(diameters ranging from 1 to 1000µm) [42, 43]. The pumps 

move liquid within the channels in the chip at micro-level 

flow rates, allowing control over physical or chemical reac-

tions. The liquids may contain either cells or nanoparticles. 

These microfluidic devices have opened an extensive range of 

research possibilities that were previously unachievable. For 

Fig. 1  Schematic diagram of 

an AI-automated workstation. 

A functional AI-guided robotic 

nanoparticle synthesis and 

analysis system will start with 

genetic analysis of individual 

patients and personalised treat-

ment selection. The nanoparti-

cle will then be formulated and 

tested in cells and organs-on-

chip using automated systems. 

The AI system will ultimately 

be able to determine the best 

formulation and treatment 

for individual patients for 

maximum response and optimal 

outcome
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example, microfluidic chips were used to study the migration 

of lung cancer cells under different cancer invasion microen-

vironments [44].

Notably, research and industrial operations have estab-

lished efficient ways in utilising microfluidics for large-

scale NP production [45–51]. Currently, microfluidics is 

most commonly used for the synthesis of LNPs for RNA/

DNA delivery [52, 53]. However, the production of LNPs, 

using microfluidics, is still being further refined [54, 55]. 

For example, investigation into utilising a microfluidic 

approach to produce droplet-stabilised giant unilamellar 

vesicles (dsGUVs) has shown promising results compared 

with conventional methods of synthetic cell synthesis [56]. 

In addition, shaping NPs’ configuration, using microflu-

idic techniques, is gaining traction and providing a deeper 

understanding of NP synthesis and physiochemical assem-

bly properties of the molecular building blocks [39, 57]. 

For example, PRINT, a nanofabrication technique, granted 

the ability to generate particles with full control of the size, 

shape and surface chemistry, which affects their cellular 

internalisation and intracellular trafficking [58]. Achieving 

particle synthesis automation by combining a robotic liquid 

handler with microfluidic devices holds great promise for 

the future of laboratories and industries.

Liquid handling and robotics

Automation has become a focal point for biomedical 

research. An essential part of any nanotechnology lab is the 

process of liquid handling. Historically, liquid handling has 

been a manual task whereby the user controlled liquid rea-

gents through manual pipetting. When considering manual 

tasks in practical experimentation, it is often associated with 

human error and time and space limitation [59]. A monoto-

nous task is an example of when a human error can occur, 

leading to a wide range of errors [60]. In many scenarios 

when unexpected results are received, the first question is 

whether there were sample and fluid handling errors [61]. A 

study performed by Schwarze et al. [62] showed that 15% of 

the cost related to genome sequencing is due to laboratory 

personnel errors. In efforts to reduce human errors, robotic 

liquid handlers (LiHas) are becoming increasingly utilised. 

Robotic LiHas can perform simple human functions such 

as aspiration and dispensing of liquids into different tubes 

and wells, whilst maintaining high precision and accuracy 

[63]. However, the range of robotic LiHa functions can be 

expanded into a multifunctional workstation for chemical and 

nanoparticle synthesis. Expansion of the functions can be 

achieved through the integration of robotic arms and various 

laboratory devices, such as centrifuges, microplate wasters 

and readers, heat sealers, heaters and shakers, bar code read-

ers, storage devices and incubators [63]. Thus, robotic LiHas 

can be optimised for numerous techniques, including ELISA, 

PCR, genomic research, thin layer chromatography (TLC) 

spotting, solid-phase extraction (SPE), liquid-liquid extrac-

tion, nucleic acid preparation and cell-nanoparticle tests [64, 

65]. Furthermore, there are dual robot arm liquid handlers 

that can emulate similar movements of a human, thus giving 

it a high number of degrees of freedom. In addition, act-

ing as a 1:1 representation of a manual, human-operated, 

experiment, while in reality being an automated procedure 

[66]. During the current pandemic, robotic LiHas provide 

advantages and improved safety when it relates to testing 

of SARS-CoV-2 (COVID-19) [67]. Reducing the exposure 

of the laboratory technicians to COVID-19 samples is an 

excellent display of a programmable LiHa advantage. Such 

systems provide consistent performance, increased through-

put and improved accuracy and precision, whilst reducing 

human error. The automatisation of NP synthesis using the 

LiHa possesses significant advantages, in comparison with 

the manual preparation methods. Robotic systems allow 

preparation of multiple formulations in a short period of 

time, characterising their activity on a biological specimen 

and optimising the nanoparticle formulation in an automated 

manner (Fig. 3).

Automated microscopy

A crucial part of establishing an automated nanotechnology 

laboratory resides in the application of nanomedicines to cells, 

to test particle uptake and their effect on cell morphology and 

viability. In particular, automated confocal microscopes con-

taining incubators allow live-cell imaging and characterisation 

of fluorescent components [68]. Despite the high accuracy 

and precision, manual confocal fluorescence microscopy is 

a time-consuming task when analysing hundreds of sam-

ples [69]. The need for automated microscopy has increased 

when the possibility of measuring a 384-well-plate in a single 

field-of-view in only several minutes became a reality [70]. 

In addition, automated microscopes are capable of producing 

high-quality 3D images with higher acquisition rate and much 

wider fields of view allowing encompassing the whole micro-

plate instead of focusing only on individual wells [71]. This 

allows users to observe minuscule structures within the cell 

and on the cell’s surface [72, 73]. Incorporating a fluorescent 

microscope into a robotic workstation can improve the effi-

ciency of acquired results and determination of nanoparticle 

trafficking within, and effect on, each cell [74]. Features such 

as wide field of view camera and laser autofocus improve 

quality and speed of image acquisition and enable imaging 

even in non-glass–bottom plates [73]. The advantage of being 

able to work with live cells can further improve experimenta-

tion in terms of multiple treatments and recording changes 

in cells over time. Furthermore, rapid automated analysis of 
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collected data following image acquisition can be a potential 

improvement of current systems. Acquiring large datasets 

of microscopic images and incorporating machine learning 

into biotechnological analysis allows for the maintenance and 

improvement of existing databases and subsequently apply-

ing the knowledge to many disease models and personalised 

approach to medicine [75].

Artificial intelligence in research

Nanomedicine offers new ways for preventing and treat-

ing diseases. However, reaching the full potential of nano-

medicine is still yet to be fully realised [76]. The use of 

automation is a step in the right direction of manufacturing 

nanoscale drugs but is only one piece of the puzzle. In order 

to improve and ensure that nanomedicine will achieve its 

desired result, computational analysis of large amounts of 

data must take place [77]. Therefore, the next step is inte-

grating AI and machine learning into the evaluation and 

formulation of nanoscale drugs [78, 79]. While traditional 

computational methods require deep understanding of the 

physical, chemical and biological knowledge to construct 

relevant and accurate computational models [77], AI algo-

rithms require only training datasets that can be produced by 

automated synthesis practices, or sourced from the literature 

[80, 81]. Providing large datasets of experimental results 

related to the subject of study allows the algorithm to pro-

duce accurate prediction models that then can be translated 

into improved nano-formulations.

There are multiple areas where machine learning can 

be integrated into nanomedicine applications [77, 82, 83]. 

For example, machine learning can be used to improve 

the understanding of how the structure of a nanoparticle 

affects its characteristics as well as its interaction with tar-

geting tissues and cells. A study, using machine learning, 

of the adverse effects of nanoparticle properties conducted 

by Puzyn et al. predicted cytotoxicity of 17 different metal 

oxide NPs to Escherichia coli [82]. Alternatively, the AI 

subfield can help determine the correlation between drug 

dosage and therapeutic outcomes. A recent study obtained 

gene expression profiles from 82 breast cancer patients and 

trained a machine learning algorithm to predict complete 

pathologic responses with an accuracy of 92% [84]. It should 

also be noted that there are algorithm approaches that can 

be used when there is not enough data available to train 

the algorithm. However, it is imperative that the algorithm 

choice is appropriate for the experiment. An example of uti-

lising a machine learning algorithm that does not require 

large sets of data is artificial neural network (ANN) [85]. 

ANN was used to predict optimal size and drug release in a 

recent study conducted by Baghaei, B. et al. about polylac-

tic-co-glycolic acid (PLGA) NPs [85]. The machine learning 

algorithm reduced the prediction error from 28.0 to 2.93% 

and from 19.4 to 2.99%, for particle size and initial burst 

release of PLGA NPs, respectively [85]. The study shows 

that ANN integration into NP drug release experimentation 

provides an improved alternative to traditional computa-

tional measurements. However, to further advance the field, 

pathologists and AI experts need to work closely together to 

produce improved AI systems with accurate outcomes using 

automated robotic systems for particle synthesis. Integrating 

AI-driven data analysis and processing will allow faster and 

cheaper drug discovery, screening and application in both 

laboratories and industry [86].

The future of remote science and AI 
in nanotechnology automation

AI is integrating into clinical and laboratory research, as 

seen in Fig. 2. However, various barriers are affecting the 

development and adoption rate of machine learning in labo-

ratories. One example is the limitation of sufficient data-

sets to inform machine learning results. To rectify, this will 

require changing the structure of chemical laboratories, 

opening them to students and experts from numerous fields. 

These new team members will work alongside chemists, 

biologists, bio-chemical engineers and biotechnology engi-

neers (and others) to achieve optimal performance, relevance 

and results. Overall, the automated approach of nanoparti-

cle preparation and utilisation holds great promise to create 

an effective method of conducting research and improving 

the field of personalised medicine, as seen on Fig. 3 that 

describes key differences between the approaches.

Recent modifications of nanotechnology are rapidly 

evolving and adopting novel technological formats using 

machine learning and integrated analytical systems. Artifi-

cial intelligence demonstrates significant potential in “clos-

ing the loop” of nanoparticle synthesis, characterisation, 

refinement and testing or predicting activity in vitro and 

in vivo. The journey initiated from experimental laboratories 

is still lined with multiple challenges and obstacles along 

the way. However, recent studies and advancements on AI 

integration, automation and nanotechnology glimmer with 

great confidence, indicating that we are heading into the 

right direction.
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Fig. 2  In the field of pathology, 

AI is already making major 

changes. Similar impact of AI 

can occur in the field of nano-

medicine synthesis and predic-

tion. Graphical representation 

of PubMed results based on 

two search queries—[“Machine 

Learning” AND “Laboratory 

Medicine” and “Machine Learn-

ing” AND “Pathology”]

Fig. 3  Graphical comparison 

of the hands-on and automated 

approaches to experimentation
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