Hindawi Publishing Corporation

Journal of Robotics

Volume 2012, Article ID 959013, 15 pages
doi:10.1155/2012/959013

Review Article

Robotics Middleware: A Comprehensive Literature Survey and

Attribute-Based Bibliography

Ayssam Elkady and Tarek Sobh
School of Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
Correspondence should be addressed to Ayssam Elkady, ayssam.elkady@gmail.com

Received 21 August 2011; Revised 15 January 2012; Accepted 29 January 2012
Academic Editor: Yangmin Li

Copyright © 2012 A. Elkady and T. Sobh. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Autonomous robots are complex systems that require the interaction between numerous heterogeneous components (software and
hardware). Because of the increase in complexity of robotic applications and the diverse range of hardware, robotic middleware
is designed to manage the complexity and heterogeneity of the hardware and applications, promote the integration of new
technologies, simplify software design, hide the complexity of low-level communication and the sensor heterogeneity of the
sensors, improve software quality, reuse robotic software infrastructure across multiple research efforts, and to reduce production
costs. This paper presents a literature survey and attribute-based bibliography of the current state of the art in robotic middleware
design. The main aim of the survey is to assist robotic middleware researchers in evaluating the strengths and weaknesses of
current approaches and their appropriateness for their applications. Furthermore, we provide a comprehensive set of appropriate

bibliographic references that are classified based on middleware attributes.

1. Introduction

Robot middleware is an abstraction layer that resides
between the operating system and software applications
(as shown in Figure1). It is designed to manage the
heterogeneity of the hardware, improve software application
quality, simplify software design, and reduce development
costs. A developer needs only to build the logic or algorithm
as a component, after which the component can be combined
and integrated with other existing components. Further-
more, if he wants to modify and improve his component, he
needs only to replace the old one with the new one. There-
fore, experiment efficiency will improve. In [1], the authors
outline some of the problems faced in the development of
some robotics middleware. A survey of robot development
environments (RDEs) by Kramer and Scheutz [2] described
nine open source, freely available RDEs for mobile robots,
evaluated and compared them from various points of view
with suggestions of how to use the results of the survey,
and concluded with a brief discussion of future trends in
RDE design. Mohamed et al. [3] provide a short overview

of several research projects in middleware for robotics and
their main objective. Mohamed et al. [4] provide an overview
study of networked robot middleware and different criteria
for evaluating networked robot middleware. Furthermore,
in [5], some freely available middleware frameworks for
robotics are addressed, including their technologies within
the field of multirobot systems.

This paper is structured as follows. Section 2 presents an
overview and the objectives of current middleware solutions.
Some attributes, focusing on the architecture, simulation
environment, standards and technologies, support for a
distributed environment, security for accessing modules,
fault detection and recovery, real-time and behavior coor-
dination capabilities, and open-source and dynamic wiring
for the most of the existing robotic middleware frameworks,
are then discussed in the following sections. Each section
describing an attribute for different middleware structures
includes an embedded set of the appropriate bibliographic
references to provide researchers with easy access to the
current state of the art research in the area. The final section
summarizes the survey findings.



i

Middleware

FiGure 1: Middleware layers.

The primary advantages of the robotics middleware are
Software Modularity, Hardware Architecture Abstraction to
hide the low-level device-specific details of the device in
order to give the developers more convenient, standardized
hardware APIs, Platform Independence, and Portability to
be able to run on any platform with only changing in
the system’s configuration. Furthermore, the core of the
middleware should not depend on the specific device or
software algorithm. The middleware should be scalable
and upgradable with the growing of its components. The
middleware should be easy-to-use, robust, reliable, easy to
maintain, efficient flexible, and support for parallelism and
distribution systems. It should also allow for changing in the
configuration of control flow and the data flow at runtime.
It is favorable to be real-time system and provides some
security aspects such as authentication, authorization, and
secure communication.

2. Robot Software

2.1. Middleware. Bakken et al. [6] defined middleware
as follows: “a class of software technologies designed to
help manage the complexity and heterogeneity inherent in
distributed systems. It is defined as a layer of software above
the operating system but below the application program that
provides a common programming abstraction across a dis-
tributed system.” In this section, several robotics middleware
such as Player, CLARAty, Player, Miro, and OpenRTM-aist
and their attributes are described. For each attribute, a short
description of the relevant research attribute is described and
several representative references are provided.

The Player project started at the University of Southern
California [8-13]. Player is a “distributed device repository
server” [13] for robots, sensors, and actuators. A client pro-
gram communicates with Player, running on the robot, using
a separate TCP socket connection for data transfer. Coupled

Journal of Robotics

Layer Architecture for Robotic Autonomy (CLARAty) [7, 14—
26] is an attempt by NASA, through collaboration with the
California Institute of Technology’s Jet Propulsion Labora-
tory, Ames Research Center, Carnegie Mellon University,
and the University of Minnesota. OpenRTMaist [27-32]
is a software platform developed by the National Institute
of Advanced Industrial Science and Technology-Intelligent
Systems Research Institute.

Miro [33, 34] is an object-oriented robotics middleware
developed by the University of Ulm, Germany. Microsoft
Robotics Developer Studio (MRDS) [35-37] is a Windows-
based environment for robot control and simulation. Marie
(Mobile and Autonomous Robotics Integration Environ-
ment) [38-41] was developed by the Mobile Robotics and
Intelligent Systems Laboratory, University of Sherbrooke,
Canada. Orca [42-44], and OPRoS (Open Platform for
Robotic Services) [45—-47], designed by the IT R&D program
of the Ministry of Knowledge Economy of Korea, are
component-based software frameworks. The ERSP Software
Development Kit [48] provides technologies for vision,
navigation, and system development. Webots [49, 50] is a
commercial robot simulation package for fast prototyping
and simulation of mobile robots. Robot Operating System
(ROS) [51] is a “thin, message-based, peer-to-peer” [52],
robotics middleware designed for mobile manipulators.

The Open Robot Control Software (Orocos) [53-59] is a
Real-Time Toolkit (RTT) that helps the developers to build
C++ robotics applications. RSCA (Robot Software Com-
munication Architecture) [60], developed in Seoul National
University, is a robot middleware for networked home service
robots. Skilligent Robot Behavior Learning System [61],
RoboFrame [62-65], SmartSoft [66—-69], iRobot AWARE
[70], developed by iRobot, and ASEBA [71, 72] are some
examples of robotic middleware platforms. RoboFrame [62—
65] is an OO middleware developed using C++. Table 1
summarizes the objectives of some commonly used robotics
middleware.

2.2. Robot Toolkit. A robot toolkit is a set of software tools
used by developers that provides them with the facilities to
create their own robot applications, such as CARMEN and
Pyro. Carnegie Mellon Navigation (CARMEN) Toolkit [74—
76] is an open-source collection of robot control software.
Pyro [77-81], written in Python, stands for Python Robotics
which provides “a set of abstractions that allows students to
write platform-independent robot programs.” [81].

3. Architectural Approach

In this section, the architecture of the previously discussed
middleware platforms is described. CLARAty’s architecture
has two distinct layers (as shown in Figure 2): the Functional
Layer and the Decision Layer. The Functional Layer includes
a number of generic components such as “digital and analog
I/0, motion control and coordination, locomotion, manipu-
lation, vision, navigation, mapping, terrain evaluation, path
planning, estimation, simulation, and system behavior” [7].
Furthermore, control algorithms are implemented in this



Journal of Robotics 3

TaBLE 1: Objectives of several robotics middleware frameworks.

Name Objectives

Orocos “Develops a general purpose modular framework for robot and machine control” [53]

Pyro “Provides a programming environment for easily exploring advanced topics in artificial intelligence and robotics
without having to worry about the lowlevel details of the underlying hardware” [73]

Player Provides a development framework supporting different hardware devices and common services needed by different
robotic applications and transfers a controller from simulation to real robots with as little effort as possible

Orca “Enables software reuse in robotics using component-based development” [3]

Miro “Improves the software development process for mobile robots and enable interaction between robots and enterprise
systems using the distributed object paradigm” [3]

OpenRTMaist Provides efficient development for robotic systems by proposing a modular software structure platform and “simplifies
the process of building robots by simply combining selected modules” [3]

ASEBA “Allows distributed control and efficient resources utilization of robots with multiprocessors” [3]

MARIE “Creates flexible distributed components that allows developers to share, reuse, and integrate new or existing software
programs for rapid robotic application development” [3] and integrates other middleware in a single robot
“Provides real-time support for robotic applications and to provide abstractions that makes robotic applications both

RSCA : A
portable and reusable on different hardware platforms” [3]

MRDS Provides a robotic software platform supporting a wide variety of hardware devices and a set of useful tools that
facilities the programming and debugging

OPROS “Establishes a component based standard software platform for the robot which enables complicated functions to be
developed easily by using the standardized components in the heterogeneous communication network” [46]
A reusable robotic framework to enable integration, maturation, and demonstration of advanced robotic technologies,

CLARAty from multiple institutions on NASA’s rover platforms in support of its technology programs (Mars and Intelligent
Systems)

ROS “Provides the operating system’s services such as “hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and package management” [51]

SmartSoft Implements sensorimotor systems based on communication patterns as central mean to achieve decoupling at various
levels and supports model-driven software development

ERSP “Provides cutting edge technologies for vision, navigation, and system development” [48]

Webots “Provides a rapid prototyping environment for modeling, programming and simulating mobile robots” [50]

RoboFrame Covers the special needs of autonomous lightweight robots such as dynamical locomotion and stability

layer, such as sensor-based manipulation, visual target track-
ing, and vision-based navigation. “The Decision Layer is a
global engine that reasons about system resources, the state
of the system and its environment, and mission constraints.
It includes general planners, executives, schedulers, activity
databases, and rover and planner-specific heuristics. The
Decision Layer plans, schedules, and executes activity plans.
It also monitors the execution modifying the sequence of
activities dynamically, when necessary” [23]. The relation
between the Decision and Functional Layers is a client-server
model through a publish/subscribe communication scheme.

Webots [82] is organized as an OOP interface for robot
control. Objects correspond to robot devices such as dif-
ferential wheels, camera, distance sensor, laser range-finder,
and accelerometer. As described in [64], two mechanisms
are implemented in RoboFrame to exchange data between
the modules: a blackboard architecture and mutual exclusion
mechanisms for large data structure, and a message-based
system for smaller data structures.

MIRO [33] consists of three layers (as shown in Figure 3):
the MIRO device, MIRO service, and MIRO framework lay-
ers. The MIRO device layer, which is a platform dependent,

provides interface abstractions for the low-level hardware
details (all sensor and actuator devices). MIRO service layer
provides service abstractions for sensors and actuators by
means of CORBA interface definition language (IDL). “The
Miro Class Framework provides a number of often-used
functional modules for mobile robot control, like modules
for mapping, self-localization, behavior generation, path
planning, logging and visualization facilities” [33].

Marie consists of three layers [40]: Application, Compo-
nent, and Core Layers. Application/Component layers pro-
vide some tools for building applications/components. The
Core Layer consists of low-level tools for communication,
data handling, and I/O control. Furthermore, Marie uses a
centralized control unit called the Mediator Design Pattern
(MDP) to interact with each application independently, as
shown in Figure 4. As described in [38], Marie uses four
functional components for interaction and communication
between the applications through a centralized control unit
(CCU) based on the MDP: Application Adapter (AA),
Communication Adapters (CAs), Communication Manager
(CM), and Application manager (AM). The AA is responsi-
ble for communication between the CCU and applications.



Journal of Robotics

Decisionlayer.,-"".
Explore site

i (Goto target 3 . Leplo Acquire and
TN instrument analyze o

Functional layer

Navigator

Locomotor

. o ——

Pose estimator

> Declarative activity
> C(lass abstraction

> Swappable algorithm
Robot adaptation

FiGure 2: The CLARALty Architecture (© (2006) International Journal of Advanced Robotic Systems) (reproduced from [7] with permission

of Dr. Issa Nesnas).

Application |_‘ Application Application
soptaton ] [ Apcaion ] "]

Miro j Frameworks
[

[1 1m0 I—
Miro :L Sensor/actuator services
1 1T T [ ] 1]
[ Miro Communication/configuration
[ [ | TT 1T L]
Miro :l i_‘DCVICC layer Devicelq ¢
| Linux OS | | Linux OS | |Windows/solaris OS|
ISparrow99 | iPioneerl | | PClworkstation |
i b D l
! 00000 oo 1 ]
| 1 | | l 1
[} 1 [} I 1 ]
i b % . I I 1
i D e, L_______1}

FiGgure 3: MIRO abstraction layers (© (2002) IEEE) (reproduced
from [33]).

For integration with the system, “each application should
have its own AA in order to encapsulate communication
mechanisms, services, and configurations. The CA is respon-
sible for translating information between different com-
munication protocols and mechanisms. It allows different
applications to exchange data correctly” [40]. The common
types of CA are Mailbox (“data buffer between asynchronous
components” [40]), SharedMap (“It forwards incoming data
to multiple outputs” [40]), Splitter (“a push-in/pull-out data
structure used to store system states that can be accessed by

Processing node Processing node
App App
MARIE
App App
Mediat
k ediator App

App

Processing node Processing node

FIGURE 4: MARIE’s adaptation of the mediator pattern for dis-
tributed system. (© (2004) IEEE) (reproduced from [38] with
permission of Dr. Carle C6té and Dr. Frangois Michaud).

many components” [40]), and Switch (“It sends only one of
its inputs to the output port” [40]). “The CM is responsible
for creating and managing communication links between
Application Adapters. The AM is responsible for control
and management of the whole system, by coordinating
system states. It also configures and controls all components
available in the system.” [40].



Journal of Robotics

SmartSoft consists of three layers [67], as shown in
Figure 5, Skill, Sequencing, and Deliberation Layers. A
module of the Skill Layer, such as the path planner and
the mapper, works simultaneously as client and server.
The Sequencing Layer selects and synchronizes the required
behaviors, according to the actual situation, to be executed.
The Deliberation Layer contains time-consuming algorithms
such as symbolic action planning.

ERSP [48] consists of the three primary layers: Hardware
Abstraction Layer (HAL), Behavior Execution Layer (BEL),
and Task Execution Layer. The HAL hides the low-level
details of the robot’s hardware and operating system. The
BEL contains sensing, decision-making, and autonomous
action modules. “The TEL provides a high-level, goal-
oriented method of programming and an interface to the
BEL” [48]. Pyro consists of several modules, such as direct
control, reactive control, behavior-based control, fuzzy logic,
and finite state machine. Orca [43] is a component-based
middleware. Communication between its components is
handled by the Internet Communication Engine (Ice) which
is a general-purpose communication middleware [83], as
shown in Figure 6.

OpenRTM-aist [28] is a component-based framework.
The RT Component may be a device unit, like a servomotor,
and a sensor, or a combination of device units, such as
a mobile platform and arm or software modules, such
as control algorithm or image processing algorithm. The
architecture of the RT Component is shown in Figure 7
[28]. Each RT Component has the interfaces, called Ports,
to communicate with other components or exchange data.
The RT system is constructed by connecting the ports of RT-
components.

ORoCoS is a Real-Time Toolkit that provides the com-
ponents to be able to run on a real-time operating system.
As described in [53], it consists of the following libraries:
the Orocos Components Library (OCL) that provides some
ready-to-use control components, the Orocos Kinematics
and Dynamics Library (KDL) that provides the real-time
calculation of kinematic chains, and the Orocos Bayesian
Filtering Library (BFL), such as Kalman Filters and Particle
Filters.

Skilligent [61] is a modular-structured framework. The
core of the Skilligent Robot Learning and Behavior Con-
trol System consists of various modules, such as Audio
Recognition and Robot Learning, and Behavior Execution
and Coordination. Furthermore, various external software
modules can be attached to the core, as shown in Figure 8.

OPRoS is a component-based platform supporting
a client/server scheme for control flow and a pub-
lisher/subscriber scheme for data/event flow. ROS is a
“metaoperating system” [51] for robot software consists of
many small tools designed to work together. “The ROS
system is a computation graph consisting of a set of
nodes communicating with one another over edges” [51]. It
consists of nodes (software modules), messages (passed peer
to peer), topics, and services (analogous to web services).
Nodes communicate together by passing messages through
publish/subscribe model. Messages are not based on a
specific programming language. “A node sends a message by

publishing it to a given topic, which is simply a string. A node
that is interested in a certain kind of data will subscribe to the
appropriate topic.” [51].

There are four main components in MRDS [36]: Con-
currency and Coordination Runtime (CCR), Decentralized
Software Services (DSSs), Visual Programming Language
(VPL), and Visual Simulation Environment (VSE). The CCR
isa .NET-based concurrent library for coordinating between
the multiple sensors and robot actuator and managing
asynchronous, parallel tasks through messages. DSS is a
service-oriented runtime allowing multiple services to work
together in order to achieve certain tasks and behaviors. VPL
is integrated with Visual Studio to give the developers the
facilities to implement a program through drag and drop
blocks (activities or services) onto the design surface. A
program, implemented with VPL, can collect and process
data from the various sensors and create autonomous
behavior for any robot that has a distance-measuring device
and differential drive system. Finally, VSE is a simulation
environment (Figure 9).

Player [13] is a device server (application server) with a
collection of dynamically loadable device-shared libraries. It
is a queue-based message passing system, consisting of two
parts: the Player Core and the Transport Layer. “The core
system includes the device and driver classes, the dynamic
library loading code, configuration file parsing and the driver
registry” [13]. Each driver has a single incoming message
queue and can publish messages to the broadcast data and to
all other drivers’ subscribed client queues. The core library
defines message syntax and coordinates the passing of these
messages. The Transport Layer is independent of device
drivers and is based on TCP communication protocol using
sockets (and message queues).

Irobot Aware is implemented as a data messaging sys-
tem designed through a publisher/subscriber scheme. As
described in [70], Irobotware consists of the following:
base tools and component, robotics, and operator control
unit (OCU) frameworks. The base tools are open-source
software packages dealing with the low-level details of
the OS and hardware. Component/Robotics/OCU frame-
works provide the software applications with infrastructure
for autonomous networked systems/mobile robot-specific
applications/real-time OCU controls and displays.

RSCA “consists of a real-time operating system, a
communication middleware, and a deployment middleware
called core framework” [60]. CARMEN [84] consists of three
layers: the base layer to hide the low-level details of the hard-
ware, the navigation layer to provide navigation primitives,
such as motion planning, localization, and dynamic object
tracking, and “the third tier is reserved for user-level tasks
employing primitives from the second tier”.

4. Simulation Environment

The simulation environment is very important for fast
prototyping and educational purposes, although it may have
some drawbacks and limitations, such as lack of noisy data
existing in the realistic world and simulated models that may



Journal of Robotics

Symbolic planner %

Agenda
Task net

s

[

[ [x] <] [d [d

Interface: skill activation, deactivation, configuration, event management

=
S
Knowledge base | £
5 g
Resource 2 &
i o)
constraints X
Environment 5
Interpreter model =
=
S
. B
Plan library g
)
etc. oh
=
'S
=
L
E
=3
A

¥ ~ 5 3

) g ] [ L =

Path Motion B21 ete. E =

Laser Mapper planner control base —': %
w

FIGURE 5: Smartsoft system architecture. (© (1999) IEEE) (reproduced from [67] with permission of Dr. Christian Schlegel).

libOrcalce

Linux OS Win OS

For example, TCP/IP

FiGure 6: Two Orca components acting as a server or a client. (©
(2006) IEEE), (reproduced from [43] with permission of Dr. Alexei
Makarenko).

be incomplete or inaccurate. Table 2 shows whether or not
each middleware supports a simulation environment.

Most of the middleware, such as iRobotAWARE [70],
CLARAty [16], Orca, Miro [2], ASEBA, MRDS [35], ROS
[51], RoboFrame [63], OpRoS [47], and CARMEN [76],
provides simulation environment, although Orocos, Skil-
ligent, RSCA, and ERSP do not come with a simulation
environment. The Player [9] project provides a graphical,
two-dimensional device simulator called Stage, which sup-
ports research in multirobot systems by using socket-based
communication and a high-fidelity, three-dimensional sim-
ulator called Gazebo. In the Player [50], it is easy to simulate
nonexistent devices for research in device design. Marie
[38] provides interfaces to Stage, Gazebo, the ARIA, and
CARMEN simulators. OpenHRP3 is a dynamics simulator
based on OpenRTM-aist. Webots is a simulation environ-
ment. MuRoSimF is a simulation framework developed in
RoboFrame. SmartSoft uses Player/Stage 2D simulator and

also Gazebo 3D simulator. Pyro [80] is integrated with
several existing robot simulators, including Robocup Soccer,
Player/Stage, Gazebo, and the Khepera simulator.

5. Standards and Technologies Used

Table 2 summarizes the standards and technologies used
in each middleware. Miro [33] and Orocos [85] are
implemented using the Common Object Request Broker
architecture (CORBA) standard. CORBA allows interprocess
and cross-platform interpretability for distributed robot
control. Although Orca [43] uses ICE, CORBA and ICE
provide the basic functionality for component interaction.
Smartsoft [68] provides two reference implementations, one
based on CORBA (ACE/TAO) and one based on ACE
only. Webots [50] uses Open Dynamics Engine (ODE) for
detecting collisions and simulating rigid body dynamics.
In fact, OpenRTM-aist and OPRoS implement the same
standard, OMG’s Robot Technology Component Standard.

6. Distributed Environment

The different software modules of an application should
be able to exchange data and be able to run in differ-
ent machines, from which each one is able to obtain
its maximum efficiency. Table2 summarizes whether or
not each middleware supports distributed environment. In
CLARALty, there are modules that support distributed pro-
cessing: ACE/TAO (CORBA), sockets, published subscribed
mechanisms, and so forth, but CLARAty modules cannot
be readily distributed without either existing ACE/TAO
wrappers or additional software development (clarified via
correspondences with the author Dr. Issa Nesnas).



Journal of Robotics 7
Configuration RTC RTCEx
interface interfaces interfaces
RTCS consumer RT component service
Consumer RT component
Proxy Service *
Consumer B Provid
rovide
Prov1de} Proxy—Usg Service *—)
o
Inport 0 Outport 0
Buffer \ / Buffer ! .
et, subscribe
Inport n _Ggt Outport ns Reply
P ut—’ Buffer % Put 5 Buffer F
Reply Push

Inport

Figure 7: RT-Component Architecture (© (2006) IEEE) (repr

Outport

oduced from [28] with permission of Dr. Noriaki Ando).

| [} I | |
1 . | 1

: Exterr}al i Ex.terne}l | Hardcoded ¥ soculass | : External :

| attention 1 stimuli ! | behaviors | P 4 computer
I I

| mechanisms ! detectors 1 | and reflexes 11 | /! vision system |

______ ~ _\:\h____‘::_ it ::::’———- I’ ’_‘_‘_‘-‘_‘_‘_‘_‘_‘-‘I

I NPt /| External

b ‘S\XQ - /A image feature |

T 1 /1 detectors

Skilligent software e ieiaiainieinis -

I

Robot learning Social Attention Joint i/ i External object :
(task and skill) interaction system intention é?’ | detectors :

A\ I o ___
Behavior execution|[Computer vision|[ Audio N .
and coordination ||and recognition | |recognition *\| External audio !
\: recognition :
- —?&)é - : system l

PP NS Lo SQLXML Z77m=m-=o

=Dl e PRSI T IlTae a

' Il External 1l External 1| External | 7" Lonmans
| Sensorsand | end i Xterna i Xternal :----_----.--.---i
' controllers | : navigation lactuator control: | remote ! I Offline training |
l 1y system 1! system 1! control 1 (simulation. |
al al :
|

:augmented reahty)

FIGURE 8: Various external software modules attached to the Skilligent Control System (reproduced from [61] with permission of Skilligent).

7. Security for Controlling Access

Data transportation and user access should be secure so
that no one can control the robots other than the user. Some
Middleware platforms, such as Orocos [53] and Miro [33]
(based on CORBA), do not support security for control
access, but CORBA [86] itself supports SSL for its com-
munication. Table 2 summarizes whether each middleware
supports security capabilities for controlling access.

8. Fault Detection and Recovery

Fault detection and recovery capabilities are necessary to
provide the framework with the ability to be used in real,
critical situations. A failure in one module should not
damage the whole system. There is always the possibility
of a fault at runtime. The faults in the robot’s framework
should be detected and localized, and also, the robot should
be able to complete its mission or at least to proceed to a safe

mode. Table 2 summarizes the fault detection and recovery
capabilities for each middleware. ORCA, MIRO, OpenRTM-
aist, and Player do not provide any explicit fault tolerant
capabilities on the system level apart from the exception list,
which may indicate service failures. CLARAty [87] offers
a broad variety of low- and high-level means for fault
tolerant and robust system performance (state monitoring
and recovery from some faults, resources checking, state
estimation, verification, test, simulation classes, (clarified via
correspondences with the author Dr. Issa Nesnas). CARMEN
programs are “robust to a variety of failures” [75] (in
communications and of other programs). In ROS [51],
there is additional fault tolerance as crashes are isolated to
individual nodes.

9. Real-Time Capability

Reat-time capability of a robot middleware means that the
reactiveness of a robot is guaranteed by the real-time



Journal of Robotics

Method 1

ServicePort

ServicePort

Method 2

(provided)

Method N|

(required)

ServicePort

ServicePort

Method B

(provided)

'H
—
I—) Method A
)

Method Z

(required)

DataPort
(input)

DataPort

(input) Periodic

||

DataPort
(output)

!!
Nonperiodic

| =

FIGURE 9: OPRoS component model (© (2010) ETRI) (reproduced from [47] with permission of ETRI Journal).

system by providing real-time capabilities for the component
communication and process in the framework. Table 2
summarizes the real-time capability for each middleware.
RSCA [60] provides real-time capability, if the operating
environments support RT-CORBA and POSIX RT profile
(PSE52) (clarified via correspondences with the author Dr.
Seongsoo Hong). In CLARAty, most modules are real time
and operate under VxWorks and QNX RTOS (clarified via
correspondences with the author Dr. Issa Nesnas).

10. Behavior Coordination

Behavior Coordination is not part of RoboFrame (but robot
coordination can be provided by integrating XABSL as a
component, running on top of RoboFrame) (clarified via
correspondences with the author Dr. Dirk Thomas). In
RSCA, the behavior coordination should be implemented as
an RSCA application or a set of RSCA components (clarified
via correspondences with the author Dr. Seongsoo Hong).
Table 2 summarizes the behavior coordination capability of
the middleware.

11. Open Source

OPRoS, OROCOS, ROS, OpenRTM-aist, MARIE, ORCA,
ASEBA, RSCA, SmartSoft, Pyro, MIRO, and Player are open-
source software, although ERSP, Skilligent, Webots, and
iRobotAWARE are commercial software products. MSRDS is
commercial but is free of charge for research and hobbies.
In CLARALty, most modules have been approved for public
release. Only about 10% has been released due to funding

constraints (clarified via correspondences with the author
Dr. Issa Nesnas). RoboFrame is not open-source but available
for research use for free (clarified via correspondences with
the author Dr. Dirk Thomas).

12. Dynamic Wiring

This feature allows dynamic configuration of connections
between services of components at runtime, making both
control flow and the data flow configurable. As described in
[88], “the automatic configuration facility in Marie is not
available so communication setup should be static. It defi-
nitely is not well suited for all the requirements of dynamic
scenarios.” Autoconfiguration is not supported in ORCA
[42], although ORCA relies on the ICE [83] Naming Service
for delivering location transparency. But the dynamic wiring
is supported in Orocos and SmartSoft [66] through scripting,
XML, and run-time parameter setting. In SmartSoft [69],
the wiring pattern provides a consistent mechanism for
dynamic wiring of client parts of communication patterns
from outside a component. CLARAty partially supports the
dynamic wiring, Only some components that required this
feature support runtime reconfiguration. But that is not a
general rule that applies to all components in CLARAty
(clarified via correspondences with the author Dr. Issa
Nesnas).

13. Other Platforms

There are several other robotics software platforms available,
such as Yet Another Robot Platform (YARP) [89, 90],



Journal of Robotics

plepue)s
VEIOO 21 santjiqedes [OIIUOD UIALIP—JUIAD

o SIX SIX ON SaX SaX Jo uonew SOk S SaX Supuey uo siseyduwo ue st PIEp PIZI[ENUS9p OYIN

N -ordwt 4D Jney : © TOATIS-JURID ‘SIaAe] ¢

: 2191]) TA] 399(q0 TQ :
IEMI[PPIIN Jo1dx9 ON
OVL

SUI)SAS dO1)0qOI

sonmiqedeo @uwg-«:u:omﬂEoU

o [2A9] e)Rp

Surppuey .

ON SIX ON ON SIK 0] SO SIX SaX. e jusuodwod uo e PazIenu2o9p 192d A%0):(0)

ney jou 9qeordde JoN 0] 19ad qurensuod

Jo1IdX2 ON : :
[eIN30)IYdIE
remnoned oN
foye[nus Ppott RJRP PIZI[RIJUIID

as seniiqedes Surjod uo sarfax 1PP POALUIP

$122(qQ £x01g P o : TOAIIS-JUDI[D
Sax Sax Sax ON ON SOX  INOAIYIIY SaX  SIK eS10qazeD  Bupuey  31a0uls PazEnud QUIBIISUOD Tokeq

: Ioye[nuIs jney Pa19pISu0d 9q :
21T -¢ : : [eIN30)IYdIR
g o1dxo ON  UBd [9A9] d[NpOW UO remonTed o

e st a3elg nq ‘o7qeoridde JoN At N

-Suruuerd

pue uonediaeu

‘uoneuwrnsa

uadLxo(q cuonydaorad

ddn 4oL ‘uonendrueur

owm 10 A«EDm-mU UJALIP JUAD wor MM:M_MH

Sax  Ajrenue, $9 [eor a1e s110ddns Ajrenae ¢ OvLY um36 $9, S9 $9, [01U03 pANQLSIP q01)U0d %9 owb 10 £

X Alrenied L fenied . (LIS ++0) - oy SR A L B ) AVEVIO

Surwrwrerdoxd : syuauoduod 2130qox

ISON : uonejdepe syrzoddng :

o11oua3 SNOLIEA JOJ SIOBJINUT

‘suraned pue suonoensqe

ud1sap 00 juopuadapur

uriojied (I9AIIS JUSI[D

‘eJep PIZI[eNUIIP

NV To4e-7

pasn
£y1modag SULIM JUIWUOIAUD o) ey UONEUIPIO0D  95MOs $o130[0UYDd) SMOPUIA\ XNUIT  IOJB[NUIIS PUEI[0} [opow [o13u0)) [Ppow wals4g JweN
: SIWERUA(  paINqLusi(] : Joneyag  uadQ : : : : jneq

pue spIepue)s

"2TEMI[PPIW $OT)0QOI UTRW 3} JO SANQLINE A1) Jo suostredwro)) :z a14v],



Journal of Robotics

10

X0q[oQ],
ON SO ON SO ON MNMMMM AOMM\MWW SOk SoX wOUHMMMM [OT3U0D Paseq-JudAg o “motwwmﬁ me SODOYO
1Inq ‘oN
Sk Sk Sk ON SOX  "wwop VOS/LIN $9X  ON Sk ButBessaw LS SAIN
panqunsyq  ‘paseq-juauoduo))
SIOTAIS Ioquosqns/raysiqnd
ON SO SIK SO SO SOX DdY ‘pPAUSLIO suondumy SOX SR g Sprom-otey S[I0M-duIel) NeX:
a8essaIN [Phied 10N PaIURLIO ABeSSIN paseq-juauoduwo))
"MOTJ JUIAD/BIEP
A S[00) 159)/UONEPI[eA
o Re) Re) padopaop o SOX  UDALIP-JUAD $9, Le) $9, padopadp - 1aqrqns/1ysyqnd S IOM-IUIEL 0
N A A Sureg N A Hp A A A Surpg 9y} pue MO[j [OIIU0D ot I SO4dO
: : paseq-1uauoduwo))
10J WISTUBYDIW
IOAIIS /AU
YI0M-dUIBI] 910D
A PI[[ed 2IeMIppI
ON SO SO SO ON SO <MM~OMHW%M SO SK ON ON [0I3UOD Paseq-JudAg pue AHMMMW%H vOSYa
€1 'XISOd UONEIUNTIWOI ‘GO
JWIT)-[B31 JO SISISUO))
40V ¢
o ) ) o e} 9 “#8ojoutpa i1 o 9 $9, o wan s MQMWMM“MMM
N A A N A A -1iqexadorajuy N A A N [OIIUOD PIZI[IIUI)) T dRIVIN
: : pajuarIo-jusuodwo))
I0JBIPIIN
sauryoew
ON SO SI SO SO SO [PIL-HA ON  So% SR ON [013UOD paseq-JuaAq [0S pANqLISp VaAasy
QIEMI[PpIUI UQALIP-JUIAT
paseq-judAg
(NSd) Ppout
sypads-urrojie[q
JIoje[nUIS [Ppow (NId)
[epowr Juspuadapur
ON SO SO SO ON SO VII0D SOk SoX Prureudp Jusuoduwiod paseq-jusuoduro)) -wojyerd e
e s 14 4q ‘ -INIguadO
cgyguedo  parroddng SAmRRADIE
USALIp-[9pOw
S[I0M dwely
paseq-juauoduwo))
pasn
A1Imoag Bupam JuSWUOIAL awm [eay HOREUIPIOOS — 92IN08 S130[OUTDI) SMOPUIA\ XNUIT  IOJe[NUIIG SIUEI0} [opowt [o13u0D) [opow wa)sAg aureN
: Sruwreud(q  paInqLnsIq : romeypg  uadQ : : : : Jneq

pue spIepuels

‘panunuo)) :7 F14Vv],



11

Journal of Robotics

dL1LH
“1ouadQ
AVOS “TINX 1udpuadapur
SR SO ON ON SO SO (0>0103d SO SoX SR ON SIOSIEOTY o14g
dDJ. Suisn
paseq 19008
SUWISTURYOIW
UOT)EDIUNUITIOD
ON SO SO ON ON ON  Paseq1ay20S SO Sk SO ON paseq-aSessajy A10WIOW PATRYS dUWEIJOqOY
pue aqusqns/ysiqnd
PpajudrIo-3essay
Od ‘o>0301d JI0je[NUIS 2IN)0)1DIR
SR SO SO ON ON SO dDJ1. Sursn ON  So% ot M usuLIe))
A . ac PHQAY L
Paseq 19008 :
) e) ) o SO{ WO e} $9, Butsessay 2INJOIYDIR PIIdLLT 2IBMBIOQOT
A A A N A O A A oquOSqNS/YSTIqng 19dIE P T 10qoI]
("9
searour
ac astou ‘uon
2130 ‘ourduyg -ONIsIp
. sorureuA (g eo1sdyd) 2IN}OATYOIR
ON ON SO SO{ WO wd0 SO SoX SO oan[rey ss2001dnm SJ0QIM
ealaREling 201Ap
190S dOL [edrureudp
e[S
ue)
SIK ON SO{ WO SO SoX ON SOX JuadIys
SO ON ON ON SO WWOD) SO SO ON ON s1ahe] ¢ dsyda
[opow
Aquo g3y uo syads-wrojyerd pue
paseq auo pue [y jusuoduwod
XNO [epow Juspuadopur
(OV.L/ADV) LM S[PpOL : d
pue xnury uLI0J]e|
SOK SO SO BLAR SO SO V00 SOk SoX SOK padopac 1ou0> Axeniqre QINIOA)IPIE  JJOSIIBUIS
uo paseq Sureg QAB[S/I9)SEUL :
m p ’ ” USALIp-[opot
JUo ‘suon aquosqns/ysiqnd
SunI ‘sak . 91BMIJOS
-ejuawa[duy TOAIIS /IUID
paseq-jusuodurod
20UIIDJAI OM], .
PAIUILIO-DIAIIG
Ayumoo BuLaM JuoMIUOIAU owm [eay | OHUIPIOOS INOS g, o%uumos SMOPUIA\ XNUIT  IOJe[NUUT SIUEIION sSpou [01}UO! spour wajsk owe
JLIN29G SreuAq  poInqIIsI SRR omeypg  uadO fsofoutpay PUIM T Je[nuIs neg [Ppot [o[UODH PP 1SAS N

pue spIepue)s

‘panunuo)) :7 414Vv],



12

SPICA [88, 91, 92], BABEL [93, 94], Dave’s Robotic Oper-
ating System (DROS) [95], Intelligent Robot Software Plat-
form (IRSP) [96], K-MIDDLEWARE [97], the Washington
University Robotics Development Environment (WURDE)
[98], OpenRDK [99, 100], OpenJAUS [101], Open Robot
Controller Computer Aided Design (ORCCAD) [102-104],
Pyro [77-81], Robot Intelligence Kernel (RIK) [105, 106],
MissionLab [107-110], and Mobile Robot Programming
Toolkit (MRPT) [111].

14. Conclusions and Bibliography
Access Information

In this survey, we outlined the architecture and some impor-
tant attributes, with the appropriate bibliographic references
for most of the existing robotic middleware, such as Player,
CLARAty, ORCA, MIRO, UPNP, RT-Middleware, ASEBA,
MARIE, RSCA, OPRoS, ROS, MRDS, OROCOS, SmartSoft,
ERSP, Skilligent, Webots, Irobotaware, Pyro, Carmen, and
RoboFrame. All references listed in this paper can be found in
http://wwwlbpt.bridgeport.edu/~aelkady/Survey.bib. They
are stored in a BIBTEX format file: survey.bib.

Acknowledgments

The authors would like to sincerely thank Oskar von
Stryk (ROBOFrame), Stphane Magnenat (ASEBA), Reid
Simmons and Nesnas, Issa (CLARAty), Francois Michaud
and Carle Cot (Marie), Ando Noriaki (OpenRTM-aist),
Alex Makarenko (ORCA), Richard Vaughan (Player), Jean-
Christophe Baillie (URBI), Sang C. Ahn (Upnp), Dou-
glas.Few (RIK), and Byoundyoul Song (OPROS), for their
help and support while compiling this survey. They
also would like to express their gratitude to Christian
Schlegel (SmartSoft), Alex Makarenko (ORCA), Kasper
Stoy (Player), Olivier Michel(Webots), Ronald (Arkin Mis-
sionLab), Byoundyoul Song (OPROS), and Dirk Thomas
(RoboFrame) who reviewed and provided them with very
useful comments regarding Table 2, which summarizes a
comparison of the attributes of main robotic middeware
designs.

References

[1] W. D. Smart, “Is a common middleware for robotics possi-
ble?” in Proceedings of the IEEE/RS] International Conference
on Intelligent Robots and Systems Workshop on Measures
and Procedures for the Evaluation of Robot Architectures and
Middleware (IROS ’07), E. Prassler, K. Nilsson, and A.
Shakhimardanov, Eds., 2007.

[2] J. Kramer and M. Scheutz, “Development environments for
autonomous mobile robots: a survey,” Autonomous Robots,
vol. 22, no. 2, pp. 101-132, 2007.

[3] N. Mohamed, J. Al-Jaroodi, and 1. Jawhar, “Middleware for
robotics: a survey,” in Proceedings of the IEEE International
Conference on Robotics, Automation and Mechatronics (RAM
’08), pp. 736742, September 2008.

[4] N. Mohamed, J. Al-Jaroodi, and 1. Jawhar, “A review of
middleware for networked robots,” International Journal of

Journal of Robotics

Computer Science and Network Security, vol. 9, no. 5, pp. 139—
148, 2009.

[5] M. Namoshe, N. Tlale, C. Kumile, and G. Bright, “Open mid-
dleware for robotics,” in Proceedings of the 15th International
Conference on Mechatronics and Machine Vision in Practice
(M2VIP °08), pp. 189-194, Auckland, New Zealand, Decem-
ber 2008.

[6] D. Bakken, “Middleware,” in Encyclopedia of Distributed
Computing, J. Urban and P. Dasgupta, Eds., Kluwer Aca-
demic, Dodrecht, The Netherlands, 2001.

[7] I. A. D. Nesnas, R. Simmons, D. Gaines et al., “claraty: chal-
lenges and steps toward reusable robotic software,” Interna-
tional Journal of Advanced Robotic Systems, vol. 3, no. 1, pp.
023-030, 2006.

[8] B. P. Gerkey and M. J. Mataric, “Sold!: auction methods

for multi-robot coordination,” in Proceedings of the IEEE

Transactions on Robotics and Automation, Special Issue on

Multi-robot Systems, 2001.

B. Gerkey, R. Vaughan, and A. Howard, “Howard, the

player/stage project: tools for multi-robot and distributed

sensor systems,” in Proceedings of the 11th International

Conference on Advanced Robotics (ICAR ’03), Coimbra,

Portugal, 2003.

[10] B. P. Gerkey, R. T. Vaughan, K. Stey, A. Howard, G. S.
Sukhatme, and M. J. Matari¢, “Most valuable player: a robot
device server for distributed control,” in Proceedings of the
IEEE/RS] International Conference on Intelligent Robots and
Systems, pp. 1226-1231, Wailea, Hawaii, USA, November
2001.

[11] R. T. Vaughan, B. P. Gerkey, and A. Howard, “Howard,
on device abstractions for portable, reusable robot code,”
in Proceedings of the IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS °03), pp. 2121-2427, Las
Vegas, Nev, USA, 2003.

[12] M. Kranz, R. B. Rusu, A. Maldonado, M. Beetz, and A.
Schmidt, “A player/stage system for context-aware intelligent
environments,” in Proceedings of the System Support for Ubig-
uitous Computing Workshop, at the 8th Annual Conference
on Ubiquitous Computing (Ubicomp 06), Orange, Calif,USA,
September 2006.

[13] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player
2.0: toward a practical robot programming framework,” in
Proceedings of the Australasian Conference on Robotics and
Automation (ACRA °05), Sydney, Australia, 2005.

[14] T. Estlin, R. Volpe, I. A. D. Nesnas et al., “Decision-making
in a robotic architecture for autonomy,” in Proceedings of the
International Symposium on Artificial Intelligence, Robotics,
and Automation in Space (iSAIRAS ’01), pp. 92152-97383,
2001.

[15] 1. A. D. Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras, and
D. Mutz, “Toward developing reusable software components
for robotic applications,” in Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems
(IROS °01), pp. 2375-2383, November 2001.

[16] R. Volpe, 1. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras, and
H. Das, “The claraty architecture for robotic autonomy,” in
Proceedings of the IEEE Aerospace Conference, vol. 1, pp. 1121—
1132, Big Sky, Mont, USA, March 2001.

[17] L. A. D. Nesnas, “The claraty project: coping with hardware
and software heterogeneity,” in Springer Tracts in Advanced
Robotics, vol. 30, pp. 31-70, Springer, Berlin, Germany, 2007.

[18] A. Diaz-Calderon, I. A. D. Nesnas, H. D. Nayar, and W. S.
Kim, “Towards a unified representation of mechanisms for

5



Journal of Robotics

(19

(30

robotic control software,” International Journal of Advanced
Robotic Systems, vol. 3, no. 1, pp. 061-066, 2006.

T. Estlin, D. Gaines, C. Chouinard et al., “Enabling au-
tonomous rover science through dynamic planning and
scheduling,” in Proceedings of the IEEE Aerospace Conference,
pp- 385-396, March 2005.

M. Bualat, C. Kunz, A. Wright, and I. A. D. Nesnas, “Devel-
oping an autonomy infusion infrastructure for Robotic
exploration,” in Proceedings of the IEEE Aerospace Conference,
vol. 2, pp. 849-860, March 2004.

M. Bualat, C. Kunz, A. Wright, and I. A. D. Nesnas, “Develop-
ing an autonomy infusion infrastructurefor Robotic explo-
ration,” in Proceedings of the IEEE Aerospace Conference, vol.
2, pp. 849-860, March 2004.

R. Volpe, “Rover functional autonomy development for the
mars mobile science laboratory,” in Proceedings of the IEEE
Aerospace Conference, vol. 2, pp. 643—652, 2003.

I. A. D. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T.
Estlin, and W. S. Kim, “Claraty: an architecture for reusable
robotic software,” in Space Robots, vol. 5083 of Proceedings of
SPIE, pp. 253-264, April 2003,

I. A. D. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and
T. Estlin, “Claraty and challenges of developing interoperable
robotic software,” in Proceedings of the IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS ’03), pp.
2428-2435, October 2003.

C. Urmson, R. Simmons, and I. A. D. Nesnas, “A generic
framework for robotic navigation,” in Proceedings of the IEEE
Aerospace Conference, vol. 5, pp. 2463-2470, 2003.

C. Chouinard, E. Fisher, D. Gaines, T. Estlin, and S. Schaffer,
“An approach to autonomous operations for remote mobile
robotic exploration,” in Proceedings of the IEEE Aerospace
Conference, vol. 1, pp. 1-322, 2003.

Y. Tsuchiya, M. Mizukawa, T. Suehiro, N. Ando, H.
Nakamoto, and A. Tkezoe, “Development of light-weight RT-
component (LwRTC) on embedded processor-application to
crawler control subsystem in the physical agent system,” in
Proceedings of the International Joint Conference (SICE-ICASE
’06), pp. 2618-2622, October 2006.

K. Ohara, T. Suzuki, N. Ando, B. Kim, K. Ohba, and K.
Tanie, “Distributed control of robot functions using RT mid-
dleware,” in Proceedings of the International Joint Conference
(SICE-ICASE ’06), pp. 2629-2632, October 2006.

N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. K.
Yoon, “RT-component object model in RT-middleware—
distributed component middleware for RT (Robot Technol-
ogy),” in Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation (CIRA
’05), pp. 457462, June 2005.

N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. K. Yoon,
“RT-middleware: distributed component middleware for
RT (Robot Technology),” in Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems
(IROS °05), pp- 3933-3938, 2005.

N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. K. Yoon,
“Composite component framework for RT-Middleware
(Robot technology middleware),” in Proceedings of the
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM °05), pp. 1330-1335, Monterey, Calif,
USA, July 2005.

H. Chishiro, Y. Fujita, A. Takeda et al., “Extended RT-com-
ponent framework for RT-middleware,” in Proceedings of the

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[41]

[42]

(43]

(44]

(45]

(46]

[47]

13

IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC "09), pp.
161-168, Tokyo, Japan, March 2009.

H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar,
“Miro—middleware for mobile robot applications,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 4, pp.
493-497, 2002.

S. Enderle, H. Utz, S. Sablatnég, S. Simon, G. Kraet-
zschmar, and G. Palm, “Miro: middleware for autonomous
mobile robots,” in Telematics Applications in Automation and
Robotics, 2001.

K. Johns and T. Taylor, Professional Microsoft Robotics Devel-
oper Studio, Wrox Press, Birmingham, UK, 2008.

J. Jackson, “Microsoft robotics studio: a technical introduc-
tion,” IEEE Robotics and Automation Magazine, vol. 14, no. 4,
pp- 82-87, 2007.

S. Morgan, Programming Microsoft Robotics Studio, Microsoft
Press, Redmond, Wash, USA, 2008.

C. Coté, D. Létourneau, F. Michaud et al., “Code reusability
tools for programming mobile robots,” in Proceedings of the
IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS °04), pp. 1820-1825, October 2004.

E. Beaudry, Y. Brosseau, C. Ct et al., “Reactive planning in
a motivated behavioral architecture,” in Proceedings of the
National Conference on Artificial Intelligence (AAAI °05), vol.
3, pp. 1242-1247, 2005.

C. Coté, Y. Brosseau, D. Létourneau, C. Raievsky, and F
Michaud, “Robotic software integration using MARIE,”
International Journal of Advanced Robotic Systems, vol. 3, no.
1, pp. 55-60, 2006.

C. Coté, D. Létourneau, C. Raievsky, Y. Brosseau, and F
Michaud, “Using marie for mobile robot component devel-
opment and integration,” Software Engineering for Experi-
mental Robotics Book Series, vol. 30 of Springer Tracts in
Advanced Robotics, Springer, Berlin, Germany, 2007.

A. B. Alexei Makarenko and T. Kaupp, “On the benefits of
making robotic software frameworks thin,” in Proceedings
of the Benefits of Making Robotic Software Frameworks
Thin IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS ’07), San Diego, Calif, USA, October-
November 2007.

T. K. Alexei Makarenko and A. Brooks, “Orca: components
for robotics,” in Proceedings of IEEE/RS] International Con-
ference on Intelligent Robots and Systems Workshop on Robotic
Standardization (IROS °06), Beijing, China, October 2006.

A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A.
Orebick, “Towards component-based robotics,” in Proceed-
ings of the IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS °05), pp. 3567—3572, Edmonton,
Canada, August 2005.

C. Jang, B. Song, S. Jung et al., “A development of software
component framework for robotic services,” in Proceedings
of the 4th International Conference on Computer Sciences and
Convergence Information Technology (ICCIT °09), pp. 1-6,
Seoul, Korea, November 2009.

B. Song, S. Jung, C. Jang, and S. Kim, “An introduction to
robot component model for opros(open platform for robotic
services),” in Proceedings of the International Conference
Simulation, Modeling Programming for Autonomous Robots
Workshop, pp. 592-603, 2008.

C.Jang, S.I. Lee, S. W. Jung et al., “Opros: a new component-
based robot software platform,” ETRI Journal, vol. 32, no. 5,
pp. 646-656, 2010.



14

[48] Ersp 3.1 software development kit, 2010, http://www.evolu-
tion.com/products/ersp/.

[49] Webots, 2009, http://www.cyberbotics.com.

[50] O. Michel, “Cyberbotics ltd. webots professional mobile
robot simulation,” International Journal of Advanced Robotics
Systems, vol. 1, pp. 39-42, 2004.

[51] Robot operating system (ros), 2011, http://www.ros.org.

[52] M. Quigley, K. Conley, B. Gerkey et al., “Ros: an open-source
robot operating system,” in Proceedings of the Workshop on
Open Source Software (ICRA °09), 2009.

[53] P. Soetens, RTT: Real-Time Toolkit, 2010, http://www.Oro-
cos.org/rtt.

[54] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time
motion control core of the Orocos project,” in Proceedings of
the IEEE International Conference on Robotics and Automa-
tion, pp. 2766—2771, September 2003.

[55] P. Soetens and H. Bruyninckx, “Realtime hybrid task-based
control for robots and machine tools,” in Proceedings of the
IEEE International Conference on Robotics and Automation,
pp. 260-265, April 2005.

[56] P. Soetens, A software framework for real-time and dis-
tributed robot and machine control, Ph.D. thesis, Depart-
ment of Mechanical Engineering, Katholieke Universiteit
Leuven, Heverlee, Belgium, 2006, http://www.mech.kuleu-
ven.be/dept/resources/docs/soetens.pdf.

[57] K. Gadeyne, T. Lefebvre, and H. Bruyninckx, “Bayesian
hybrid model-state estimation applied to simultaneous
contact formation recognition and geometrical parameter
estimation,” The International Journal of Robotics Research,
vol. 24, no. 8, pp. 615-630, 2005.

[58] K. Gadeyne, Sequential monte carlo methods for rigorous
bayesian modeling of autonomous compliant motion, Ph.D.
thesis, Department of Mechanical Engineering, Katholieke
Universiteit Leuven, 2005.

[59] H. Bruyninckx, J. De Schutter, T. Lefebvre et al., “Building
blocks for slam in autonomous compliant motion,” in Pro-
ceedings of the International Symposium on Robotics Research
(ISRR °03), pp. 432-441, 2003.

[60] J. Yoo, S. Kim, and S. Hong, “The robot software commu-
nications architecture (RSCA): QoS-aware middleware for
networked service robots,” in Proceedings of the International
Joint Conference (SICE-ICASE ’06), pp. 330-335, October
2006.

[61] Skilligent, 2010, http://www.skilligent.com/index.shtml.

[62] M. Friedmann, J. Kiener, S. Petters, D. Thomas, and O.
von Stryk, “Modular software architecture for teams of
cooperating, heterogeneous robots,” in Proceedings of the
IEEE International Conference on Robotics and Biomimetics
(ROBIO °06), pp. 613-618, Kunming, China, December
2006.

[63] M. Friedmann, J. Kiener, S. Petters, D. Thomas, and O.
von Stryk, “Reusable architecture and tools for teams of
lightweight heterogeneous robots,” in Proceedings of the Ist
IFAC Workshop on Multivehicle Systems (IFAC °06), pp. 51—
56, Salvador, Brazil, 2006.

[64] S. Petters, D. Thomas, and O. von Stryk, “Roboframe—a
modular software framework for lightweight autonomous
robots,” in Proceedings of the Workshop on Measures and
Procedures for the Evaluation of Robot Architectures and
Middleware of the International Conference on Intelligent
Robots and Systems (IEEE/RSJ ’07), San Diego, Calif, USA,
2007.

Journal of Robotics

[65] D. Thomas and O. von Stryk, “Efficient communication in
autonomous robot software,” in Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems
(IROS ’10), pp- 1006-1011, Taipei, Taiwan, 2010.

[66] C. Schlegel and R. Woerz, “Software framework smartsoft for
implementing sensorimotor systems,” in Proceedings of the
IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS ’99), vol. 3, pp. 1610-1616, October 1999.

[67] C. Schlegel and R. Worz, “Interfacing different layers of a
multilayer architecture for sensorimotor systems using the
object-oriented framework smartsoft,” in Proceedings of the
3rd European Workshop on Advanced Mobile Robots (Eurobot
99), pp. 195202, 1999.

[68] C. Schlegel, T. Hassler, A. Lotz, and A. Steck, “Robotic soft-
ware systems: from code-driven to model-driven designs,”
in Proceedings of the International Conference on Advanced
Robotics (ICAR °09), pp. 1-8, Munich, Germany, June 2009.

[69] C. Schlegel, “Communication patterns as key towards
component-based robotics,” International Journal of
Advanced Robotic Systems, vol. 3, no. 1, pp. 49-54, 2006.

[70] Aware 2 robot intelligient software, 2010, http://www.irobot
.com/gi/developers/Aware/.

[71] S. Magnenat, P. Retornaz, M. Bonani, V. Longchamp, and
F. Mondada, “ASEBA: a modular architecture for event-
based control of complex robots,” IEEE/ASME Transactions
on Mechatronics, pp. 1-9, 2010.

[72] S. Magnenat, V. Longchamp, and F. Mondada, “Aseba, an
event-based middleware for distributed robot control,” in
Proceedings of the Workshops DVD of International Conference
on Intelligent Robots and Systems (IROS °07), 2007.

[73] Python robotics website, 2011, http://www.pyrorobotics.org.

[74] Carnegie mellon robot navigation toolkit, 2008, http://
carmen.sourceforge.net.

[75] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on
standardization in mobile robot programming: the carnegie
mellon navigation (carmen) toolkit,” in Proceedings of the
IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS °03), pp. 2436-2441, October 2003.

[76] Carmen, the carnegie mellon robot navigation toolkit, 2008,
http://carmen.sourceforge.net.

[77] D. Blank, D. Kumar, and Bryn Mawr College, “Pyro:
a python-based versatile programming environment for
teaching robotics,” ACM Journal on Educational Resources in
Computing, vol. 3, no. 4, pp. 1-15, 2003.

[78] D. Blank, L. Meeden, and D. Kumar, “Python robotics:
an environment for exploring robotics beyond LEGOs,” in
Proceedings of the 34th Technical Symposium on Computer
Science Education (SIGCSE °03), pp. 317-321, ACM Press,
February 2003.

[79] D. S. Blank, D. Kumar, L. Meeden, and H. A. Yanco, “The
pyro toolkit for AT and robotics,” AI Magazine, vol. 27, no. 1,
pp- 39-50, 2006.

[80] D.Blank, D. Kumar, L. Meeden, and H. Yanco, “Pyro: an inte-
grated environment for Robotics education,” in Proceedings
of the 20th National Conference on Artificial Intelligence (AAAT
°05), pp. 1718-1719, July 2005.

[81] D. Blank, H. Yanco, D. Kumar, and L. Meeden, “Avoiding the
Karel-the-robot paradox: a framework for making sophisti-
cated robotics accessible,” in Proceedings of the Spring Sym-
posium on Accessible, Hands-on AI and Robotics Education
(AAAT 04), 2004.

[82] O. Michel, “Webots: professional mobile robot simulation,”
Journal of Advanced Robotics Systems, vol. 1, pp. 39—-42, 2004.



Journal of Robotics

[83] M. S. Michi Henning, Distributed programming with ice,

(84

]

2010, http://www.zeroc.com/doc/Ice-3.4.0/manual/.

R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P.
Miller, and M. G. Slack, “Experiences with an architecture
for intelligent, reactive agents,” Journal of Experimental and
Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 237-256,
1997.

H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time
motion control core of the Orocos project,” in Proceedings of
the IEEE International Conference on Robotics and Automa-
tion, vol. 2, pp. 2766-2771, September 2003.

Common object request broker architecture (corba), 2008,
http://www.omg.org/spec/ CORBA.

R. Volpe, I. A. D. Nesnas, D. Mutz, R. Petras, and H. Das,
“Claraty: coupled layer architecture for robotic autonomy,”
Tech. Rep., 2000, NASA Jet Propulsion Laboratory.

P. A. Baer, Platform-independent development of robot com-
munication software, Ph.D. thesis, University of Kassel,
Munich, Germany, 2008.

P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived
robot genes,” Robotics and Autonomous Systems, vol. 56, no.
1, pp. 29-45, 2008.

G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another
robot platform,” International Journal of Advanced Robotic
Systems, vol. 3, no. 1, pp. 43—48, 2006.

P. A. Baer, R. Reichle, and K. Geihs, “The spica devel-
opment framework—model-driven software development
for autonomous mobile robots,” in Proceedings of the 10th
International Conference on Intelligent Autonomous Systems
(IAS-10 °08), W. Burgard, R. Dillmann, C. Plagemann, and
N. Vahrenkamp, Eds., pp. 211-220, TAS Society, 2008.

U. Kaufmann, R. Reichle, C. Hoppe, and P. A. Baer, “An
unsupervised approach for adaptive color segmentation,” in
Proceedings of the 1st International Workshop on Robot Vision
(VISAPP ’07), March 2007.

J. A. Ferndndez-Madrigal, “The BABEL development system
for integrating heterogeneous robotic software,” Tech. Rep.,
System Engineering and Automation Department, University
of Mélaga, Malaga, Spain, 2003.

J. Fernandez-Madrigal, C. Galindo, and J. Gonzalez, “Inte-
grating heterogeneous robotic software,” in Proceedings of the
IEEE Mediterranean Electrotechnical Conference (MELECON
’06), pp. 433—436, Mélaga, Spain, May 2006.

Dave’s robotic operating system, 2009, http://dros.org/.

J. Y. Kwak, J. Y. Yoon, and R. H. Shinn, “An intelligent robot
architecture based on robot mark-up languages,” in Proceed-
ings of the IEEE International Conference on Engineering of
Intelligent Systems (ICEIS ’06), pp. 1-6, April 2006.

D.-H. Choi, S.-H. Kim, K.-K. Lee, B.-H. Beak, and H.-S.
Park, “Middleware architecture for module-based robot,” in
Proceedings of the International Joint Conference (SICE-ICASE
’06), pp. 4202—4205, Busan, South Korea, October 2006.

F. Heckel, T. Blakely, M. Dixon, C. Wilson, and W. D.
Smart, “The wurde robotics middleware and ride multi-
robot tele-operation interface,” in Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI °06), July
2006.

D. Calisi, A. Censi, L. Tocchi, and D. Nardi, “Openrdk:
a modular framework for robotic software development,”
in Proceedings of the International Conference on Intelligent
Robots and Systems (IROS °08), pp. 1872-1877, Nice, France,
September 2008.

[100]

[104]

[105]

[106]

[107]

[108]

(109]

[110]

[111]

15

D. Calisi, A. Censi, L. Tocchi, and D. Nardi, “Openrdk:
a modular framework for robotic software development,”
in Proceedings of the IEEE/RS] International Conference on
Intelligent Robots and Systems (SECESA *08), pp. 1872-1877,
2008.

Openjaus, 2010, http://www.openjaus.com/.

D. Simon, B. Espiau, K. Kapellos, and R. Pissard-Gibollet,
“Orccad: software engineering for real-time robotics a tech-
nical insight,” Robotica, vol. 15, no. 1, pp. 111-115, 1997.

D. Simon, R. Pissard-Gibollet, and S. Arias, “Orccad, a
framework for safe robot control design and implementa-
tion,” in Proceedings of the 1st National Workshop on Control
Architectures of Robots: Software Approaches and Issues(CAR
’06), Montpellier, France, 2006.

D. Simon, F Boudin, R. Pissard-Gibollet, and S. Arias,
“Orccad, robot controller model and its support using eclipse
modeling tools,” in Proceedings of the 5th National Conference
on “Control Architecture of Robots” (CAR ’10), 2010.

D. J. Bruemmer, D. A. Few, M. C. Walton, and C. W. Nielsen,
“The robot intelligence kernel,” in Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI *06), pp.
1960-1961, Boston, Mass, USA, July 2006.

Robot intelligence kernel, 2010, https://inlportal.inl.gov/
portal/server.pt/community/robot_intelligence_kernel/457.
D. C. Mackenzie, R. C. Arkin, and J. M. Cameron, “Mul-
tiagent mission specification and execution,” Autonomous
Robots, vol. 4, no. 1, pp. 29-52, 1997.

D. C. MacKenzie and R. C. Arkin, “Evaluating the usability
of robot programming toolsets,” International Journal of
Robotics Research, vol. 17, no. 4, pp. 381-401, 1998.

Y. Endo, D. MacKenzie, and R. C. Arkin, “Usability evalua-
tion of high-level user assistance for robot mission specifi-
cation,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 34, no. 2, pp. 168180, 2004.

G. T. M. R. Laboratory, User manual for missionlab ver-
sion 7.0, 2006, http://www.cc.gatech.edu/aimosaic/robot-
lab/research//MissionLab/mlab_manual-7.0.pdf.

The mobile robot programming toolkit, 2010, http://www
.mrpt.org/.



Advances in

Civil Engineering

Journal of

Robotics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

International Journal of

Rotating
Machinery

The Scientific o AR
World Journal §ensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

o --,
» |
-

VLS| Design

Modelling &
International ;v:vurma\lmf Simulation
Navigation and i inaari
Observation inEngine gy

e

77

Active and Passive

Propagation Electronic Components

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering




