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Autonomous robots are complex systems that require the interaction between numerous heterogeneous components (software and
hardware). Because of the increase in complexity of robotic applications and the diverse range of hardware, robotic middleware
is designed to manage the complexity and heterogeneity of the hardware and applications, promote the integration of new
technologies, simplify software design, hide the complexity of low-level communication and the sensor heterogeneity of the
sensors, improve software quality, reuse robotic software infrastructure across multiple research efforts, and to reduce production
costs. This paper presents a literature survey and attribute-based bibliography of the current state of the art in robotic middleware
design. The main aim of the survey is to assist robotic middleware researchers in evaluating the strengths and weaknesses of
current approaches and their appropriateness for their applications. Furthermore, we provide a comprehensive set of appropriate

bibliographic references that are classified based on middleware attributes.

1. Introduction

Robot middleware is an abstraction layer that resides
between the operating system and software applications
(as shown in Figure1). It is designed to manage the
heterogeneity of the hardware, improve software application
quality, simplify software design, and reduce development
costs. A developer needs only to build the logic or algorithm
as a component, after which the component can be combined
and integrated with other existing components. Further-
more, if he wants to modify and improve his component, he
needs only to replace the old one with the new one. There-
fore, experiment efficiency will improve. In [1], the authors
outline some of the problems faced in the development of
some robotics middleware. A survey of robot development
environments (RDEs) by Kramer and Scheutz [2] described
nine open source, freely available RDEs for mobile robots,
evaluated and compared them from various points of view
with suggestions of how to use the results of the survey,
and concluded with a brief discussion of future trends in
RDE design. Mohamed et al. [3] provide a short overview

of several research projects in middleware for robotics and
their main objective. Mohamed et al. [4] provide an overview
study of networked robot middleware and different criteria
for evaluating networked robot middleware. Furthermore,
in [5], some freely available middleware frameworks for
robotics are addressed, including their technologies within
the field of multirobot systems.

This paper is structured as follows. Section 2 presents an
overview and the objectives of current middleware solutions.
Some attributes, focusing on the architecture, simulation
environment, standards and technologies, support for a
distributed environment, security for accessing modules,
fault detection and recovery, real-time and behavior coor-
dination capabilities, and open-source and dynamic wiring
for the most of the existing robotic middleware frameworks,
are then discussed in the following sections. Each section
describing an attribute for different middleware structures
includes an embedded set of the appropriate bibliographic
references to provide researchers with easy access to the
current state of the art research in the area. The final section
summarizes the survey findings.
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FiGure 1: Middleware layers.

The primary advantages of the robotics middleware are
Software Modularity, Hardware Architecture Abstraction to
hide the low-level device-specific details of the device in
order to give the developers more convenient, standardized
hardware APIs, Platform Independence, and Portability to
be able to run on any platform with only changing in
the system’s configuration. Furthermore, the core of the
middleware should not depend on the specific device or
software algorithm. The middleware should be scalable
and upgradable with the growing of its components. The
middleware should be easy-to-use, robust, reliable, easy to
maintain, efficient flexible, and support for parallelism and
distribution systems. It should also allow for changing in the
configuration of control flow and the data flow at runtime.
It is favorable to be real-time system and provides some
security aspects such as authentication, authorization, and
secure communication.

2. Robot Software

2.1. Middleware. Bakken et al. [6] defined middleware
as follows: “a class of software technologies designed to
help manage the complexity and heterogeneity inherent in
distributed systems. It is defined as a layer of software above
the operating system but below the application program that
provides a common programming abstraction across a dis-
tributed system.” In this section, several robotics middleware
such as Player, CLARAty, Player, Miro, and OpenRTM-aist
and their attributes are described. For each attribute, a short
description of the relevant research attribute is described and
several representative references are provided.

The Player project started at the University of Southern
California [8-13]. Player is a “distributed device repository
server” [13] for robots, sensors, and actuators. A client pro-
gram communicates with Player, running on the robot, using
a separate TCP socket connection for data transfer. Coupled
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Layer Architecture for Robotic Autonomy (CLARAty) [7, 14—
26] is an attempt by NASA, through collaboration with the
California Institute of Technology’s Jet Propulsion Labora-
tory, Ames Research Center, Carnegie Mellon University,
and the University of Minnesota. OpenRTMaist [27-32]
is a software platform developed by the National Institute
of Advanced Industrial Science and Technology-Intelligent
Systems Research Institute.

Miro [33, 34] is an object-oriented robotics middleware
developed by the University of Ulm, Germany. Microsoft
Robotics Developer Studio (MRDS) [35-37] is a Windows-
based environment for robot control and simulation. Marie
(Mobile and Autonomous Robotics Integration Environ-
ment) [38-41] was developed by the Mobile Robotics and
Intelligent Systems Laboratory, University of Sherbrooke,
Canada. Orca [42-44], and OPRoS (Open Platform for
Robotic Services) [45—-47], designed by the IT R&D program
of the Ministry of Knowledge Economy of Korea, are
component-based software frameworks. The ERSP Software
Development Kit [48] provides technologies for vision,
navigation, and system development. Webots [49, 50] is a
commercial robot simulation package for fast prototyping
and simulation of mobile robots. Robot Operating System
(ROS) [51] is a “thin, message-based, peer-to-peer” [52],
robotics middleware designed for mobile manipulators.

The Open Robot Control Software (Orocos) [53-59] is a
Real-Time Toolkit (RTT) that helps the developers to build
C++ robotics applications. RSCA (Robot Software Com-
munication Architecture) [60], developed in Seoul National
University, is a robot middleware for networked home service
robots. Skilligent Robot Behavior Learning System [61],
RoboFrame [62-65], SmartSoft [66—-69], iRobot AWARE
[70], developed by iRobot, and ASEBA [71, 72] are some
examples of robotic middleware platforms. RoboFrame [62—
65] is an OO middleware developed using C++. Table 1
summarizes the objectives of some commonly used robotics
middleware.

2.2. Robot Toolkit. A robot toolkit is a set of software tools
used by developers that provides them with the facilities to
create their own robot applications, such as CARMEN and
Pyro. Carnegie Mellon Navigation (CARMEN) Toolkit [74—
76] is an open-source collection of robot control software.
Pyro [77-81], written in Python, stands for Python Robotics
which provides “a set of abstractions that allows students to
write platform-independent robot programs.” [81].

3. Architectural Approach

In this section, the architecture of the previously discussed
middleware platforms is described. CLARAty’s architecture
has two distinct layers (as shown in Figure 2): the Functional
Layer and the Decision Layer. The Functional Layer includes
a number of generic components such as “digital and analog
I/0, motion control and coordination, locomotion, manipu-
lation, vision, navigation, mapping, terrain evaluation, path
planning, estimation, simulation, and system behavior” [7].
Furthermore, control algorithms are implemented in this
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TaBLE 1: Objectives of several robotics middleware frameworks.

Name Objectives

Orocos “Develops a general purpose modular framework for robot and machine control” [53]

Pyro “Provides a programming environment for easily exploring advanced topics in artificial intelligence and robotics
without having to worry about the lowlevel details of the underlying hardware” [73]

Player Provides a development framework supporting different hardware devices and common services needed by different
robotic applications and transfers a controller from simulation to real robots with as little effort as possible

Orca “Enables software reuse in robotics using component-based development” [3]

Miro “Improves the software development process for mobile robots and enable interaction between robots and enterprise
systems using the distributed object paradigm” [3]

OpenRTMaist Provides efficient development for robotic systems by proposing a modular software structure platform and “simplifies
the process of building robots by simply combining selected modules” [3]

ASEBA “Allows distributed control and efficient resources utilization of robots with multiprocessors” [3]

MARIE “Creates flexible distributed components that allows developers to share, reuse, and integrate new or existing software
programs for rapid robotic application development” [3] and integrates other middleware in a single robot
“Provides real-time support for robotic applications and to provide abstractions that makes robotic applications both

RSCA : A
portable and reusable on different hardware platforms” [3]

MRDS Provides a robotic software platform supporting a wide variety of hardware devices and a set of useful tools that
facilities the programming and debugging

OPROS “Establishes a component based standard software platform for the robot which enables complicated functions to be
developed easily by using the standardized components in the heterogeneous communication network” [46]
A reusable robotic framework to enable integration, maturation, and demonstration of advanced robotic technologies,

CLARAty from multiple institutions on NASA’s rover platforms in support of its technology programs (Mars and Intelligent
Systems)

ROS “Provides the operating system’s services such as “hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and package management” [51]

SmartSoft Implements sensorimotor systems based on communication patterns as central mean to achieve decoupling at various
levels and supports model-driven software development

ERSP “Provides cutting edge technologies for vision, navigation, and system development” [48]

Webots “Provides a rapid prototyping environment for modeling, programming and simulating mobile robots” [50]

RoboFrame Covers the special needs of autonomous lightweight robots such as dynamical locomotion and stability

layer, such as sensor-based manipulation, visual target track-
ing, and vision-based navigation. “The Decision Layer is a
global engine that reasons about system resources, the state
of the system and its environment, and mission constraints.
It includes general planners, executives, schedulers, activity
databases, and rover and planner-specific heuristics. The
Decision Layer plans, schedules, and executes activity plans.
It also monitors the execution modifying the sequence of
activities dynamically, when necessary” [23]. The relation
between the Decision and Functional Layers is a client-server
model through a publish/subscribe communication scheme.

Webots [82] is organized as an OOP interface for robot
control. Objects correspond to robot devices such as dif-
ferential wheels, camera, distance sensor, laser range-finder,
and accelerometer. As described in [64], two mechanisms
are implemented in RoboFrame to exchange data between
the modules: a blackboard architecture and mutual exclusion
mechanisms for large data structure, and a message-based
system for smaller data structures.

MIRO [33] consists of three layers (as shown in Figure 3):
the MIRO device, MIRO service, and MIRO framework lay-
ers. The MIRO device layer, which is a platform dependent,

provides interface abstractions for the low-level hardware
details (all sensor and actuator devices). MIRO service layer
provides service abstractions for sensors and actuators by
means of CORBA interface definition language (IDL). “The
Miro Class Framework provides a number of often-used
functional modules for mobile robot control, like modules
for mapping, self-localization, behavior generation, path
planning, logging and visualization facilities” [33].

Marie consists of three layers [40]: Application, Compo-
nent, and Core Layers. Application/Component layers pro-
vide some tools for building applications/components. The
Core Layer consists of low-level tools for communication,
data handling, and I/O control. Furthermore, Marie uses a
centralized control unit called the Mediator Design Pattern
(MDP) to interact with each application independently, as
shown in Figure 4. As described in [38], Marie uses four
functional components for interaction and communication
between the applications through a centralized control unit
(CCU) based on the MDP: Application Adapter (AA),
Communication Adapters (CAs), Communication Manager
(CM), and Application manager (AM). The AA is responsi-
ble for communication between the CCU and applications.
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FiGgure 3: MIRO abstraction layers (© (2002) IEEE) (reproduced
from [33]).

For integration with the system, “each application should
have its own AA in order to encapsulate communication
mechanisms, services, and configurations. The CA is respon-
sible for translating information between different com-
munication protocols and mechanisms. It allows different
applications to exchange data correctly” [40]. The common
types of CA are Mailbox (“data buffer between asynchronous
components” [40]), SharedMap (“It forwards incoming data
to multiple outputs” [40]), Splitter (“a push-in/pull-out data
structure used to store system states that can be accessed by

Processing node Processing node
App App
MARIE
App App
Mediat
k ediator App

App

Processing node Processing node

FIGURE 4: MARIE’s adaptation of the mediator pattern for dis-
tributed system. (© (2004) IEEE) (reproduced from [38] with
permission of Dr. Carle C6té and Dr. Frangois Michaud).

many components” [40]), and Switch (“It sends only one of
its inputs to the output port” [40]). “The CM is responsible
for creating and managing communication links between
Application Adapters. The AM is responsible for control
and management of the whole system, by coordinating
system states. It also configures and controls all components
available in the system.” [40].
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SmartSoft consists of three layers [67], as shown in
Figure 5, Skill, Sequencing, and Deliberation Layers. A
module of the Skill Layer, such as the path planner and
the mapper, works simultaneously as client and server.
The Sequencing Layer selects and synchronizes the required
behaviors, according to the actual situation, to be executed.
The Deliberation Layer contains time-consuming algorithms
such as symbolic action planning.

ERSP [48] consists of the three primary layers: Hardware
Abstraction Layer (HAL), Behavior Execution Layer (BEL),
and Task Execution Layer. The HAL hides the low-level
details of the robot’s hardware and operating system. The
BEL contains sensing, decision-making, and autonomous
action modules. “The TEL provides a high-level, goal-
oriented method of programming and an interface to the
BEL” [48]. Pyro consists of several modules, such as direct
control, reactive control, behavior-based control, fuzzy logic,
and finite state machine. Orca [43] is a component-based
middleware. Communication between its components is
handled by the Internet Communication Engine (Ice) which
is a general-purpose communication middleware [83], as
shown in Figure 6.

OpenRTM-aist [28] is a component-based framework.
The RT Component may be a device unit, like a servomotor,
and a sensor, or a combination of device units, such as
a mobile platform and arm or software modules, such
as control algorithm or image processing algorithm. The
architecture of the RT Component is shown in Figure 7
[28]. Each RT Component has the interfaces, called Ports,
to communicate with other components or exchange data.
The RT system is constructed by connecting the ports of RT-
components.

ORoCoS is a Real-Time Toolkit that provides the com-
ponents to be able to run on a real-time operating system.
As described in [53], it consists of the following libraries:
the Orocos Components Library (OCL) that provides some
ready-to-use control components, the Orocos Kinematics
and Dynamics Library (KDL) that provides the real-time
calculation of kinematic chains, and the Orocos Bayesian
Filtering Library (BFL), such as Kalman Filters and Particle
Filters.

Skilligent [61] is a modular-structured framework. The
core of the Skilligent Robot Learning and Behavior Con-
trol System consists of various modules, such as Audio
Recognition and Robot Learning, and Behavior Execution
and Coordination. Furthermore, various external software
modules can be attached to the core, as shown in Figure 8.

OPRoS is a component-based platform supporting
a client/server scheme for control flow and a pub-
lisher/subscriber scheme for data/event flow. ROS is a
“metaoperating system” [51] for robot software consists of
many small tools designed to work together. “The ROS
system is a computation graph consisting of a set of
nodes communicating with one another over edges” [51]. It
consists of nodes (software modules), messages (passed peer
to peer), topics, and services (analogous to web services).
Nodes communicate together by passing messages through
publish/subscribe model. Messages are not based on a
specific programming language. “A node sends a message by

publishing it to a given topic, which is simply a string. A node
that is interested in a certain kind of data will subscribe to the
appropriate topic.” [51].

There are four main components in MRDS [36]: Con-
currency and Coordination Runtime (CCR), Decentralized
Software Services (DSSs), Visual Programming Language
(VPL), and Visual Simulation Environment (VSE). The CCR
isa .NET-based concurrent library for coordinating between
the multiple sensors and robot actuator and managing
asynchronous, parallel tasks through messages. DSS is a
service-oriented runtime allowing multiple services to work
together in order to achieve certain tasks and behaviors. VPL
is integrated with Visual Studio to give the developers the
facilities to implement a program through drag and drop
blocks (activities or services) onto the design surface. A
program, implemented with VPL, can collect and process
data from the various sensors and create autonomous
behavior for any robot that has a distance-measuring device
and differential drive system. Finally, VSE is a simulation
environment (Figure 9).

Player [13] is a device server (application server) with a
collection of dynamically loadable device-shared libraries. It
is a queue-based message passing system, consisting of two
parts: the Player Core and the Transport Layer. “The core
system includes the device and driver classes, the dynamic
library loading code, configuration file parsing and the driver
registry” [13]. Each driver has a single incoming message
queue and can publish messages to the broadcast data and to
all other drivers’ subscribed client queues. The core library
defines message syntax and coordinates the passing of these
messages. The Transport Layer is independent of device
drivers and is based on TCP communication protocol using
sockets (and message queues).

Irobot Aware is implemented as a data messaging sys-
tem designed through a publisher/subscriber scheme. As
described in [70], Irobotware consists of the following:
base tools and component, robotics, and operator control
unit (OCU) frameworks. The base tools are open-source
software packages dealing with the low-level details of
the OS and hardware. Component/Robotics/OCU frame-
works provide the software applications with infrastructure
for autonomous networked systems/mobile robot-specific
applications/real-time OCU controls and displays.

RSCA “consists of a real-time operating system, a
communication middleware, and a deployment middleware
called core framework” [60]. CARMEN [84] consists of three
layers: the base layer to hide the low-level details of the hard-
ware, the navigation layer to provide navigation primitives,
such as motion planning, localization, and dynamic object
tracking, and “the third tier is reserved for user-level tasks
employing primitives from the second tier”.

4. Simulation Environment

The simulation environment is very important for fast
prototyping and educational purposes, although it may have
some drawbacks and limitations, such as lack of noisy data
existing in the realistic world and simulated models that may
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be incomplete or inaccurate. Table 2 shows whether or not
each middleware supports a simulation environment.

Most of the middleware, such as iRobotAWARE [70],
CLARAty [16], Orca, Miro [2], ASEBA, MRDS [35], ROS
[51], RoboFrame [63], OpRoS [47], and CARMEN [76],
provides simulation environment, although Orocos, Skil-
ligent, RSCA, and ERSP do not come with a simulation
environment. The Player [9] project provides a graphical,
two-dimensional device simulator called Stage, which sup-
ports research in multirobot systems by using socket-based
communication and a high-fidelity, three-dimensional sim-
ulator called Gazebo. In the Player [50], it is easy to simulate
nonexistent devices for research in device design. Marie
[38] provides interfaces to Stage, Gazebo, the ARIA, and
CARMEN simulators. OpenHRP3 is a dynamics simulator
based on OpenRTM-aist. Webots is a simulation environ-
ment. MuRoSimF is a simulation framework developed in
RoboFrame. SmartSoft uses Player/Stage 2D simulator and

also Gazebo 3D simulator. Pyro [80] is integrated with
several existing robot simulators, including Robocup Soccer,
Player/Stage, Gazebo, and the Khepera simulator.

5. Standards and Technologies Used

Table 2 summarizes the standards and technologies used
in each middleware. Miro [33] and Orocos [85] are
implemented using the Common Object Request Broker
architecture (CORBA) standard. CORBA allows interprocess
and cross-platform interpretability for distributed robot
control. Although Orca [43] uses ICE, CORBA and ICE
provide the basic functionality for component interaction.
Smartsoft [68] provides two reference implementations, one
based on CORBA (ACE/TAO) and one based on ACE
only. Webots [50] uses Open Dynamics Engine (ODE) for
detecting collisions and simulating rigid body dynamics.
In fact, OpenRTM-aist and OPRoS implement the same
standard, OMG’s Robot Technology Component Standard.

6. Distributed Environment

The different software modules of an application should
be able to exchange data and be able to run in differ-
ent machines, from which each one is able to obtain
its maximum efficiency. Table2 summarizes whether or
not each middleware supports distributed environment. In
CLARALty, there are modules that support distributed pro-
cessing: ACE/TAO (CORBA), sockets, published subscribed
mechanisms, and so forth, but CLARAty modules cannot
be readily distributed without either existing ACE/TAO
wrappers or additional software development (clarified via
correspondences with the author Dr. Issa Nesnas).
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7. Security for Controlling Access

Data transportation and user access should be secure so
that no one can control the robots other than the user. Some
Middleware platforms, such as Orocos [53] and Miro [33]
(based on CORBA), do not support security for control
access, but CORBA [86] itself supports SSL for its com-
munication. Table 2 summarizes whether each middleware
supports security capabilities for controlling access.

8. Fault Detection and Recovery

Fault detection and recovery capabilities are necessary to
provide the framework with the ability to be used in real,
critical situations. A failure in one module should not
damage the whole system. There is always the possibility
of a fault at runtime. The faults in the robot’s framework
should be detected and localized, and also, the robot should
be able to complete its mission or at least to proceed to a safe

mode. Table 2 summarizes the fault detection and recovery
capabilities for each middleware. ORCA, MIRO, OpenRTM-
aist, and Player do not provide any explicit fault tolerant
capabilities on the system level apart from the exception list,
which may indicate service failures. CLARAty [87] offers
a broad variety of low- and high-level means for fault
tolerant and robust system performance (state monitoring
and recovery from some faults, resources checking, state
estimation, verification, test, simulation classes, (clarified via
correspondences with the author Dr. Issa Nesnas). CARMEN
programs are “robust to a variety of failures” [75] (in
communications and of other programs). In ROS [51],
there is additional fault tolerance as crashes are isolated to
individual nodes.

9. Real-Time Capability

Reat-time capability of a robot middleware means that the
reactiveness of a robot is guaranteed by the real-time
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system by providing real-time capabilities for the component
communication and process in the framework. Table 2
summarizes the real-time capability for each middleware.
RSCA [60] provides real-time capability, if the operating
environments support RT-CORBA and POSIX RT profile
(PSE52) (clarified via correspondences with the author Dr.
Seongsoo Hong). In CLARAty, most modules are real time
and operate under VxWorks and QNX RTOS (clarified via
correspondences with the author Dr. Issa Nesnas).

10. Behavior Coordination

Behavior Coordination is not part of RoboFrame (but robot
coordination can be provided by integrating XABSL as a
component, running on top of RoboFrame) (clarified via
correspondences with the author Dr. Dirk Thomas). In
RSCA, the behavior coordination should be implemented as
an RSCA application or a set of RSCA components (clarified
via correspondences with the author Dr. Seongsoo Hong).
Table 2 summarizes the behavior coordination capability of
the middleware.

11. Open Source

OPRoS, OROCOS, ROS, OpenRTM-aist, MARIE, ORCA,
ASEBA, RSCA, SmartSoft, Pyro, MIRO, and Player are open-
source software, although ERSP, Skilligent, Webots, and
iRobotAWARE are commercial software products. MSRDS is
commercial but is free of charge for research and hobbies.
In CLARALty, most modules have been approved for public
release. Only about 10% has been released due to funding

constraints (clarified via correspondences with the author
Dr. Issa Nesnas). RoboFrame is not open-source but available
for research use for free (clarified via correspondences with
the author Dr. Dirk Thomas).

12. Dynamic Wiring

This feature allows dynamic configuration of connections
between services of components at runtime, making both
control flow and the data flow configurable. As described in
[88], “the automatic configuration facility in Marie is not
available so communication setup should be static. It defi-
nitely is not well suited for all the requirements of dynamic
scenarios.” Autoconfiguration is not supported in ORCA
[42], although ORCA relies on the ICE [83] Naming Service
for delivering location transparency. But the dynamic wiring
is supported in Orocos and SmartSoft [66] through scripting,
XML, and run-time parameter setting. In SmartSoft [69],
the wiring pattern provides a consistent mechanism for
dynamic wiring of client parts of communication patterns
from outside a component. CLARAty partially supports the
dynamic wiring, Only some components that required this
feature support runtime reconfiguration. But that is not a
general rule that applies to all components in CLARAty
(clarified via correspondences with the author Dr. Issa
Nesnas).

13. Other Platforms

There are several other robotics software platforms available,
such as Yet Another Robot Platform (YARP) [89, 90],
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SPICA [88, 91, 92], BABEL [93, 94], Dave’s Robotic Oper-
ating System (DROS) [95], Intelligent Robot Software Plat-
form (IRSP) [96], K-MIDDLEWARE [97], the Washington
University Robotics Development Environment (WURDE)
[98], OpenRDK [99, 100], OpenJAUS [101], Open Robot
Controller Computer Aided Design (ORCCAD) [102-104],
Pyro [77-81], Robot Intelligence Kernel (RIK) [105, 106],
MissionLab [107-110], and Mobile Robot Programming
Toolkit (MRPT) [111].

14. Conclusions and Bibliography
Access Information

In this survey, we outlined the architecture and some impor-
tant attributes, with the appropriate bibliographic references
for most of the existing robotic middleware, such as Player,
CLARAty, ORCA, MIRO, UPNP, RT-Middleware, ASEBA,
MARIE, RSCA, OPRoS, ROS, MRDS, OROCOS, SmartSoft,
ERSP, Skilligent, Webots, Irobotaware, Pyro, Carmen, and
RoboFrame. All references listed in this paper can be found in
http://wwwlbpt.bridgeport.edu/~aelkady/Survey.bib. They
are stored in a BIBTEX format file: survey.bib.
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