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Abstract

Robotized handling systems are increasingly applied in distribution centers. They
require little space, provide flexibility in managing varying demand requirements, and are
able to work 24/7. This makes them particularly fit for e-commerce operations. This
paper reviews new categories of robotized handling systems, such as the shuttle-based
storage and retrieval systems, shuttle-based compact storage systems, and robotic mobile
fulfillment systems. For each system, we categorize the literature in three groups: system
analysis, design optimization, and operations planning and control. Our focus is to identify
the research issue and OR modeling methodology adopted to analyze the problem. We
find that many new robotic systems and applications have hardly been studied in academic
literature, despite their increasing use in practice. Due to unique system features (such
as autonomous control, networked and dynamic operation), new models and methods
are needed to address the design and operational control challenges for such systems, in
particular, for the integration of subsystems. Integrated robotized warehouse systems will
form the next category of warehouses. All vital warehouse design, planning and control
logic such as methods to design layout, storage and order picking system selection, storage
slotting, order batching, picker routing, and picker to order assignment will have to be
revisited for new robotized warehouses.

1 Introduction

Warehouse operations tend to be labor intensive and require large space for facilities. Large

buildings are needed to store the item assortment in racks, to move stock, to unload and load
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trailers and containers, to inspect picked orders, and to allow trucks to maneuver in the yard

and to dock them. With the advent of e-commerce, companies store millions of unique items

and handle large and variable daily order volumes. On the other hand, the most laborious and

expensive process, order picking, is repetitive, often suffers from poor ergonomics, and requires

high-quality labor willing to work in shifts, which is often difficult to get. It is therefore

not surprising that warehousing systems and processes are key candidates for automation. In

addition, the land available for warehouses (which should preferably be close to the demand

points) has become scarce, and many warehouses have to operate 24/7. Together, this has given

warehouse automation a big boost. Warehouse automation dates back to the 1960s, when the

first high-bay (20-40 m high was quite standard) unit-load warehouses were established in

Germany with aisle-captive cranes driving on rails, constructed as a silo building (Industrie-

forum 2004). These so-called AS/R (automated storage and retrieval) systems were able to

store bulk stock on unit loads (pallets, or totes: miniload system). They could also work in

conjunction with manual pick stations as a parts-to-picker system, where the retrieved unit load

was restored after picking units from it. Since then, AS/R systems have become very popular

in practice, and research has gained momentum with the papers by Hausman et al. (1976),

and Bozer and White (1984). Hundreds of papers have been published on these systems. An

overview is given by Roodbergen and Vis (2009).

The last decade, warehouse automation has developed rapidly. A big boost has been given by

the AVS/R (autonomous vehicle-based or shuttle-based storage and retrieval) systems. These

systems use racks with aisles and deploy autonomous shuttles that operate at each level in each

aisle. Vertical transport is enabled by lifts. Another important development has been auto-

mated pallet stacking and destacking technologies, in particular also by mixed-case palletiz-

ing technology developed in the early 2000s. A new generation of automated guided vehicles

(AGVs), supporting the order picking process has recently been introduced. These systems

will gradually result in automated picking processes. Pioneered by Witron, combining mul-

tiple technologies has led to the advent of completely automated warehouses, particularly in

the store-based retail industry (mostly grocery). In Western Europe alone, about 40 fully
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automated warehouses are in operation and many are under development. Although these

warehouses are large, they are much smaller (and supposedly more cost-efficient) than their

conventional, manual counterparts. Figure 1 shows a flow diagram of such a warehouse with

typical storage and handling systems.

Figure 1: Material flow in an automated warehouse

In such an automated retail warehouse, selected suppliers unload their own trucks and feed

the pre-announced single-sku (stock-keeping unit) pallets to a check-in conveyor (step 1). The

pallets are then stored in an AS/R system (2). When a certain product is requested, the pallet

is off loaded and automatically destacked (3). The loose cases are then often put on trays to

ease manipulation and are stored in a miniload AS/R, or in an AVS/R system (4). When the

store order arrives, the cases are retrieved and sequenced (5), and mixed-case palletizers build

the pallets or roll-cages in a store-specific sequence that allows rapid shelving in the store (6).

These roll-cages then wait in an order consolidation buffer (OCB), usually some AS/R system

(7), until the departure truck arrives, after which they are retrieved and loaded in the sequence

determined by the stop sequence in the truck route.
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Figure 2: Classification of automated picking systems. The literature of the gray-shaded sys-
tems is reviewed. The numbers of reviewed papers are shown between brackets. Sec. refers to
the section which deals with the respective systems.

Apart from the (many) technicians needed to keep the system alive, no manual handling

is involved. However, the majority of warehouse research still focuses on conventional storage

and order picking methods. The overview by De Koster et al. (2007) provides some avenues

for research into (semi-)automated picking methods. Due to rapid system developments, it is

time for an update, as the new technologies have provided new and interesting research oppor-

tunities. This paper structures the new automated technologies and provides an overview of

these technologies and the research carried out already. It also reviews the modeling techniques

used and the research opportunities they provide. We focus on design and control of order

picking systems, as they form the heart and soul of any warehouse. In doing so, we include the

corresponding automated product storage and handling techniques. Figure 2 categorizes the

automated picking systems, both the classical as well as the newly developed automated picking

systems. To find the articles, we used the following search terms in Scopus: “autonomous ve-

hicle/shuttle storage and retrieval systems”, “robotic mobile fulfillment system”, “puzzle-based
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storage system”, “compact warehouse storage systems and robotic warehouse storage and re-

trieval systems”, as well as variants of these search terms. We review papers published in high

quality journals, complemented by some working papers and proceedings for prominent systems

that have not received much attention yet. We review 62 papers on the core systems indicated

in the gray-shaded boxes in Figure 2.

We first describe various modeling methods used in the design and operation of the systems

and the associated objectives (Section 2). Section 3 deals with the ‘conventional’ AS/R systems,

that have been researched intensively, and then continues with less conventional crane and truck-

based systems, such as multi-deep racks operated by cranes and satellites, and carousel systems.

Section 4 discusses various types of AVS/R systems, and Section 5 considers three types of

compact storage systems: aisle-based, puzzle-based, and robot-based. Section 6 continues with

robotic movable rack-systems. Section 7 discusses directions for future research and includes

emerging technologies, in particular, humans picking in collaboration with AGVs. We conclude

in Section 8.

2 Modeling Methods: Storage, Transport and Order Pick-

ing Process

Two approaches exist to model the systems: Analytical-based and Simulation-based. Simulation-

based models can mimic reality accurately and produce the least error. However, conceptual-

izing and designing a detailed and accurate simulation model is time intensive. Optimizing the

entire design space may require the development of multiple models. Therefore, at an early

stage, analytical models are preferred, to reduce the design search space and to identify a limited

number of promising configurations. Compared to simulation modeling, analytical models run

faster and can obtain the optimal configuration with a quick enumeration over a large number

of design parameters. The error made in the estimated performance measures using analytical

models is usually acceptable for the conceptualization phase. Section 2.1, explains analytical
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models. Section 2.2 discusses the use of analytical models in design and operational perfor-

mance optimization. As an example, Section 2.3 describes how a single-tier AVS/R system can

be modeled analytically.

2.1 Analytical Models

Analytical models for storage and retrieval are classified into two categories: Travel Time Models

and Queuing Network (QN) Models.

Travel Time Models

Using travel time models, the design engineer can obtain the amount of time that it takes for a

resource to move from one location to another. For instance, in an automated parts-to-picker

picking context, travel time models can be used to obtain a closed-form expression for the

expected load storage and retrieval time. The closed-form travel time expressions are usually

simple and computationally friendly. Therefore, they can be used to limit the search space

before adopting a detailed simulation, or for optimizing the design choices. They can also be

used to estimate the expected service time of a server in a network of queues. Despite the

simplicity of the travel time models, they are not capable of capturing several factors such as

interaction between multiple resources, parallel processing by multiple resources, or queueing

within the system. In these scenarios, QN models are preferred.

Queueing Network Models

Automated picking systems can be modeled as a multi-stage service system using a QN. In

a QN, a customer arrives in the system, undergoes several stages of service and leaves the

system. Several types of queueing networks have been studied: Open (OQN), Closed (CQN),

and Semi-Open (SOQN). In an OQN, customers, such as orders to be picked, arrive from an

external source and after receiving service in different nodes, they leave the system. An OQN

is particularly useful to estimate expected order throughput time. However, in many systems,

resources accompany orders during the whole or a part of the process, e.g. a transport vehicle,
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or a transport roll container or a pallet. Often, the number and the capacity of the resources are

limited which affect the performance of the system. For instance, orders might be transported by

expensive robots in the system. In this scenario, an OQN is not capable of accurately estimating

the performance of the system as it assumes an infinite supply of robots. One way to overcome

this challenge is to model the system as a CQN. In a CQN, a limited number of resources are

paired with the incoming orders. Once an order is completed, the resource becomes available

and can serve another order. The limited number of resources enforces a population constraint

in the CQN. However, it is implicitly assumed that an infinite number of orders are waiting

outside the system (Heragu et al. 2011). CQNs are useful to estimate the throughput capacity

of the system. Using a CQN to model the systems in which the incoming customers and the

resources are paired together throughout the process, leads to an underestimation of the true

customer waiting time. The reason lies in the assumption (infinite number of customers waiting

externally in a CQN). However, in reality, there are times when a customer needs to wait for a

resource or vice versa. In this situation, an SOQN is a suitable model because it can accurately

capture the transaction waiting time. As it illustrated in Figure 3, an SOQN (in the literature

sometimes called an open queueing network with limited capacity) possesses a synchronization

station in which incoming customers waiting at an external queue are paired with available

resources in the resource queue. Then, the customer is processed using the resource that carries

the customer to pre-specified different nodes (Cai et al. 2013, Roy et al. 2015b, Roy 2016).

Any arbitrary network

N

External Queue

Resource Queue

Customer Arrival

Customer Exit

Synchronization

Figure 3: A general semi-open queueing network

Solution Methods for Evaluating Queueing Networks: One of the most important

methods for calculating performance measures of product-form queueing networks (Baskett
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et al. 1975) is Mean Value Analysis (MVA) (Reiser and Lavenberg 1980). The MVA algorithm

is based on Little’s Law and the arrival theorem. However, networks used in analyzing auto-

mated picking systems usually do not have product-form solutions for a number of reasons,

such as non-exponentially distributed service times, customer blocking, or non-Markov routing.

Therefore, approximation algorithms are used to estimate the performance measures of the

system. Several approximation techniques such as Approximate Mean Value Analysis (AMVA)

and the parametric decomposition approach proposed by Whitt (1983) have been developed

based on the characteristics of the network. Bolch et al. (2006) provide a detailed overview

of exact and approximate algorithms to evaluate the performance of open and closed queueing

networks. The SOQN does not have a product-form solution, even for Poisson arrivals and ex-

ponential servers. The Matrix-geometric method (MGM), aggregation, network decomposition,

parametric decomposition, and performance bounds are the most common solution approaches

for approximating the performance of an SOQN. Roy (2016) gives a detailed overview of solution

techniques to evaluate an SOQN.

2.2 Design Optimization and Operational Planning and Control

Two levels of decision-making can be distinguished in warehouse planing and design: long-term

(tactical) and short-term (operational).

In long-term planning, decisions revolve around the hardware design selection and optimiza-

tion (DO) of the system. At this level, the prime objective is to maximize the throughput and

the storage capacity of the system. The objectives are affected by several decision variables,

such as the physical layout configuration (e.g. the number of aisles, the depth of each aisle,

the number of cross-aisles, and the number of tiers), the number of robots and lifts, and the

location of load/unload points. At this stage, the focus is on the decisions that are hard to

reverse once the system is in place.

Short-term decision-making focuses on operational planning and control (OP&C). Some

of the prime objectives are to minimize lead time, waiting time, response time, and resource
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idleness, etc. Decisions include vehicle assignment policies, blocking prevention protocols, dwell

point use of the vehicles i.e. selecting the location where a vehicle without a job is parked,

storage slotting, and station assignment rules.

Analytical models can address both the long-term and short-term decision-making. With

a travel time model, it is (sometimes) possible to obtain a closed-form expression of the per-

formance measures, such as the average processing time. By taking derivatives with respect

to the desired decision variables, one can optimize the system with regards to the performance

measure. However, deriving a closed-form expression of the system measure such as transaction

waiting time is often not possible. Therefore, queueing network and simulation-based models

are used to estimate such dynamic performance measures. Performance optimization is done by

enumerating the decision variables. Sometimes, combinations of decision variables have a joint

effect on the performance of the system. As a result, some authors, such as Ekren and Heragu

(2010b) suggest using regression models with interaction variables to evaluate the combined

effect of decision variables on the performance of the system. Then, the enumeration is done

over the variables and their combinations on the desired performance measure.

Table 1 presents a framework of modeling approaches to analyze various performance mea-

sures.

Table 1: Modeling approach framework for performance measures

Modeling
Approach

Travel-Time
Models

Open Queueing
Network

Closed Queueing
Network

Semi-Open Queueing
Network

Prime
Objective

Obtaining closed-form
travel time
expressions

Estimating
throughput time

Estimating
throughput capacity

Capturing external
transaction waiting
time

Main Application
DO/OP&C

DO/OP&C OP&C DO DO/OP&C

DO: Design Optimization

OP&C: Operational Planning and Control

2.3 Example: Analytical Model of a Single-Tier AVS/RS

In this section, we present the modeling approach proposed by Roy et al. (2015b) to model a

single-tier AVS/R system. The model can be used for design optimization or for operational
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planning and control. Figure 4 shows the top view of the system. The tier comprises N two-

sided storage aisles (A1, ..., AN) and a cross-aisle orthogonal to the storage aisles. V vehicles

perform the storage and retrieval transactions. The Load/Unload point is located in the middle

of the cross-aisle.

Load/Unload Point

Aisle Rack

Cross-aisleEmpty Vehicle

Loaded vehicle

(Lift)

Figure 4: Schematic top view of a single-tier AVS/RS

To model the system we make the following assumptions: 1) Transactions are in the form

of single-command cycles. 2) The FCFS rule applies to process the transactions. 3) Vehicles

are pooled, meaning they have an equal probability to be chosen to perform a transaction. 4)

Storage and retrieval requests are uniformly distributed throughout the tier. 5) The number of

aisles, N , is even. 6) Vehicles dwell at the L/U point. 7) Blocking within the cross aisle and

storage aisles is handled by two protocols. A switching policy determines which of the vehicles

is allowed to use the cross-aisle at the L/U point and the storage aisle end. Inside each storage

aisle, the current vehicle must yield to the incoming vehicle. This means that when a new

vehicle enters the aisle, the current vehicle moves to an empty bay location at the back of the

aisle and waits for the incoming vehicle to complete its operation.

Figure 5 illustrates the resulting SOQN for the single-tier AVS/R system. The model

consists of N + 4 nodes. We divide the cross-aisle into two equal parts: the left side of the

L/U point, or node CAL, and the right side of the L/U point, or node CAR. Therefore, the

queueing network has N aisle nodes, A1, ..., AN , and two cross-aisle nodes, CAL and CAR. The

additional two nodes are the L/U point, and the synchronization node J . The synchronization
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node matches the transaction requests to the vehicles. Transactions wait in buffer B1 and

vehicles wait in buffer B2. The routing of the vehicles in the network depends on the type of

transaction. For example, the routing of a vehicle processing a storage transaction is as follows.

First, the storage transaction waits in B1 to be matched with a vehicle in the synchronization

station J . The vehicle then picks up the load in the L/U point, represented by node L/U .

Next, the vehicle travels through either one of the cross-aisle nodes, to travel to its desired aisle

and storage position. These two nodes are modeled as an infinite server (IS) station. After the

vehicle gets served in the cross-aisle node, it moves to an aisle node to store the load. Using the

mentioned blocking protocol, each aisle is modeled as a Last-Come-First-Serve with preemptive

resume service queue (LCFS-PR). After unloading, the vehicle takes the same path back to the

L/U point. Upon arriving at the L/U point, the vehicle is free to be used again and moves

to buffer B2 to be matched with another transaction. The model is evaluated using a network

decomposition approach. See Roy et al. (2015b) for further details of the model as well as the

extension of the model to multi-tier AVS/R systems.

L/U

CAL

CAR

A1

A2

A⌈N

2
⌉

A⌈N

2
⌉+1

AN−1

AN

V

J

B2

B1

λs + λr

Storage classes

Retrieval classes

Figure 5: Semi-open queueing network of a single-tier AVS/R system
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3 Crane/Truck-Based Automated Picking Systems

Crane-based Automated Storage and Retrieval System (AS/RS) were introduced in the 1960s.

Initially, their main application was in pallet warehouses storing bulk inventories. Later, mini-

load warehouses and more compact and multi-deep order picking warehouses were also auto-

mated. In this section, we discuss the different types of crane-based automated systems (see

Figure 2).

3.1 Single-Deep Automated Storage Systems

Such a system consist of racks and automated handling systems such as cranes or automated

trucks. These handling systems can be aisle-captive (typically cranes) or aisle-roaming (typi-

cally high-bay AGV trucks). To perform a storage operation, a crane picks up a load, usually

from a conveyor, and stores it in the 30-40m high racks. Driving and lifting in the aisle take

place simultaneously. The process sequence is reversed for a retrieval operation. It is also pos-

sible to carry out a dual command cycle, in which a storage and a retrieval job are combined.

This would save one movement per dual command cycle. If totes instead of pallets are stored,

the system is referred to as mini-load. Figure 6 shows an example of such a warehouse.

Unit-load and mini-load aisle-captive AS/R systems have been studied extensively. One

of the first scientific articles is by Bozer and White (1984). They calculate the average cycle

time of the crane for single command cycles, and assume that crane travel to any location

within the rack has the same probability (random storage policy). Their expected cycle time is

E[T ] =
(

1 + (ty/tx)2

3

)

.tx, in which tx is the travel time to the farthest location in the rack and

ty is the lifting time to the highest location in the rack. The formula assumes that the crane

drives and lifts at the same time and that the travel time to the farthest location is longer than

the lifting time. Using this formula, the optimal ratio between the length and height of an

aisle can be obtained, which proves to be square in time (SIT), meaning that the travel time

to the farthest location and the lifting time to the highest location are identical. Assuming
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Figure 6: Automated high-bay warehouse for pallets with aisle-captive cranes. (Source: Daifuku
America)

that a crane travels approximately four times faster than it lifts, the length of the aisle should

therefore be four times its height in order to minimize the cycle time. Later on, this formula

was adjusted to include other aspects of the warehouse, such as different storage strategies

(such as ABC storage), dual command cycles, and different locations of the load and unload

points (the above formula assumes one such point, at the lower corner of the rack). We refer

to Roodbergen and Vis (2009) for an extensive overview of the literature on AS/R systems.

In the case of ABC (or product turnover-based) storage, the items are divided into classes

(e.g. three: A, B, C), based on item turnover rate. The locations are also divided into groups

based on travel time to the L/U point. This ensures that the items from the class with the

highest turnover rate are located closest to that point. Hausman et al. (1976) investigated

the cycle time calculations with ABC storage and EOQ-based replenishment. Later, their

results were extended to N product classes by Rosenblatt and Eynan (1989). Hausman et al.

(1976) calculated the optimal class boundaries for known ABC demand curves, for example,

20/70 demand curves, whereby 20% of the items (or unit-loads) are responsible for 70% of the

demand. In the calculation, they considered of product restocking according to a continuous
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review <s, Q> policy, with the stocking quantity Q being equal to the optimal order quantity.

However, they did not take into account that the more storage classes there are, the fewer

items are stored per class. This requires more space per item stored in the class, since the space

within the classes cannot be shared by the items which lengthens crane travel time. In the

extreme case of one item per class, the space required is
∑

⌈Qi + SSi⌉ whereas in the extreme

case of one class containing all items (i.e. random storage), the space required is
∑

⌈Qi

2
+ SSi⌉

. This means that an optimum number of storage classes can be distinguished. In practice, the

optimal number of classes is small (about 3 to 5,) but the cycle time is relatively insensitive to

the exact number. At such a limited number of classes, products can perfectly share the space

available in the class. However, the required number of locations on top of the average stock

level quickly amounts to an additional 40% (Yu et al. 2015).

3.2 Compact Storage Systems

AS/R systems can also be used to store loads double-deep in the racks. To this end, the cranes

can be equipped with double-deep telescopic forks. Deep lane, or compact, multi-deep (3D)

AS/R systems can store loads even more deep in storage lanes (see Figure 7). The storage

depth depends on the type of product and the technology; e.g. 5-15 loads. These systems

are particularly popular for storing products when storage space minimization is a primary

concern, e.g. fresh produce and cold storage warehouses. In a typical crane-based compact

storage system, a storage and retrieval (S/R) crane takes care of movements in the horizontal

and vertical directions of the rack, and an orthogonal conveying mechanism takes care of the

depth movement. Multi-deep lane crane-based compact storage systems can be further classified

into three categories based on the mechanism of the depth movement: push-back rack, conveyor-

based, and satellite-based (see Figure 2).

Push-Back Rack: In this variant, the crane (or truck) stores the loads by mechanically

pushing them into the storage lanes. The system works according to the Last-In-First-Out
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Figure 7: A crane-based multi-deep compact storage system (De Koster et al. 2008)

(LIFO) principle. A slight slope on the storage lane utilizes the gravity to ensure sure that a

load is always available in front of the storage lane. The depth of the lane in a push-back pallet

rack is up to about five loads.

Conveyor-Based: The racks in these systems are equiped with conveyors (see Figure 8).

If the conveyor can move in two directions, the operation is LIFO, similar to the push-back

racks. The conveyors can also operate in pairs (either by gravity or powered). On the inbound

conveyor, unit loads flow to the rear end of the rack. The outbound conveyor is located next to

the inbound conveyor. On the outbound conveyor, unit loads flow to the rack’s front end and

stop at the retrieval position of the crane. In a case of a gravity conveyor, the rack is equipped

with a simple elevating mechanism at the back of the rack to lift unit loads from the down

inbound conveyor to the upper outbound conveyor (see Figure 8). A stop switch located at the

front side of the outbound conveyor stops a unit load when it is needed for retrieval. The lift

drives the rotation of unit loads and, as it is the slowest element, it determines the effective

rotation speed. In order to retrieve a pallet, the two neighboring gravity conveyors should have

at least one empty slot (De Koster et al. 2008). The system with powered conveyors does not

need lifts, but uses more expensive powered conveyors (that are not so easy to fix in the case

of a malfunction). However, powered conveyors allow more dense storage because racks with

powered conveyors can be constructed deeper than racks with gravity conveyors.
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Figure 8: Working mechanism of gravity conveyor (De Koster et al. 2008)

Satellite-Based: In this variant, a satellite (connected to the crane) or a shuttle (freely

roaming) is used to perform the depth movement. The crane with a shuttle picks up a storage

pallet and travels to the storage lane. Then the crane releases the shuttle in the rack and the

shuttle travels along the storage lane to store the load. Likewise, to retrieve a load, the shuttle

travels underneath the load to retrieve the pallet and completes the remaining operations in

a reverse sequence. In some cases, the shuttles can also be dedicated to lanes. If a system

has fewer shuttles than storage lanes, the crane moves the shuttles between the lanes (Stadtler

1996).

We categorize the literature on crane-based compact storage systems into three categories:

System Analysis, Design Optimization, and Operations Planning and Control. System analysis

articles focus on modeling techniques to estimate the performance of the system without fo-

cusing on any optimization, design optimization articles focus on hardware optimization of the

system (e.g. system layout), and operations planning and control articles focus on the software

optimization of the system (e.g. block prevention policies). See Section 2.2 for more details

regarding hardware and software objectives.

System Analysis: Sari et al. (2005) develop closed-form travel time expressions for a

flow rack AS/RS. The expressions, which rely on a continuous storage rack approximation,

are validated using discrete-even simulations. The simulations use a discrete rack dimensional

approach. They find that the percentage errors are quite reasonable (varying between 11%-

14%). Hence, such models can be used to estimate system throughput capacity.

Design Optimization: De Koster et al. (2008) develop closed-form travel time expressions
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for a crane-based compact storage system with rotating conveyors, using a single-command

cycle and random storage policy. The crane’s expected retrieval travel time is identical for both

gravity and powered conveyors. Using the expected travel time expressions, they calculate the

optimal ratio between the three dimensions that minimized the travel time. They also provide

an approximate travel time expression for dual command cycles and use it to optimize the

system dimensions. They find a counter-intuitive result that the cube-in-time dimensions for

the rack is not the optimal choice. The performance for a cube-in-time rack is still fairly good

and deviates from the optimal rack configuration (optimal ratio along the three dimensions:

0.72:0.72:1) by about 3%. Yu and De Koster (2009a) extend the analysis of De Koster et al.

(2008) for a turnover-based storage policy and determine the optimal rack dimensions that

minimizes the expected cycle time. They analytically determine the optimal rack dimensions

for any given rack capacity and ABC curve skewness. They find that with greater skewness of

the ABC curve, savings in the expected time increase compared to the random storage policy.

Yang et al. (2015) further extend the analysis ofDe Koster et al. (2008) by optimizing the shape

of the system and by considering the acceleration and deceleration of the S/R machine, which

has a direct impact on the optimal shape of the system. For the special case of constant speed

of the S/R machine, their findings are in line with the results of De Koster et al. (2008). Hao

et al. (2015) also develop expected travel time expressions and optimize the rack layout for a

random storage policy. However, they choose an I/O point located in the middle of the rack

(which, in reality, is difficult to construct for aisle-captive cranes). Under the same operating

conditions, they obtain lower expected travel time and higher throughput.

Operations Planning and Control: One of the biggest disadvantages of dense storage is

that the pallets are accessible from only one side. Therefore, pallets are either retrieved based

on LIFO principle or they undergo multiple relocations/reshuffles to allow access to the right

pallet. Stadtler (1996) uses the retrieval time estimate of each pallet and proposes a storage and

retrieval assignment planning tool considering this issue. The decision models are formulated as

mixed-integer programs and are solved using a tabu search heuristic. The results show that the

compact storage systems can operate at heavy workload and high storage rack utilization with
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a small number of pallet relocations (6% relocations at 78% rack utilization over a period of

42-day operation). Yu and De Koster (2012) develop heuristic approaches to sequence a block

of storage and retrieval transactions for a compact conveyor-based storage system operating in

a dual-command cycle. They compare the makespan performance for five sequencing heuristics:

1) First Come First Serve (FCFS), 2) Nearest Neighbor (NN), in which the sequence is based on

the minimum travel distance between storage and retrieval locations, 3) Shortest Leg (SL), in

which the open storage location lies on the Tchebychev path leading to the retrieval location, 4)

Shortest Dual Cycle (SDC) in which sequencing is done in a way to minimize the dual cycle time

in every step, and 5) Percentage Priority to Retrievals with Shortest Leg (PPR-SL), in which a

certain percentage of retrievals are given a higher priority for pre-positioning than the storage

open locations. Numerical results suggest that PPR-SL strategy outperforms all sequencing

strategies by 20% or more. For a compact AS/R system with shuttles or satellites, one of the

biggest challenges is the additional time required to reshuffle unit loads and retrieve the right

unit. Many companies, therefore, use a dedicated storage policy per lane, which reduces the

reshuffle time, but decreases lane utilization (and requires a larger system). To overcome this

shortcoming, Zaerpour et al. (2013) propose a mathematical model for a shared storage policy

that minimizes the total retrieval time in a cross-dock/temporary storage environment. They

solve the model using a construction and improvement (C&I) heuristic. They show that for

most real cases, shared storage outperforms dedicated storage, with a shorter response time and

better lane utilization. Yu and De Koster (2009b) focus on identifying the optimal class zone

boundaries for a compact 3D crane-based systems with two storage classes (a high turnover

class and a low turnover class). They formulate the problem as a non-linear integer program and

obtain a solution using a decomposition technique and a one-dimensional search scheme. They

show that the crane travel time is significantly influenced by zone dimensions, zone boundaries,

and the ABC curve skewness. Table 2 presents an overview of the literature on crane-based

compact storage systems.

18



Table 2: Overview of the literature (9 papers) on crane-based compact storage systems

Research Category System Article Research Issue Methodology

System Analysis Conveyor-based
(paired)

Sari et al. (2005)
Check validity of discrete
vs. continuous travel-time
expression

Probability, simulation

Design Optimization
Conveyor-based
(paired)

De Koster et al. (2008)
Optimal rack dimensions
with random storage policy

Probability, optimization

Yu and De Koster (2009a)
Optimal rack dimensions
with a full turnover-based
storage policy

Probability, optimization

Yang et al. (2015)
Optimal rack dimensions
considering the acceleration/
deceleration of the crane

Probability, optimization

Hao et al. (2015)
Optimal rack dimensions
with IO point at middle

Probability, optimization

Operations Planning
and Control

Satellite-based Stadtler (1996)

Choice of aisle and lanes,
Reservation of resources
at order time (aisles, pallets),
managing busy period workload

Mixed-integer programming,
heuristics

Conveyor-based
(paired)

Yu and De Koster (2009b)
Optimal zone boundaries
for two product classes

Mixed-integer nonlinear
programming

Yu and De Koster (2012)
Sequencing storage and
retrieval transactions

Heuristics

Conveyor-based
(single)

Zaerpour et al. (2013) Choice of storage strategies
Mixed-integer nonlinear
programming,heuristics

3.3 Carousels, Vertical Lift Modules, A-frames

Carousels are automated storage and retrieval systems in which shelves are linked together

and rotate in a closed loop. The rotation is either horizontal or vertical (see Figure 9a and

9b). In this system, the picker has a fixed location in front of the system, and the system

transports the items to the picker. Carousels are especially suitable for small and mid-size

items such as books, health and beauty products (Litvak and Vlasiou 2010). A Vertical Lift

Module (VLM) is similar to a carousel, but operates differently. It consists of two columns of

trays with a lift-mounted inserter/extractor in the center (see Figure 9c). When an item is

needed, the inserter/extractor locates the trays in which the item is stored and brings the tray

to the picker, who is located in front of the system, like in a carousel (MHI 2015). The static

location of the picker in these systems eliminates the walking aspect of order picking operation

(Meller and Klote 2004), which can improve picking productivity. The pickers can also perform

other tasks such as packing and labeling or even serving another carousel or VLM while waiting

for the carousel to retrieve items.
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(a) Horizontal carousel (b) Vertical carousel (c) Vertical lift module

Figure 9: Carousels and vertical lift modules (courtesy of Kardex Remstar, Ellis Systems and
MHI)

Horizontal carousel models have been extensively studied in the literature dating back to

the 1980s when the basic foundation for studying carousals was laid out by Bartholdi III and

Platzman (1986). Different aspects have been studied such as storage arrangement, response

time, and design issues. Litvak and Vlasiou (2010) give an extensive literature overview on

performance evaluation and design of carousel systems. Pazour and Meller (2013) investigate

the effect of batch retrieval on the performance of the horizontal carousel system. They show

that batching retrievals reduces the cycle time in the carousel by 20% compared to sequential

processing. The number of studies on horizontal carousels have declined and the only recent

study is by Pazour and Meller (2013). The reason could be that more and more companies are

replacing their horizontal carousels with shuttle-based storage and retrieval systems, which we

discuss in Section 4. VLMs, on the other hand, have been studied in only a handful of articles.

Meller and Klote (2004) develop a throughput model for a single VLM pod. Dukic et al.

(2015) extend the research to model the throughput of a dual-tray VLM. Rosi et al. (2016) use

simulation to analyze the throughput performance of the single-tray VLM for different design

profiles (height and width of VLM) and the lift velocity.
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4 Shuttle-Based Single/Double-Deep Storage and Retrieval

Systems

Throughput capacity of AS/R systems is constrained because only one crane is responsible for

handling loads at all vertical levels within a given storage aisle. This led to a new generation

of automated order picking systems, Autonomous Vehicle-based Storage and Retrieval Systems

(AVS/RS), which were first introduced by Savoye Logistics in the 1990s. Such systems are

increasingly popular because the required investment is similar to that of AS/R systems, while

they offer a much higher retrieval capacity, and are also significantly more flexible in capacity.

By using additional shuttles, system capacity can be increased, and by removing shuttles,

capacity can be decreased. Typical AVS/R systems use shuttles, which can drive in the x-

direction and the y-direction on any level in the aisle, and lifts move shuttles (or unit loads)

between the levels. In this variant, shuttles can only move horizontally, and rely on lifts for

vertical movements. Recently, several robotic solutions have emerged, in which the shuttles

(often called robots) have the ability to not only move horizontally but also to elevate up

to different tiers by either moving diagonally or vertically (Azadeh et al. 2016). Therefore,

the AVS/R system can be classified based on their shuttles’ movement capability into three

categories: Horizontal, Vertical, and Diagonal systems (see Figure 2).

4.1 Horizontal AVS/R Systems

The storage area in an AVS/R system consists of aisles with multi-tier storage racks on both

sides and a cross-aisle that runs orthogonal to the aisles. To perform storage and retrieval

actions, a lift is used for vertical movements between tiers and autonomous vehicles or shuttles

are used for the horizontal movements within the tier (Roy 2011). To retrieve a tote, a shuttle

moves to the tote’s storage location and picks up the tote, pulls it on board and moves towards

the lift for vertical travel. Then the shuttle either hands the tote to the lift (tier-captive system

(Heragu et al. 2008)), or uses the lift to move the load to a lower level (tier-to-tier system
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(Heragu et al. 2008)) where it is transferred to the pick station by conveyor belt. After picking,

the tote again uses the lift and a shuttle to be stored in the system.

Figure 10: AdaptoTMAVS/R system (Source: Vanderlande)

The literature on the horizontal AVS/R systems can be categorized into three categories:

System Analysis, Design Optimization, and Operations Planning and Control.

System Analysis: Malmborg (2002) was the first to analyze the AVS/R system. He devel-

oped a state equation model to estimate the vehicle utilization and cycle time of the unit-load

AVS/RS. He estimates the vehicle cycle time to be (1 − α)tSC + αtDC/2, in which tSC and

tDC denote the single-command and dual-command cycle times and α is the proportion of all

cycles that are dual-command cycles. Malmborg (2003a) emphasizes the design advantage of

an AVS/R system relative to an AS/R system, which is the ability to adapt the vehicle fleet size

in response to the transaction demand. Malmborg (2003b) extends the state equation model

by including the number of pending transactions in the state space description, to estimate α,

in a system with opportunistic interleaving, i.e. dual-command cycles are used only if storage

and retrieval requests are pending in the transaction queue at the time when the cycle is ini-

tiated. However, the state equation approach is computationally inefficient for solving large

scale problems. Therefore, Kuo et al. (2007) and Fukunari and Malmborg (2008) propose a

computationally efficient model to overcome this problem. In this approach, the lift is modeled

as a queueing system which is nested within a separate vehicle queueing system. They model

the queuing dynamics between vehicles and transactions using an M/G/V queue (with V ve-
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hicles), and the dynamics between transactions/vehicles and lift using a G/G/L queue (with

L lifts). The two systems are analyzed iteratively until the performance measures converge.

Although the nested queueing approach is computationally efficient, it is not able to model a

scenario in which the cycle starts outside of the storage rack, i.e. when loads are received from

outside the storage rack. Fukunari and Malmborg (2009) propose a queueing network model

as an alternative to address this drawback. They propose a closed-queueing network for esti-

mating resource utilization in the AVS/R systems. Although the earlier models are effective in

estimating vehicle utilization with reasonable accuracy, they are ineffective in estimating trans-

action waiting times. Using a series of queuing approximations, Zhang et al. (2009) address

this problem by dynamically choosing among three different queueing approximations, based

on the variability of transaction inter-arrival times. This procedure significantly improves the

accuracy of transaction waiting time estimates. Recent studies use a semi-open queueing net-

work to analyze the performance of the AVS/R system. Roy et al. (2012) build a multi-class

SOQN with class switching for a single-tier AVS/RS, and design a decomposition method to

estimate system performance. Ekren et al. (2013) model a tier-to-tier AVS/RS as an SOQN and

present an analytical approximation by extending the algorithm of Ekren and Heragu (2010a)

to estimate the performance measures. Later, Ekren et al. (2014) improved the estimation

of the number of transactions waiting in the vehicle queue by developing a matrix-geometric

method for the SOQN model. Cai et al. (2014) model a tier-to-tier system as a multi-class

multi-stage SOQN, and use matrix-geometric methods to analyze it. Ekren (2011) performs a

case study by simulating the performance of a real AVS/RS under pre-defined design scenarios

(number of aisles, bays, tiers, and vehicles). He also includes the total cost of the system in

his analysis. The number of studies on tier-captive configurations is limited. Heragu et al.

(2011), Marchet et al. (2012), and Epp et al. (2017) use the open-queueing network approach

to estimate the transaction cycle time of the AVS/R system with tier-captive vehicles. Heragu

et al. (2011) then use an existing tool called the Manufacturing Performance Analyzer (MPA)

to compare the performance of AVS/R systems and traditional AS/R systems. Ekren (2016)

uses simulation to model the system and provide a graph-based solution for performance evalu-
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ation of the system (utilization of lifts and the cycle time) under various design configurations.

Roy et al. (2017) model the system as an integrated queueing network and estimate the cycle

time and resource utilization. They model each tier as a semi-open queueing network and the

vertical transfer unit as a multi-class queueing network with G/G/1 queues corresponding to

each vertical transfer segment. They replace each tier subsystem with a single load-dependent

queue, and approximate the first and second moments of inter-departure times using embedded

Markov chain analysis. Then they solve the integrated model by capturing the linkage between

arrivals and departures in the tier subsystem and the vertical transfer unit. Lerher et al. (2015)

and Lerher (2016) develop travel time models for single-deep and double-deep AVS/R systems,

respectively. They develop a closed-form expression for the cycle time and consider the effect

of shuttle acceleration and deceleration.

Design Optimization: Roy et al. (2012) develop a semi-open queuing network model and

optimize the shape of the system. Their results suggest that the layout configuration with

depth-to-width ratio D/W = 2 for a system with the lift in the middle (see Figure 4), provides

the best system performance. Roy et al. (2015a) extend the model, and show that the end of

the aisle is the optimal cross-aisle location for the system. Ekren and Heragu (2010b) provide a

simulation-based regression analysis for the rack configuration of the system. In their regression

model, the average cycle time is chosen as the output variable, and the input variables are the

number of tiers (T ), aisles(A) and bays (B). The regression function demonstrates that the

cycle time is positively related to T and B, but is negatively related to T ∗ A as well as to

T ∗B. Marchet et al. (2013) simulate an AVS/R systems with a tier-captive configuration and

illustrate the effect of rack configurations on the throughput performance. By varying the rack

configuration and observing the performance impact, they optimize the shape of the system.

Operations Planning and Control: Ekren et al. (2010) develop a simulation-based

experimental design to identify the effect of a combination of several input factors (dwell-point

policy, scheduling rule, I/O location, and interleaving rule) on the performance of the system

(average cycle time, average vehicle, and lift utilization). They investigate the effect of up to

four-way interactions of input variables on the performance of the system. Kuo et al. (2008) use
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the closed-queueing network approach to investigate the effect of a class-based storage policy

on the cycle time of an AVS/R system. They conclude that class-based storage policies can

mitigate the cycle time inflation effect of vertical storage, while keeping the space efficiency of

the random storage intact. Kumar et al. (2014) simulate an AVS/R system in which the vehicles

are captive in vertical zones rather than in tiers. They show that the optimal partitioning of

vertical zones can reduce the transaction cycle times by up to 12% compared to the tier-captive

configuration. Roy et al. (2012) develop a semi-open queuing network model and analyze the

effect of vehicle location, the number of storage zones, and vehicle assignment policies on the

performance measures. They show that using multiple zones reduces travel time along the

cross-aisle which improves the performance of the system. However, increasing the number of

zones beyond a threshold results in longer transaction waiting time and worsens the system

performance. Finally, they observe that the most efficient vehicle assignment policy is the

random policy. Roy et al. (2015a) extend the model to analyze different dwell-point policies.

They shows that the best dwell policy is the L/U point dwell policy. He and Luo (2009) use

colored time Petri nets to dynamically model AVS/R systems and established the necessary

conditions to have a deadlock-free system. Roy et al. (2014) use a semi-open queueing network to

investigate the effect of vehicle blocking within a single tier of the AVS/R system. Their results

show that the blocking delays could contribute significantly (up to 20%) to the transaction cycle

time. They also show that the percentage of blocking delays goes up as the number of vehicles

increases. However, the effect of blocking decreases as the utilization of vehicles increases, since

the waiting time to obtain a free vehicle dominates in a system with high vehicle utilization. Roy

et al. (2016) come to similar conclusion using a simulation model. Roy et al. (2015b) evaluate

congestion effects in a multi-tier AVS/R system. They develop a semi-open queuing network

and use a decomposition-based approach to solve it. Their model provides the steady state

distribution of the vehicles at the cross-aisles and aisles of each tier, conveyor loops, at the LU

point. The model also captures the blocking delays at the cross-aisle and aisle nodes. Zou et al.

(2016) investigate a scenario in which the lift and vehicles in the tier-captive AVS/R system

are requested to move a load simultaneously rather than sequentially. They model the system
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with a fork-join queueing network. They show that the parallel processing policy improves the

response time of the system by at least 5.5% compared to the sequential processing policy, for

a small-sized systems (system with fewer than ten tiers). In large systems with more than ten

tiers and a ratio of aisle length to rack height of more than seven, they find a critical point for

the retrieval transaction arrival rate. Before that rate, the parallel processing policy performs

better. For arrival rates more than the critical point, the sequential processing policy should

be used. Table 3 gives an overview of these papers.

4.2 Vertical and Diagonal AVS/R Systems

In these systems, a single robot can independently roam throughout the storage rack to perform

storage and retrieval operations. In a Diagonal system, robots move independently in horizon-

tal and “diagonal” directions to access a storage location, while in a Vertical system robots

move independently in horizontal and vertical directions inside the rack structure. The Rack

RacerTM(see Figure 11a) developed by Fraunhofer IML is an example of a diagonal system.

Perfect PickTMdeveloped by OPEX Corporations is an example of the vertical system. It uses

robots, called iBotTM(see Figure 11b), to perform storage and retrieval actions (Azadeh et al.

2016).

(a) RackRacerTM(Fraunhofer 2014) (b) iBotTM(OPEX 2013)

Figure 11: Robots in single-touch systems

The single-touch retrieval process gives the vertical and diagonal system an edge over the

horizontal system in terms of flexibility and throughput adjustment. In these systems, the

throughput can be adjusted by only deciding on the number of robots in the system. Therefore,
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no major overhaul of the system is needed by adding extra lifts. Moreover, maintenance of these

systems is easier since a faulty robot can be replaced without affecting operations. In contrast,

a failure of an exchange point in horizontal systems could result in a system shutdown. The

vertical and diagonal systems seem to be more reliable and flexible than the horizontal ones,

however, insufficient studies have been carried out to give a balanced judgment. The diagonal

system has not yet studied while the vertical system has been studied in only one paper. Azadeh

et al. (2016) models a single aisle of the vertical system using a closed-queueing network. They

show that the optimal height-to-width ratio of the system is around one. They propose a

recirculating (REC) blocking policy as opposed to the wait-on-spot (WOS) policy and show

that the REC policy dominates the WOS policy if the number of robots in the system is large.

Finally, they compare the operational performance and costs of vertical and horizontal systems.

They show that for systems with one L/U point, the vertical system always produces similar

or higher system throughput with lower operational costs compared to the horizontal system

with a discrete lift. In the case of two L/U points, the vertical system outperforms horizontal

systems with both discrete and continuous lifts.

Table 3 presents an overview of the literature on shuttle-based single/double-deep storage

and retrieval systems.

5 Shuttle/Robot-Based Compact Storage Systems

In this section, we discuss variants of the shuttle-based automated compact storage systems.

They are adapted for safe and secure handling of a variety of products such as textiles and

automobile spare parts and fresh produce. They are categorized into three groups: aisle-based,

puzzle-based, and robotic-based systems (see Figure 2).

5.1 Aisle-Based Compact Storage Systems

Crane-based compact storage systems lack flexibility in the volumes they can handle. Shuttle-

based compact storage systems, using lifts instead of cranes, have more throughput flexibility
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Table 3: Overview of the literature (32 papers) on shuttle-based single/double-deep storage
and retrieval system

Research Category System Article Research Issue Methodology

System Analysis

Horizontal
(tier-to-tier)

Malmborg (2002),
Malmborg (2003a,b)

Estimate vehicle utilization
and cycle time

State equation model

Kuo et al. (2007),
Fukunari and Malmborg (2008)

Estimate vehicle utilization
and cycle time

Nested queueing model

Fukunari and Malmborg (2009)
Estimate vehicle utilization
and cycle time interfacing
material flow system

Closed-queueing network

Zhang et al. (2009) Estimate transaction waiting time
Variance-based nested
queueing model

Ekren (2011)
Evaluate performance of
a real system under predefined
design scenarios

Simulation

Ekren et al. (2013),
Ekren et al. (2014),
Cai et al. (2014),

Model the system Semi-open queueing network

Horizontal
(tier-captive)

Marchet et al. (2012)
Epp et al. (2017)

Estimate transaction cycle time Open-queueing network

Heragu et al. (2011)
Estimate transaction cycle time,
Compare with AS/RS

Open-queueing network

Lerher et al. (2015)
Lerher (2016)

Estimate mean travel time Closed-form solution

Ekren (2016)
Graph-based solution for
performance evaluation of the system

Simulation

Roy et al. (2017)
Estimate transaction cycle time
and resource utilization

Multi-stage semi-open
queueing network

Vertical Azadeh et al. (2016)
Model and compare a cost-performance
with the horizontal system

Closed-queueing network

Design Optimization

Horizontal
(single tier)

Roy et al. (2012) Optimal rack configuration Semi-open queueing network

Roy et al. (2015a)
Optimal cross-aisle
location

Semi-open queueing network

Horizontal
(tier-to-teir)

Ekren and Heragu (2010b) Optimal rack configuration Simulation-based regression

Horizontal
(tier-captive)

Marchet et al. (2013)
Optimal rack configuration
of the system

Simulation

Vertical Azadeh et al. (2016) Optimize the shape of the system Closed-queueing network

Operations Planning
and Control

Horizontal
(single tier)

Roy et al. (2012)
Effect of design choices
on cycle time and vehicle
utilization

Semi-open queueing network

Roy et al. (2014) Effect of vehicle blocking on performance Semi-open queueing network
Roy et al. (2015a) Optimal dwell-point policy Semi-open queueing network
Roy et al. (2016) Effect of vehicle blocking on performance Simulation model

Horizontal
(tier-to-tier)

Fukunari et al. (2004) Optimal dwell point location Decision-tree analysis

Kuo et al. (2008)
Effect of class-based storage
on cycle time

Closed-queueing network

He and Luo (2009) Deadlock-free control policy Colored time Petri nets

Ekren et al. (2010)
Effect of combination of dwell-point,
I/O location, scheduling and interleaving
rule on performance

Simulation, ANOVA

Kumar et al. (2014)
Optimal partitioning of
vertical zones in the system

Simulation

Roy et al. (2015b)
Congestion effect on
the performance of the system

Semi-open queueing network

Horizontal
(tier-captive)

Zou et al. (2016)
Simultaneously vs sequentially
requesting vehicles and lifts

Fork-join queueing network

Vertical Azadeh et al. (2016) Effect of blocking on performance Closed-queueing network

by adding or removing shuttles. They consist of multiple tiers of multi-deep storage lanes, each

of which holds one type of product (see Figure 12). The loads in a lane are managed using a

last-in-first-out (LIFO) policy unless the retrieval is possible from opposite sides.
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In such a system, the vertical transfer of loads (usually pallets) across multiple tiers is

carried out using lifts, whereas the horizontal transfer of loads within a tier is carried out using

shuttles. These shuttles move underneath the loads within each storage lane to store or retrieval

the load.

Figure 12: Multi-deep shuttle-based compact storage system (Source: Total Solution Provider
Group)

The horizontal movements of shuttles and loads in the system can be carried out either

by “specialized” shuttles and a transfer car, or by “generic” shuttles that can move in both

horizontal directions without the transfer car. Tappia et al. (2016) model each tier and the

vertical transfer mechanism using a multi-class semi-open queuing network and an open queue,

respectively. They suggest that generic shuttles may reduce the total travel distance for storage

and retrieval operations since additional shuttle movements in the cross-aisle without a load

are not required. However, they argue that a specialized shuttle might be attractive from an

economic perspective, since a generic shuttle is about twice as expensive as a specialized one.

They also show that a single-tier system with a depth/width ratio of around 1.25 minimizes

the expected throughput time. Manzini et al. (2016) and D’Antonio et al. (2017) develop

alternative travel time models for various layout configurations to estimate the cycle time of

the system.
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5.2 Puzzle-Based Compact Storage Systems

Gue (2006) shows that the storage density of a k -deep aisle-based system, is less than or equal

to 2k/(2k + 1), i.e. 2/3 for a single-deep and 4/5 for a double-deep system. To achieve an

absolute maximum storage density, a new concept based on the famous Sam Loyd’s puzzle

game has been developed; the 15-slide puzzle (Loyd and Gardner (1959), see Figure 13). The

15-slide puzzle is a game in which 15 numbered tiles slide within a 4× 4 grid, and the objective

of the game is to arrange the tiles in the correct numerical sequence, starting from a random

initial arrangement.

1 3 2 4

12 14 15 5

13 6 11

9 10 8 7

Figure 13: Sam Loyd’s 15-slide puzzle

The “Puzzle-Based Storage and Retrieval” concept (Gue and Kim 2007), follows a similar

idea. A tile represents a tote, pallet, or even a container that is stored in a grid with only one

open spot on the grid, which allows a (n− 1)/n storage density, where n is the number of cells

in the grid. To retrieve a requested unit load, the system repeatedly moves the open locations,

which ultimately brings the load to the Input/Output (I/O) point. This is illustrated in Figure

14.

I/O

Item to

Other items

Empty cell

be retrieved

(escort)

I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O

Figure 14: Maneuvering a load (item) to the I/O point
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To retrieve a load, an open location first needs to be moved next to the requested item.

Then the open location should be used to move the item to the I/O point. In other words, the

open location “escorts” the requested item to the I/O point. An open location is called an escort

(Gue and Kim 2007). Several compact storage systems have emerged from the puzzle-based

concept in practice and in the literature.

GridStore: Building upon the puzzle-based storage system concept, Gue et al. (2014)

propose a high-density storage system for physical goods called GridStore. The system consists

of a rectangular grid of square conveyor modules with the capability to move items in the four

cardinal directions. The modules can communicate with their neighboring modules as well as

with the item they carry. At the south side of the grid, the retrieval conveyor moves products

away from the grid. At the north a replenishment conveyor moves products that need to be

stored in the grid. Figure 15 illustrates the movement of the items toward the retrieval conveyor.

Replenishment conveyor

Retrieval conveyor

Item to
be retrieved

Other items

Empty cells

Figure 15: Items movements toward the retrieval conveyor in GridStore

GridPick: Based on the GridStore architecture, Uludag (2014) introduces an order picking

systems called GridPick. The system is filled with high-density storage containers, without

any fixed lanes or aisles; only a few open spots on the grid allow items to move during the

retrieval process. The objective of the system is to provide a high order picking rate while

minimizing any congestion effects. Unlike the GridStore, items do not leave the grid in the

GridPick system. Only containers holding the requested item, move to the edge of the system,

called the pick face. The picker picks the items and accumulates the order in a picking cart.

There is also a backward movement, away from the pick face, to balance the empty cells in
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each row. This balancing rule helps to avoid deadlocks in the system.

Figure 16 illustrates an instance of GridPick. The gray items are not-requested stored items,

and the black items are the requested items which are moving toward the pick face. Black circles

on top of some gray items are balancing items moving in the opposite direction from the pick

station. The numbers on top of the items display the order number for the requested item. The

next order for picking is released when all the items from an order have arrived in the pick face

of the system.

2 2

1

1 2 2 1 1 1 1 1

2
2 2

1

Figure 16: An instance of the GridPick system

When comparing the GridPick with its equivalent gravity flow rack counterpart, Gue and

Uludag (2012) show that the gravity flow rack results in a larger system. Therefore, the average

productivity (measured in picks per hour) is higher for smaller orders in the GridPick because

it reduces travel. However, as order size increases, walking time of both systems converges to

the same number.

Live-Cube Compact Storage: A multi-level system in which each floor is based on a

puzzle-based storage architecture is called a Live-Cube storage system (Zaerpour et al. 2017).

As illustrated in Figure 17, the essential parts of the system are multiple levels of storage grids,

shuttles, lift, and the I/O point. Each level of the system forms a grid-based storage system

where shuttles move in x and y directions with the load on top of them. With at least one escort

available in each level, the shuttles maneuver the requested item to the lift, which transports

the load to the I/O point. The I/O point is usually located at the lower left corner of the

system.

GridFlow System: A major drawback of the puzzle-based system is that the physical

layout cannot be changed easily. Therefore, the concept of GridFlow is proposed by Furmans
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Figure 17: A Live-Cube storage system with lift (Zaerpour et al. 2017)

et al. (2011) to offer a cheaper and a more flexible system. In this system, instead of conveyors,

AGVs are used to move the pallets. The use of AGVs instead of conveyors makes the system

more flexible with respect to design and throughput changes. Vehicles can form grids of any

shape without any additional investment. Figure 18 illustrates the GridFlow system and the

vehicle movements in the system.

(a) The system with pallets
and vehicles

Vehicle

Escort
Moved
load unit

(b) Basic movements of the system

Figure 18: The GridFlow system (Furmans et al. 2011)

Many system manufacturers are developing puzzle-based systems in different variants. The

number of actual implementations and prototypes based on this concept is growing in many

different fields, especially in the automated parking systems (e.g. “Park, Swipe, Leave” parking

system (Automation Parking System 2016), “Space Parking Optimization Technology” or SPOT

(EWECO 2016), Hyundai Integrated Parking System or HIP (Hyundai Elevator Co. LTD.

2016), Wöhr Parksafe (Wöhr 2016)).

Similar to the classification in Section 3.2, the literature on the puzzle-based compact storage

systems is classified into three categories: System Analysis, Design Optimization, and Opera-

tions Planning and Control.
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System Analysis: Gue and Kim (2007) develop an algorithm to find an optimal path to

retrieve an item in the puzzle-based system with a single escort positioned at the I/O point.

They propose a dynamic programming approach for multiple escorts and a heuristic for larger

instances. Their results confirm the intuition that having more escorts shortens the retrieval

time. The only exception occurs for smaller systems with many escorts at the I/O point. They

also compare the performance of the puzzle-based system with its aisle-based counterpart. They

find that aisle-based systems have shorter retrieval times than puzzle-based systems, unless the

desired storage density is more than 90%. Kota et al. (2010) extend the analytical model of

Gue and Kim (2007) by letting the single escort to be randomly located in the grid. They also

develop a model for the system with two escorts, one near the I/O point and one randomly

placed on the grid. An integer programming formulation is also provided for the grid populated

with any number of escorts. Kota et al. (2015) develop a closed-form expression for the retrieval

time in the puzzle-based storage system with a single or two randomly scattered escorts within

the grid. They propose a heuristic solution for more than two escorts in the system. Their

heuristic gives a near optimal solution, except for the time when free escorts are congested near

the edge of the grid. Zaerpour et al. (2017) investigate a multi-tier puzzle-based (live-cube)

storage system. They assume sufficient escorts are available at each level so that a virtual aisle

can be created (minimum number of escorts is the maximum of the rows and columns in the

system). They use traditional methods for the aisle-based system and derive a closed-form

formula for expected retrieval time. Zaerpour et al. (2016b) propose a two-class-based storage

policy for a live-cube system. They derive closed-form formulas to calculate the expected

retrieval time of the system. They conclude that their proposed storage policy can improve the

average response time of the system up to 55% compared to the random storage policy, and up

to 22% compared to the cuboid two-class-based storage policy.

Design Optimization: Gue et al. (2014) analyze the optimal shape of the GridStore sys-

tem. They find that a system with more columns has a higher throughput with the same

number of stored items. Zaerpour et al. (2017) propose and solve a mixed-integer-nonlinear

model to optimize the dimensions of a live-cube system by minimizing the retrieval time as-
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suming a random storage policy. Zaerpour et al. (2016b) extend this work by considering a two

class-based storage policy. Their results show that the the optimal dimensions of the system are

identical for two class-based and for a random storage policy. Zaerpour et al. (2016a) propose a

mixed-integer nonlinear model to optimize the dimensions and zone boundaries of the two-class

live-cube storage system by minimizing the response time. Furmans et al. (2011) investigate

the design choices for the GridFlow system with one vehicle and one escort. They conclude that

putting the I/O point in the middle of the longer side of the grid produces the best performance.

Furthermore, they show that the 2:1 aspect ratio results in the lowest retrieval time when the

number of storage locations is less than 2000. Their results are not conclusive for larger storage

capacities.

Operations Planning and Control: Taylor and Gue (2008) investigate the effect of the

distribution of escorts in the puzzle-based system. They examine three choices for the initial

location of escorts: 1) near the I/O (located at a lower left corner of the grid), 2) along the

diagonal from lower left to upper right, and 3) randomly on the grid. They show that when

the number of escorts is above 25%, having the escorts along the diagonal always outperforms

the other strategies. The only exception occurs when the storage is based on an ABC policy, in

which, random placement for the escorts is the best option. Yu et al. (2017) consider a puzzle-

based storage system with multiple escorts, in which multiple loads and escorts are allowed to

move simultaneously and in blocks (simultaneous movement of loads in a line). Using integer-

programming, they obtain the optimal retrieval time of a single item in the system. Their

results show that allowing loads and escorts to move simultaneously and in blocks can save

up to 70% in the total number of needed moves to retrieve an item. Mirzaei et al. (2017)

propose retrieving multiple items simultaneously. They derive the optimal retrieval time for

double-item and triple-item retrieval using enumeration. They propose a heuristic algorithm for

more than three simultaneous item retrievals. Their shows that double-item retrieval reduces

the storage/retrieval time by on average 17% compared to sequential retrieval. Savings can be

further increased by performing multi-item retrievals. Gue et al. (2014) propose a decentralized

Assess-Negotiate-Convey control scheme for the GridStore system, in which each conveying cell
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can execute the same set of instructions based on its local condition. They also investigate the

effect of WIP and the number and distribution of escorts per row, on the throughput. First,

they assume that escorts are uniformly distributed in the rows. They show that the throughput

increases with an increasing rate with an additional request for medium and low level of WIP

in the system. Next, they investigate two additional distribution of escorts: more escorts in

the southern row (increasing k) and fewer escorts in the southern row (decreasing k). They

show that the distribution of escorts has no effect on the throughput for low level of WIP.

The increasing k performs better at low to moderate WIP levels, and all distributions perform

equally well at a high level of WIP. Alfieri et al. (2012) investigate the GridFlow system with

a limited number of vehicles. They propose a heuristic algorithm to optimize the movement of

shelves and to dispatch the AGVs optimally.

5.3 Robot-Based Compact Storage and Retrieval (RCSR) Systems

In RCSR systems, items are stored in a very dense storage block with a grid on top. In each

cell of the grid, bins that contain the items are stacked on top of each other and form the

storage stacks. The workstations are located at the lowest level next to the storage stacks.

Robots in this system are positioned on top of the storage block on the grid. The robots have

lifting capabilities, and can extract bins from the storage frames and transport them to the

workstations (Zou et al. 2016). AutoStoreTMdeveloped by Hatteland is the first implementation

of an RCSR system.

Zou et al. (2016) are the only ones to investigate the RCSR system. They model the

system as a semi-open queueing network and compare two storage policies, namely dedicated

and shared storage. They show that the dedicated policy results in a shorter throughput time

whereas the shared policy has more benefits due to substantial cost savings on the total storage

space. They also optimize the shape of the system. They show that for the optimal shape

of the system, the width-to-length ratio is around 2/3 (assuming the workstations are evenly

distributed at the right and left side of the system) when using random storage stacks, and
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(a) Schematics (b) Storage stacks

(c) Robot (d) Workstation

Figure 19: Robot-based compact storage and retrieval system (Source: Hatteland)

slightly larger when using zoned storage racks based on product turnover frequencies. They

also investigate the effects of immediate and delayed reshuffling policies. Immediate reshuffling

can improve the dual command throughput time.

Table 4 presents the classification of the literature for the shuttle or robot-based compact

storage systems.

6 Robotic Mobile Fulfillment Systems

Internet retailers typically have a warehouse with a large assortment of small products. Their

demands usually consists of multi-line small quantity orders. In manual picking systems, much

non-value added time is needed by the pickers to travel along the aisles. The Robotic Mobile

Fulfillment System (RMFS) is a system, in which robots capable of lifting and carrying movable

shelves retrieve the storage pods (i.e. movable shelf racks) and transport them to the pickers,

who work in ergonomically designed workstations. Bringing the inventory to the picker instead

of the picker traveling to the inventory, can double the picker productivity (Wurman et al. 2008).

The system is also very flexible in throughput capacity, as more robots and pods can be added
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Table 4: Overview of the literature (16 papers) on shuttle-based compact storage systems

Categeory System Author Research Issue Modeling Methodology

System Analysis

Grid-Based Gue and Kim (2007)
Optimal retrieval path with
fixed escort positions,
performance comparison with aisle-based

Dynamic programming;
heuristics

Kota et al. (2010)
Optimal retrieval path with
random escort positions

Integer programming

Kota et al. (2015)
Retrieval time estimation with
randomly located escorts

Closed-form expression;
heuristics

Live-Cube

Zaerpour et al. (2017)
Retrieval time expression with
random storage policy

Closed-form expression

Zaerpour et al. (2016b)
Retrieval time expression with
two class-based storage policy

Closed-form expression

Aisle-Based
Manzini et al. (2016)
D’Antonio et al. (2017)

Estimate cycle time Travel time model

Design Optimization

Aisle-Based Tappia et al. (2016)
Optimal layout configuration,
choice of shuttle and vertical transfer

Semi-open queueing network

Grid-Based Taylor and Gue (2008) Effect of escort locations Discrete time simulation

Live-Cube

Zaerpour et al. (2017)
Optimal shape of the system
with random storage policy

Mixed-integer nonlinear
model

Zaerpour et al. (2016b)
Optimal shape of the system
with two-class-based storage policy

Close-form expression

Zaerpour et al. (2016a)
Optimal zone boundary
in two class-based
storage policy

Mixed-integer nonlinear
model

GridFlow Furmans et al. (2011)
Optimal shape of the system;
choice of I/O point

Discrete time simulation

GridStore Gue et al. (2014)
Optimal shape of the system;
effect of WIP and escorts on
the throughput rate

Discrete time simulation

RCSRS Zou et al. (2016) Optimal width-length ratio Semi-open queueing network

Operations Planing
and Control

Grid-Based
Yu et al. (2017)

Effect of simultaneous and
block movement of items and escorts

Integer-programming

Mirzaei et al. (2017) Simultaneous multi-load retrieval
Monte Carlo simulation;
Heuristics

GridStore Gue et al. (2014)
Deadlock free decentralized control scheme;
effect of WIP and escorts on
the throughput rate

Discrete time simulation

GridFlow Alfieri et al. (2012)
Gridflow with limited number of vehicles;
Optimally dispatch AGVs;
Optimize the shelves’ movement

Heuristics

RCSRS Zou et al. (2016)
Evaluating dedicated versus,
shared storage policies

Semi-open queueing network

to the warehouse. This is particularly important for internet retailers who face volatile demand.

The RMFS was conceptualized by Jünemann (1989) and U.S. patented by KIVA Systems Inc.

(Mountz et al. 2008), which then was acquired by Amazon and rebranded to AmazonRobotics.

The system is used in many Amazon facilities. Meanwhile, other providers have also entered

the market with mobile racks in combination with robots, such as CarryPickTMby Swisslog,

ButlerTMby GreyOrange, Scallog SystemTM, and RacrewTMby Hitachi (Banker 2016). Figure

20 presents some of these technologies.

The RMFS consists of three major components. Robotic Drive Units: These robots are

instructed by the central computer to transport inventory pods to the workstation for restock-
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(a) Amazon robots (Source:
AmazonRobotics)

(b) CarryPickTM(Source:
Swisslog)

(c) ButlerTM(Source: GreyOr-
ange)

Figure 20: Robotic mobile fulfillment systems

ing or for picking. Nowadays also decentrally (or locally) controlled systems exist. Inventory

Pods: Pods are movable shelf racks that contain the stored products. Pods come in two stan-

dard sizes. Smaller pods are used for weights up to 450 kg and large pods are used for weights

up to 1300 kg. Workstation: Ergonomically designed areas where human workers perform

pod replenishment, picking and packing functions (MWPVL International 2012). Figure 21

presents an RFMS workstation and its components.

Figure 21: RMFS workstation (source: Amazon)

To pick an ordered item with the RMFS, the order is first assigned to one of the workstations.

Then the item is assigned to a pod and one robot. The robot then moves from its dwell location

to retrieve the pod. At this point, the robot moves without a load and can therefore move

underneath the pods, without using the designated travel aisles. Once the robot reaches the

desired pod, it moves underneath it, lifts the pod, and transports it to the workstation via
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the travel aisles. The robot enters the workstation buffer and waits for its turn (see Figure

21). The picker takes the requested products and adds them to the customer order bin placed

in a different rack. The robot then returns the item pod to a storage location by accounting

the frequency of the requests for the pod. The storage locations are therefore fully dynamic

(Wurman et al. 2008, Enright and Wurman 2011). The layout can be fully adapted both

dynamically and automatically to the product and order characteristics.

The performance of RMF systems has hardly been studied scientifically. Nigam et al. (2014)

developed a closed-queueing network model for an RMFS. They estimated order throughput

time for single-line orders in an RMFS with a turnover class-based storage policy. They show

that the closest-open location pod storage strategy does not use the storage space efficiently

compared to the random location pod storage policy. However, the closest-open location policy

achieves a slightly higher throughput capacity. Lamballais et al. (2017a) extend the work of

Nigam et al. (2014) by deriving travel time expressions for multi-line as well as single-line orders

in a RMF system with storage zones. They develop a SOQN to estimate the average order cycle

time and the utilization of robots and workstations. They show that the maximum throughput

can be increased by almost 50% by using pod turnover-based storage zones. Furthermore, they

show that the maximum throughput capacity of the system is insensitive to the length-to-width

ratio of the storage area (unless the ratio is strongly skewed). However, they show that the

positions of the workstations around the storage area directly affects the throughput capacity.

Within their settings, the workstations should be located west and east of the storage area

when turnover-based zoned storage is used, and north and south of the storage area when

zoned storage is not used, to maximize the throughput. One of the drawbacks of their analysis

is that they assume items on one pod are all the same; for a multi-line order, multiple pods

are required. However, in reality, each pod contains multiple products. Therefore, it might be

possible that a single pod can fulfill multiple requests of an order. Lamballais et al. (2017b)

address this issue by investigating how the inventory of products should be spread across storage

pods. They develop an SOQN to estimate the throughput time. They then optimize the number

of pods per product, the ratio of the number of workstations to replenishment stations, and the
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replenishment level for each pod to minimize the throughput time. The results show that the

inventory should be spread across as many pods as possible to minimize the throughput time.

Furthermore, they find that the optimal ratio of pick stations to replenishment stations is 2

to 1, and that the optimal replenishment level is about 50%. Yuan and Gong (2017) develop

an OQN to estimate the total throughput time of the RMFS. Using the developed model,

they calculate the optimal number of the robots and their required average speed to achieve a

certain throughput time. Boysen et al. (2017) investigate sequencing picking orders at the work

stations of an RMFS. They formulate the problem as a mixed-integer program. Their results

show that by optimally sequencing the picking orders, the order fulfillment process can be done

with half of the fleet size of the robots compared to the first come first serve order sequencing

rule. Furthermore, they show that the robot fleet can be further reduced by using the shared

storage policy, in which the same SKUs are spread over multiple pods.

7 Directions for Future Research

In this section, we list several emerging technologies and processes, which require further sci-

entific investigation.

Pick Support AGVs: Most retail warehouses still use manual order picking systems.

Retailers usually place large replenishment orders at the distribution center. The DC then

ships orders in multiple roll cages or pallets. Therefore, a single order requires multiple pick

tours (trips between pick locations and the depot). Recently, AGV-based pick systems, called

Pick Support AGVs (PS-AGVs), have been developed to minimize the picker travel time to fill

large orders. In this system, an AGV automatically follows the picker closely and transports the

roll cages, so that the picker can drop off the retrieved items. Once the roll cage is full, the AGV

is automatically swapped with a new AGV carrying an empty roll cage. The picker can continue

the picking route without returning to the depot, and the AGV automatically transports the

full roll cage to the depot. AVGPickTMdeveloped by Swisslog and Pick-n-GoTMdeveloped by

Kollmorgen are two examples of such a system.
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Locus Robotics has developed another variant of this system. Instead of following the picker,

their AGV (called LocusBotsTM) automatically goes to the pick location and waits for the picker

to arrive. Once the picker puts the item into a customer tote carried by the AGV, the AGV

goes to the next location. When the order is complete, the AGV transports it to the depot.

Some systems automate the whole picking process. An example is the TORUTMpicking

robot. In this variant, the AGV automatically goes to the picking location and picks up the

item without any help from the picker. Similar to the previous variants, once the order is

complete, the AGV transports the picked items to the depot.

(a) Pick-n-GoTM(Source: Koll-
morgen)

(b) LocusBotsTM(Source: Lo-
cus Robotics)

(c) TORUTM(Source: Maga-
zino)

Figure 22: Pick Support AGVs

Although PS-AGVs are becoming increasingly popular in practice, they have not yet been

investigated by the researchers. Due to the parallel movement of pickers and AGVs, the mod-

eling, analysis, and optimization of these systems differ from manual picking systems or the

robotic systems mentioned earlier in this paper. Evaluating the performance of these systems

is an interesting stream for future research.

GridSort: The GridSort system is based on the GridFlow system discussed in Section

5.2. It uses modular four-directional conveyors, called FlexConveyor (Furmans et al. 2010), or

AGVs to transport and sort the loads. Recently, Libiao Robotics has developed a different type

of ‘GridSort’ system, used by several parcel carriers that use a fleet of hundreds of AGVs on

a grid to sort parcels by destination. GridStore is fundamentally different from conventional

conveyor-based sorters. New models are required to evaluate its performance.

Automated Replenishment, Product, and Order Sequencing: Figure 1 shows the
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steps and systems that can be found in fully automated warehouses. Some of the systems and

processes shown there have not yet received research attention. For example, in step four, totes

with products have to be retrieved, e.g. from an AVS/R system in the proper stacking sequence,

for multiple orders. Sequencing the retrievals in such systems with some precedence constraints

for arrivals at the stacking robots (step five and six; usually these robots have some freedom in

item selection) and the corresponding scheduling of the retrieval shuttles in the AVS/R system

is a challenging problem. Currently, heuristics are used, and much slack is built in the systems.

Other systems combine automated storage and replenishment of the pick system (like shown in

steps two and three in Figure 1) with manual picking. Particularly if the number of pick slots is

smaller than the number of products, scheduling the retrievals so that the picker does not have

to wait is challenging. Previously used picked products have to be returned to be stored again

in the bulk storage system (step two). This problem has been studied by some researchers, but

only in combination with manual pick processes (Yu and De Koster 2010, Ramtin and Pazour

2014, 2015, Schwerdfeger and Boysen 2017).

Integrated Systems: Almost all the existing literature studies the automated picking sys-

tems in isolation, without addressing the relationship between different systems and processes

in the warehouse. However, the components need to be optimized simultaneously to ensure a

smooth and efficient operation. This requires more integrated models, in which different com-

ponent are combined, for instance, the effect of automated replenishment or order sequencing

on the performance of the automated picking system.

Human Machine Interaction: Although warehouse processes are becoming increasingly

automated, humans will still be required to do a part of the work. They will have to cooperate

and interact with machines. The interaction between man and machine has received little

attention. Research questions may focus on the types of human jobs that should remain in order

to maximize joint performance during tasks in cooperation with machines, how to minimize

discomfort of order pickers (see also Larco et al. (2016)), or more behavioral questions such as

how to incentivize people, or which personalities people should have to maximize performance of

joint work. A recent study shows that the organization of the pick process, work incentives, and

43



personality of the pickers strongly interacts, and can have a major effect on picking performance

(De Vries et al. 2016).

Warehouse Sustainability: Increased social awareness together with governmental reg-

ulations for carbon emissions and waste management, has transformed sustainability from an

idealistic idea to an absolute necessity for companies (Chaabane et al. 2011). While increas-

ing attention has focused on the supply chain sustainability (e.g. Seuring and Müller (2008),

Barjis et al. (2010), Ballot and Fontane (2010), Barber et al. (2012)), the environmental im-

pact of automated warehouses has not received much attention. Colicchia et al. (2011) offer

several approaches for more sustainable warehouse, such as using green energy sources, opti-

mizing travel distance and storage assignment policies, and adopting energy-efficient material

handling equipment. Tappia et al. (2015) propose a mathematical model to evaluate the energy

consumption and environmental impact of AS/R and AVS/R systems. Zaerpour et al. (2017)

do a similar analysis for a live-cube storage system. However, more studies are needed to in-

corporate the environmental aspects into the decision models revolving around new material

handling technologies.

New Methods and Other Areas: On top of the methods that are discussed in Section

2, new techniques might need to be developed, or other existing tools can be used to evaluate

the performance of the automated systems. For instance, data-driven techniques such as data

envelopment analysis (DEA) can be used to benchmark automated systems. Furthermore,

several scenarios for new modeling methods need to be developed, for example, performance

evaluation with non-stationary transaction arrivals.

Many of the recent robotic solutions have flexible capacities (e.g. vertical AVS/R, Picking

AGVs, RMF systems). In these systems, the number of robots can be adjusted and workstations

can be opened or closed depending on the needed capacity. Thus, new methods are needed to

estimate how the capacity of the systems can be dynamically adjusted and allocated to different

activities.
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8 Conclusion

This paper presents an overview of the recent trends in automated warehousing, especially the

use of robotic technologies to fulfill orders. The advantages of automation are mainly savings in

space, savings on labor costs, 24/7 availability (it is not always easy to find unskilled personnel

willing to do warehouse work), and savings on other operational costs, such as heating and

lighting. Furthermore, robotic technologies provide scalability and throughput flexibility, which

is essential in e-commerce environments where the demand variability is high. Automation of

storage and order picking requires considerable scale and a long-term vision as the investments

can only be earned back in the medium and longer term. Therefore, it is crucial to develop tools

to help decision makers find the correct solutions for their warehouse. As a result, studies have

been carried out to model and optimize the performance of the various automated systems.

We present modeling techniques, namely travel time expressions and queueing networks, as

well as corresponding solution approaches in evaluating the performance of the automated

systems. We also illustrate how the models are used in long-term and short-term decision-

making processes (design, operational control and planning). We describe three well-established

automated technologies (AS/R, AVS/R, RMF systems) as well as the literature related to the

various design and control problems in these systems, such as optimally shaping the system,

the impact of dwell point policies, block prevention protocols, and storage assignment. Each

of these systems is different in terms of infrastructural requirements, operational protocols and

equipment movement, and although the frameworks are common, models need to be customized

to each system’s unique characteristics. We also discuss emerging technologies and aspects that

have not received enough (or any) attention in the literature. Human picking in collaboration

with AGVs is one of the most recent technologies that is becoming popular in practice due

to its simplicity and flexibility, but has not yet been adequately studied. Also, automated

replenishment and sequencing, integrated systems, human-machine interaction and warehouse

sustainability are areas that require more attention from researchers.
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