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Abstract

This paper investigates three different technologies for solving a planning and schedul-
ing problem of deploying multiple robots in a retirement home environment to assist elderly
residents. The models proposed make use of standard techniques and solvers developed in
AI planning and scheduling, with two primary motivations. First, to find a planning and
scheduling solution that we can deploy in our real-world application. Second, to evaluate
planning and scheduling technology in terms of the “model-and-solve” functionality that
forms a major research goal in both domain-independent planning and constraint program-
ming. Seven variations of our application are studied using the following three technologies:
PDDL-based planning, time-line planning and scheduling, and constraint-based schedul-
ing. The variations address specific aspects of the problem that we believe can impact
the performance of the technologies while also representing reasonable abstractions of the
real world application. We evaluate the capabilities of each technology and conclude that
a constraint-based scheduling approach, specifically a decomposition using constraint pro-
gramming, provides the most promising results for our application. PDDL-based planning
is able to find mostly low quality solutions while the timeline approach was unable to model
the full problem without alterations to the solver code, thus moving away from the model-
and-solve paradigm. It would be misleading to conclude that constraint programming is
“better” than PDDL-based planning in a general sense, both because we have examined
a single application and because the approaches make different assumptions about the
knowledge one is allowed to embed in a model. Nonetheless, we believe our investigation
is valuable for AI planning and scheduling researchers as it highlights these different mod-
elling assumptions and provides insight into avenues for the application of AI planning and
scheduling for similar robotics problems. In particular, as constraint programming has not
been widely applied to robot planning and scheduling in the literature, our results suggest
significant untapped potential in doing so.

c©2017 AI Access Foundation. All rights reserved.
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1. Introduction

The recent aging of global populations is unprecedented in human history and it is not
expected that we will return to the younger population profiles of our ancestors (United
Nations, 2002). The large increase in the aged population has had, and will continue to
have, profound impact on social and economic facets of our society. Of particular concern
is the welfare and well-being of the elderly as their physical, cognitive, and psychological
requirements must be adequately met. However, without proportionately increasing the
number of professional caregivers, the increase of the older population will lead to a strain
on existing caregivers. To address the lack of human resources, human-robot interaction
(HRI) and robot companionship have been proposed and shown to have positive results
on the human psychological state (Banks, Willoughby, & Banks, 2008; Turkle, 2006). To
that end, we have undertaken a long-term study on the deployment of intelligent human-
like mobile robots in retirement homes to assist and interact with elderly residents (Booth,
Tran, Nejat, & Beck, 2016; Louie, Vaquero, Nejat, & Beck, 2014; Louie, Li, Vaquero, &
Nejat, 2014, 2015; Mohamed & Nejat, 2016).

The proposed research problem includes a myriad of technical challenges with respect
to robot hardware, control, sensing and intelligence. Our focus in this paper is on an
important part of the overall challenge: developing global decision making techniques which
can plan and schedule the high-level tasks that a set of robots will perform during the
day in a retirement home. The decisions that must be made are what tasks to perform,
where and when to perform them, which residents are involved with these tasks, and which
robot performs a particular task. It is, of course, critical to take into account the personal
preferences, schedules, and requirements of each resident, creating a complex coordination
problem where planned tasks must fit into the daily operations of a retirement home.

This paper aims to study whether a particular planning application can be modelled
and solved using current planning and scheduling technologies. Such case studies serve as
valuable feedback for researchers who focus on the theory and algorithms which form the
core of planning and scheduling research. As we use off-the-shelf technology, this paper
serves as a test of the extent to which two AI fields, domain-independent planning and
constraint programming (CP), are progressing toward the “holy grail” (Freuder, 1997) of
declarative problem solving. While this test, focusing on a single application, is far from
definitive, it does provide needed insight as to where we are in this quest as well as towards
the goal of solving similar planning and scheduling problems.

The main contributions of this paper are:

• The modelling of a complex multi-robot HRI problem for three different solving tech-
nologies: Planning Domain Definition Language (PDDL), New Domain Description
Language (NDDL), and CP. The principles and practice of taking a real problem and
developing a model are not often discussed and alternative models tend to not be ex-
plored in depth in the planning community. This work contributes to the knowledge
needed for effective modelling;

• The modelling and solving study of a complex temporal planning problem that lies
at the intersection of planning and scheduling;
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• An investigation of alternative models in PDDL for timed events and multi-user ac-
tions;

• The introduction of one of the first applications of CP to a multi-robot planning and
scheduling problem;

• Identification of particular model components for PDDL planners (timed initial liter-
als, temporal constraints, and complex objective functions) and CP solvers (massive
numbers of optional activities and complex objective functions) that are challenging
for the technology.

The following section presents the motivation and background of our work. Details of the
robot planning and scheduling application are presented in Section 3. Models developed for
the three technologies are outlined in Section 4, followed by experimental results comparing
the different technologies in Section 5. Lastly, in Section 6, discussions of our results are
presented followed by ideas for future work and conclusions.

2. Motivation and Background

Our long-term project is the deployment of intelligent mobile robots in retirement homes
to engage residents in stimulating recreational activities (Louie, Han, & Nejat, 2013; Louie,
Li, Vaquero, & Nejat, 2014; Louie, Vaquero, Nejat, & Beck, 2014; Li, Louie, Despond, &
Nejat, 2016). We have designed the robot known as Tangy to: 1) navigate using a laser
range finder and 3D depth sensors, 2) detect users with 2D cameras, and 3) interact with
users through speech, gestures, and a touch screen. While the implementation of the robot
behaviors addresses robotics challenges (e.g., sensing, HRI, person and activity recognition),
herein, we focus on the planning and scheduling of the daily activities of the socially assistive
robots. These plans and schedules are to be generated prior to the start of a day and will
be executed by the robots during the day.

We investigate the potential technologies to be implemented to generate daily plans and
schedules. Due to external factors and uncertainties involved with human interaction, plans
and schedules may fail. However, we leave replanning and rescheduling online for future
work as being able to obtain a schedule first is a crucial step towards implementation.

We focus on two representative activities within the retirement home setting: telepres-
ence sessions and Bingo games. In the former, the robot autonomously navigates to a user
in his/her private room, prompts the user for a previously requested video call, starts the
call and tracks the user during the session. For a Bingo game, the robot autonomously
finds and reminds participants about the game prior to its start and then navigates to a
specified location to conduct the game. During Bingo, the robot acts as the game facilitator,
calling out numbers, verifying Bingo cards, prompting players to mark missed numbers and
celebrating with winners. These two activities provide the framework necessary to repre-
sent any other single or multi-user activities relevant to our system. A centralized server
will plan, schedule and monitor the daily tasks of the robots, while lower-level behaviors
are planned and performed locally by each individual robot (Vaquero, Mohamed, Nejat, &
Beck, 2015).

Planning and scheduling (P&S) is the joint problem of deciding what tasks to perform,
when, and with what resources, to achieve a set of goals. At the low-level, if a robot is
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given the goal of going to a resident’s private room for a telepresence session, it has to plan
a series of moves to navigate from its current location to the resident’s room. In contrast,
if a robot has requests for a number of different tasks with different residents, it needs to
schedule these tasks, taking into account the profiles and preferences of the residents, the
length of the tasks, and travel time between tasks. Our focus is on this high-level P&S
problem.

Planning is a key component of intelligent behavior (Ghallab, Nau, & Traverso, 2004)
and is primarily studied within Artificial Intelligence (AI). While initiated in robotics
(Nilsson, 1984), planning research has broad applications including in autonomous rovers
(Gaines et al., 2006; Jain et al., 2003), spacecraft and satellite control (Frank, 2008; Ghallab
et al., 2004; Reddy et al., 2008), clinical decision support systems (Fdez-Olivares, Cózar,
& Castillo, 2009), and advanced manufacturing (Vaquero, Tonidandel, de Barros, & Silva,
2006). The algorithmic foundation of AI planning is state-space search (Ghallab et al.,
2004).

Scheduling is widely studied in both the AI and Operations Research communities
(Pinedo, 2012). The emphasis in the literature has been on the combinatorial nature of a
problem and the development of sophisticated optimization techniques. In general, robots
have not received as much attention in the constraint-based scheduling literature as they
have in the planning literature. Namely, most scheduling work focuses on robots in produc-
tion lines (Dang, Nielsen, Steger-Jensen, & Madsen, 2013; Kats & Levner, 2011) and robot
task scheduling (Zhang & Parker, 2012, 2013). In these works, all tasks must be processed
and they do not lead to cascading effects on the actions of robots or require reasoning about
causation.

The integration of planning and scheduling has been investigated over the past sev-
eral years in such robotic applications as container transportation robots (Alami, Chatila,
Fleury, Ghallab, & Ingrand, 1998), office assistant robots (Beetz & Bennewitz, 1998), plan-
etary rovers (Estlin et al., 2007), hospital assistant robots (Pecora & Cesta, 2002), and
eldercare robots (Cesta et al., 2011; Pineau et al., 2003). In these applications, single robot
approaches are commonly studied.

With respect to HRI activities, existing work has mainly focused on automated reason-
ing about the schedule of a single user. For example, the Pearl robot (Pineau et al., 2003)
uses the Autominder system (Pollack, 2005) to reason about an elderly person’s current and
planned activities to determine if and when reminders should be provided. The Autominder
system has not been extended to consider multiple users. The Cobot robots (Coltin, Veloso,
& Ventura, 2011) plan and schedule HRI activities, including semi-autonomous telepresence
sessions, and office tasks based on requests from several users. However, the planning and
scheduling are managed independently and the user schedules are not considered as con-
straints on the robots’ tasks. Our previous work studied a similar system, but with a single
robot and different restrictions on activities (Booth et al., 2016). All HRI activities in
that work needed to be performed and the users associated with the activities were already
known. In this work, interaction activities are optional and the identity of individual users
invited to participate in group activities are decisions to be made. Although multiple user
schedules have been considered in other non-robotic scheduling and optimization applica-
tions (e.g., energy conservation in buildings, Kwak, Varakantham, Maheswaran, Tambe,
Jazizadeh, Kavulya, Klein, Becerik-Gerber, Hayes, and Wood, 2012), in this work we focus

526



Applying Off-the-Shelf Planning and Scheduling to a Team of Assistive Robots

on problems in which it is required to reason about the schedules of multiple users, limited
resources, metric quantities, and both single- and multi-user HRI activities.

Our research work requires the combination of problem features that are often only
individually considered in the literature. It is important for such an application problem
that these features, which include optional activities, consideration of user schedules and
preferences, and efficient deployment of a fleet of robots, are addressed. To date, such a
real world problem has not been studied in the planning and scheduling literature. Our
objective is to investigate the use of the existing planning and scheduling technology for
our application problem, as well as developing an appropriate model that can provide the
required daily schedules of a team of robots in a human-centred environment.

3. Problem Description

The problem of interest is creating a daily schedule for multiple robots in a retirement home
environment. We define the main elements of the proposed problem: the environment in
which the residents (users) and robots interact, the constraints, the goal and preferences.
The constraints for the telepresence sessions and Bingo activities were obtained from meet-
ings with directors, healthcare professionals, and residents from Toronto area retirement
homes (Louie, Li, Vaquero, & Nejat, 2014, 2015). The parameters and preferences used
herein can be changed as needed without a large impact on the models proposed in this
paper.

3.1 The Retirement Home Environment

We consider a floor in a retirement home. The environment consists of rooms and hallways
that are discretized as a set of locations, L, within which the users and robots interact. The
distance between any two locations l and m, denoted as dlm, is determined as part of the
discretization of the retirement home.

3.2 The Users

A number of residents live in the retirement hone, represented by a set of users, U . Each
user, u ∈ U , has his or her own user profile consisting of a private room at a location in L,
and a schedule for the day. A user’s schedule provides the availability and location of the
user from 7:00 a.m. to 7:00 p.m. During this time, the user may or may not be available
for interaction with a robot: a user u may be available between 10:00 a.m. and 11:00 a.m.
at location l, but from 11:00 a.m. to 12:00 p.m. the same user can be at location m and
unavailable for any interaction. All users have meal breaks for breakfast (8:00 a.m. to 9:00
a.m.), lunch (12:00 p.m. to 1:00 p.m.), and dinner (5:00 p.m. to 6:00 p.m.), during which
no user-robot interactions are possible. Each user also has appointments during which no
interaction can occur (e.g., art classes and family visits).

The user’s profile also contains their preference for a minimum, att minu, and maximum,
att maxu, number of Bingo games. Furthermore, some users may have telepresence sessions
that have been booked and must occur at some point during the day when the user is free.
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3.3 The Robots

The environment has a set of assistive robots, R, that are responsible for performing the
single-user activities (telepresence sessions) and multi-user activities (Bingo games). The
robots also provide users with reminders prior to any Bingo games to which they are as-
signed. To perform these tasks, a robot must travel to the corresponding location (either
the current location of the user or to the games room for a Bingo game). Once the robot
and user are together at the scheduled time, the robot is then busy for the duration of the
task and is not able to perform any other tasks.

While the robot is travelling and performing tasks, it consumes battery power at a rate
dependent on the task being executed. The battery level, bli, of robot i must always stay
between bl mini ≤ bli ≤ bl maxi. To ensure that a robot’s battery has sufficient energy,
the robot can be scheduled to recharge its battery up to bl maxi at a charging station.
A constant recharging ratio of rri (V/min) is used to approximate the recharging process
of robot i. Of course, to recharge, the robot must navigate to the location of a charging
station.

A robot moves between locations at a constant velocity vi and so the estimated time
to move from a location l to m is dlm

vi
. Moving consumes battery power with a constant

rate of cr movei, the amount of battery consumed for moving one unit of distance. Each
HRI activity has a different rate at which power is consumed: cr telepi, cr remindi, and
cr Bingoi represent the consumption rate per minute of a robot i for telepresence sessions,
reminders, and Bingo activities, respectively. The robot must always have sufficient battery
power to return to a charging station.

3.4 Charging Stations

A set of charging stations, K, is considered for this problem. Each station k ∈ K is available
in one of the locations and is able to recharge any of the robots. There can be any number
of charging stations per location. Each station has one docking spot and can charge at
most one robot at a time. While a robot is docked, it cannot perform any other tasks. For
a given level of charge, β, that is desired after a charging action, the charging duration is
CD(β) = β−bli

rri
.

3.5 Telepresence Sessions

A set of telepresence sessions, S, is required to be scheduled during the day. Each telep-
resence session y ∈ S is characterized by the user u, the location l (in the user’s private
room), the duration dury (30 minutes), and the time window (or multiple non-overlapping
time windows) in which a telepresence session may be held.

3.6 Bingo Games

A set of Bingo games, G, is to be scheduled during the day. Bingo games are optional
activities that add value to the daily schedule for users. A Bingo game g ∈ G is characterized
by the location (i.e., the dedicated games room), the duration of the game durg (60 minutes),
and the time window (or multiple non-overlapping time windows) when it can be played.
For each Bingo game g that is played, the number of participants must be no less than
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p ming = 3 and no more than p maxg = 10. These users must be available during the
game and each player must be reminded of the game by a robot 15 to 120 minutes before
it begins. These times are chosen with the assumption that residents may require up to
15 minutes to travel to the games room and that a reminder any longer than 120 minutes
prior to the game may be forgotten. The robot that reminds a user does not need to be
the same robot that plays the Bingo game. The duration of a reminder is dur remindg (2
minutes) and can only be performed when a user is available. To remind a user, the robot
must be in the same location as that user.

The group of participants of a game is not known a priori. For a given game, the group of
players is a decision variable based on the residents’ schedules and attendance preferences.

3.7 Input and Goal

The input of the problem is the sets of locations, L, users, U (with their profiles), charging
stations, K, available robots, R (with their initial locations, velocity, and battery level and
consumption details), and the requested telepresence sessions, S, and Bingo games, G, with
their corresponding properties. The goal is to create a plan of robot tasks in which: 1)
all the requested telepresence sessions are scheduled, and 2) the requested Bingo games
and reminders are scheduled, if possible, given that user attendance preferences have to be
satisfied. All robots must be at a location with a charging station at the end of the day.
As a multi-objective optimization problem, we want to: 1) perform as many Bingo games
as possible, 2) have as many users playing Bingo as possible, 3) provide reminders as close
as possible to the game times, and 4) expend as little battery power as possible.

3.8 Problem Modifications

We propose various modifications to the problem to: 1) study how certain aspects of the
problem affect each of the proposed approaches, and 2) obtain better, but still imple-
mentable, solutions through solving simplifications of the original problem. The aim is to
isolate particular properties of the problem that may prove to be difficult to solve and thus
to contribute insights into the strengths and weaknesses of the different technologies.

We consider five independent modifications:

• B: battery. When the battery is removed from the problem, we assume no robots run
out of power;

• R: reminder time windows. When removed, the reminders can be performed at any
time prior to the start of a Bingo game;

• P: participants. Bingo games may have a varying number of participants. When
removed, we assume that all games have exactly four players;

• O: optional Bingo games. This modification requires all Bingo games to be played;

• F: complex objective function. When removed, we only consider user participation
and ignore all other objectives.

Each modification can be added or removed independently. We denote the original
problem as BRPOF, where all aspects of the problem are considered. The problem where
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battery levels are ignored and Bingo games are not optional is -RP-F. Since there are
five independent properties, there are 25 combinations. We only look at a subset of these
problems, which we believe to exhibit more interesting and informative results: BRPOF,
-RPOF, B-POF, BR-OF, BRP-F, BRPO-, and B—F. These problems represent the original
problem, ones where each modification is made on its own, and the last problem where the
modifications regarding the Bingo game and reminders simplifies the Bingo game properties.

Only BRPOF, BR-OF, BRP-F, and BRPO- provide sound solutions to the original
problem. That is, a feasible solution to any of these problems is also a feasible solution
to the original problem. The BR-OF, and BRP-F modifications can lead to infeasibility:
no solution may exist with all Bingo games played or with exactly four participants per
game. In the scenarios we tested, this is not the case and all modifications have non-empty
feasible regions. However, none of these modifications is complete: the optimal solution
of the original problem may not lie within the feasible region of the modified problem. A
solution to -RPOF may result in a robot depleting its battery before completing all required
tasks. B-POF and B—F can lead to a solution where a user is reminded outside of the
reminder window. Although this is not as catastrophic as a depleted battery, the time
windows are intended to be hard constraints. We test the models on problems -RPOF,
B-POF, and B—F to observe how batteries and time windows affect the solvability of the
models, even though these models are not sound.

The solution of each problem instance by each approach is evaluated a posteriori using
the original objective function, which includes the presence of Bingo games, participation
of users, delivery times, and energy usage.

4. Planning and Scheduling Technologies

In this section, we present nine models for the aforementioned robot problem: six PDDL-
based planning models, a timeline planning and scheduling model, and two constraint pro-
gramming models. Although other technologies can also be used to solve the problem of
interest (e.g., mixed integer linear programming), we do not explore these options in this
paper.1 For each explored technology, we follow modelling techniques and conventions that
are customary in the specific literature: we do not want to create a planning model and
convert it to CP or vice versa but rather develop “native” models for each technology. Such
an approach is the only fair way to test the respective technologies on our application while
also bringing into focus fundamentally different modelling approaches: the action and state
representation of AI planning vs. the constraint-based representation of CP. We also follow
the standard and different model presentation styles of the two areas.

It is clear that exhaustively investigating the modelling space of a complex problem and
a non-trivial representation framework is infeasible. While we have investigated numerous
modelling choices, some not presented here due to their inferiority, it is possible, perhaps
likely, that better models exist.2 We return to this point in Section 6.4.

1. In a preliminary experiment, mixed integer linear programming was found to have poor performance.
2. Indeed, one of our objectives is to spur researchers to investigate alternative models for this problem.
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4.1 PDDL-Based Planning

In order to test the capabilities of planners using PDDL (Ghallab et al., 1998) on the target
problem (specifically, we base our models on PDDL2.2 with processes from PDDL+), we
test six different models. For clarity of the exposition of these models, we first present one
model in detail followed by the differences in the other five models.

It is important to distinguish the six different models and the seven problem modi-
fications described in Section 3.8. Each of the six models can be used to accurately and
equivalently represent each of the seven problem modifications. The only difference is in how
aspects of the domain are represented. The modelling strategies alter the representation of
the problem in PDDL while the problem modifications change the problem.

4.1.1 Domain Modelling

The itSIMPLE Knowledge Engineering tool (Vaquero, Silva, Ferreira, Tonidandel, & Beck,
2009; Vaquero, Silva, Tonidandel, & Beck, 2013) is used to model the proposed problem.
itSIMPLE follows an object-oriented modelling approach using Unified Modelling Language
(UML) (OMG, 2005) and generates a PDDL model. A UML diagram is presented in
this section to help the reader visualize the resulting PDDL model. We also provide key
PDDL action specifications to illustrate the main transition, state, resources and temporal
constraints in the model.

Object Types and Fluents. A visualization of the modelled object types (classes),
fluents and operators for our initial model variation is provided in the UML class diagram
in Figure 1. The most important classes are: Location, GamesRoom, ChargingStation,
Robot, User, TelepresenceSession, BingoGame and Global.

The Location and GamesRoom (a specialization of Location) represent the topology of
the retirement home. The distance between locations (distance), and the distance between
each available charging station and these locations (distance to station) are represented in
the class Global. These two static variables provide the distances in meters for every pair
(location, location) and (location, station) in the problem.

A games room is said to be free (fluent) when no game is taking place at the location. If
a robot is performing a task in the games room the fluent free is set to false. All the other
locations have no representation of their availability.

A ChargingStation is said to be idle (fluent) when no robot is docked for charging. In
order to represent the physical location of a station, we use the fluent available at to assign
the station to a particular location object.

The class User has a set of properties to represent the user’s location in the environment
and the user’s profile. The fluent at refers to the current location of the user who must be
at one location at a time. The static variable room specifies the user’s private room while
the fluent available is used to represent the availability of the user during the day. This
availability is translated into PDDL in the form of timed initial literals (TILs) (Edelkamp
& Hoffmann, 2004) by assigning the available predicate to true or false in specific time
intervals. We also represent the known locations of the user during the day with TILs
by assigning the fluent at to the corresponding location based on the user’s activity loca-
tions. The user’s preferences on attending games are represented by the fluents att min and
att max. The fluent not assigned game is used to list all the games to which a user has not
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<<agent>>

Robot

ready : Boolean

bl : Float

bl_min : Float

bl_max : Float

v : Float

cr_move:  Float

cr_telep : Float

cr_remind : Float

cr_bingo : Float

rr : Float

act_done : Boolean

playing : BingoGame

move(from: Location, to: Location, cs: 

ChargingStation)

do_telepresence(s: Telepresence, u: User, loc: 

Location,   cs: ChargingStation)

recharge(loc: Location, cs: ChargingStation)

remind(u: User, g: BingoGame, loc: Location, cs: 

ChargingStation)

skip_bingo(g: BingoGame)

play_bingo(g: BingoGame, loc: Location, cs: 

ChargingStation)

interact(g: BingoGame, u: User)

Location

Mobile

GamesRoom

Free : Boolean

User

Available : Boolean

not_interactiong : Boolean

Room : Location

att_min : Int

att_max : Int

not_assigned_game(g: 

BingoGame) : Boolean

att_num : Int

ChargingStation

Idle : Boolean

Activity

Free : Boolean

must_be_done : 

Boolean

not_done : Boolean

done : Boolean

TelepresenceSession

local_user : Boolean

BingoGame

game_location : GamesRoom

dur_remind : Int

p_min : Int

p_max : Int

p_num : Int

delivery_time(u: User) : Float

p_cur : In

<<utility>>

Global

distance(l1: Location, l2: Location) : Int

distance_to_station(loc: Location, cs: 

ChargingStation) : Int

games_attendees : Int

can_start_clock : Boolean

current_time : Float

delivery_time_limit_max : Float

delivery_time_limit_min : Float

total_delivery_time : Float

total_battery_usage : Float

total_number_users : Int

games_skipped : Int

clock_ticker()

available_at

1     available_at 0...*

0..1    at

at

0..*

participant 0..*

1..* participant

Figure 1: The UML Class Diagram of the first proposed problem model. Dashed lines
represent an inheritance (e.g., Robot is a type of Mobile) and a solid line represents a
relationship (e.g., a Mobile can be at a Location).

yet been assigned, and the fluent participant to specify the game to which the user has been
assigned. We write att num for the number of games planned for each user. Finally, when
a user is interacting with a robot, the predicate not interacting is set to false to prevent
other robots from interacting with the same user.

The class Robot can also only be at (fluent) one location at a time and has all the
properties (as fluents) detailed in the problem description (e.g., velocity, battery level,
etc.). In addition, we have the fluents ready, act done, and playing. A robot is ready when
it is not engaged in any tasks and it is playing when it is performing a Bingo activity. The
predicate act done prevents a robot from going to a location and performing no action: a
robot can only move to another location if it has completed a task in its current location.

The classes TelepresenceSession and BingoGame represent the HRI activities that need
to be performed by the robots during the day. Both have the properties dur, to represent
duration; not done and done, to represent whether the task has been performed; and TILs
must be done during, to represent the time windows in which the task can be performed. In
addition to the properties of the sessions and games introduced in the problem description,
we have added the fluents p num and p cur to control the number of users reminded by the
robots and the number of users playing the game, as well as delivery time to control the
time each user is reminded about the game.

Modelling the separation time between the delivery of a reminder and its associated
Bingo game is done by using PDDL+ which includes processes (Fox & Long, 2006). A pro-
cess (called clock ticker in the class Global) models an exogenous activity that is triggered
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for as long as a condition holds (in this case the fluent can start clock), regardless of the
action selection process. This mechanism allows us to increment the fluent current time
1 minute at a time, simulating the passage of time in discrete 1 minute intervals. If cur-
rent time is used in an action’s precondition it will hold the exact start time of the action.
We use this variable to record the time each user is reminded (fluent delivery time) and
also to check if the start time of a game is within the time constraints of the reminders.

The class Global also holds global variables including the maximum and minimum
time for delivering reminders prior to the games (fluents delivery time limit min and deliv-
ery time limit max ), the total time generated by adding all the lengths of the time intervals
between the reminders and the game (fluent total delivery time), the total amount of battery
power consumed by all robots (fluent total battery usage), the total number of games not
played (fluent game skipped), the total number of users attending games (game attendees),
and the number of target users (total number users). These variables are used to specify
the cost function and are manipulated in the specification of the robot actions.

Operators. As shown in Figure 1, a robot has the following operators:

• move to a location

• recharge its battery

• remind a user

• do telepresence with a user

• play Bingo with a group of users

• interact with a player during the Bingo game

• skip Bingo which removes the game from the request list.

We focus on the operators related to the Bingo activity given its modelling complexity.
We present the details of the Bingo related operators (remind, play Bingo, and interact) in
Appendix A.

In the remind operator, a robot must be ready to perform the task and the user has to
be available at the same location as the robot. As an effect of the operator, the user is set as
a participant of the game. The time of the reminder is recorded in the fluent delivery time,
which will become a constraint (condition) for the Bingo operators.

In order to facilitate a game after the reminders, a robot has to first start the play Bingo
action, then it has to concurrently perform the interact action with each participant. The
play Bingo action can only finish when the robot has performed the interact action with all
assigned players. The interact action is used to ensure that users are participating in the
Bingo game for the duration of the game.

The passage of time in this model is managed through the PDDL+ process called
clock ticker. The PDDL code for clock ticker in Appendix A shows how the fluent cur-
rent time gets updated in every tick of the planner’s clock.

533



Tran, Vaquero, Nejat & Beck

Goal and Objective Function. In the goal state, all sessions and games must be done
(Bingo games can be either performed or skipped) and the user preferences on game atten-
dance must be satisfied. We aim to minimize the following weighted cost function f :

f = 500(games skipped) + 1000(total number users− games attendees)
+ total delivery time+ total battery usage, (1)

where the weights are used to express preference on optimizing the number of games and
players. In PDDL this cost function is represented as follows:

(:metric minimize

(+ (* 500 (games_skipped))

(* 1000 (- (total_number_users) (games_attendees)))

(total_battery_usage)

(total_delivery_time)))

4.1.2 Alternative Modelling Strategies

The modelling possibilities for the target problem are numerous. We now present modelling
strategies that result in five alternate PDDL models. We focus on requirements that are
more complicated to model intuitively and efficiently in PDDL: the Bingo game activity
requirements on the robot’s interaction with participants and the constraint on the temporal
separation between reminders and Bingo games. We essentially change the representation
of these two aspects of the problem to obtain the alternative PDDL models. Altogether, we
propose three strategies for the first aspect and two for the second resulting in six different
models.

User-Bingo Interactions In the initial model, users play in Bingo games through the
interact operation that is performed concurrently with the play Bingo operation in order
to individually model user interactions with the robot in the multi-user activity. We denote
this initial strategy as single, as single users are considered for interaction. Two alternative
strategies are presented that aim to explicitly model interactions with users in the play Bingo
operator. However, to explicitly represent the user interactions within the play Bingo action,
the number of users must be known. For example, if we assume exactly three participants
the operator play Bingo3 may be defined as shown in Appendix A. The preconditions and
effects of this operator are an amalgamation of both the play Bingo and interact operators
to include the user interactions in the play Bingo operator. To improve the model further,
symmetry breaking is used in the precondition (i.e., user i has an id less than user i+ 1) to
reduce the available permutations.

As mentioned, we propose two alternatives to handle the user-Bingo interactions: set-
all and min-add. The first, set-all, removes both the play Bingo and interact operators
and uses multiple play BingoX operators where X is between 3 and 10 to account for all
possible number of participants in a Bingo game. Essentially, this strategy sets all the
participants in a Bingo game in the play Bingo action. However, since we do not know
the number of participants in advance, multiple operators with varying numbers of users
are required. The second strategy, min-add is a combination of the two strategies that
will only replace play Bingo by play Bingo3. By doing so, the Bingo games will start with
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Bingo_overall

reminder

reminder

setup_Bingo

play_Bingo

interact

interact

Time

Figure 2: Example of a Bingo game with two participants. The Bingo overall action en-
compasses all reminder, setup Bingo, play Bingo, and interact actions associated with the
Bingo game. Here, the setup Bingo action separates the reminders and the Bingo game to
ensure that a minimum amount of time has passed. The length of the Bingo overall action
ensures that the separation of the reminders and the Bingo game is less than the maximum
allowed time. We provide an intuitive representation of the influence of the preconditions
and effects of each action through the use of precedence relationships (arrows) showing the
relative ordering of actions.

the minimum number of players and then increase participation through interact actions
with other users to add more players than the allowed minimum. The min-add strategy is
therefore a combination of single and set-all by using the play Bingo3 action to facilitate
a Bingo game with three users and potentially adding more participants using the interact
action.

Separation Constraint The current PDDL model makes use of the process clock ticker
to keep track of the time passed between a reminder and a Bingo game. This strategy is
denoted as clock. The proposed alternative, envelope is to make use of an encompassing
larger action, Bingo overall (detailed in Appendix A), that executes over all the Bingo
related actions and must occur while any remind, play Bingo, and interact actions are
being executed (see Figure 2). This action acts as an envelope that spans all those actions
to ensure the timing constraints are met and is similar to the model for durative sub-actions
presented by Smith (2003). By setting the envelope action to be the appropriate duration
(maximum delivery time plus duration of a Bingo game), a reminder cannot be separated
from a Bingo game by more than the maximum delivery time. To ensure that reminders
do not occur too close to a Bingo game, we introduce a new operator setup Bingo with
duration equal to the minimum separation time, which must occur between reminders and
the Bingo game.

To use the proposed alternative strategy, new fluents are introduced. Each game can
either be Bingo actions ready or Bingo actions not ready based on whether Bingo overall is
being executed and any actions related to a Bingo game (remind, play Bingo, and interact)
has a prerequisite that a Bingo game has the fluent Bingo actions ready set as true. A fluent,
Bingo game ready, is also required to enable the start of a Bingo game after setup Bingo
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has been performed. Finally, a remind enable fluent is used to state when users can be
reminded or not.

The remind operator is updated to require remind enable to be true as a precondition
and the play Bingo requires Bingo game ready to be true. The setup Bingo operator is
presented in Appendix A.

Alternative Models The strategies proposed for both the user-Bingo interactions and
the delivery time window constraints can be applied independently, resulting in six different
models. One of the six models was already shown with single interaction actions being the
sole method for users to play Bingo games and the use of processes to enforce separation
constraints, single-clock. Table 1 presents an overview of the six models and the strategies
they use.

Table 1: Alternative Models

User-Bingo Interaction Separation Constraint
Clock Processes Envelope

Single Interactions single-clock single-envelope
Set Min Then Add min-add-clock min-add-envelope

Set All Players set-all-clock set-all-envelope

4.1.3 Problem Modifications

The PDDL models discussed above correspond to the BRPOF problem definition. Here,
we show the updates to the PDDL model to handle each of the five different modifications,
B, R, P, O, and F.

B: Battery The removal of battery constraints in the model is straightforward. All fluents
related to the battery are removed, specifically bl, bl min, and bl max. Any preconditions
and effects that relate to any of these fluents are also removed so that the battery is no
longer considered. In addition, the recharge operator is deleted from the model and the
objective function is simplified to remove the battery component. These changes can be
performed on all of the six models identically.

R: Remove Separation Constraints To handle the modification R, time constraints
on the delivery time must be relaxed such that reminding a user at any time before a Bingo
game is sufficient. To make this change, delivery time limit min and delivery time limit max
must be updated to 0 and H, respectively, where H is the planning horizon minus the du-
ration of a Bingo game. In the models that make use of clock ticker, the separation time
constraint in the precondition of play Bingo and interact actions will change accordingly
depending on the model. The models with the Bingo overall operator will increase the
duration of this action to extend over the entire planning horizon and will also remove
the setup Bingo operator. Since the setup Bingo operator is no longer used, the fluent
Bingo game ready is removed and a delete effect is added to play Bingo to remove en-
able remind to ensure that reminders still must occur before Bingo games.
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P: Set Number of Participants We must treat the models differently to ensure that
exactly four users participate in any game that is played. For the two models single-clock
and single-encompassing, we can set p min = p max = 4 to force the planner to only
consider plans where four interact actions are used for each Bingo game. The remaining
four models will make use of only play Bingo4 operator and remove any other play Bingo
and/or interact operators.

O: Bingo Games are No Longer Optional We can ensure all games are played by
removing the skip bingo operator. The objective function can be simplified to remove the
games skipped component since all games will be played. This can be done for all six models.

F: Simplified Objective Finally, for modification F, one must only consider user par-
ticipation of Bingo games in the objective. Furthermore, for the three models that use the
Bingo overall task to model the constraint on the separation time, the removal of the exact
separation time required for use in the objective function means that it is possible to remove
the clock processes entirely.

4.1.4 Modelling Issues and Limitations

An important challenge in modelling our problem in PDDL is dealing with time constraints
between actions (i.e., time delays between reminder and Bingo games). To be able to model
time constraints, we must model a clock as a process that is constantly incremented or make
use of the larger encompassing task with required concurrency. If we use the processes, we
must mark the start times of reminder activities and use this time to restrict the precondition
of the Bingo games. Doing so allows the solver to verify that the two tasks are temporally
consistent. However, few planners are able to handle this clock/process approach, limiting
the solvers we can use.

Another issue is the flexibility in the number of participants of a Bingo game. In general,
PDDL has the tools to model the Bingo attendees as a decision variable through the use of
the feature forall, but the planners we tested do not seem to support forall along with other
features that we need (e.g., numeric, temporal, optimization, etc.). Due to this limitation,
we make use of two alternative approaches: 1) using required concurrency in which there
is an action play bingo that is a container for each individual interaction with a user and
a robot, and 2) creating multiple duplicates of a single Bingo game, play BingoX, one for
each possible number of participants, X, in a game.

Finally, current STRIPS planners, in general, do not handle negative literals in precon-
ditions. This leads to substantial redundancy as we must make use of many not predicates
to represent these negative preconditions.

4.2 Timeline-Based Planning and Scheduling

Timeline-based planning and scheduling differs from action-based planning as it represents
the world in terms of a set of functions of time that describe how the world changes over a
temporal interval (Cesta, Fratini, & Pecora, 2008).

The Extensible Universal Remote Operations Planning Architecture (EUROPA) system
is a class library and tool set developed at the National Aeronautics and Space Adminis-
tration (NASA) for building timeline-based planners and schedulers (Barreiro et al., 2012).
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Figure 3: The UML Class Diagram of the proposed EUROPA model. Dashed lines represent
an inheritance (e.g., Robot is a type of Mobile) and a solid line represents a relationship
(e.g., a Mobile can be at a Location).

EUROPA represents a technology that appears to be a good fit for solving the problem of
interest. Thus, we wish to explore this technology as a potential candidate. However, it is
important to note here that we learned during our investigation of EUROPA that it was
not made to fit within the model-and-solve paradigm that we wish to pursue, but rather
requires customizing the solver and search heuristics.

EUROPA uses New Domain Definition Language (NDDL) as the main input modelling
language. Like PDDL, NDDL uses state and activity descriptions. However, NDDL state
variables are called timelines, temporally extended predicates that can be in a single state
at any instant in time.

NDDL is object-oriented and so we represent most physical entities within the retirement
home as objects. Figure 3 is the UML class diagram for the NDDL model. The objects
used are very similar to those used in the PDDL model and so we present fewer details
regarding each individual class, but emphasize the major difference between the PDDL and
NDDL models: the addition of timelines and resources (reusable and reservoir) as first-class
objects. We discuss the NDDL model here at a high-level. The encoding can be found in
Appendix B.

4.2.1 The Environment

We use various classes to represent the static environment of the retirement home. Each of
the rooms is an instance of a Location class and two such instances can be linked together
by a Path which defines the distance between any two locations. A location may have a
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ChargingStation that is represented as a reusable resource, ChargingStationUsage, to model
the availability of the station over time.

4.2.2 Activities

Telepresence sessions and Bingo games are also represented with classes. Each telepresence
session is associated with a particular user, location, and duration and has the timeline
TelepresenceSessionState to indicate its state. The timeline has three values: MustBeDone,
InProgress, and Done. At the beginning of the day, the state of the telepresence session is
MustBeDone, indicating that the telepresence session has not yet been performed. Once a
robot starts the action DoTelepresence, the TelepresenceSessionState timeline changes to
InProgress. Upon completion of the telepresence session, the state changes to Done.

Bingo games have a particular location, duration and number of players associated with
them. Similar to the set-all modelling strategy used for PDDL planning, we prescribe
the number of players in the timeline-based model as a fixed value for the Bingo games.
See Section 4.2.5 for details. Each Bingo game, like a telepresence session, has a timeline,
BingoGameState, indicating the state of the Bingo game.

Recall that each activity has a time window in which the activity can be performed.
These time windows are represented in the declaration of the initial state to indicate when
the activity can be performed, similar to the representation of the user schedules.

4.2.3 Users

Users are represented by a User class. Each user has three associated timelines: UserState,
UserAvailability, and UserGameAssignment. The UserState defines the state of the user,
which can be either At, Interacting, Playing, or BeingReminded. While the user is not
engaged with a robot, the UserState will be in the At(l) state, which is a parameterized
state indicating that the user is at location l. Interacting, Playing, and BeingReminded are
states indicating that the user is in a telepresence session, playing a Bingo game, and being
reminded, respectively. The UserAvailability timeline indicates whether the user is Busy or
Available. During the time a user is interacting with a robot or is at an appointment as
per his/her personal schedule, the UserAvailability is Busy. The final user based timeline is
UserGameAssignment which has three states: NotAssigned, BeingAssigned, and Assigned.
Every user starts as NotAssigned and once a robot reminds a user, UserGameAssignment
transitions to BeingAssigned. Upon playing a Bingo game, the UserGameAssignment will
change to Assigned to indicate that the player has been assigned to and played in a game.

4.2.4 Robots

Robots are represented by a Robot class. Each robot has a RobotState timeline that indicates
the state of the robot: FreeAt, Moving, Charging, DoingTelepresence, PlayingGame, and
Reminding. Each robot also has a Battery resource, which is represented using a reservoir
that can be consumed or replenished.

Robots have five actions: Move, RechargeBattery, DoTelepresence, PlayBingo, and Re-
mind. Each action requires timelines to be in particular states and changes the state of the
timelines. For example, Move changes the location of a robot from the current location at
the start of the action, to a moving status during the action, and finally to the destination
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location at the end of the action. Move requires the use of a Path between the current
location and the destination location which provides the distance the robot must move, and
therefore the duration of the movement and the battery usage. The Bingo related tasks
for the NDDL model follow the same strategy as the set-all strategy of the PDDL models
by handling all participation within the PlayBingo operator. The encoding of PlayBingo
is presented in Appendix B, but we only present a three player Bingo game. Multiple
PlayBingo games are used to allow the assignment of different numbers of players.

4.2.5 Modelling Issues and Limitations

We could not fully represent all aspects of the environment using EUROPA since our initial
goal was to model and solve the problem without changing the solver code. While EUROPA
is a very flexible and expressive package, significant effort and deeper knowledge is required
to represent more complex components of our system.

The number of participants in a Bingo game is difficult to model since we must connect
a participating user to the game. By leaving the number of users as a decision variable, we
were not able to model which users were playing the games, while also ensuring that the
number of participants in a game is within the required bounds. By fixing the number of
users in a game to an appropriate size, we can model the interaction of users playing in
Bingo games and ignore the provided bounds on the number of participants.

Furthermore, we are unable to represent an objective function. Although it is possible in
EUROPA to optimize, it requires altering the solver. EUROPA has built-in backtracking,
however, the backtracking rules and decision procedure must be coded to perform any
optimization. Otherwise, EUROPA will return to a prior state by backtracking, but continue
to make the same decision leading back to the state the system was in prior to backtracking.
Without an objective function that allows the solver to reason about the optional Bingo
games, we must also represent Bingo games like the telepresence sessions and make them
mandatory; otherwise, Bingo games will not be played and only the telepresence sessions
will be performed.

EUROPA leaves open many possibilities for those wishing to use timelines in their plan-
ning and scheduling problems. However, this flexibility comes at the cost of a more involved
process while writing the code for modelling and solving the problem. Due to the require-
ment of a deeper understanding of the EUROPA architecture and code to fully express
our problem, we limit the scope of the problem represented by timeline-based planning and
scheduling in our study. Unfortunately, at this time, no solver exists that can handle NDDL
in the model-and-solve approach, but rather, EUROPA is used as a domain-dependent solver
with great benefits when employing customized search heuristics.

Another modelling language using a timeline approach, Action Notation Modelling Lan-
guage (ANML), aims to combine strong notions of action and state (from PDDL), a vari-
able/value model (from NDDL), and rich temporal constraints (from NDDL) (Smith, Frank,
& Cushing, 2008). However, our investigation into ANML and the FAPE solver (Dvorak,
Bit-Monnot, Ingrand, & Ghallab, 2014) led to the conclusion that, like NDDL, ANML is a
good fit for representing the problem, but the FAPE solver has not yet been implemented
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with efficient methods of handling TILs to be able to scale well for our problem of interest.3

Therefore, we did not continue our study using ANML.

4.3 Constraint-Based Scheduling

Our target application combines characteristics that have typically been studied in planning
with those more representative of scheduling problems. However, one of the major limita-
tions of general constraint-based scheduling approaches is the requirement of a predefined
set of tasks (Laborie, 2003). In planning, an operator dictates how the state of the world
changes given its application. An operator is instantiated to create a ground action and the
planner decides how many times to instantiate each operator and the sequence of actions
required to reach a goal state. For example, to charge the battery on a robot, the planner
has access to a charging operator that can be executed as many times as necessary. In con-
trast, typical constraint solvers require that we give, ahead of time, every potential charging
task a distinct name. To address this issue, our general approach is to make use of optional
tasks to model all the actions that the planner may choose to instantiate. This allows us
to model a task but not necessarily execute it. Therefore, we must know the maximum
number of possible charging tasks prior to scheduling in order to know how many optional
tasks to create. The same must be done for the reminders and Bingo games since we do
not know the assignment of users to a Bingo game or whether a game will be played or not
a priori.

We introduce two constraint-based scheduling models in this section: one that is a
single CP model and one that is a two-stage decomposition. The presentation of two CP
models here is due to our preliminary results on the first CP model that showed promising
directions for CP with minimal changes to include a simple decomposition that can perform
significantly better.

Unlike PDDL and NDDL models that have a standardized format, CP solvers may
vary widely. Thus, the CP models are presented using notation that is common in the CP
literature. Below, we define the set of parameters relevant to our CP model.

Parameters:
M : set of reminder tasks,

Mgu: set of reminder tasks corresponding to user u and Bingo game g,
C: set of charging tasks,

CRi: set of charging tasks corresponding to robot i,
CSk: set of charging tasks corresponding to charging station k,
S: set of all telepresence session tasks,
G: set of all Bingo games,
A: set of all tasks A = S ∪G ∪M ∪ C,

AUu: subset of tasks in A that involve user u,
ARi: subset of tasks in A that involve robot i,
Āj : set of clone tasks of task aj ,
θj : Duration of task j, j ∈ A \ C.

3. Filip Dvorak, personal communication.
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Figure 4: Gantt chart illustrating a sample schedule. Here, telepresence sessions and re-
minders are abbreviated as Telepres. and Rem., respectively.

4.3.1 Global-CP

Our first constraint-based scheduling model is a CP model we call Global-CP. We make
use of IBM ILOG CPLEX CP Optimizer 12.6.2 (Laborie, 2009). Figure 4 is a Gantt chart
that illustrates a sample morning schedule - a portion of a solution. Users, robots, charging
stations, games rooms, and battery levels are resources that tasks use. Other than the
battery level, all resources are unary capacity. The lighter shaded tasks are predefined
appointments for a user and cannot be changed. The darker shaded tasks are those which
the decision maker has control over and must be scheduled. Arrows in the robot’s schedule
represent the robot moving from location to location in order to perform the next task.

Variables and Domains. For each task j ∈ A, there is a corresponding interval variable
aj (Laborie, 2009). An interval variable is defined by a start time, end time, and size,
which refers to the amount of battery power required to perform the task. Similar to the
planning models, time in the CP model is represented in discrete 1 minute intervals and
the battery power is able to take on real values. An interval variable can be either absent
or present, which is indicated by the variable presenceOf(aj) equaling 0 or 1, respectively.
If an interval variable is absent, it will not be considered by any constraint or expression.
Each task has a number of clone tasks, which are required to model the alternative robots
that can complete the tasks. For each task j ∈ A, there are |R| additional tasks indexed by
i and denoted by αij . Therefore, there are an additional |A| sets of tasks denoted by Āj ,
where j ∈ A and |Āj | = |R|.
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For a telepresence session j ∈ S, the following domain restrictions apply:

presenceOf(aj) = 1 ∀{j ∈ S} (2)

length(aj) = θj ∀{j ∈ S} (3)

forbid(aj , calendarj) ∀{j ∈ S}. (4)

Constraint (2) enforces that each telepresence session must take place. Constraint (3) sets
the duration of the telepresence session, which is known a priori. The entire duration of the
task must be within the allowed time windows defined by calendarj , a piecewise function
over time equal to 1 during the times where both the telepresence session is allowed and
the corresponding user is available. Otherwise, the function is equal to 0 and a task cannot
be executed because of Constraint (4).

For tasks in G (Bingo games), the following domain restrictions apply:

presenceOf(aj) ∈ {0, 1} ∀{j ∈ G} (5)

length(aj) = θj ∀{j ∈ G} (6)

forbid(aj , calendarj) ∀{j ∈ G} (7)

p minj × presenceOf(aj) ≤ participantsj ≤ p maxj ∀{j ∈ G}. (8)

Constraint (2) is replaced with Constraint (5). Unlike telepresence sessions, Bingo games
are optional. However, if a game is played, Constraint (8) provides bounds on the number of
participants assigned to the game. Unlike the calendar for the telepresence sessions, we do
not know which users will partake in the game. Therefore, the calendar will only consider
the time windows when the Bingo game can be played and not the schedules of the user.
We ensure user availability when we assign users to Bingo games (see below regarding clone
Bingo games).

To model the reminder tasks, we must first define an upper bound on the number of
possible reminders that can occur during a day. Since every user should be considered for
each game, we have a set of reminder tasks Mgu for each Bingo game g and user u. The
size of Mgu depends on the number of distinct locations at which a user u is available for
reminders during the course of the day. The requirement for the multiple tasks representing
the same reminder is necessary to model the movement of the robot to the various locations
of the retirement home.4 For these tasks j ∈Mgu, the following domain restrictions apply:

presenceOf(aj) ∈ {0, 1} ∀{j ∈Mgu, g ∈ G, u ∈ U} (9)

length(aj) = θj ∀{j ∈Mgu, g ∈ G, u ∈ U} (10)

forbid(aj , calendarj) ∀{j ∈Mgu, g ∈ G, u ∈ U} (11)

0 ≤ del timej ≤ 120 ∀{j ∈Mgu, g ∈ G, u ∈ U}. (12)

Similar to the Bingo games, reminders are optional (in the sense that a reminder does not
occur if a user does not play). However, we know the user that is being reminded for each
task, so we can again update the task calendar to intersect the intervals of availability for
games and the user. We further make use of a decision variable del timej to represent

4. For further details on the modelling requirements and limitations of CP, see Section 4.3.3.
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the time between the delivery of the reminder and the start of a Bingo game. Although
reminders are restricted to be between 15 and 120 minutes before a Bingo game starts, we
allow the range of delivery times to be between 0 and 120 minutes to allow for the possibility
that a reminder may not occur and the delivery time can be set to 0. We elaborate on the
relationship of del timej and the reminder and Bingo game later in this section when we
present the constraints of the model.

In order to link users to the Bingo games they play, we create a set of clone Bingo game
tasks Ḡ. Ḡ consists of |G| × |U | tasks that, like the Bingo games, are optional interval
variables with the same domain restrictions shown in Constraints (5) to (8). However,
Constraint (7) is changed to have a different calendarj function that is the intersection
of the time window(s) available for the Bingo game and the user’s personal schedule. We
provide further details in the section on constraints (below) to illustrate how to link these
interval variables to the Bingo games and assignment of users to the games.

The last set of tasks are the charging tasks C. Each charging task is associated with a
specific robot. Therefore, C comprises of |R| different sets denoted as CRi, where i ∈ R.
Each robot will have a set of charging tasks equivalent to the upper bound of the number
of possible charging tasks. This upper bound is calculated by allowing the robot to charge
before each potential task, the sum of the number of telepresence sessions, Bingo games,
and maximum number of games each user is interested in playing. The following domain
restrictions apply:

presenceOf(aj) ∈ {0, 1} ∀{j ∈ CRi, i ∈ R} (13)

0 ≤ length(aj) ≤
bl maxi
rr i

∀{j ∈ CRi, i ∈ R}. (14)

The charging tasks are optional tasks. Furthermore, the duration of a charging task may
range from 0 time units to the maximum battery level of the robot divided by the recharging
ratio of the robot, and is left as a decision for the solver.

Each task has an associated energy consumption decision variable, e consj , j ∈ A that
represents the energy consumed to perform the particular task for the determined duration
of that task and the energy required to move from the robot’s previous location to the
location of the task. The domain restriction of this variable is:

e taskj ≤ e consj ≤ e taskj +max distj ×max cr move ∀{j ∈ A \ C} (15)

−bl max ≤ e consj ≤ max distj ×max cr move ∀{j ∈ C}. (16)

The value e taskj represents the minimum amount of energy required to process a task
j. We use the minimum energy consumption over all robots (recall that robots have different
rates of consumption) since the assignment of tasks to robots is not known a priori. As well,
since the sequence of tasks is not known, the travelling distance of a robot is not known
either. Therefore, we use the farthest location to the location of task j, max distj , times
the maximum consumption for moving over all robots, max cr move. In the case that the
job j belongs to the set of charging tasks, the energy consumption has a domain that ranges
between the maximum battery level over all robots, bl max, and the maximum energy used
for travelling to the charging location. The values are negative to signify a production of
energy rather than a consumption. However, the value may be positive since travelling can
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take up more energy than the charging task produces. Such a domain definition ensures
that any possible value for e consj is within the search space of the model.

In order to model user preferences about Bingo attendance, each user has a decision
variable defining the number of games played during the day. The domain restriction on
this variable is:

min attu ≤ games attendedu ≤ max attu ∀{u ∈ U}. (17)

Finally, we have an auxiliary task signifying the start of the schedule for each robot
i ∈ R, ȧi. These auxiliary tasks have domain:

presenceOf(ȧi) = 1 ∀{i ∈ R} (18)

length(ȧi) = 0 ∀{i ∈ R} (19)

start(ȧi) = 0 ∀{i ∈ R}. (20)

Cumulative Functions: Cumulative functions are piecewise functions over time with dis-
crete value changes made at the start and end times of interval variables (Laborie, 2009).
Interval variables can have one of two effects on cumulative functions, a step effect or a
pulse effect. A step effect can affect the cumulative function at the start or end of the
interval variable and will permanently increase or decrease the cumulative function value.
A pulse effect will increase (decrease) the cumulative function at the start of the interval
variable, but then decrease (increase) the cumulative function by the same amount at the
end. We make use of the cumulative function to represent various resources in the system
such as: robots, users, charging station, and battery. Note that there is a difference between
the use of calendars, which are static 0/1 step functions over time that are used to define
the disjoint time-windows of tasks, and cumulative functions, which are dynamic piecewise
functions that can change when tasks are performed.

For each robot i ∈ R, there is an associated cumulative function rci. Each task assigned
to a robot will make use of the robot for the entire duration of the task. Upon completion
of a task, the robot as a resource is released and can perform other tasks. Thus, tasks have
a pulse effect on the robot adding 1 to the cumulative function:

rci =
∑
j∈ARi

pulse(αij , 1) ∀{i ∈ R} (21)

rci ≤ 1 ∀{i ∈ R}. (22)

Since a robot is a unary capacity resource, rci must never exceed 1.
A user is also considered as a unary capacity resource. For each user u ∈ U , we have

an associated cumulative function ucu, where all tasks pertaining to that user must also
exhibit a pulse effect on the user resource:

ucu =
∑
j∈AUu

pulse(auj , 1) ∀{u ∈ U} (23)

ucu ≤ 1 ∀{u ∈ U}. (24)

Here, we denote AUu as the set of all interval variables (tasks) associated with a user u.
These tasks include all telepresence sessions and reminder tasks for that particular user, as
well as all the clone Bingo games in Ḡ for user u.
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A charging station can only handle one robot at a time. Therefore, we have a charging
station cumulative function chck for each station k where:

chck =
∑
j∈CSk

pulse(aj , 1) ∀{k ∈ K} (25)

chck ≤ 1 ∀{k ∈ K}. (26)

Robot battery levels are also a limited resource that we model with the cumulative
function. Each robot i ∈ R has a cumulative function rei representing the battery level of
the robot over time. Unlike the previous cumulative functions where the resource is released
upon completion of a task, the battery level will remain changed after a task is completed.
Therefore, we make use of the step effect. Given that a robot only performs one task at a
time and charging cannot occur while other activities are being executed (unlike robots that
can harvest energy (i.e., solar, vibration) during operations), the model can be represented
with a step occurring either at the start or end of the interval variable. Although in reality
battery power is consumed continuously during the event, modelling total consumption at
the start or end of an interval variable will adequately represent our system since doing so
ensures that there is sufficient energy to complete the task. We will use the stepAtStart
effect to have energy consumption occur at the start of an interval variable:

rei =
∑
j∈A

stepAtStart(αij ,−e consj) ∀{i ∈ R} (27)

bl mini ≤ rei ≤ bl maxi ∀{i ∈ R}. (28)

Note that the size of the step will be the total energy consumption of the task. If the task
is a consuming task, then e consj is positive and we will subtract the amount consumed
from the robot battery level. If the task is a charging task, e consj is negative and we will
add the amount of energy to the robot’s battery. Constraint (28) provides bounds on the
battery level of the robot at all times.

Interval Sequences: Interval sequences are defined on a set of interval variables whose
values are constrained to form a total ordering (Laborie, 2009). Absent tasks are ignored in
the sequence. Each robot i ∈ R is associated with an interval sequence variable rsi on the
set of interval variables for tasks in ARi. This variable has a value that is a permutation of
all present variables for tasks of ARi. The interval sequence variable contains all tasks that
might be assigned to a robot including the auxiliary start task. Furthermore, each interval
variable arj , j ∈ ARi in an interval sequence rsi is given a non-negative integer type
T (rsi, arj) that indicates the location of a task. A transition matrix, ∆i, that represents
the travel time between any two locations for a robot i can then be used in conjunction with
the interval sequence variable to model the movement of the robot within the retirement
home. More details are provided in the next section

Constraints. The CP model includes all possible tasks that may occur. In addition, each
of the tasks has clone tasks that signify the assignment of the task to a robot. We link these
tasks with an alternative constraint, which has the form alternative(aj , Ā) and is used to
ensure that if a task aj is present in the schedule, then exactly one other task from the set of
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tasks Ā must also be present. Since we have our main set of tasks in A that must be linked
to the cloned tasks in Āj to decide which robot executes a task, we use the constraint:

alternative(aj , Āj) ∀{j ∈ A \ C}. (29)

Here, Āj represents the set of clone tasks, such that all tasks corresponding to clones of
task aj are contained in Āj . Therefore, if the task j ∈ A \ C is present, then one of the
clone tasks must also be present. The clone tasks have a specified robot and will act as an
assignment of the task to that robot. We do not need to consider the charging tasks C as
each of these tasks pertain to a specific robot and no assignment is necessary.

We also restrict the values of a reminder task and set the delivery times based on the
corresponding Bingo game. These constraints are:

presenceOf(aj) ≤ presenceOf(ag) ∀{g ∈ G, u ∈ U, j ∈Mgu} (30)

start(aj) ≤ start(ag)− 15 ∀{g ∈ G, u ∈ U, j ∈Mgu} (31)

start(aj) ≥ start(ag)− 120 ∀{g ∈ G, u ∈ U, j ∈Mgu} (32)

del timej = presenceOf(aj)× [start(ag)− start(aj)] ∀{g ∈ G, u ∈ U, j ∈Mgu}. (33)

Constraint (30) states that if a Bingo game is not played, the corresponding reminders
are not executed. Constraints (31) and (32) are the delivery time constraints that ensure
a reminder that is performed must be within the required time prior to a Bingo game.
Constraint (33) sets the delivery time of a reminder to be the difference between the start
of the Bingo game and the start of the reminder. If the reminder does not occur, because
the user does not play in that game or a different reminder linked to another location is
used, then the delivery time will be set to 0.

To ensure that a reminder occurs and a user is present at a Bingo game when a user is
assigned to a game, we add the constraints:∑

j∈Mgu

presenceOf(aj) = presenceOf(aḡ) ∀{g ∈ G, u ∈ U, ḡ = Ḡgu} (34)

start(ag) = start(aḡ) ∀{g ∈ G, u ∈ U, ḡ ∈ Ḡgu} (35)

length(ag) = length(aḡ) ∀{g ∈ G, u ∈ U, ḡ ∈ Ḡgu}. (36)

Here, Ḡgu represents the clone Bingo game task for user u and Bingo game g. Constraints
(35) and (36) then set the start time and length of the clone Bingo games to be equal to
the actual Bingo games.

The number of users playing in a Bingo game is calculated as:∑
u∈U

∑
j∈Mgu

presenceOf(aj) = participantsg ∀{g ∈ G}. (37)

Since Constraint (34) ensures the assignment of a user to a Bingo game when a reminder is
made, we can use the reminders to count the participation of a user in a Bingo game. An
alternative method to count the number of users in a Bingo games is to use the clone Bingo
games. We found experimentally that there is no significant difference in performance when
using either constraint.
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In addition to the participation for each Bingo game, we must also calculate the number
of games a user plays during the day. For each user u ∈ U , we use the reminder tasks again
to count the user’s participation in any of the Bingo games:∑

g∈G

∑
j∈Mgu

presenceOf(aj) = games attendedu ∀{u ∈ U}. (38)

Lastly, we must handle the variables related to charging. To deal with the symmetry
between the charging tasks, we have the constraint:

presenceOf(aj) ≤ presenceOf(aj′) ∀{k ∈ K, j, j′ ∈ CSk|j < j′}.
(39)

To assign the energy consumption values, e consj , we must know the sequence of tasks for
a robot so that we can calculate the energy required to travel from the location of one task
to that of the next task. We can handle the sequencing of tasks such that no two tasks are
executed by a robot at the same time and the time between any two tasks is at least as
much time as needed for the robot to travel between the two locations of the tasks. To do
so, we use the NoOverlap constraint:

NoOverlap(rsi,∆i) ∀{i ∈ R}. (40)

The NoOverlap constraint ensures that no tasks overlap each other. We define ∆i as a
square matrix with element ∆i(l, h) being the time that is required for robot i to travel
between locations l and h. Since rsi maintains a vector of all tasks that robot i may perform
and the corresponding locations between those tasks, NoOverlap will ensure that, based on
the locations of the tasks, the time interval defined by the matrix ∆i must occur between
any two consecutive tasks. The energy consumption of a task is then:

e consj = presenceOf(aj)×∆i(prevLoc(rsi, aj), locj)× crmove
+length(aj)× crj ∀{i ∈ R, j ∈ ARi}.

(41)

The function prevLoc(rsi, aj) returns the location of the task directly before task aj in
the sequence of rsi. Therefore, the first term of the right hand side is the energy required
to move the robot between locations. The second term is the energy required to perform
the task. Since the robot has different consumption rates for different tasks (telepresence
sessions, Bingo games, reminders, charging), crj is used to define the particular rate of a
task j.

Finally, at the end of the day, each robot should return to the charging station in order
to charge its battery. We model this by using the constraint:

rei = step(H,−bl maxi + bl mini) ∀{i ∈ R}. (42)

The step constraint makes a change at the time indicated in the first parameter, H, to the
cumulative function rei of −bl maxi + bl mini. This represents a reduction in the battery
level of a robot from the maximum charge to the minimum charge. By choosing a sufficiently
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large H such that the daily schedule is completed and all robots have enough time to return
to a charging station and recharge to a full battery level, we guarantee that the robot will
always end the schedule at a charging station and the last task it will perform is a charging
task. An example of a value for H can be,

H = maxT +maxD + |R| ×maxC ∀{i ∈ R}, (43)

which is equal to the sum of the time at the end of the day, maxT , the maximum amount
of time required for any robot to travel from anywhere in the retirement home to a charg-
ing station, maxD, and the maximum amount of time required to charge every robot in
sequence, |R| ×maxC.

Objective Function. The objective function is:

minimize
∑
g∈G

500[1− presenceOf(ag)] + 1000

[
|U | −

∑
u∈U

games attendedu

]
+
∑
j∈M

del timej −
∑
j∈C

e consj . (44)

The objective is a multi-criteria objective that aims to maximize the total number of games
played, participation in games, and minimize the total time between a reminder occurring
and a Bingo game, and the total battery consumption.

4.3.2 Problem Modifications

The CP model presented above is for the BRPOF problem definition. Here, we show the
updates to the CP model in order to handle each of the five different modifications, B, R,
P, O, and F.

B: Battery Battery consideration can be removed by deleting Constraints (13)-(16),
(25)-(28), (39), (41), and (42). The removal of the relevant battery related variables and
cumulative functions is required. Finally, the objective function is updated to remove the
criterion of minimizing battery usage.

R: Remove Separation Constraints To handle the modification R, time constraints
on the delivery time must be relaxed such that reminding a user at any time before a Bingo
game is sufficient. To make this change, Constraints (12), (31), and (32) are removed and
the constraint,

start(aj) ≤ start(ag) ∀g ∈ G, u ∈ U, j ∈Mgu (45)

is added to ensure reminders occur before Bingo games.

P: Set Number of Participants To set Bingo game participation to exactly 4, we just
need to update min attu = max attu = 4.

O: Bingo Games are No Longer Optional We can ensure all games are played by
updating Constraint (5) to force the presence of all Bingo game interval variables rather
than allow them to be optional.
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F: Simplified Objective Finally, for modification F, one must simply remove all com-
ponents of the objective function other than the counter for the user participation.

4.3.3 Modelling Issues and Limitations

Our investigation of CP shows that modelling the problem requires many alternative tasks
to represent a single task. Rather than having one interval variable to represent a task,
clone tasks are needed to discern the robot that processes it and to model the possibly
differing energy requirements of each robot. Thus, the number of tasks considered in the
model will multiply based on the number of robots.

Another modelling difficulty is the representation of robots and users moving through
the environment. Some activities have defined locations, but some HRI activities require
the robot and user to be in the same location for interaction. Due to the limitations of CP
for representing user movements over time, we introduce multiple interval variables of the
same activity, each with a predetermined location. That is, if a user needs to be reminded
for a Bingo game, a reminder task must be created for every potential location that user
may be in. Without these additional tasks, we cannot model the travel time and energy
costs of a robot. However, such a solution is not as elegant as the planning representation
that uses actions, since all potential locations of robot tasks must be predetermined and
considered in the CP model.

Finally, using the CP technology requires us to determine an upper bound on the number
of each task that might occur. As mentioned earlier, we must know the maximum number
of battery recharges and reminders that can be performed to generate the model. To ensure
that we have a sound and complete model, the number of tasks to include may be grossly
overestimated, leading to a model with many superfluous decision variables and slower
runtimes.

4.3.4 Decomposed-CP

Smith, Frank, and Jónsson (2000) compared planning and scheduling, and indicated that
one of the weaknesses of scheduling is the inability to adequately handle environments with
cascading effects. An action with a cascading effect changes the system state and leads
to requirements for one or more other actions. For example, if a user is to play a Bingo
game, he or she must be reminded of the game. However, if a user is not participating in a
Bingo game, the reminder should not take place. Due to such dependencies, the scheduling
model becomes very large because we create alternative interval variables for every possible
action. Based on preliminary results testing Global-CP, we propose a decomposition of the
CP model, named Decomposed-CP, that attempts to improve upon the Global-CP model
and better handle the cascading effects in this system.

The decomposition is comprised of two stages: a master problem and a sub-problem.
The master problem is the Global-CP model for the BRPO- problem variant. Recall that
BRPO- only simplifies the objective function. The sub-problem then uses the solution of
the master problem to fix certain values of the schedule and solves the complete problem
under these restrictions using CP. By choosing to fix the right decision variables in our
sub-problem, we are able to reduce the difficulty of handling actions with cascading effects.
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Figure 5: Brief overview of the Decomposed-CP model.

Figure 5 is an illustration of the two stages of the decomposition and shows the problem
components that are passed from master problem solution as restrictions to the schedule in
the sub-problem.

The proposed decomposition only considers the maximization of user participation in
Bingo games in the master problem objective function. That is:

maximize
∑
u∈U

games attendedu. (46)

The minimization of the number of games played, battery consumption, and delivery times
of reminder tasks are ignored in the master problem, but the constraints regarding the
battery and delivery times are still enforced. The solution to the master problem will be a
valid solution to the complete robot scheduling problem, however, the schedule may be of
poor quality since most of the objective function is ignored.

The solution of the master problem gives us an assignment of users to Bingo games
that will be used in the sub-problem. Games that are not played in the master problem
are removed and not considered in the sub-problem and games that were played in the
master problem are available to be played in the sub-problem with the same players, but
are not fixed to start at any specific time. We further set the upper bound for the number
of charging tasks per robot to the total number of charging tasks across all robots in the
master solution. We choose this upper bound to allow for some flexibility in changing
the schedule of recharging robots, while guaranteeing that a feasible schedule exists. The
objective function of the sub-problem is the original objective function. Note that this
decomposition potentially loses global optimality since the optimal assignment of games
and the number of recharges from the master problem might not be optimal when the other
parameters of the objective function are considered.

When using the Decomposed-CP model, a decision must be made as to when to switch
from solving the master problem to the sub-problem. The most straight-forward approach
is to solve the master problem to optimality and then solve the sub-problem with the
remaining time. In practice, we found that this approach works well. However, if the
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master problem is too difficult, it is possible that all the computation time will be spent
on the master problem. Alternatively, one could set a time limit for the master problem
that is shorter than the total time limit and switch when either the master problem has
been solved to optimality or when a time-limit has been reached; whichever occurs first.
We choose to use this latter strategy with at most half of the total time limit available
for solving the master problem. However, for the experiments we present in Section 5, the
optimal master problem solutions are all found and proved before the time limit is reached.

Based on our preliminary results with Global-CP on problem variation BRPO-, we know
that the Decomposed-CP model will find solutions significantly faster than the Global-CP
model for the original problem and for most variations. Global-CP has difficulties with
the complex objective function while the simplified objective function is tractable for the
problem sizes found in our application. By first solving the master problem, we find a
schedule with a high quality on the most important objective (user participation) that
is used to restrict decisions in the sub-problem to reduce the cascading effects of actions
and limit the number of optional interval variables while optimizing the original objective
function.

4.3.5 Modelling Issues and Limitations

Our decomposition may not find the optimal solution if the master problem assignment does
not result in the optimal Bingo game assignments with at least as many charging tasks as
necessary to achieve the optimal solution for the complete problem. However, if obtaining
solutions quickly with some emphasis on solution quality is important, the Decomposed-CP
model may be a valuable technique to apply. Recent work on an approximate logic-based
Benders decomposition method (Burt, Lipovetzky, Pearce, & Stuckey, 2015) presents a
similar style of decomposition to ours to solve a mining application problem.

Although we believe that using a sophisticated decomposition technique, such as logic-
based Benders decomposition (Hooker & Ottosson, 2003) or branch-and-check (Thorsteins-
son, 2001), could lead to stronger performance and the guarantee of optimal solutions
given sufficient time, the work is non-trivial in comparison to our proposed decomposition.
Furthermore, from our experiments, it is not clear that the problem structure allows for a
decomposition such as logic-based Benders to be used, given the difficulty of finding optimal
solutions for even relaxed constraint-based scheduling problems.

5. Experimental Study

We consider a retirement home environment in which residents undertake several activities
in different locations (e.g., TV room, private room, garden, dining hall) during a day. We
assume that each user has four one-hour non-interruptible activities (e.g., physiotherapy,
doctor’s appointment, family visit, nap), in addition to the meal times, during which he/she
cannot be disturbed. Other, interruptible, activities (e.g., walk in the garden, read in a
common area) allow robot interactions. At least one interruptible activity is assumed for
each user. We analyze the proposed models for five full-day scenarios in this environment
(7am-7pm), see Table 2. These scenarios represent the requirements of the retirement
home, but with varying number of users and robots from a fairly small retirement home
to ones that are comparable to the actual retirement homes we are working with. Possible
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Table 2: The number of objects in the five scenarios.

Scenario Users Robots Telepresence Bingo

1 5 2 2 1

2 10 2 4 2

3 15 3 6 3

4 20 3 8 4

5 25 4 10 5

Figure 6: Example user schedules over a single day. Blue tiles indicate when a user is busy
with a personal activity, red tiles are meal times, green tiles represent the interruptible
activities, and white tiles are leisure periods of time when the users are in their own personal
rooms and are available to interact with robots..

user schedules were obtained from healthcare professionals at our collaborative retirement
homes. Figure 6 is an example schedule for five users over the course of a single day.

In all scenarios, the telepresence sessions and Bingo games are 30 and 60 minutes long,
respectively, with time windows from 8am-7pm.5 Reminders are 2 minutes long. For all
models, we use a discrete representation of time in increments of 1 minute. Each game has
a minimum of three participants and a maximum of ten participants. Every user is willing
to attend at most one Bingo game during the day (i.e., att min = 0, att max = 1). All
robots have the following property values, estimated based on the Tangy robot: bl min = 0,
bl = bl max = 20, v = 20m/min, rr = 0.5, cr move = 0.04, and cr telep = cr remind =
cr Bingo = 0.1.

We run each model on the five scenarios using a 64-bit Ubuntu Linux machine with
12 GB of memory. We use the OPTIC planner (Benton, Coles, & Coles, 2012) to solve
the PDDL planning model. Preliminary experiments tested five different planners: COLIN
(Coles, Coles, Fox, & Long, 2012), LPG-td (Gerevini, Saetti, Serina, & Toninelli, 2004),
OPTIC (Benton et al., 2012), POPF (Coles, Coles, Fox, & Long, 2010), and SGPlan (Hsu
& Wah, 2008). Of the five planners, only COLIN, OPTIC, and POPF were able to find
feasible plans for the smallest scenario tested.6 OPTIC was found to be the best performing
solver of the five. The CP models are solved using IBM ILOG CPLEX CP Optimizer 12.6.2.
A one-hour timeout was used for each model in each scenario. We measure the runtime, the
number of users attending a game, and the solution quality based on the objective function
of problem BRPOF.

5. Bingo games are not allowed before 8:00 a.m. as such an early Bingo game is undesirable, even though
the daily schedule starts at 7:00 a.m..

6. LPG-td and SGPlan cannot handle PDDL+ processes and required concurrency, while POPF and COLIN
support required concurrency but not processes.
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Table 3: Performance of the proposed models on problem BRPOF. The best results over all
six PDDL planning models for each scenario is presented. A (-) indicates that no solution
was found.

Model Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.74 2,033.72 3 4 2,147.10 1,124.11
2 0.68 2,062.94 0 0 11,012.37 11,012.23

PDDL 3 57.16 1,960.02 0 0 16,518.65 16,518.63
Planning 4 2.18 23.84 0 0 22,024.92 22,024.92

5 7.24 89.46 0 0 27,557.30 27,554.54

1 0.08 9.26 0 5 5,623.00 192.00
2 1.96 33.84 6 9 4,549.00 1,243.00

Global-CP 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.05 0.23 5 5 486.00 192.00
2 0.08 67.49 6 10 5,039.00 847.00

Decomposed 3 0.36 37.87 4 15 12,296.00 1,213.50
CP 4 0.41 2,567.80 10 20 12,107.00 1,430.50

5 0.37 3,382.83 4 25 23,494.50 1,929.00

For a given problem modification, all solvers search an equivalent solution space and
objective function. During the one-hour time limit, the first and last solution found using
each of the models was recorded. The only objective function that is not calculated based
on the full objective is for problem variation -RPOF, where the battery usage criteria
is ignored. Thus, the objective function used in problem variation -RPOF removes the
battery usage and only includes the user participation, Bingo games played, and delivery
time components. As such, the objective value for -RPOF will seem better than it should
be if the same schedule were to be applied to other problem variations as there will be an
increase in cost from battery usage (assuming that the schedule is also feasible when battery
consumption is considered).

Table 3 presents our results for the five scenarios using the different solvers on problem
BRPOF. We provide the best results, based on the final objective value score, over the six
different PDDL planning models for each of the five scenarios individually. That is, the
PDDL results represent the virtual best over all PDDL models. PDDL planning is able to
find feasible plans for all scenarios, however, Bingo games are only played in Scenario 1. CP
Optimizer has problems finding even feasible solutions for larger scenarios when using the
Global-CP model. However, for the scenarios where solutions are found, Bingo games are
played and the user participation is high. CP Optimizer with the Decomposed-CP model is
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able to find high quality solutions for all scenarios and is consistently the best performing
method.7

In the rest of this section, we present our experiments for each methodology. We show
the performance of these approaches under various problem modifications and discuss the
different approaches in more detail.

5.1 PDDL-Based Planning

Table 4 presents the results of running the OPTIC planner on all six models on problem
BRPOF. Overall, we see that good quality solutions, meaning high user participation in
Bingo games, are only found for the smallest scenario. All models that make use of the larger
action that acts as an envelope over all Bingo related activities are unable to find feasible
solutions for Scenarios 2-5. Introducing the required concurrency between the Bingo overall
action and remind, setup Bingo, and play Bingo gives the planner difficulty as the problem
size increases. Thus, the envelope modelling strategy does not scale well.

We also see worse performance from set-all when compared to single and min-add.
The problem with set-all is the large number of grounded play Bingo actions in the larger
scenarios. Although min-add also has many grounded actions, the total number of grounded
play Bingo actions is significantly fewer. Only the single modelling strategy will scale the
number of grounded interaction actions linearly with the number of users and Bingo games.
The other alternatives will require

(
N
X

)
grounded actions for each play BingoX operator,

where N is the total number of users. Thus, even for strategy min-add with X = 3, scenarios
with large N will be intractable as the planner fails to find a feasible solution within the
time limit.

Table 5 illustrates the planning model performances on the BRPO- problem, where the
objective function has been simplified. This problem provides insights into the behavior of
the planning solver and shows the best performance we are able to obtain from the planner
over all problem modifications. The planning models generally behave as in Table 4, except
for single-envelope. The larger scenarios are still not solved, but high quality solutions are
found for Scenarios 1-3. The change that allows for better performance here is the removal
of the clock-ticker process completely, since BRPO- is not concerned with the delivery time
in the objective function and the envelope modelling strategy handles separation constraints
by using the Bingo overall action. As we expect, grounding many actions for min-add and
set-all is still very difficult for the larger scenarios, but under the single-envelope model, it
is possible to obtain solutions for up to the medium-sized scenarios.

Full results for all six PDDL models and seven problem modifications can be found
in Appendix C in Tables 9 - 14. In general, we observe that OPTIC has a difficult time
finding solutions with active Bingo games. Removal of battery consideration and separation
constraints helps the planner, but does not lead to a significant improvement. At best, these
problem modifications led to Bingo games being played for Scenarios 1 and 2 rather than
just Scenario 1. Interestingly, we found that for most models, the planner has a harder time
when Bingo games are forced to be played and in fact, more often than not, fails to find

7. Recall that due to the limitations of the timeline-based planner and scheduler as outlined in Section 4.2.5,
we are not able to model the problem fully and therefore no solutions are obtained for the problem.
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Table 4: Performance of PDDL planning on the BRPOF problem. A (-) indicates that no
solution was found.

Problem Sce- Runtime (s) Participants Objective Value
nario first last first last first last

1 0.04 786.12 0 3 5,506.13 2,070.75
2 0.18 0.88 0 0 11,019.38 11,016.66

single-clock 3 0.84 9.38 0 0 16,530.31 16,525.73
4 2.18 23.84 0 0 22,044.46 22,043.11
5 7.24 89.46 0 0 27,557.30 27,554.54

1 0.06 2,950.88 0 3 5,506.13 2,066.51
2 0.68 2,062.94 0 0 11,012.37 11,012.23

min-add-clock 3 57.16 1,960.02 0 0 16,518.65 16,518.63
4 143.36 143.36 0 0 22,024.92 22,024.92
5 - - - - - -

1 0.74 2,033.72 3 4 2,147.10 1,124.11
2 - - - - - -

set-all-clock 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.84 1,287.07 3 3 2,152.33 2,077.94
2 - - - - - -

single-envelope 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.84 1,287.07 3 3 2,152.333 2,077.94
2 - - - - - -

min-add-envelope 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.76 943.56 3 3 2,152.33 2,077.94
2 - - - - - -

set-all-envelope 3 - - - - - -
4 - - - - - -
5 - - - - - -

any solutions when Bingo games cannot be skipped, even though the same model is able to
find a solution with a Bingo game when the skip Bingo operator is included.

When Bingo games are restricted to have exactly four participants, the planner is unable
to find a solution for Scenario 1 with any Bingo games except for the single-envelope model.
Lastly, the problem B—F can help the performance as the solver is able to find plans with
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Table 5: Performance of PDDL planning on the BRPO- problem. A (-) indicates that no
solution was found.

Problem Sce- Runtime (s) Participants Objective Value
nario first last first last first last

1 0.06 75.94 0 3 5,612.46 2,761.64
2 0.18 0.18 0 0 11,019.38 11,019.38

single-clock 3 0.82 0.82 0 0 16,530.31 16,530.31
4 2.18 2.18 0 0 22,044.46 22,044.46
5 7.04 7.04 0 0 27,557.30 27,557.30

1 0.06 2,459.74 0 3 5,506.13 2,161.64
2 0.82 0.82 0 0 11,019.38 11,019.38

min-add-clock 3 0.82 0.82 0 0 16,518.65 16,518.65
4 146.72 146.72 0 0 22,044.46 22,044.46
5 7.04 7.04 0 0 27,557.30 27,557.30

1 0.46 602.40 3 4 2,226.30 1,617.03
2 - - - - - -

set-all-clock 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.26 1,297.10 3 5 2,138.96 530.36
2 1,190.36 1,190.36 9 9 2,680.88 2,680.88

single-envelope 3 3,406.20 3,406.20 15 15 1,089.24 1,089.24
4 - - - - - -
5 - - - - - -

1 0.22 1,269.80 3 4 2,261.10 1,620.54
2 - - - - - -

min-add-envelope 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.42 721.80 3 4 2,261.14 1,620.54
2 - - - - - -

set-all-envelope 3 - - - - - -
4 - - - - - -
5 - - - - - -

two games in Scenario 2 for the single-clock model. However, the other models do not see
any improvements.

5.2 Constraint Programming

In this section, experimental results of both the Global-CP and the Decomposed-CP models
using CP Optimizer are presented.
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5.2.1 Global-CP

Table 6 presents the results from running the CP solver on the different problem modifica-
tions using the Global-CP model. For problem BRPOF, CP is only able to find solutions
for Scenarios 1 and 2. With more than 10 users and 2 robots, CP cannot obtain feasible
solutions within the one-hour time limit. CP can only obtain solutions to bigger problems
(Scenarios 3-5) when we remove batteries (B), the reminder time bounds (R), or the com-
plex objective function (F ). Of those three properties, the reminder time bounds (R) has
a much smaller effect as B-POF can only solve up to Scenario 3. CP performs well on
-RPOF, BRPO-, and B—F. In all three of these problems, CP obtains solutions for all five
scenarios.

Problems BRP-F and BRPO- provide some interesting and unexpected results. We
assumed that BRP-F would lead to better performance since the development of constraint-
based scheduling technology has not been heavily focused on dealing with as many optional
tasks as are present in our model. Although a majority of optional tasks still exist in
the BRP-F problem, we expected a significant improvement of performance, which was
not observed in our experiment. In fact, for Scenario 1, we see that CP Optimizer takes
twice as long to find the best found solution for problem BRP-F compared to BRPOF.
This result suggests that optional tasks are not as hard to handle for CP Optimizer as
we initially assumed. In contrast, changing the objective function to only consider user
participation leads to CP finding solutions quickly (within fractions of a second) and with
maximum user participation. This is against expectation as one of the main advantages of
CP is its strong inference methods, which we believe the removal of the complex objective
function would not affect. More specifically, we would have expected potentially stronger
performance when altering the objective function in regards to optimizing schedules, but
the fact that even finding satisficing schedules became significantly easier was not expected.

Table 6 gives us insight into the problem components that are difficult for the CP model.
It is clear that battery level considerations and complex objective functions lead to the ma-
jority of the issues when trying to find even feasible solutions. When either of these are
removed, CP does not have trouble quickly obtaining solutions with everyone playing Bingo
games.

5.2.2 Decomposed-CP

Table 7 provides the performance of the decomposition model for the different problem
modifications. The first solution presented is the first feasible schedule found by the first
stage of the Decomposed-CP model. Note that the first stage represents only a simple
objective function. For example, if the problem to be solved is BRP-F, the master problem
would be BRP– and the subproblem is BRP-F. Furthermore, recall that the first stage is a
sound model and therefore produces globally feasible solutions.

The decomposition is able to find schedules with the maximum number of possible par-
ticipants for every scenario and in general to do so very quickly. Note that for problem
variations B—F and BR-OF, the maximum number of participants is limited by the re-
striction on the number of users in a game, which is less than the total number of users.
These results were expected after observing the performance of Global-CP, since, as we men-
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Table 6: Performance of Global-CP on all tested problem modifications. A (-) indicates
that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.08 9.26 0 5 5,623.00 192.00
2 1.96 33.84 6 9 4,549.00 1,243.00

BRPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.08 0.15 5 5 223.00 178.00
2 0.11 48.73 10 10 807.00 276.00

-RPOF 3 0.46 337.67 14 15 2,352.00 359.00
4 0.91 3,040.75 20 20 2,006.00 450.00
5 1.66 2,870.58 24 25 4,646.00 550.00

1 0.08 41.75 5 5 1,745.00 192.00
2 0.36 256.49 8 10 4,885.00 346.00

B-POF 3 2,230.32 2,230.32 15 15 5,176.00 5,176.00
4 - - - - - -
5 - - - - - -

1 0.11 2,297.28 4 4 1,447.00 1,129.50
2 0.49 925.55 8 8 2,817.00 2,179.50

BR-OF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.40 18.83 5 5 499.00 192.00
2 0.87 1,399.25 8 10 2,937.00 305.50

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.05 0.05 5 5 486.00 486.00
2 0.08 24.22 6 10 5,039.00 847.00

BRPO- 3 0.36 37.87 4 15 12,296.00 2,013.50
4 0.41 1,076.5 10 20 12,107.00 2,522.00
5 0.37 103.33 4 25 23,494.50 3,033.50

1 0.27 28.88 4 4 1,387.50 1,129.50
2 0.18 2,022.39 8 8 4,144.00 2,262.00

B—F 3 25.83 3,590.05 12 12 5,366.50 3,428.00
4 1,162.26 1854.93 16 16 7,309.00 4,589.00
5 1,813.50 3501.50 20 20 9,473.50 5,960.50
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Table 7: Performance of the Decomposed-CP model on all tested problem modifications.
The first solution that is recorded is based on the solution found from the first stage of the
Decomposed-CP model.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.05 0.23 5 5 486.00 192.00
2 0.08 67.49 6 10 5,039.00 847.00

BRPOF 3 0.36 37.87 4 15 12,296.00 1,213.50
4 0.41 2,567.80 10 20 12,107.00 1,430.50
5 0.37 3,382.83 4 25 23,494.50 1,929.00

1 0.26 0.29 5 5 473.00 178.00
2 0.01 0.09 0 10 11,000.00 364.00

-RPOF 3 0.04 170.31 0 15 16,500.00 678.00
4 0.06 1.06 0 20 22,000.00 783.00
5 0.08 12.64 0 25 27,500.00 723.00

1 0.27 0.49 5 5 1,397.00 192.00
2 0.06 36.16 6 10 4,471.00 642.50

B-POF 3 0.89 608.66 3 15 13,188.00 1,587.00
4 0.58 2,739.24 6 20 16,493.00 1,614.00
5 0.39 2,179.80 6 25 21,522.00 1,978.00

1 0.26 0.76 4 4 1,373.00 1,129.50
2 0.06 7.95 4 8 6,517.00 2,264.50

BR-OF 3 0.14 76.15 4 12 12,130.00 3,471.00
4 0.22 838.98 8 16 13,784.00 4,826.00
5 0.44 562.93 4 20 23,075.00 6,381.50

1 0.34 0.18 5 5 503.00 192.00
2 0.47 291.48 8 10 2,937.00 305.50

BRP-F 3 0.75 3,559.85 9 15 6,298.00 627.00
4 1.05 2,468.11 12 20 8,564.00 817.00
5 1.66 2,880.74 15 25 11,090.00 2,242.50

1 0.05 0.05 5 5 486.00 486.00
2 0.08 24.22 6 10 5,039.00 847.00

BRPO- 3 0.36 37.87 4 15 12,296.00 2,013.50
4 0.41 1,076.5 10 20 12,107.00 2,522.00
5 0.37 103.33 4 25 23,494.50 3,033.50

1 0.60 12.89 4 4 2,530.00 1,172.00
2 0.08 3,249.35 8 8 4,720.00 2,454.50

B—F 3 0.49 767.91 12 12 4,285.00 3,771.00
4 30.31 3,470.31 16 16 8,933.00 4,933.00
5 4.03 2,398.54 20 20 10,408.00 6,381.50
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tioned earlier, the first stage of the decomposition is just the Global-CP applied to problem
BRPO-. Once a partial schedule is found with decisions made regarding the presence of
a Bingo game and its players, the problem becomes significantly easier as many actions
with cascading dependencies are eliminated. There is a large reduction in the number of
charging tasks (about 98%) and reminder tasks (between 80% and 96%). As we saw with
the Global-CP model, battery level considerations make the problem hard and removal of
just that aspect of the problem led to substantial performance improvements.

5.3 Best Performance Results

Table 8 presents the best performance of each approach when considering all the sound
problem modifications: BRPOF, BR-OF, BRP-F, and BRPO-. The quality of the solutions
generated are compared using the objective function for the original problem. We choose
the problem that leads to the best results for each method and compare these results.
Furthermore, for the planning models, since there are six different models, we choose what
we consider the best performing model based the ability to obtain better objective values
(single-envelope) under the best performing problem modification. For the planning solver
and Global-CP, the best performance is found in problem BRPO-, whereas Decomposed-CP
works best with BRP-F.

Each of the three methods is able to produce schedules for the robots for the system sizes
that we tested, but if we choose the planning model that finds the most user participation
in Bingo games, the planner is unable to find feasible solutions for the larger scenarios. The
planning solver was found to perform worse than the two CP approaches even for scenarios
where solutions are found. Global-CP, with a simpler objective function, is overall better
than planning, also with a simpler objective function, except in Scenario 3. By abstracting
the objective and ignoring certain components that are considered of lesser importance,
Global-CP becomes a much more attractive option. The Decomposed-CP model, which has
the Global-CP strengths on the BRPO- problem by design, is the superior choice as the
components ignored in the objective initially are re-introduced into the sub-problem.

6. Discussion

Our overall project requires research and development on multiple fronts. This study con-
siders the issue of which technology to adopt for the planning and scheduling components
of our system. Based on the results that we obtained, CP is currently the more suitable
technology within the confines of our modelling paradigms.

While all three technologies can be further improved with intelligent modelling choices
and search guidance, we believe the results we present demonstrate the baseline performance
one achieves when following standard modelling approaches for the different technologies
along with current state-of-the-art solvers. Unfortunately, none of the technologies tested
can satisfactorily solve the problem without some compromises. The issues we found in-
dicate the research directions needed to be further explored in order to adequately handle
our application as well as ones similar to it.
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Table 8: Performance of the proposed models using the best modifications. A (-) indicates
that no solution was found.

Model Sce- Runtime (s) Participants Objective Value
nario first last first last first last

1 0.26 1,297.10 3 5 2,138.96 530.36
Planning 2 1,190.36 1,190.36 9 9 2,680.88 2,680.88
(BRPO-) 3 3,406.20 3,406.20 15 15 1,089.24 1,089.24

(single-envelope) 4 - - - - - -
5 - - - - - -

1 0.05 0.05 5 5 486.00 486.00
2 0.08 24.22 6 10 5,039.00 847.00

Global-CP 3 0.36 37.87 4 15 12,296.00 2,013.50
(BRPO-) 4 0.41 1,076.5 10 20 12,107.00 2,522.00

5 0.37 103.33 4 25 23,494.50 3,033.50

1 0.34 0.18 5 5 503.00 192.00
2 0.47 291.48 8 10 2,937.00 305.50

Decomposed-CP 3 0.75 3,559.85 9 15 6,298.00 627.00
(BRP-F) 4 1.05 2,468.11 12 20 8,564.00 817.00

5 1.66 2,880.74 15 25 11,090.00 2,242.50

6.1 PDDL-Based Planning

As noted in our discussion of the limitations and issues with PDDL planning, representation
of temporal constraints is a challenge. While we made substantial use of the calendar in CP,
enforcing temporal consistency with the temporal representation in PDDL (e.g., TILs) is
difficult and the current approaches do not have an intuitive representation as compared to
simple temporal networks and scheduling models (Cushing & Kambhampati, 2007; Marzal,
Sebastia, & Onaindia, 2014). In addition Cushing and Kambhampati (2007) state that most
temporal planners are incomplete due to restrictions of action start times to a small set of
time points called decision epochs. Nonetheless, using decision epochs drastically improves
computational performance and allows improved techniques from classical planners to be
directly used for temporal planners. It is clear from our results that the use of the clock
process to capture the temporal separation has significant negative impact on performance.
Thus, improvement on handling processes more efficiently is a fruitful direction.

The performance of and accessibility to model features in planners can be improved.
One example is the unavailability of the forall feature in conjunction with other features,
greatly limiting our modelling options. This is an issue noted in the literature for most
state-of-the-art planners (Bajada, Fox, & Long, 2014). Even with the features we could
use, like optimization, we found that the planner was generally not able to significantly
improve solutions. Benton et al. (2012) discuss the limitations of optimization in planners
and propose the OPTIC planner for optimization of continuous models. Our experiments
illustrate that planners still have much to gain from additional efforts in this area. Most
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of our final solutions found using OPTIC were similar in quality to the first solution found
and those plans were of very poor quality. To address problems similar to ours, planners
must develop improved abilities to solve problems with temporal reasoning and concurrency
(Cushing & Kambhampati, 2007; Jiménez, Jonsson, & Palacios, 2015), numeric values
(Coles, Coles, Fox, & Long, 2013; Ivankovic, Haslum, Thiébaux, Shivashankar, & Nau,
2014), and optimization (Benton et al., 2012).

6.2 Timeline-Based Planning and Scheduling

We believe EUROPA presents a step in the right direction in temporal representation as
the NDDL language provides a more intuitive representation of temporal characteristics
via timelines. As mentioned in Section 4.2, ANML is an alternative language similar to
NDDL that makes use of timelines. However, both modelling languages share the same
problem of having minimal support from solvers capable of handling the full set of language
features. While both are strong candidates for use, the current barrier for timeline-based
planning and scheduling to be competitive with PDDL-based planning and constraint-based
scheduling is the state of current solvers. With additional efforts towards the development
of solvers, timeline-based approaches will be a useful technology for problems similar to
ours.

6.3 Constraint-Based Scheduling

While the decomposition-based CP model delivered satisfactory performance on our test set,
there is still room for improvement. Unlike the planning representation, it is not currently
possible to model operators that may be instantiated multiple times. Laborie (2003) notes
this issue when comparing the planning and scheduling literature. Beck and Fox (2000)
extended propagation algorithms to handle alternative activities that do not necessarily
have to be executed in a schedule. Laborie and Rogerie (2008) introduced a framework
for reasoning about conditional time-interval variables that we used to address the issue of
planning operators. However, this approach is not scalable and is a limitation in how we
can currently model operators with CP. A valuable direction for researchers in constraint-
based scheduling is the development of a method to model and solve problems where these
high-level, reoccurring tasks exist. By being able to dynamically add tasks during problem
solving, the size of the model can be substantially reduced (Barták, 2002). Yet, significant
progress towards being able to competently handle reoccurring tasks for complex environ-
ments in CP has not been made. The closest work that we are aware of is the CPT planner,
which combines partial order causal link branching with CP to obtain a strong pruning
mechanism that dynamically introduces actions in the CP model (Vidal & Geffner, 2006).
However, this functionality came at the cost of substantial customization of the underlying
CP solver.

CP also lacks the expressivity of planning and timeline-based planning and scheduling.
For example, the move action of the robot is represented in the CP models as transition
times between actions. However, given that the distance traveled by a robot is dependent
on the location of the previous and next actions and that action locations can depend on
the time at which they are executed (e.g., users move around during the day), there is no
straightforward or efficient manner to model robot movement. We are able to model such
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movement by creating alternative tasks for each activity that corresponds to the potential
locations of a user, but this approach will not scale well and is only possible because our
problem does not include a large number of possible user locations. For similar robot
scheduling problems in a larger environment, the representation for robot movement used
here may result in much poorer performance.

Furthermore, the current state of CP solvers does not as easily allow for experimenta-
tion between different solvers like PDDL-based planning and timeline-based planning and
scheduling that have a standardized modelling language. Each CP solver uses a different
modelling language to represent the same model. MiniZinc, a CP modelling language sup-
ported by many CP solvers, addresses this problem, but has some compromises since each
CP solver has a wide range of capabilities that are not fully supported by MiniZinc (Nether-
cote et al., 2007). Although this issue does not affect the solver performance, it does make
the process of switching to other solvers more problematic in CP than with the alternative
technologies.

Finally, it was interesting to see that the complex objective function was so difficult for
the CP solver. We believe a deeper analysis and understanding of how CP behaves under
particular models, objectives, and constraints would be useful. The current state-of-the-
art in CP optimization techniques is either hybridization with linear programming (Heinz,
Ku, & Beck, 2013a; Heinz, Schulz, & Beck, 2013b; Laborie & Rogerie, 2016) or cost-aware
constraints (Focacci, Lodi, & Milano, 2002; Simonis & Hadzic, 2011; Régin, 1999). Insights
into the behavior of these techniques for optimization can help improve our model to better
handle our application.

6.4 The Effect of Modelling

Although we investigated multiple PDDL and CP models for our application, it is impossible
to exhaust the complete model space to establish the best possible model for each technology.
It is clear that modelling decisions can greatly impact solver performance, but the choice of
formulation is non-trivial. This problem is further confounded as the performance of a model
can depend on the solver that is chosen, requiring a user to have a strong understanding of a
specific solver’s inner workings in order to create efficient models. These issues are true for
all technologies we study. Neither AI planning nor CP has developed solver-independent and
formal ways of comparing alternative models for the same problem in the way, for example,
that the study of polyhedral theory has for mixed-integer linear programming (Bertsimas
& Weismantel, 2005; Schrijver, 1998). Nonetheless, to make progress on solving interesting
problems, modelling decisions must be made and conclusions drawn from experimental
studies.

There is not much work that deeply explores the study and development of modelling
approaches and strategies in either PDDL planning or CP scheduling. The current approach
to modelling in planning and scheduling is based strongly around personal expertise and
trial and error. Given the impact that different models or model refinements can have
on the performance of solvers, it is important that one develops a strong model in order
to be able to draw proper conclusions (Riddle, Holte, & Barley, 2011; Vaquero, Silva, &
Beck, 2010). It would be of substantial value to users of these technology to have studies
that develop principles and practices of modelling. There is a particular research area
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dedicated to the modelling techniques and principles for planning and scheduling problems:
Knowledge Engineering for Planning and Scheduling (KEPS), a workshop that has been at
the International Conference on Automated Planning and Scheduling since 2008. Yet, to
the authors’ knowledge, a detailed body of work does not exist that explores the impact of
modelling in planning and scheduling.

6.5 AI Planning vs. Constraint Programming

Within the narrow context of our robot application, the results in Section 5.3 suggest that
CP is the more promising approach to our problem. However, it is not our purpose, nor
would it be appropriate, to make general conclusions about the relative problem solving abil-
ities of the technologies that we investigated. At the most, given the very sparse application
of CP technology to robot planning and scheduling problems and the contrastingly larger
application of AI planning (e.g., the series of PlanRob workshops and robotics tracks at the
International Conference on Automated Planning and Scheduling), our results suggest that
CP is an interesting technology to investigate for this domain.

A more intriguing comparison arises from the question of the knowledge permitted in a
model. In domain-independent planning, the modeller seeks to represent the “physics” of a
problem without representing what has been generically termed “search control knowledge”
(Bonet & Geffner, 2001; Hoffmann & Nebel, 2001). Although domain-independent planning
comprises of the mainstream of AI planning, domain-configurable planning, which uses
a domain-independent search engine with domain control knowledge, also exists in the
literature. For example, TLPlan (Bacchus & Kabanza, 2000) and TALPlan (Kvarnström &
Doherty, 2000) make use of control rules to prune the search space while hierarchical task
network planners such as O-Plan (Tate, Drabble, & Kirby, 1994) and SHOP2 (Nau et al.,
2003) use domain-specific knowledge for decomposing tasks into subtasks. It is also worth
mentioning the work done by the planning and learning community who are looking to learn
search control knowledge for planning automatically (de la Rosa, Jiménez, Fuentetaja, &
Borrajo, 2011; Krajanský, Hoffmann, Buffet, & Fern, 2014) (see also the learning track
of the international planning competition). The justification for the restriction of search
control knowledge is that human planners are able to solve problems without being given
such domain-specific rules. If we are truly seeking to develop an artificially intelligent
planner, then supplying such rules defeats our purpose as well as requiring extra effort by
the modeller.

In contrast, the primary tools for modelling in CP are precisely the addition of search
control knowledge in the form of redundant constraints, dominance rules, and dual variables
(Smith, 2006). For example, from a domain-independent planning perspective, the deriva-
tion of an upper bound on the number of recharging actions of a robot (see Section 4.3) so
that we can even represent the problem is search control knowledge. As noted above, the
CP community also has the goal of declarative problem solving (Freuder, 1997), but has
taken a different path, allowing modellers to add search control knowledge with the justifi-
cation being that through the study of such knowledge, as initially derived by modellers, we
will eventually be able to automate its derivation. Such automated modelling and model
reformulation studies form an active part of the CP research (Frisch, Harvey, Jefferson,
Mart́ınez-Hernández, & Miguel, 2008; Nightingale & Rendl, 2016), see the series of Mod-
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Ref workshops at the International Conference on Principles and Practice of Constraint
Programming.

It is beyond our purposes here to go further into this contrast which has historically
been a subject of debate in the AI planning community (Hendler, Tate, & Drummond, 1990;
Hewitt, 1971; Wilkins, 1984). However, returning to our application-driven motivation,
from the narrow perspective of solving application problems, the domain-independent AI
planning field would seem to be operating at a self-imposed disadvantage compared to CP
by maintaining domain independence. Of course, if the restriction helps to more quickly
understand and achieve the broader goals of truly intelligent agents, the disadvantage may
be worthwhile.

7. Future Work

There are a number of avenues of subsequent work arising from our study.

7.1 Advanced Decomposition Models

We considered various PDDL planning models and a CP decomposition model. Decompo-
sitions are commonly found in the constraint-based scheduling community but less so in
the planning literature. It would appear valuable to incorporate decomposition into the
PDDL planning models. However, from the empirical results, it is not apparent how one
should decompose the problem for planning. Using a similar decomposition as CP would
not greatly improve performance as the best performance over all models tested for PDDL
planning was only able to find solutions with user participation for up to Scenario 3. By
using such a decomposition, only poor quality solutions will be generated for Scenarios 4
and 5. Alternatively, one could explore a hybrid decomposition where the master problem
is solved by CP as in Decomposed-CP and the sub-problem with planning. One could po-
tentially see the benefits of being able to use the set-all modelling strategy, but without the
explosion of grounded actions as user participation would be fixed in the sub-problem.

7.2 Disturbances

Beyond this study, we plan to consider a more complex system where external robot- or
user-related events cause disturbances that prevent a daily schedule from being completed
properly. For example, a robot-related disturbance can be a failure to arrive at a planned
destination due to obstacles blocking its path or unexpectedly low battery level. User-related
disturbances exist since a person may not be located where the robot believes him/her to be.
Additionally, he/she may decide not to participate in an HRI activity and so we must alter
the schedule accordingly. Disturbance consideration is essential for ensuring that robots can
operate in a dynamic environment and that users will have a positive experience with and
confidence in the robots. In this current study, disturbances could be handled naively by
generating a new plan starting at the time of any disturbance using the models presented in
this paper. However, a deeper study is required to fully understand and apply the models
developed here to the application problem where disturbances are a serious concern. We
hope to build techniques to identify if and when the current schedule is no longer executable
due to disturbances. Once such disturbances are identified, schedule repair, and in extreme
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cases replanning and rescheduling, must be done so that the robots can continue to operate
in the environment. We hope to evaluate and extend work in the planning literature that
looks at generating plans to handle environments with exogenous events (Fritz & McIlraith,
2008; Muise, Beck, & McIlraith, 2013; Muise, Belle, & McIlraith, 2014).

To repair, replan, and/or reschedule, we will again explore the planner and CP technolo-
gies in addition to other technologies. For example, Markov decision processes have been
used by the planning community (Feldman & Domshlak, 2014; Ross, Pineau, Paquet, &
Chaib-Draa, 2008), but were not used in this paper. Due to the complexity of our environ-
ment, the state representation (that must include temporal and numeric states) would lead
to a very large state-space. However, given pre-generated schedules, it may be interesting
to see if there is potential to use Markov decisions processes to replan when disruptions
occur.

8. Conclusion

We propose nine models using three technologies for the multiple robot, retirement home
environment: six PDDL-based planning models, a timeline-based planning and scheduling
model, and two constraint programming models. The many properties of the problem
together create a complex problem to solve. Not only must the robots manage their battery
power, but they must also choose sequences of tasks such that an efficient path is followed.
In addition, tasks have time constraints and users have their own personal schedules. Based
on numerical experiments, we find that CP, in particular a decomposition model using CP,
is the most suitable technology to use in our system.

CP is better equipped than PDDL planning for handling optimization, but can strug-
gle to find feasible schedules for larger problems. Although we found that CP performs
favourably when considering optimization, it is interesting to note that we discovered the
best approach is to only consider a simple objective function. Although the large number of
optional tasks used in the CP model is also a culprit for the poor performance, we suspect
for similar problems with complex objective functions, it is easier and likely just as effective
to decompose a CP model to handle the objective function in stages rather than to try and
remove or reduce the optional activities. Of course, it may be necessary to introduce both
strategies in order to adequately deal with even more difficult problems.

Our study of the various PDDL-based planning models suggest the importance of un-
derstanding modelling decisions. The tests of different methods to represent interaction
within Bingo games shows that one must be conscious of the inclusion of required concur-
rency and the number of grounded actions generated by a particular model. Decisions that
introduce a trade-off between these aspects can be the difference between a planning model
that easily finds feasible solutions, but with poor quality, and a model that does not find
feasible solutions for larger problems, but has improved quality for smaller problems.

Due to the complex reasoning that must be applied to handle all the aspects of the
problem, no solution technique is the perfect choice. This paper illustrates some of the
limitations of the current techniques in planning and scheduling to deal with the problem
of interest as well as the difficulties in making comparisons between these technologies.
All aspects of this problem have been studied in the two fields of research, but together,
these problem characteristics prove difficult for the available solvers. We believe that this

567



Tran, Vaquero, Nejat & Beck

problem provides an interesting application that tests the existing planning and scheduling
technology and hope that this paper might spur research on the unsolved challenges we
have identified.
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Appendix A. PDDL Details

We provide PDDL code for some of the classes representing the static environment, the op-
erators related to Bingo games, and the clock process. Depending on the modelling strategy
used, different operators are combined. For example, remind, play Bingo and interact are
used for single-clock, whereas min-add-clock replaces play Bingo with play Bingo3.

(:durative-action remind

:parameters (?self - Robot ?u - User ?g - BingoGame ?loc - Location

?cs - ChargingStation)

:duration (= ?duration (dur_remind ?g))

:condition

(and

(over all (at ?self ?loc))

(over all (at ?u ?loc))

(over all (available ?u))

(at start (ready ?self))

(at start (at ?self ?loc))

(at start (at ?u ?loc))

(at start (available ?u))

(at start (not_interacting ?u))

(at start (not_done ?g))

(at start (< (p_num ?g) (p_max ?g)))

(at start (not_assigned_game ?u ?g))

(at start (< (att_num ?u) (att_max ?u)))

(at start (>= (bl ?self) (+ (+ (* (dur_remind ?g)

(cr_remind ?self)) (* (distance_to_station ?loc ?cs)

(cr_move ?self))) (bl_min ?self))))

)

:effect

(and

(at start (not (ready ?self)))
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(at start (not (not_interacting ?u)))

(at end (ready ?self))

(at end (not_interacting ?u))

(at start (increase (p_num ?g) 1))

(at start (participant ?g ?u))

(at start (not (not_assigned_game ?u ?g)))

(at start (increase (att_num ?u) 1))

(at end (act_done ?self))

(at start (decrease (bl ?self) (* (dur_remind ?g)

(cr_remind ?self))))

(at start (assign (delivery_time ?g ?u) (current_time)))

(at start (increase (total_battery_usage)

(* (dur_remind ?g) (cr_remind ?self))))

)

)

(:durative-action play_Bingo

:parameters (?self - Robot ?g - BingoGame ?loc - GamesRoom

?cs - ChargingStation)

:duration (= ?duration (dur ?g))

:condition

(and

(at start (at ?self ?loc))

(over all (at ?self ?loc))

(at start (ready ?self))

(at start (must_be_done_during ?g))

(over all (must_be_done_during ?g))

(at start (game_location ?g ?loc))

(at start (not_done ?g))

(at start (<= (p_num ?g) (p_max ?g)))

(at start (> (p_num ?g) (- (p_min ?g) 1)))

(at end (= (p_cur ?g) (p_num ?g)))

(at start (>= (bl ?self) (+ (+ (* (dur ?g) (cr_Bingo ?self))

(* (distance_to_station ?loc ?cs) (cr_move ?self)))

(bl_min ?self))))

(at start (free ?loc)))

:effect

(and

(at start (not (ready ?self)))

(at end (ready ?self))

(at end (done ?g))

(at start (not (not_done ?g)))

(at start (playing ?self ?g))

(at end (not (playing ?self ?g)))

(at end (act_done ?self))
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(at start (decrease (bl ?self) (* (dur ?g) (cr_Bingo ?self))))

(at start (increase (total_battery_usage) (* (dur ?g)

(cr_Bingo ?self))))

(at start (increase (games_attendees) (p_num ?g)))

(at start (not (free ?loc)))

(at end (free ?loc))))

(:durative-action interact

:parameters (?self - Robot ?g - BingoGame ?u - User)

:duration (= ?duration (- (dur ?g) 1))

:condition

(and

(at start (playing ?self ?g))

(over all (playing ?self ?g))

(at start (available ?u))

(over all (available ?u))

(at start (not_interacting ?u))

(at start (participant ?g ?u))

(at start (>= (delivery_time_limit_max)

(- (current_time) (delivery_time ?g ?u))))

(at start (<= (delivery_time_limit_min)

(- (current_time) (delivery_time ?g ?u)))))

:effect

(and

(at start (increase (p_cur ?g) 1))

(at start (not (not_interacting ?u)))

(at end (not_interacting ?u))

(at start (increase (total_delivery_time)

(- (current_time) (delivery_time ?g ?u))))))

(:durative-action play_Bingo3

:parameters (?self - Robot ?g - BingoGame ?loc - GamesRoom ?u1 - User

?u2 - User ?u3 - User ?cs - ChargingStation)

:duration (= ?duration (dur ?g))

:condition

(and

(at start (at ?self ?loc))

(over all (at ?self ?loc))

(at start (ready ?self))

(at start (must_be_done_during ?g))

(over all (must_be_done_during ?g))

(at start (game_location ?g ?loc))

(at start (not_done ?g))

(at start (<= (p_num ?g) (p_max ?g)))

(at start (> (p_num ?g) (- (p_min ?g) 1)))

(at end (= (p_cur ?g) (p_num ?g)))
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(at start (>= (bl ?self) (+ (+ (* (dur ?g) (cr_Bingo ?self))

(* (distance_to_station ?loc ?cs) (cr_move ?self)))

(bl_min ?self))))

(at start (free ?loc)))

(at start (available ?u1))

(over all (available ?u1))

(at start (not_interacting ?u1))

(at start (participant ?g ?u1))

(at start (>= (delivery_time_limit_max) (- (current_time)

(delivery_time ?g ?u1))))

(at start (<= (delivery_time_limit_min) (- (current_time)

(delivery_time ?g ?u1))))

(at start (available ?u2))

(over all (available ?u2))

(at start (not_interacting ?u2))

(at start (participant ?g ?u2))

(at start (>= (delivery_time_limit_max) (- (current_time)

(delivery_time ?g ?u2))))

(at start (<= (delivery_time_limit_min) (- (current_time)

(delivery_time ?g ?u2))))

(at start (available ?u3))

(over all (available ?u3))

(at start (not_interacting ?u3))

(at start (participant ?g ?u3))

(at start (>= (delivery_time_limit_max) (- (current_time)

(delivery_time ?g ?u3))))

(at start (<= (delivery_time_limit_min) (- (current_time)

(delivery_time ?g ?u3))))

(at start (not (= ?u1 ?u2)))

(at start (not (= ?u1 ?u3)))

(at start (not (= ?u2 ?u3)))

(at start (< (id ?u1) (id ?u2)))

(at start (< (id ?u2) (id ?u3)))

(at start (assigned ?u1 ?g))

(at start (assigned ?u2 ?g))

(at start (assigned ?u3 ?g))

:effect

(and

(at start (not (ready ?self)))

(at end (ready ?self))

(at end (done ?g))

(at start (not (not_done ?g)))

(at start (playing ?self ?g))

(at end (not (playing ?self ?g)))

(at end (act_done ?self))
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(at start (decrease (bl ?self) (* (dur ?g) (cr_Bingo ?self))))

(at start (increase (total_battery_usage) (* (dur ?g)

(cr_Bingo ?self))))

(at start (increase (games_attendees) 3))

(at start (not (free ?loc)))

(at end (free ?loc)))

(at start (increase (p_cur ?g) 3))

(at start (not (not_interacting ?u1)))

(at end (not_interacting ?u1))

(at start (increase (total_delivery_time)

(+ (- (current_time) (delivery_time ?g ?u3))

(+ (- (current_time) (delivery_time ?g ?u2))

(- (current_time) (delivery_time ?g ?u1))))))

(at start (not (not_interacting ?u2)))

(at end (not_interacting ?u2))

(at start (not (not_interacting ?u3)))

(at end (not_interacting ?u3))

(at start (increase (p_num ?g) 3)))

(:durative-action Bingo_overall

:parameters (?g - BingoGame)

:duration (= ?duration (+ (dur ?g) (delivery_time_limit_max))

:condition

(and

(at start (not_done ?g))

(at start (not_Bingo_actions_ready ?g)))

:effect

(and

(at start (not (not_Bingo_actions_ready ?g)))

(at start (Bingo_actions_ready ?g))

(at end (not (Bingo_actions_ready ?g)))

(at start (remind_enable ?g))))

(:durative-action setup_Bingo

:parameters (?g - BingoGame)

:duration (= ?duration (delivery_time_limit_min))

:condition

(and

(at start (Bingo_actions_ready ?g))

(over all (Bingo_actions_ready ?g))

(at start (remind_enable ?g))

(at start (not_done ?g)))

:effect

(and

(at start (not (remind_enable ?g)))

(at end (Bingo_game_ready ?g))))

572



Applying Off-the-Shelf Planning and Scheduling to a Team of Assistive Robots

(:process clock_ticker

:parameters ()

:precondition

(can_start_clock)

:effect

(increase (current_time) (* #t 1.0))

)

Appendix B. NDDL Details

We provide NDDL code for the Move and PlayBingo actions. The code illustrates the
requirements and effects of the actions and how these actions interact with the state of the
system.

class Location {

string name; }

class Path {

string name;

Location from;

Location to;

float distance; }

class ChargingStation {

Location charging_station;

ChargingStationUsage charging_station_usage; }

class ChargingStationUsage extends Reusable {

string profileType;

string detectorType;

ChargingStationUsage() {

super (1, 0);

profileType = "GroundedProfile";

detectorType = "GroundedFVDetector"; }}

class TelepresenceSession {

string name;

TelepresenceSessionState status;

User localuser;

Location location;

int dur; }

class TelepresenceSessionState extends Timeline {

predicate MustBeDone {}

predicate InProgress {}

predicate Done {} }
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class BingoGame {

string name;

BingoGameState status;

Location location;

int dur;

int players; }

class BingoGameState extends Timeline {

predicate MustBeDone {}

predicate InProgress {}

predicate Done {} }

class User {

string name;

int deliveryTime;

UserState state;

UserAvailability availability;

UserGameAssignment assignment; }

class UserState extends Timeline {

predicate At {Location location; }

predicate Interacting {Robot robot; }

predicate Playing {Robot robot; BingoGame game;}

predicate BeingReminded {Robot robot;} }

class UserAvailability extends Timeline {

predicate Available {}

predicate Busy {} }

class UserGameAssignment extends Timeline {

predicate NotAssigned {}

predicate BeingAssigned {}

predicate Assigned {BingoGame game;} }

class Robot {

string name;

RobotState status;

Battery battery;

float speed;

int cr_move;

int recharge_rate;

int cr_telep;

int cr_bingo;

int cr_reminder;

// Actions
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action Move {

Path path;

Location destination; }

action RechargeBattery {

ChargingStation station; }

action DoTelepresence {

TelepresenceSession session;

User user; }

action PlayBingo {

BingoGame game;

User user;

User user2;

User user3;

GameRoomUsage gameRoom;

neq(user,user2);

neq(user,user3);

neq(user2,user3); }

action Remind {

BingoGame game;

User user; }}

class RobotState extends Timeline {

predicate FreeAt {Location location;}

predicate Moving {Location destination;}

predicate Charging {Location location; }

predicate DoingTelepresence {TelepresenceSession session; User user;}

predicate Reminding {BingoGame game; User user;}

predicate PlayingGame {BingoGame game;} }

class Battery extends Reservoir {

string profileType;

string detectorType;

Battery(int _ini, int _min, int _max) {

super(_ini, _min, _max);

profileType="GroundedProfile";

detectorType = "GroundedFVDetector"; }}

Robot::Move {

met_by(condition object.status.FreeAt _from);

eq(_from.location,path.from);

eq(destination, path.to);
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meets(effect object.status.FreeAt _to);

eq(_to.location, destination);

neq(_from.location, destination);

eq(effect object.status.Moving _moving);

eq(_moving.destination, destination);

float dura, dist, vel, energy_use, c_move;

dist == path.distance;

vel == object.speed;

c_move == object.cr_move;

dist == dura * vel;

energy_use == dura * c_move;

starts(effect object.battery.consume cons);

eq(cons.quantity, energy_use);

eq(dura,duration); }

Robot::PlayBingo {

met_by(condition object.status.FreeAt _robotFreeAtStart);

met_by(condition game.status.MustBeDone _gameStart);

eq(game.location,_robotFreeAtStart.location);

contained_by(condition user1.availability.Available _user1Available);

contained_by(condition user2.availability.Available _user2Available);

contained_by(condition user3.availability.Available _user3Available);

met_by(condition user1.assignment.Assigned _user1Assigned);

met_by(condition user2.assignment.Assigned _user2Assigned);

met_by(condition user3.assignment.Assigned _user3Assigned);

eq(_user1Assigned.game, game);

eq(_user2Assigned.game, game);

eq(_user3Assigned.game, game);

eq(effect object.status.PlayingGame _interactingRobot);

eq(_interactingRobot.game, game);

meets(effect object.status.FreeAt _robotFreeAtEnd);

eq(_robotFreeAtStart.location,_robotFreeAtEnd.location);

eq(effect user1.state.Interacting _interactingUser1);

eq(_interactingUser1.robot, object);

eq(effect user2.state.Interacting _interactingUser2);

eq(_interactingUser2.robot, object);

eq(effect user3.state.Interacting _interactingUser3);

eq(_interactingUser3.robot, object);

meets(effect user1.state.At _user1AtEnd);

eq(_robotFreeAtStart.location,_user1AtEnd.location);

meets(effect user2.state.At _user2AtEnd);

eq(_robotFreeAtStart.location,_user2AtEnd.location);

meets(effect user3.state.At _user3AtEnd);

eq(_robotFreeAtStart.location,_user3AtEnd.location);

equals(effect game.status.InProgress _gameProgress);
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meets(effect game.status.Done _gameDone);

eq(_gameDone.end, Horizon);

eq(GameRoomUsage.uses use_room);

int user1Delivery, user2Delivery, user2Delivery;

user1Delivery == _interactingRobot.start - user1.deliveryTime;

user2Delivery == _interactingRobot.start - user2.deliveryTime;

user3Delivery == _interactingRobot.start - user3.deliveryTime;

user1Delivery >= 15;

user1Delivery <= 120;

user2Delivery >= 15;

user2Delivery <= 120;

user3Delivery >= 15;

user3Delivery <= 120;

eq(game.dur, use_room.duration);

eq (use_room.quantity, 1);

int _cr_bingo, dura, energy_use_bingo;

_cr_bingo == object.cr_bingo;

dura == game.dur;

energy_use_bingo == dura * _cr_bingo;

starts(effect object.battery.consume cons);

eq(cons.quantity, energy_use_bingo);

eq(game.dur, duration); }

Appendix C. Detailed Results

Detailed results for all the PDDL planning models tested on each of the problem variants
are presented here. The first and last feasible solutions found within a one-hour time limit
is recorded.
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Table 9: Performance of PDDL planning on all tested problem modifications for the single-
clock model. A (-) indicates that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.04 786.12 0 3 5,506.13 2,070.75
2 0.18 0.88 0 0 11,019.38 11,016.66

BRPOF 3 0.84 9.38 0 0 16,530.31 16,525.73
4 2.18 23.84 0 0 22,044.46 22,043.11
5 7.24 89.46 0 0 27,557.30 27,554.54

1 0.02 345.02 0 3 5,500.00 2,051.23
2 0.12 306.00 0 4 11,000.00 7,208.00

-RPOF 3 0.34 0.34 0 0 16,500.00 16,500.00
4 0.92 0.92 0 0 22,000.00 22,000.00
5 1.94 1.94 0 0 27,500.00 27,500.00

1 0.04 168.42 0 3 5,506.13 2,070.41
2 0.18 0.78 0 0 11,019.38 11,016.66

B-POF 3 0.74 7.24 0 0 16,530.31 16,525.73
4 1.90 16.62 0 0 22,044.46 22,043.11
5 6.10 66.33 0 0 27,557.30 27,554.54

1 0.04 761.99 0 0 5,508.49 5,506.78
2 0.18 0.88 0 0 11,019.38 11,016.66

BR-OF 3 0.84 9.02 0 0 16,530.31 16,525.73
4 2.16 22.88 0 0 22,044.46 22,043.11
5 7.16 92.06 0 0 27,557.30 27,554.54

1 - - - - - -
2 - - - - - -

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.06 75.94 0 3 5,612.46 2,761.64
2 0.18 0.18 0 0 11,019.38 11,019.38

BRPO- 3 0.82 0.82 0 0 16,530.31 16,530.31
4 2.18 2.18 0 0 22,044.46 22,044.46
5 7.04 7.04 0 0 27,557.30 27,557.30

1 0.10 163.72 4 4 1,013.33 1,013.22
2 4.38 391.42 8 8 2,526.20 2,526.09

B—F 3 - - - - - -
4 - - - - - -
5 - - - - - -
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Table 10: Performance of PDDL planning on all tested problem modifications for the min-
add-clock model. A (-) indicates that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.06 2,950.88 0 3 5,506.13 2,066.51
2 0.68 2,062.94 0 0 11,012.37 11,012.23

BRPOF 3 57.16 1,960.02 0 0 16,518.65 16,518.63
4 143.36 143.36 0 0 22,024.92 22,024.92
5 - - - - - -

1 0.04 1173.57 0 3 5,500.00 2,047.51
2 0.42 0.42 0 0 11,000.00 11,000.00

-RPOF 3 19.68 19.68 0 0 16,500.00 16,500.00
4 53.18 53.18 0 0 22,000.00 22,000.00
5 1.94 .94 0 0 27,500.00 27,500.00

1 0.06 1,453.80 0 3 5,506.13 2,142.00
2 0.94 1,995.34 0 0 11,012.37 11,012.23

B-POF 3 55.64 1,717.98 0 0 16,518.65 16,518.62
4 144.08 144.08 0 0 22,024.92 22,024.92
5 6.10 66.33 0 0 27,557.30 27,554.54

1 0.04 761.99 0 0 5,508.49 5,506.13
2 0.18 0.88 0 0 11,019.38 11,016.66

BR-OF 3 0.84 9.02 0 0 16,530.31 16,525.73
4 2.16 22.88 0 0 22,044.46 22,043.11
5 7.16 92.06 0 0 27,557.30 27,554.54

1 - - - - - -
2 - - - - - -

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.06 2,459.74 0 3 5,506.13 2,161.64
2 0.82 0.82 0 0 11,019.38 11,019.38

BRPO- 3 0.82 0.82 0 0 16,518.65 16,518.65
4 146.72 146.72 0 0 22,044.46 22,044.46
5 7.04 7.04 0 0 27,557.30 27,557.30

1 - - - - - -
2 - - - - - -

B—F 3 - - - - - -
4 - - - - - -
5 - - - - - -

579



Tran, Vaquero, Nejat & Beck

Table 11: Performance of PDDL planning on all tested problem modifications for the set-
all-clock model. A (-) indicates that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.74 2,033.72 3 4 2,147.10 1,124.11
2 - - - - - -

BRPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 6.22 829.26 3 5 1,201.69 294.01
2 - - - - - -

-RPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.56 753.48 3 4 2,147.10 1,178.79
2 - - - - - -

B-POF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 - - - - - -
2 - - - - - -

BR-OF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.58 1633.62 3 4 2,147.10 1,124.11
2 - - - - - -

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.46 602.40 3 4 2,226.30 1,617.03
2 - - - - - -

BRPO- 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 7.10 7.10 4 4 1,451.96 1,451.96
2 - - - - - -

B—F 3 - - - - - -
4 - - - - - -
5 - - - - - -
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Table 12: Performance of PDDL planning on all tested problem modifications for the single-
envelope model. A (-) indicates that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.84 1,287.07 3 3 2,152.33 2,077.94
2 - - - - - -

BRPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.20 2,874.84 3 5 2,138.20 347.51
2 500.76 500.76 9 9 1,963.17 1,963.17

-RPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.60 2,581.60 3 4 2,194.73 1,230.67
2 500.76 500.76 9 9 2,326.43 2,326.43

B-POF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.20 0.20 4 4 1,213.43 1,213.43
2 - - - - - -

BR-OF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.84 1,513.16 3 4 2,138.93 1,195.61
2 - - - - - -

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.26 1,297.10 3 5 2,138.96 530.36
2 1,190.36 1,190.36 9 9 2,680.88 2,680.88

BRPO- 3 3,406.20 3,406.20 15 15 1,089.24 1,089.24
4 - - - - - -
5 - - - - - -

1 0.56 0.56 4 4 1,313.44 1,313.44
2 - - - - - -

B—F 3 - - - - - -
4 - - - - - -
5 - - - - - -
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Table 13: Performance of PDDL planning on all tested problem modifications for the min-
add-envelope model. A (-) indicates that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.84 1,287.07 3 3 2,152.333 2,077.94
2 - - - - - -

BRPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.98 65.62 3 3 2,161.24 2,126.01
2 - - - - - -

-RPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 1.12 249.46 3 3 2,147.10 2,071.93
2 - - - - - -

B-POF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 - - - - - -
2 - - - - - -

BR-OF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 1.04 1,013.14 3 3 2,152.33 2,077.94
2 - - - - - -

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.22 1,269.80 3 4 2,261.10 1,620.54
2 - - - - - -

BRPO- 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 - - - - - -
2 - - - - - -

B—F 3 - - - - - -
4 - - - - - -
5 - - - - - -
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Table 14: Performance of PDDL planning on all tested problem modifications for the set-
all-envelope model. A (-) indicates that no solution was found.

Problem Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.76 943.56 3 3 2,152.33 2,077.94
2 - - - - - -

BRPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 4.28 3,021.76 3 4 2,109.80 1,102.98
2 - - - - - -

-RPOF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.78 3336.24 3 4 2,147.10 1,168.81
2 - - - - - -

B-POF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 - - - - - -
2 - - - - - -

BR-OF 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 1.24 769.30 3 3 2,152.33 2,077.94
2 - - - - - -

BRP-F 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 0.42 721.80 3 4 2,261.14 1,620.54
2 - - - - - -

BRPO- 3 - - - - - -
4 - - - - - -
5 - - - - - -

1 - - - - - -
2 - - - - - -

B—F 3 - - - - - -
4 - - - - - -
5 - - - - - -
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Ivankovic, F., Haslum, P., Thiébaux, S., Shivashankar, V., & Nau, D. S. (2014). Optimal
planning with global numerical state constraints. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pp. 145–153.

Jain, A., Guineau, J., Lim, C., Lincoln, W., Pomerantz, M., Sohl, G., & Steele, R. (2003).
Roams: Planetary surface rover simulation environment. In Proceedings of the In-
ternational Symposium on Artificial Intelligence, Robotics and Automation in Space
(i-SAIRAS), pp. 1–8.

Jiménez, S., Jonsson, A., & Palacios, H. (2015). Temporal planning with required concur-
rency using classical planning. In Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS). In press.

Kats, V., & Levner, E. (2011). Parametric algorithms for 2-cyclic robot scheduling with
interval processing times. Journal of Scheduling, 14 (3), 267–279.
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