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Robots Learn to Recognize 
Individuals from Imitative 
Encounters with People and 
Avatars
Sofiane Boucenna1, David Cohen2,3, Andrew N. Meltzoff4, Philippe Gaussier1 & 

Mohamed Chetouani2

Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation 
in the neural coding of actions, and highlights the use of imitation for learning from and about people. 

Here, we used computational modeling and a robot implementation to explore the functional value 

of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, 
typically developing children, and children with Autism Spectrum Disorder. We show that a particular 

learning architecture - specifically one combining artificial neural nets for (i) extraction of visual 
features, (ii) the robot’s motor internal state, (iii) posture recognition, and (iv) novelty detection - is able 
to learn from an interactive experience involving mutual imitation. This mutual imitation experience 

allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments 

using robots as tools for modeling human cognitive development, based on developmental theory, 

confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition 
may emerge through imitative experience, intercorporeal mapping, and statistical learning.

By 18 months of age human infants are able to recognize themselves in a mirror. �is skill is rare in the animal 
kingdom, and shared only with a few other mammals (e.g., great apes and elephants)1. �e ontogenetic factors 
contributing to this implicit sense of self have been explored2. Some component skills are the ability of human 
infants to discriminate between faces3, to compare di�erent inputs and match them across di�erent sensory 
modalities4, and to be sensitive to interpersonal synchrony5,6.

�ese �ndings and others raise the intriguing possibility that young infants may be able to detect and use 
the equivalences between felt acts of the self and visible acts of the other7 prior to language and before they have 
compared self and other in a mirror. Here, we use computational modeling and robotics to illuminate a key aspect 
of preverbal social cognition - how infants use social encounters, especially naturally occurring mutual imitation 
between adult and child, to help recognize individuals when they are reencountered at another point in time. �e 
experiments reported here use a wide range of social agents, including typically developing adults and children as 
well as children with autism spectrum disorder (ASD), and avatars.

It has been demonstrated that in interpersonal interactions preverbal infants do not just recognize that another 
moves when they move (temporal contingency), but that another acts in the same manner as they do (structural 
congruence)6–8. �is has been shown by measures of increased attention and positive a�ect at being imitated, as 
well as by neuroscience measures acquired during mutual imitation episodes (mu rhythm responses in the infant 
electroencephalogram, EEG)9. Such recognitions imply that there is a coding of one’s own body and its relation to 
the body of others prior to language, and raises the idea that preverbal action imitation is a mechanism for social 
learning as sought by evolutionary biologists10, and a channel for preverbal communication11. Within devel-
opmental psychology, the recognition of personal identity is thought to be a crucial developmental milestone, 
because infants need to re-identify a person as “the same one again” a�er a break in perceptual contact and a�er 
changes in appearance (putting on a kerchief, growing a beard, getting a haircut)12. Once the child has language, 
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this re-identi�cation is solved through the use of proper names and verbal queries. Prior to language, infants use 
nonverbal actions as part of their re-identi�cation routines. For infants, it has been shown that re-identi�cation of 
the same person is not based solely on morphological features of the face, but also includes how that person inter-
acts with the infants and the social games they play together. Many action games derive from mutual imitation 
encounters, which led Meltzo� and Moore to postulate a “social identity function” for imitation13,14.

Cognitive developmental robotics links developmental science with robotics using interdisciplinary 
insights15–17 that integrate two complementary directions of thought. On one side, it seeks to deepen our under-
standing of higher human cognitive functions by using a synthetic approach16,18. On the other side, it seeks to 
implement learning mechanisms in robotic platforms to achieve some developmental activities that are at play in 
promoting children’s cognitive development17–21. Learning through imitation has been achieved in developmental 
robotics using speci�c algorithms and sensory-motor architectures using arti�cial neural networks (N.N.)22,23. So 
far untested is whether imitation learning during robot-human interaction allows the development of another 
cognitive ability such as the robot’s ability to recognize a human partner that is encountered again at a subsequent 
time.

Here, inspired by the idea of a social identity function for imitation, we show that a computational learning 
architecture (Fig. 1a) combining a N.N. for extraction of visual features (VF), robot’s motor internal state (MIS), 
motor internal state prediction (MISP) that associates VF and MIS activities allowing posture recognition, short 
term memory (STM), and novelty detection (Fig. 1b) was able to learn through mutual imitation encounters how 
to recognize a person at a later point in time. From previous work, we know that a similar architecture without the 
novelty detector was able to learn by imitation22,23. In addition, the architecture was able to distinguish the social 
signature of the interactive partners (typically developing children, children with ASD, and adults)22 as evidenced 
by the number of neurons needed to learn from VF that signi�cantly increased during learning with children 
with ASD compared to other partners22. Finally, during learning by imitation, the same metrics showed a sudden 
increase when the robot changed from a single interactive partner to another, whoever the partner22,24. �us, we 
hypothesized that coupling the number of neurons needed to learn from VF with a novelty detector would help 
in achieving person recognition. To do so, the novelty detector produces feedback, since the robot needs mecha-
nisms of self-assessment for regulating and modulating learning. As a consequence, the robot is able to evaluate 
its learning. �is mechanism, based on prediction error, can be used with sensory-motor coupling and is detailed 
on Fig. 1b and in the method section. Prediction error provides a measure of learning progress. In our case, we 
hypothesized that the sensory-motor architecture learns connections between perceptions and actions, and the 
self-assessment (prediction error) allows the robot to detect a new event (in our experiments, a new partner).

Figure 1. Sensory motor architecture allowing the learning of personal identity through motor imitation 
(a) (PR =  Posture Recognition). �e novelty detection coupling (b) allows the robot to detect novelty in the 
visual sensations. �ree principles are used: (i) prediction error; (ii) derivative of error; (iii) detection of rising 
edge (novelty). �e robot learns the sensory-motor contingency of a given strategy by learning to predict the 
current sensation from the previous perception.
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To evaluate robotic learning, we performed three experiments using the same computational learning archi-
tecture in di�erent contexts (Fig. 2). Key experiment di�erences included changing partners (child, adult or 
avatar), motor imitation tasks (involving arms or face), and robotic platforms. In Experiment 1, the robot Nao, 
interacted with a human partner - either a typically developing (TD) child, a child with autism spectrum disorder 
(ASD), or an adult during a motor imitation task (5 postures). A�er the learning phase, the results show that Nao 
is able to accurately recognize the interactive agents in a subsequent encounter. In Experiment 2, we changed 
both the imitation task (5 facial expressions) and robotic platform (Robot head) and obtained a similar transfer 
for person recognition a�er the learning phase. In Experiment 3, Nao interacted with a set of avatars having very 
similar visual characteristics to each other, and “personal identity recognition” (here avatars’ visual motor/motion 
characteristics) was again achieved.

Results
Experiment 1 used a motor imitation task (5 postures, see supporting online materials, Figure S1) between a Nao 
robot and a human partner. �ree groups of people interacted with the humanoid robot: 15 typically developing 
(TD) children, 15 children with autism spectrum disorder (ASD), and 11 adults (participants’ characteristics 
are available in Table S1). N.N activities during the learning phase are shown in Fig. 3. �e number of neurons 
needed to learn in the Visual Feature N.N. increases as a function of the number of interactive participants (red 
line). When a new participant is introduced during the learning phase, the novelty module shows an important 
activity (green line) and a brief synchronous hit occurs in the Person Recognition N.N. corresponding to the 
recruitment of a speci�c arti�cial neuron per participant. To test how the architecture developed person recogni-
tion, we presented 100 di�erent images per participant to the system in four conditions using two dichotomous 
contrasts: (i) images shown randomly or not and (ii) images previously watched during the learning phase or not. 
In terms of recognition performance rates (Fig. 4a), we found that the architecture was able to recognize on aver-
age 68.2% (95% CI:66.7–69.7), 81.1% (95% CI:79.9–82.3), 59.4% (95% CI:58–61), and 67.1% (95% CI:65.6–68.5) 
of the 41 participants (respective binomial tests: random/known, p <  0.001; non-random/known, p <  0.001; ran-
dom/unknown, p <  0.001; non-random/unknown, p <  0.001). Using a general linear mixed model-GLMM, we 
found that recognition was signi�cantly better for known pictures (as opposed to unknown; β =  1.19, p <  0.001) 
and lower for pictures shown randomly (as opposed to non-randomly, β =  − 0.51, p <  0.001). Recognition rate 
per participants and conditions are shown in Figure S2. Four recognition scores were highly correlated (Fig. 4d). 
Only 5 (12.2%) participants were poorly recognized by the system (rate <  10 times chance levels =  25%). GLMM 
investigating recognition scores according to participants’ subgroups (Adults vs. TD children vs. children with 
ASD) are given in Figure S2 caption. On average, recognitions scores were signi�cantly better for adults vs. chil-
dren with ASD, and better for children with ASD vs. TD children.

Experiment 2 tested the generalizability of our modeling in another interactive context. We changed the task 
and the robotic platform by using an expressive robot head in an emotional interaction paradigm. �e robot head 
learned through a motor facial imitation task (4 emotional facial expressions plus a neutral face; see online Figure S3)  
with 25 adult participants who imitated the facial expressions of the robotic head. N.N activities during the 

Figure 2. Overview of the experiments showing imitation learning and partner’s recognition during 
interaction between a robot and a partner. �e current experiments used the same learning architecture and 
varied the learning context: (Experiment 1, top) posture imitation between the robot Nao and human partners; 
(Experiment 2, middle) facial imitation between Robot Head and human partners; (Experiment 3, lower) 
posture imitation between the robot Nao and avatars partners.
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learning phase was similar to those in Experiment 1 (see Supporting Online Material, Figure S4). �e architec-
ture was able to recognize on average 94.7% (95% CI:94–95.4), 95.5% (95% CI:94.9–96.2), 77.9% (95% CI:76.7–
79.1), and 86% (95% CI:85–87) of the 25 participants (respective binomial tests: random/known, p <  0.001; 
non-random/known, p <  0.001; random/unknown, p <  0.001; non-random/unknown, p <  0.001), see Fig. 4b. 
Recognition was better for known pictures (as opposed to unknown; GLMM: β =  1.46, p <  0.001) and lower for 
pictures shown randomly (as opposed to non-randomly, GLMM: β =  − 0.79, p <  0.001). Recognition rate per 
participant and condition are summarized in supporting online material Figure S5. Only 1 (4%) individual was 
poorly recognized by the system (rate <  10 times chance levels =  40%).

Because the visual system was based on the sequential exploration of the image focus points and there was no 
constraint on how the local views were selected, objects in the background and/or irrelevant parts of the human 
body during learning could have been distracting. Experiment 3 was carried out to control for unexpected visual 
cues that may have contributed to recognition scores (e.g. the color of a participant tee-shirt) and to show the robust-
ness of visual features learning based on focus points. To achieve this goal, Nao was imitated by a set of 12 avatars 
that were highly similar in their visual presentation (white humanoids) but with speci�c traits that we systemati-
cally manipulated (length or width of the arms, head or body sizes, see supporting material, Figure S6). �e results 
showed that the N.N activities during the learning phase were similar to those in Experiment 1 (see Figure S7).  

Figure 3. Neural network (N.N.) activities during the learning phase in experiment 1. �e number of 
neurons needed to learn from the Visual Features N.N. (red); Prediction Error E(t) from the novelty detector 
N.N. (green); derivative of error prediction dE/dt (dark pink); average of dE/dt (black); novelty detection in the 
Person Recognition N.N. (dark blue); each hit corresponds to the detection of a novel interactive partner.

Figure 4. Main results. Mean recognition scores from Experiment 1 (a), Experiment 2 (b), Experiment 3 (c) in 
unknown/non random (red); known/non random (blue); unknown/random (green); known/random (yellow) 
conditions. *p <  0.001, comparisons between mean recognition scores and chance were provided by binomial 
test. (d) Correlation matrix between recognition scores from Experiment 1 are shown in the table (red indicates 
unknown/non random condition and so on).
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�e architecture was able to recognize on average 84.1% (95% CI:83–85.3), 93.1% (95% CI:92.3–93.9), 84.7% 
(95% CI:82.7–86.7), and 89.6% (95% CI:87.9–91.3) of the 12 avatars (respective binomial tests: random/known, 
p <  0.001; non-random/known, p <  0.001; random/unknown, p <  0.001; non-random/unknown, p <  0.001), see 
Fig. 4c. Recognition was better for known pictures (as opposed to unknown; GLMM: β =  0.75, p <  0.001) and 
lower for pictures shown randomly (as opposed to non-randomly, GLMM: β =  − 0.98, p <  0.001). Recognition 
rate per participant and condition are summarized in supporting material Figure S8. Only 2 (16%) avatars were 
poorly recognized by the system (rate <  10 times chance levels =  83%).

Discussion
In all three experiments we used developmental robotics and computer modeling to implement a test of the idea 
that preverbal mutual imitation of actions between infant and caretaker may support a social identity function. 
Based on prior human infant work13,14, we predicted that imitative experiences during robot-human interaction 
would enable the robots to recognize a human partner that the robot had already encountered. �e results accord 
with this prediction. During mutual imitation episodes, the robot learns signature actions, postures, and facial 
expressions, and an emergent property obtains (person recognition). Our model used a sensory-motor architec-
ture based on neural networks (Hebb conditioning)22–24 coupled with an auto-evaluation mechanism based on 
prediction error to detect a new social partner (perceptual novelty).

Five points are relevant to theories of robotic and human learning and development. First, the archi-
tecture enabled the simultaneous development of perceptual, motor, and cognitive abilities. �is coupling of 
perceptual-motor and cognitive development was originally highlighted as a key aspect of cognitive development 
by Piaget25 and Wallon26 and is now incorporated in the �eld called “action science”, encompassing modern neu-
roscience, computer science, cognitive science, and developmental psychology, which was capitalized on here27.

Second, the current work �ts with the idea that the representation of the body is important to social-cognitive 
development. �is view has roots in the philosophical insights of Merleau-Ponty28 and has been taken up by 
theorists who use the term “embodiment”29,30. To bring greater precision to this general idea, we used robots 
because we could implement our model in a rigorous way by strictly controlling and specifying the behavior of 
robots. From our point of view, a di�erent body involves a di�erent learning. We hope that research such as this 
will help scientists to integrate signi�cant aspects of “embodiment,” sensory-motor, and cognitive-developmental 
approaches. �e fundamental fact is that infants (and robots) do have bodies and these play a signi�cant role in 
their initial social learning and development, as illustrated in the current experiments and recent infant neu-
roscience theory and data31. Indeed, our model needs a sensory-motor internal state to proceed with imitation 
learning. �e robot is able to learn because it acts in the environment and with others. �e robot connects what 
it sees with what it does (corresponding to a perception-action mapping). In addition, the results show that a 
mirroring mechanism, the sensory-motor architecture, and a self-evaluation mechanism (error prediction and 
evaluation) are su�cient to develop an autonomous robot in which imitation is an important element in the inter-
action and allows the learning of a complex ability such as person recognition. Previous work on interpersonal 
interaction has highlighted the centrality of motor dynamic similarity in joint action32 and in human robot inter-
action33. Other studies in robotics34–36 have discussed the role of learning and social referencing. However, the 
current work goes further by proposing a developmental approach in which a real self-supervised developmental 
sequence can emerge. We designed a model allowing learning through interaction by using low level features and 
minimal knowledge to avoid the symbol grounding problem (the problem of how symbols get their meanings)37.

�ird, the child-robot interactions involved imitative encounters. Developmental scientists working with 
human infants7,11,38, have pointed out that mutual imitation games are a common occurrence among infants and 
caretakers, and provide a rich learning experience not only because they include structural matches, but also 
because they include a temporal component. Interpersonal temporal synchrony of the type occurring in mutual 
imitation is now considered as a social signal per se5,6 and has been associated with both neural39 and hormonal 
changes in humans40,41. In the current experiments, the robot-human interaction was treated as a single global 
system where the robot could learn based on the interaction - hence, the robot-human system was considered an 
autopoietic social system that was su�cient to maintain the interaction and to develop and regulate the robot’s 
behavior. �e robot would not have developed without the help of the human agent (caregiver). Our computa-
tional modeling served to render this kind of social learning more precise and quanti�able than is o�en the case 
within developmental and clinical psychology.

Fourth, consistent with work showing that infants react to being imitated in special behavioral and a�ective 
ways, exhibiting a distinctive infant neural response to having their behavior copied (reduction in mu rhythm in 
the EEG)42, the human partner in the current robot experiments was considered as a mirror during the learning 
phase. Consequently, the robot could learn to connect what it saw with what it did. When the sensory-motor 
architecture was used in this learning context and coupled with the novelty detector, this was su�cient to develop 
new autonomous behaviors (person recognition).

Finally, it is of note that the novelty detector computational architecture was based on statistical/probabilistic 
learning that has been shown to be a key mechanism during early language acquisition43,44 and that has been 
recently used in robotic goal-based imitation learning45. �e novelty detector system that we used made use of 
a special ‘prediction error’ calculation that helped isolate input from the environment that was unexpected and 
therefore important to learn about. Our current model and experiments involved typically developing children 
in child-robot interaction, children with ASD in child-robot interaction, as well as adult-robot interaction, and 
avatar-robot interaction. �is suggests that the architecture allows for generalized learning across a broad range 
of agents and interactive participants.

In summary, the experiments illustrate that (i) robots learn to recognize individuals from imitating adults, 
children with autism, and other agents; (ii) robots can be used as tools for modeling cognitive development, based 
on developmental theory, con�rming the promise of developmental robotics; (iii) in our computational model, 
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person recognition spontaneously emerges through imitation learning, intercorporeal mapping, and statistical 
learning.

Method
Participants. Participants characteristics involved in experiment 1 and 2 are given in supplementary Table 
S1. Patients with ASD were followed in a specialized clinic of the Pitié-Salpétriêre hospital. Typically developing 
(TD) children were recruited from several schools in the Paris area. �ey were matched to the children with 
ASD with respect to their developmental ages and genders. Children with ASD were assessed with the Autism 
Diagnostic Interview-Revised (ADI-R) to assess ASD symptoms. �e psychiatric assessments and parental inter-
views were conducted by two child psychiatrist/psychologists who are specialized in autism. �e developmental 
age was assessed using a standardized cognitive assessment. In these experiments, we used a group of TD chil-
dren to address whether age and/or morphology could a�ect the recognition results of the architecture. Also, we 
included a group of children with ASD to address whether peculiarities in social interaction that are impaired 
in children with ASD46 would a�ect the recognition results. Adults participating in experiment 1 and 2 were 
University students from Medical and Engineering schools. Each participant has performed the experiment with 
the robot only one time. �e protocol was approved by the Pitié-Salpétriêre hospital ethics committee (Comité 
de Protection des Personnes). All the parents or participants received written and oral information on the experi-
ment and gave written consent before their participation or the participation of their child. All experiments were 
performed in accordance with relevant guidelines and regulations.

Experimental procedure. We adopted a developmental approach whereby a robot learned through inter-
action with a partner. Posture recognition was learned autonomously using a sensory-motor architecture through 
an imitation game between the partner and the robot. Figure 2 (middle column) shows an overview of the exper-
imental design for all the experiments. First, we aimed to investigate how a robot could learn to properly imitate 
a person’s posture during an interaction composed of two phases. During the learning phase, the robot pro-
duced a random posture selected from a de�ned set of postures, and the participant imitated the robot; then, the 
robot mapped what it did to what it saw. �e architecture enables learning without explicit teaching signals (see 
details below). �is �rst phase lasted 3 min and learning occurred in less than 2 min, a�er which the roles were 
reversed. During the validation phase, the robot then had to imitate the posture of the partner who now was 
leading the imitation interaction. During the �rst phase, the robot learns the task, but also records all the images. 
Consequently, a database is created to perform o�ine processing. Each image was annotated with the response 
of the robot during the online learning. All the images are correctly labeled because the participant mimics the 
robot’s postures. A�er the mutual imitation encounter, we presented for a second time each partner through a 
set of pictures for testing recognition (see below). To show the generalizability of our sensory-motor approach 
when the robot is immersed in di�erent learning contexts, three di�erent experiments were carried out (Fig. 2) by 
changing either populations (e.g. children with ASD or avatars), robotic platforms (e.g. complete robot or Robot 
head), or motor abilities (e.g. facial motor expression or body posture). Regarding robotic platforms, we selected 
Nao because it has been used in several studies on Robot/Human interaction with individuals with ASD47 and has 
shown excellent performance and acceptance by the children with ASD22,48. Since Nao’s motor abilities are mainly 
located on arms and body posture, we selected the robot head for experiment 2 to o�er a novel motor activity.

Sensory-motor architecture: PerAc architecture. Here, we describe the sensory-motor archi-
tecture that enables the learning, recognition and imitation22,23. We also summarize the properties of the 
generic sensory-motor architecture (PerAc architecture) used as a building block in our model. PerAc learns 
sensory-motor conditionings in order to form a perception as a dynamical sensory-motor attractor. It involves 
two data streams associated respectively to perception and action. From each perceived input, we can extract 
re�ex information to control directly the robot action: the low-level pathway consists of re�ex behaviors. We 
also add a mechanism for recognizing the sensory input patterns that can take control of the robot’s actions and 
avoid the re�ex pathway: the conditioning pathway allows anticipating re�ex behaviors through the learning. 
When new PerAc associations have been learned, they appear like a new re�ex pathway that can support a new 
level of association (a recursive mechanism). �is learning performs associations between the recognition of 
sensory information (high-level) and the re�ex behavior (low-level). Learned links can, thus, be considered as 
meta-re�exes.

Within the architecture, visual processing enables the extraction of local views (Fig. 1a). Each local view is 
then learned by the VF (visual features) neural network (N.N.) �e MISP (motor internal state prediction) N.N. 
learns the association between the visual features and MIS (motor internal state). �e robot interacts with the 
human partner to learn autonomously the posture recognition. �e partner is considered as a mirror: the robot 
produces its �rst posture according to its internal state (MIS) and the human partner then imitates the robot’s 
posture, thereby enabling the robot to link these postures with its internal state22,23. Conventional HRI (Human 
Robot Interaction) architectures are exploiting a multi-stage detection/recognition pipeline: person localization 
then, posture recognition is performed on the person. In this case, the quality of the results is dependent on the 
accuracy of the person localization24. Consequently, the overall performance, here the generalization capability 
of the neural network can be a�ected. From an autonomous learning perspective, it is useful to avoid an ad hoc 
framing mechanism. Our solution consisted of eliminating the framing step and directly using all the local views 
around the most activated focus points in the image. Four steps are described below: the visual processing system 
(or focus point detection), the visual extraction system, the classi�cation approach to learn postures, and the 
novelty detector.
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The visual processing system: Focus points detection. �e visual system was based on the sequential 
exploration of the image focus points. �ere was no constraint on how the local views were selected. �is means 
that distractors can be taken on objects in the background and/or irrelevant parts of the human body. �e visual 
attention on potentially interesting regions was controlled by a re�ex mechanism allowing the robot to focus 
its gaze. �e focus points were the result of a local competition performed on the convolution between a DOG 
(di�erence of Gaussians) �lter and the norm of the gradient of the input image. �is process allowed the system 
to focus more on the corners and ends of the lines in the image. For each focus point in the image, a local view 
centered on the focus point is extracted: a log-polar transform was applied to obtain an input image or a vector 
more robust to the rotations and distance variations.

The visual extraction system : Visual features (VF).  Figure 1a shows the sensory-motor architecture 
that enabled the learning, recognition and imitation of postures. �e extracted local view around each focus point 
was learned and recognized by a group of arti�cial neurons VF (visual features) allowing online learning and in 
real time:
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Here, γ is a vigilance parameter (the threshold of recognition). When the prototype recognition is below γ, 
then a new neuron is recruited (incremental learning).

�is model enables the recruitment to adapt to the dynamics of the input. �us, γ can be set to a low value to 
maintain a minimum recruitment rate. �e learning rule allows both one-shot learning and long-term averaging. 
�e modi�cation of the weights (Wij) is computed as follows:
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�e adaptation rate ε performs long-term averaging of the stored prototypes. When a new neuron is recruited, the 
weights are modi�ed to match the input (the term aj(t)Ii). �e other part of the learning rule, ε(Ii −  Wij)(1 −  VFj), 
averages the already learned prototypes (if the neuron was previously recruited). �e closer the inputs are to the 
weights, the less the weights are modi�ed. Conversely, the further the inputs are from the weights, the more the 
weights are averaged. �e quality of the results depends on the ε value. If ε is chosen to be too small, it only has 
a small impact. Conversely, if ε is too large, the previously learned prototypes can be unlearned. �is learning 
rule enables the neurons in the VF group to learn to average the prototypes of postural features (such as an arm).

The classification approach to learn postures.  For the classi�cation approach, only the local views for 
the person (Fig. 1a) that were correlated with a given robot posture were reinforced. �e Widrow and Ho� rule49 
can be used to learn the image correctly if su�cient focus points can be found on the person during the period 
over which one image is explored. In our network, motor internal state prediction MISP associates the activity of 
the visual features VF with the current motor internal state MIS of the robot, a simple conditioning mechanism is 
used, the least mean square (LMS) rule. �e modi�cation of the weights (wij) is computed as follows:

 ( )∆ = . . − ( )w V F MIS MISP 6ij i j j

�e short term memory (STM) is used to sum and �lter over a short period. �e robot posture is controlled via 
the PR group (a WTA mechanism).

Novelty detector and prediction error. Novelty detection aims at identifying new or unknown data 
which di�er from the normal data that the architecture was trained with. �is process is performed by the iden-
ti�cation of outliers in the stream of VF. �is detection is motivated by our previous work on the dynamics of the 
number of neurons needed to learn from VF that unveiled a group signature (typical developing children/adult 
vs. ASD)22. �e novelty detection is designed to distinguish the di�erence between prediction error caused by the 
model insu�ciency and prediction error by novelty in the VF. �anks to this novelty detector, the architecture 
has a direct feedback on the quality of the learning allowing robot’s self-evaluation. �e self-evaluation mecha-
nism allows the robot to regulate its learning by di�erentiating the sensory-motor associations which are known, 
unpredicted by the current system, or in progress50. �e novelty detection produces a rich signal that  enables and 
triggers the learning of speci�c events.
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�e novelty detection is computed from analysis of the prediction error, where changes may indicate some 
form of novelty. �is mechanism has been implemented as follows. �e error e(t) is computed as the di�erence 
between the predicted signal ( )Ŝ t  and the actual signal s(t):

( ) = ( ) − ( ) ( )ˆe t S t s t 7

We exploit the mean error E(t):

( ) = Σ ( − )
( )=E t

N
e t t

1
8t

N
i1i

�e learning process is proportional to the negative gradient of the mean error:

= −
∆ ( )

∆ ( )
dE

dt

E t

t 9

�e �nal step of the novelty detector is the computation of dV/dt (Fig. 1b) and more precisely rising edges of 
this signal. �e rising edge is interpreted as the detection of a new event (a new person interacting with the robot). 
In our model, the novelty detector is used to trigger the learning of new person postures.

Testing person recognition. During learning by imitation, the architecture recruits for each participant 
an arti�cial neuron in the person recognition N.N. As a consequence, the number of recruited neurons is equal 
to the number of participants N in a given experiment. If person recognition is an emerging property acquired 
during learning by imitation and stable a�er the learning phase, then the architecture should converge towards 
activation of the corresponding participant’s arti�cial neuron among the N neurons available when the partici-
pant is presented to the architecture again. During the learning phase (less than 2 min), the robot sees a partic-
ipant imitating the robot’s movements. �is interaction is seen as a video sequence of thousands of images. For 
computational needs the model only selects 1/10 images through the video sequences. As a consequence, the 
video sequences could be divided into a set of pictures already known during the 2 min learning phase, and a set 
of pictures never watched during the learning phase (9/10 images) or during the last minute of the experiment 
since learning in all cases lasted less than 2 min. To test how the architecture developed person recognition, we 
used the following protocol with 100 images (for each condition) per participant presented consecutively in 4 
conditions using two contrasts: images shown randomly or not; images previously watched during learning phase 
or not. Here, random refers to static images from a video sequence being shown in a random order. �erefore 
the 4 conditions were as follow: (i) images were shown randomly among images already watched during learning 
by imitation (corresponding to testing condition random/known); (ii) images were shown in the same order 
and among images already watched during learning by imitation (corresponding to testing condition non ran-
dom/known); (iii) images were shown randomly among images never watched during learning by imitation 
(corresponding to testing condition random/unknown); (iv) images were shown among images never watched 
during learning but in the same order (corresponding to testing condition non random/unknown). Images never 
watched during learning were randomly selected in the 3 min duration of the experiment, meaning that at least 
one third of the images were not correlated to the set of images watched during learning although they may had 
some resemblance since they correspond to the same subject doing a set of a limited number of movements. �is 
leads to 4 recognition scores per participant (one per condition) and 4 mean recognition scores per experiment 
(one per condition). Given the 100 image occurrences per participant and condition, the recognition score is a 
percentage to be compared to response by chance that is equal to (100/N). Given our learning architecture, we 
expected recognition scores under known conditions to be better than recognition scores under unknown con-
ditions. Also, we expected recognition scores under non random conditions to be better than recognition scores 
under random conditions as in the latter the system could not rely on STM N.N.

Statistical analysis. Using Matlab, standard statistics were calculated for each recognition score (mean, 
standard deviation, range, minimum and maximum) for each experiment. Statistical analyses were performed 
using R So�ware, Version 2.12.2. To assess whether recognition scores were above chance level or not we cal-
culated 95% con�dence intervals (95% CI) using bootstrapping (10000 replications) and p (5%) values using 
binomial tests. We also calculated the number of subjects recognized per experiment with ratings superior than 
10 times the response by chance. To provide detailed assessment of whether the obtained recognition score was 
moderated by one of the two contrasts of the testing conditions [known pictures (as opposed to unknown) and 
pictures shown randomly (as opposed to non-randomly)], we used a general linear mixed model-GLMM with the 
recognition score as the variable to be explained.
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