
 Open access  Proceedings Article  DOI:10.1109/ROMAN.2016.7745154

Robots learning how and where to approach people — Source link 

Omar Adair Islas Ramirez, Harmish Khambhaita, Raja Chatila, Mohamed Chetouani ...+1 more authors

Institutions: Pierre-and-Marie-Curie University, Laboratory for Analysis and Architecture of Systems

Published on: 26 Aug 2016 - Robot and Human Interactive Communication

Topics: Mobile robot navigation, Mobile robot and Robot

Related papers:

 Human-aware robot navigation: A survey

 How to approach humans?: strategies for social robots to initiate interaction

 The hidden dimension

 Recent trends in social aware robot navigation

 Robot local navigation with learned social cost functions

Share this paper:    

View more about this paper here: https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-
54rqh7fxhx

https://typeset.io/
https://www.doi.org/10.1109/ROMAN.2016.7745154
https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-54rqh7fxhx
https://typeset.io/authors/omar-adair-islas-ramirez-kqopgqqfwt
https://typeset.io/authors/harmish-khambhaita-1q4sxf86pl
https://typeset.io/authors/raja-chatila-468i5mh8uf
https://typeset.io/authors/mohamed-chetouani-56c0ng05of
https://typeset.io/institutions/pierre-and-marie-curie-university-1ifyg52q
https://typeset.io/institutions/laboratory-for-analysis-and-architecture-of-systems-1zz4tlsb
https://typeset.io/conferences/robot-and-human-interactive-communication-2epz72wc
https://typeset.io/topics/mobile-robot-navigation-3ug05iyw
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/topics/robot-2gtn7p2t
https://typeset.io/papers/human-aware-robot-navigation-a-survey-3rqy6qf00a
https://typeset.io/papers/how-to-approach-humans-strategies-for-social-robots-to-ixko9ckim0
https://typeset.io/papers/the-hidden-dimension-1qmxhdq80r
https://typeset.io/papers/recent-trends-in-social-aware-robot-navigation-avi3j33gwq
https://typeset.io/papers/robot-local-navigation-with-learned-social-cost-functions-1mlpkbzeqq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-54rqh7fxhx
https://twitter.com/intent/tweet?text=Robots%20learning%20how%20and%20where%20to%20approach%20people&url=https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-54rqh7fxhx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-54rqh7fxhx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-54rqh7fxhx
https://typeset.io/papers/robots-learning-how-and-where-to-approach-people-54rqh7fxhx


HAL Id: hal-01568834
https://hal.laas.fr/hal-01568834

Submitted on 25 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robots Learning How and Where to Approach People
Omar Islas Ramírez, Harmish Khambhaita, Raja Chatila, Mohamed

Chetouani, Rachid Alami

To cite this version:
Omar Islas Ramírez, Harmish Khambhaita, Raja Chatila, Mohamed Chetouani, Rachid Alami. Robots
Learning How and Where to Approach People. 25th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), Aug 2016, New York, NY, United States. pp.347-353,
฀10.1109/ROMAN.2016.7745154฀. ฀hal-01568834฀

https://hal.laas.fr/hal-01568834
https://hal.archives-ouvertes.fr


Robots Learning How and Where to Approach People

Omar A. Islas Ramı́reza Harmish Khambhaitab Raja Chatilaa Mohamed Chetouania Rachid Alamib

Abstract— Robot navigation in human environments has been
in the eyes of researchers for the last few years. Robots operat-
ing under these circumstances have to take human awareness
into consideration for safety and acceptance reasons. Nonethe-
less, navigation have been often treated as going towards a
goal point or avoiding people, without considering the robot
engaging a person or a group of people in order to interact with
them. This paper presents two navigation approaches based on
the use of inverse reinforcement learning (IRL) from exemplar
situations. This allow us to implement two path planners that
take into account social norms for navigation towards isolated
people. For the first planner, we learn an appropriate way to
approach a person in an open area without static obstacles, this
information is used to generate robot’s path plan. As for the
second planner, we learn the weights of a linear combination of
continuous functions that we use to generate a costmap for the
approach-behavior. This costmap is then combined with others,
e.g. a costmap with higher cost around obstacles, and finally a
path is generated with Dijkstra’s algorithm.

Keywords. Human Aware Navigation, Inverse Reinforcement

Learning, Approaching People

I. INTRODUCTION

We approach people everyday and interact with them, and

it is an intuitive situation when one gathers with their friends

or family. In this intuitive behavior, we know that certain

motions or situations are not socially acceptable and we try

to avoid them. What do we do exactly? This is a simple

question, but when we refer to a robot, we have to model and

formalize its behavior, and implement it from path planner

to entire navigation process.

In this paper, two navigation strategies to approach a

human were implemented using low level information about

human’s position and orientation. The first one is a path

planner that takes into account only a relative human polar

frame as in Figure 1(a) and the second one is a costmap

layer [9] based on the same variables that can take into

account obstacles shown in Figure 1(b). The main difference

compared to other works in human aware navigation [16],

[4], [17] is that instead of a human operator giving a goal,

it is our algorithm that provides the goal to reach and the

appropriate path.

This work is partially performed within the SPENCER

project (Social situation-aware perception and action for

cognitive robots) which aims to deploy a fully autonomous

mobile robot to assist passengers at the Amsterdam Schiphol

Airport. In the approach developed in this paper, the robot

aISIR-CNRS, Université Pierre et Marie Curie, Paris, France
{islas,chatila,chetouani}@isir.upmc.fr

bLAAS-CNRS: Laboratory for Analysis and Architecture of Systems,
Toulouse, France {harmish, rachid.alami}@laas.fr

(a)

(b)

Fig. 1. a) Proposed path to approach the person. Violet line: MDP
resolution in a deterministic or the most probable transition case. Green
line: fitted curved treated with least squares and Bézier lines. b) Layered
Costmap Navigation with IRL learned layer

learns a policy from exemplary trajectories of humans ap-

proaching people to interact with them. Such trajectories

define social norms as a reference for robot behavior.

The rest of the paper is organized as follows. Section II

refers to related works. Given that our scenario is based

on learning from demonstrations using IRL techniques, we

define our model in Section III. This model is applied

to demonstrations given by an expert, in our case these

demonstrations are paths generated by a robot controlled

by a person. These demonstrations are the input of the

IRL algorithm. Learned policy from IRL output is used

to generate a path-plans in Section IV. Lastly, Section V

provides experimental results before a conclusion.

II. RELATED WORKS

In robot navigation, path planners usually minimize time

or distance. However, this is often not the case for social path

planning, because we need to respect the private and social

spaces of a person or group of people. This topic is handled

by Human Aware Navigation [6]. Some authors [5], [16]

have taken into account proxemics as costs and constraints

in the path planner to obtain acceptable paths with hard-

coded proxemics values derived from sociology. However,

these values are not necessarily true in all situations, as they



could depend on the velocities of the people, as commented

in [10].

Other works that deal with the subject of approaching

humans [14], [3], focus on tackling the problem of a task

planner, considering pedestrians’ intentions such as people

interested in approaching the robot. As for the navigation

part, they look for the robot’s path intersecting a person while

he/she moves. Shomin’s work [15] considers approaching

people in order to interact in collaborative tasks, nonetheless

they used hard-coded waypoints in order to navigate. In

our work, we focus in the way the robot shall move in

order to reach an engagement given previously generated

demonstrations. A main difference with these related works

is that we find the final position given the demonstrations

instead of hardcoding it.

Inverse Reinforcement Learning method enables a robot

to learn a policy using discrete and finite MDP (Markov

Decision Process) in which the states are derived from the

robot’s relative position and orientation with respect to the

human. Lately, IRL has been shown to teach machines to act

as humans do. For example, in the Human Aware Robotics

domain, recent works address robot navigation in crowds [2],

[17] and other social spaces [4]. These examples tackle

navigation from point A to point B while avoiding people,

not for approaching them. The closest work to ours is [13]

where they develop a method based on IRL for enabling a

robot to move among people and in their vicinity (4mx4m) in

a human-like manner. We specifically address the problem of

how to approach people to interact with them, therefore our

algorithm is able to provide a proper goal to be reached by

the robot and a social path to reach this goal. This requires

a specific model representing the space around the humans

and appropriate trajectories for homing on them.

III. MODELING STEPS

In this section, we first recall the inverse reinforcement

learning problem based on the MDP. We then introduce the

components of the MDP which composes our modeling.

A. MDP and IRL

A finite Markov Decision Process is classically defined by

the following five elements:

• A finite set of states S.

• A finite set of actions A.

• A transition probability function P (st, at−1, st−1),
which is the probability to reach state st by achiev-

ing action at−1 in state st−1. The transition ma-

trix T (S,A, S) is composed of all such probabilities

P (st|at−1, st−1) and its size is S ×A× S.

• A reward function R(st, at−1) ∈ R that depends on the

state-action pair.

• A discount factor γ ∈ [0, 1) which reflects the impor-

tance of short-term vs. long-term rewards.

Solving the MDP consists of finding an optimal policy,

which provides an action for every state that should be

selected in order to maximize the total utility.

Reinforcement Learning (RL) is a part of machine learning

in which the learner is not told which actions to take, as in

most forms of machine learning, instead it must discover

which actions yield the most reward by trying them out.

Inverse Reinforcement Learning (IRL) on the other hand,

deals with the problem of finding the reward from either an

existent policy or from a demonstrated sequence (as in our

case).

We assume that the expert from which we want to learn

can be modeled by an MDP. Our problem is defined by the

tuple 〈S,A, T,R,D, γ〉, which is an MDP plus the added D
variable which represents demonstrations given by an expert.

Nowadays, we have a collection of IRL algorithms [11],

[8], [18], [12], [1].

Since we want to find a reward function based on the

state-action pairs, we can represent a state-action pair as a

vector of features Φ(s, a) = [f1(s, a), f2(s, a), . . . , fn(s, a)],
where fi is the ith function of the state-action pair. Thus, we

can represent our reward function as a linear combination of

these features R(s, a) = wTΦ(s, a). Where w is the vector

of weights.

In general, learning the reward function is accomplished as

follows. At the very first time a random reward is created,

for this case, a random weighted vector w. At each step

i of demonstration k the reward obtained will be denoted

R(sk
i
, ak

i
). Depending on the IRL algorithm, an optimal

policy π∗(s) is found by maximizing the probability of the

reward given the demonstrations as a posterior probability

of the likelihood of the demonstrations given the reward and

a prior function of the reward P (R|D) ∝ P (D|R)P (R)
or by maximizing the expected sum of rewards given the

demonstrations E[
∑N

t=0
γtR(s, a)].

B. State

For the sake of clarity, we introduce the state representa-

tion considering one person only. The robot state will be the

human-centered polar representation of the robot with respect

to the person. This representation is depicted in Figure 2.

Fig. 2. Human centered State

Two components are needed, distance d and angle θ from

the reference point. The distance component d is discretized

along a quadratic based function (Figure 3). This function

allows to easily change the state space to create various tests

and to have more precision in the region near the person.

For the state angle component θ, we divided the region

into m sections. Thus, the range between each state is a

region 2π/m of the environment.

Both parameters (distance and angle) define the state. The

state representation is, then, in R
n×m, and we have a total



number of states of S = n · m. For MDP purposes, the

conversion of this 2-dimensional matrix R
n×m needs to be

transformed in a vector which is going to represent the

state. For this work, the matrix was simply reduced into one

dimension f : Rn×m → R
S by concatenating the rows.

C. Actions and Transitions

Given the state representation, we define a set of 5 actions

described below.

1) (θc, dc) : staying in the same place.

2) (θc + 1, dc) : moving forward in θc.

3) (θc − 1, dc) : moving backward in θc.

4) (θc, dc + 1) : moving forward in dc.

5) (θc, dc − 1) : moving backward in dc.

Where θc represents the current angular state and dc the

current distance from the person. An example of state tran-

sition probability is shown in Figure 4, where we represent

our polar states as an unfolded map.

The transition matrix is the agglomeration of the 5 ac-

tions for all the states. The probabilities reflect the actual

reachability of the robot. Figure 4 is representing only the

adjacent states, we have to imagine that the figure expands

in all the environment, with transition probability of zero for

all the other values not shown in the figure, and thus having

a sparse matrix of size S ×A× S.

D. Feature Representation

Two methods are developed to tackle the approaching

behavior. Naive Global Planner, in which a path planner is

created directly based on the response of the IRL algorithm

and Layered Costmap Navigation, in which a state of the art

path planner used based on [9]. In the first one, the number

of features is equal to the number of states multiplied by

the number of possible actions. In the second one Radial

Basis Functions (RBF) are used to represent the state. Each

one of these approaches is going to work differently for the

implementation.

Naive Global Planner

0 1 2 3 4 5 6 7 8

x

0

2

4

6

8

10

12

14

d
is

c
re

te
 s

p
a

c
e

 o
f
d

Fig. 3. Discretization of distance state given the quadratic based function.
Values in y axis are the ones used for Φd.

.90

.01

.01

.04

.02

.02

0

0

0

+1-1 +1-1

-1

+1

-1

+1

Fig. 4. Illustration of action “go in direction θ + 1” and its transition
probabilities to adjacent places.

In order to build the state-action vector, first we create

a base feature vector based on our number of states S, as

follows Φ(s) = [φ1(s), φ2(s), . . . , φS(s)]. In which φi(s) is

a Kronecker delta function where φi(s) = [i = s] using

Iverson bracket notation. In order represent Φ(s, a), the

technique used in [7] is applied, creating a feature vector

with size of the features Φ(s), multiplied by the number of

actions. Let’s say the action a is equal to 2, given the possible

5 actions, then Φ(s, a) = [0,Φ(s),0,0,0]. Where 0 is a zero

vector with the size of Φ(s).
Layered Costmap Navigation

The main difference with the previous case is the use of

continuous state features. Our intention is to build a costmap

for the approach scenario in which the robot navigates.

Since the states that are taken into account correspond to

the polar human representation, we set n number of random

points in the environment within a range for each axis of

rd = [0, 14] and rθ = [−π, π), where r represents range and

is given in meters and radians respectively. An example of

these random points can be seen as the crosses in Figure 8

and they represent the mean in the 2D gaussian used for the

RBF. As for the value of the standard deviation, all RBF

bins have the same value which is a quarter of the range for

each axis. Thus, the vector state representation is Φ(s) =
[φ1(scoord), φ2(scoord), . . . , φn(scoord)], where φi(scoord) is the

ith RBF and scoord is the cartesian center of the state s.

Then we set Φ(s, a) = Φ(s) given than it is intended to use

this information in a costmap, which is only represented by

the states and not the actions, differently from Naive Global

Planner.

IV. ADAPTING IRL RESULTS

Input for an IRL is the demonstrations given by an expert,

in our case, the demonstrations are the paths the expert

chose to go to a person. These paths are sampled in state-

action pairs which are converted to features described in

Subsection III-D. The output and the post-process applied

this output is described in next subsections for each planner.

A. Naive Global Planner

The result of this IRL provides the rewards to the MDP,

and by applying the optimal navigation policy in this MDP,

the robot moves along the sequence of states which forms the

optimal trajectory to approach a person. Each state (i.e. the



Fig. 5. Demonstration of the robot approaching the target person. Values of
N = 16 and M = 16 for the state space. The darker black line represents
the front of the person.

cell in the representation described in the previous section)

is represented by its center. As a result the trajectory is a

discontinuous line as shown in green in Figure 6. We hence

need to smooth this trajectory taking into account the robot

orientation and human orientation. Smoothing process is

described next and the result is also shown in Figure 6. These

trajectories are the global plan, nonetheless they do not take

into account other constraints such as obstacle avoidance.

Data Fitting:

The trajectory points are first transformed in the global

frame containing the grid map. Then the points are re-

transformed with a parametric function t such that for the

first (x, y) coordinate t = 1, for the second t = 2 and so on.

After that the points (t, x) and (t, y) are separated as two

sets of data.Next, each set of data is processed with a least

squares function approximation shown as the green dotted

line in Figure 6.

Bézier:

A smooth curve can be generated from the two fitted

functions. However, the orientation of the robot is not taken

into consideration. Bézier curves can smooth the trajectory

to respect robot orientation. We still have the parametric

function, but since Bézier uses Bernstein Polynomial, it

is inherently parametric. We use our previously presented

functions with a set of few points as control points for Bézier.

Another control point is added projecting the orientation of

the robot, thus the path starts in the direction of the robot’s

orientation. This procedure is shown in Figure 6.

B. Layered Costmap Navigation

After the learning process the w vector is set. One im-

portant aspect is that Φ(s, a) = Φ(s) and s is represented

by spatial features. Thus, a costmap can be generated in the

MDP solution

LS approximation

Bézier approximation

Fig. 6. IRL post-processing. The green line represent the result of the MDP.
The black line represents the least square approximation as a parametric
function in x and y. The red line is a Bézier curve created from the set of
points of this parametric function and the initial orientation of the robot.

environment. The cost of some area around the person is

calculated given a normalization of R(s) = wTΦ(s) for

all the coordinates in the map. Thus, s must be translated

to the polar coordinates of the human frame. Then, based

on [9], the cost is passed to the upper layer for every field

if the value is higher than the one already set in the upper

layer. Then Dijkstra’s algorithm implementation is used to

calculate the best path, being the end position of the planner

the position in which the maximum value of reward is found

in the costmap and the orientation opposite to the human.

Figure 8 shows a costmap result the weighted values of

R(s), result of the application of IRL with the demonstra-

tions given in Figure 5, this is feasible due to the representa-

tion of features as continuous functions. Even when we have

discrete states, the values of the coordinate system is in R

for distance and angle.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We employed ROS (Robot Operating System) to simulate

the human movements, allowing us to control both robot

and human behaviors (positions and velocities). We em-

ployed it to generate trajectories of robot while approaching

humans. The robot is manually controlled during different

approaching scenarios. A set of eleven demonstrations was

performed with this experimental platform for the learning

process. The path taken by the robot in different positions

with different orientations can be seen in Figure 5. This

represents the path followed by the robot in the human

reference frame. Considering people’s comfort, the robot

approached the people in order to finish its behavior in

the near-peripheral vision of the person. Nonetheless, if the



exemplary demonstrations were performed by a human in a

human environment, this behavior could differ from ours and

thus the learning output.

B. Metrics

We propose two metrics for the evaluation of the Naive

Global planner model.

We use a test-set of paths generated with our experimental

platform but not used as inputs for training the IRL algo-

rithm. This test-set consists of 30 recorded paths.

The first metric, called the Trajectory Difference Metric

(TDM), is a modified version on the Mean Square Error

(MSE). TDM evaluates every point of one trajectory to

the closest point of another trajectory, where evaluating the

closest point is the difference regarding MSE. This metric

compares the parametric function generated by our algorithm

with the trajectories of the test-set. In order to do so, all

trajectories from the test-set and those provided by the

algorithm are equally sampled. If P is the set of all points

in the test-set trajectory and Gi is one point of the generated

trajectory, GiP represents all the distances between the point

Gi and the set of points P .

The TDM is then calculated as the average value of the

minimal values of these distances:

TDM =
1

n

n∑

i

minGiP (1)

The second metric is trajectory length, expressed as the

ratio of the absolute value of the difference between the

generated trajectory length and the test-set trajectory length

to the test-set trajectory length:

lerror =
|lm − lirl|

lm
(2)

For (2) we can have the case when the IRL path is longer

than the test-set path or the other way around. This is simply

due that human behavior is not necessarily always the same.

C. Results

The results shown here are from the Naive Global planner,

given that we can measure and compare with a test set

directly.

The IRL result gives an optimal policy based on the ex-

amples given. Figure 7 represents the state values, red color

being the higher rewards and the blue the lower rewards,

the figure corresponds to the 25x25 scenario, nonetheless

the values for the 16x16 scenario have a similar pattern.

The numbers on the axes represent the discretized values of

distance between 0.5 and 14m and of orientation between 0

and 2π (hence the top and the bottom of the figure represents

orientation 0 or in front of the person). The concentration of

the maximum values lies around zero degrees at the second

discrete position d.

As shown in the figure, the learning process has produced

an optimal region near and facing the person to guide robot

navigation. The discrete representation in Figure 7 is a matrix

of rewards used to generate the optimal curves to approach

a human.

5 10 15 20 25

5

10

15

20

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. Naive Global Planner learned state environment, red value is the
maximum V Value for each state. The image displayed correspond to the
25x25 grid.

Fig. 8. Layered Costmap Navigation: Costmap generated with wTΦ(s)
in an unfolded polar map. The blue + signs represent the center of all the
RBF used in this task.

TABLE I

TDM AND lerror EVALUATION OF GENERATED PATHS

16x16 vs real 25x25 vs Real

TDM (meters) 0.5423 ± 0.3089 0.5322 ± 0.2995

lerror (%) 5.5612 ± 4.5321 5.4040 ± 4.2936

Table I shows the average of the two metrics (1) and

(2) with their respective standard deviations through the 30

test-set sample trajectories. We applied the IRL algorithm

to the polar space divided in 16x16 and 25x25 discrete

values respectively, and we can see that the 25x25 divisions

performs slightly better that 16x16 divisions, for both the

TDM and the lerror metrics.



16X16 IRL Path

25X25 IRL Path

Manual Path

Fig. 9. IRL comparison at the same starting point with a manual path
sample.

Given the disparity in human motions, we can consider

that the average mean error around half a meter between the

test-set and the IRL trajectories is acceptable.

Figure 10 represents the error described in (1) for all the

samples in the 25x25 case. The x axis represents the initial

angular position of the robot given the orientation of the

person. The starting angular position could go from −π to

π. We performed this analysis in order to see the behavior in

different orientations of the robot. We can see that the error

is low in our samples in the region near zero, nonetheless in

regions near ±π, we can also find small errors.

Fig. 10. Evaluation of errors in (1) for all samples for 25x25 case. Angles
are in rd

When we compare with actual human motions, we need to

take into account that the human behavior is not completely

smooth (e.g., the blue line of Figure 9). However, the paths

generated by our method appear quite acceptable.

As discussion we could substitute Bézier with B-Splines.

The main difference between both of them is that Bézier

will start the path with the same orientation as the robot,

(a)

(b)

Fig. 11. Early stage real scenario a) Person wearing a helmet that is
detectable by OptiTrack to get his position and orientation. b) Visualization
of the computed path based on the Naive Global Planner (green line).

while B-Splines will not start at that same orientation and

this difference of orientations can be corrected with a local

planner which can be convenient for high frequency updates.

With the Layered Costmap Navigation, the robot goes to

a pertinent position (seen by the human eye) and it takes

into account the obstacles, nonetheless, in order to have a

good navigation we will probably need to add another layer

as in [5] to give a higher cost to the center of the person.

This method though, takes more computational time than the

Naive Global Planner, because we need to compute all the

cost inside the costmap area.

As an early stage test, we implemented the algorithm in

a close space with PR2 robot. The detection and tracking of

the person is achieved by an OptiTrack System. Figure 11(a)

shows a person wearing a helmet that we use for tracking.

The visual representation of the robot, human and the pro-

posed path generated by the Naive Global Planner is shown

in Figure 11(b).

Videos of the results can be seen in: http://chronos.

isir.upmc.fr/˜islas/approach/

VI. CONCLUSIONS

In this work we developed two path planning algorithms

to approach a person. First of them uses an IRL algorithm

to directly learn the social approach-paths which require

smoothing. In this algorithm we recalculate the paths as

the person moves. Also, an important feature is that in our

global planner also selects the goal, being the final position

to go and the solution of the MDP itself. Thus, both methods

provide the goal that must be reached.

For the first case, we are also able to reach almost the same

performance with our two discretized state cases, 16x16 and



25x25, while the first one needs much less computational

time for finding a solution.

Concerning the second planner, we added a layer based of

the IRL result of RBFs function to the state of the art Layered

Costmap Navigation. We could still add another layer such

as in [16], to avoid going near to the person.

We are aware of some drawbacks regarding both ap-

proaches. In which this framework only works for approach-

ing one person and not taking into account the speed of the

robot, since we let the local planner to take care of that.

Nonetheless adding one feature (speed) and using a wrapper

between global and local planner could be an interesting

future work.

This work is a first step towards IRL based Human Aware

Navigation for approaching. In the future, as stated in the

introduction, we aim to create a general framework for

approaching people by exemplary data taking into account

more people and more parameters. We also plan to have

user studies to measure the level of comfort and how natural

the behavior of the robot is while approaching people. We

also aim to implement rewards functions that can be used

in navigation planner such as RRT* instead of a costmap,

this can improve the speed of calculations and lead to better

answers. Lastly, we would like to verify convergence with

the number of exemplary demonstrations needed by different

IRL algorithms.

ACKNOWLEDGEMENTS

This research has been supported by the Euro-

pean Commission under contract number FP7-ICT-600877

(SPENCER) and by Laboratory of Excellence SMART

(ANR-11-LABX-65) supported by French State funds man-

aged by the ANR within the Investissements d’Avenir pro-

gramme (ANR-11-IDEX-0004-02).

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international

conference on Machine learning, page 1. ACM, 2004.
[2] P. Henry, C. Vollmer, B. Ferris, and D. Fox. Learning to navigate

through crowded environments. In 2010 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 981–986, May 2010.
[3] Yusuke Kato, Takayuki Kanda, and Hiroshi Ishiguro. May I Help

You?: Design of Human-like Polite Approaching Behavior. In Pro-

ceedings of the Tenth Annual ACM/IEEE International Conference

on Human-Robot Interaction, HRI ’15, pages 35–42, New York, NY,
USA, 2015. ACM.

[4] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in
human environments using inverse reinforcement learning. Interna-

tional Journal of Social Robotics, pages 1–16, 2015.
[5] Thibault Kruse, Alexandra Kirsch, Harmish Khambhaita, and Rachid

Alami. Evaluating directional cost models in navigation. In Proceed-

ings of the 2014 ACM/IEEE international conference on Human-robot

interaction, pages 350–357. ACM, 2014.
[6] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra

Kirsch. Human-aware robot navigation: A survey. Robotics and

Autonomous Systems, 61(12):1726–1743, 2013.
[7] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration.

The Journal of Machine Learning Research, 4:1107–1149, 2003.
[8] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear Inverse

Reinforcement Learning with Gaussian Processes. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 19–27.
Curran Associates, Inc., 2011.

[9] D.V. Lu, D. Hershberger, and W.D. Smart. Layered costmaps for
context-sensitive navigation. In 2014 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS 2014), pages 709–715,
September 2014.

[10] M. Luber, L. Spinello, J. Silva, and K.O. Arras. Socially-aware robot
navigation: A learning approach. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 902–907,
October 2012.

[11] Bernard Michini and Jonathan P. How. Improving the efficiency of
Bayesian inverse reinforcement learning. In Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pages 3651–3656.
IEEE, 2012.

[12] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement
learning. Urbana, 51:61801, 2007.

[13] Rafael Ramon-Vigo, Noe Perez-Higueras, Fernando Caballero, and
Luis Merino. Transferring human navigation behaviors into a robot
local planner. In Robot and Human Interactive Communication, 2014

RO-MAN: The 23rd IEEE International Symposium on, pages 774–
779. IEEE, 2014.

[14] S. Satake, T. Kanda, D.F. Glas, M. Imai, H. Ishiguro, and N. Hagita.
How to approach humans?-strategies for social robots to initiate
interaction. In 2009 4th ACM/IEEE International Conference on

Human-Robot Interaction (HRI), pages 109–116, March 2009.
[15] M. Shomin, B. Vaidya, R. Hollis, and J. Forlizzi. Human-approaching

trajectories for a person-sized balancing robot. In 2014 IEEE Work-

shop on Advanced Robotics and its Social Impacts (ARSO), pages
20–25, September 2014.

[16] E.A. Sisbot, L.F. Marin-Urias, R. Alami, and T. Simeon. A Human
Aware Mobile Robot Motion Planner. IEEE Transactions on Robotics,
23(5):874–883, October 2007.

[17] Dizan Vasquez, Billy Okal, and Kai O. Arras. Inverse Reinforcement
Learning algorithms and features for robot navigation in crowds: An
experimental comparison. In Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on, pages 1341–1346.
IEEE, 2014.

[18] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K.
Dey. Maximum Entropy Inverse Reinforcement Learning. In AAAI,
pages 1433–1438, 2008.




