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Robots serve humans in public
places—KeJia robot as a shopping assistant

Yingfeng Chen, Feng Wu, Wei Shuai and Xiaoping Chen

Abstract

This paper reports the project of a shopping mall service robot, named KeJia, which is designed for customer guidance,

providing information and entertainments in a real shopping mall environment. The background, motivations, and

requirements of this project are analyzed and presented, which guide the development of the robot system. To develop
the robot system, new techniques and improvements of existing methods for mapping, localization, and navigation are

proposed to address the challenge of robot motion in a very large, complex, and crowded environment. Moreover, a

novel multimodal interaction mechanism is designed by which customers can conveniently interact with the robot either

in speech or via a mobile application. The KeJia robot was deployed in a large modern shopping mall with the size of 30,000

m2 and more than 160 shops; field trials were conducted for 40 days where about 530 customers were served. The results

of both simulated experiments and field tests confirm the feasibility, stability, and safety of the robot system.
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Introduction and background

With the rapid advance of robotics and artificial intelligence

technologies, several well-known robots have been developed

with delicate appearances, human-like joints, and intelligent

behaviors, such asWillowGarage’s PR2,1Boston Dynamics’

Atlas,2 and the Meka.3 Nevertheless, the general public still

rarely have the opportunity to personally interactwith tangible

and advanced robots. Fortunately, service robots, a kind of

robots aiming to improve the quality of human life, have the

potential to fill the gaps between the public and the robots.

A service robot is defined as a robot that could autono-

mously perform daily services for humans. By virtue of the

technology transformation from traditional industrial robots

and new explorations toward this direction, many service

robot applications appear.4 Meanwhile, these applications

in real-world environments provide occasions for research-

ers to verify the existing technical approaches. Through ana-

lyzing experimental results and learning from the

participants’ feedback, researchers could better understand

the limitations and weaknesses of current techniques, which

ultimately leads to technological advancement.

In this research, the robot is adapted to daily shopping

mall scenarios and acts as a shopping assistant, providing

guidance service, information service, and entertainments.

There is a great motivation to integrate the essential tech-

niques into a public service robot, which have been pursued

inKeJia project5 for many years, to verify whether the robot

system could work properly in real-world environments and
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furthermore to investigate whether the robot could meet the

public expectations for an eligible service robot. The shop-

ping mall is considered as one of the most frequently vis-

ited places in routine activities. Generally, the environment

of a shopping mall is much more complex and challenging

than the laboratory, and it is chosen as the test scenario

since it is there where the robot system can be sufficiently

exposed to the untrained and nontechnical customers, who

could offer valuable suggestions and different views.

Related work

In the past decades, there are several robot applications that

have been successfully deployed in public spaces, for exam-

ple, museum, exhibition hall, shopping mall, and so on. A

pioneering work was carried out by Burgard et al.,6 in which

the RHINO robot acted as a guide in the Deutsches Museum

Bonn for 6 days and gave tours to more than 2000 visitors

(Figure 1(a)). They preliminarily integrated mapping, locali-

zation, navigation, interaction, and telepresencemodules into

a complete robot system, making a considerable success and

significant impact in robotic research community. Specifi-

cally, it primarily aimed at testing the autonomous navigation

algorithms in dynamic environments using natural landmarks

for robot localization. TheMINERVA robot,7 as successor of

RHINO, with impressive appearance and facial expressions,

was developed to enhance the performance in human–robot

interaction, which was regarded as the main deficiency of its

predecessor. The HERMES robot,8 a prototype of humanoid

service robot, also served in a museum for half a year, up to

18 h per day. Due to the robustness and dependability of

the system, the robot was able to work stably during

long-term operation. In order to improve the human–robot

interaction in museums, the Robotinho robot9 addressed the

challenge on more intuitive, natural, and human-like interac-

tion by exploiting richer facial expressions and gestures.

In contrast with the aforementioned robots in museums,

the work10 presented Robox (Figure 1(b)), a service robot

designed for mass exhibition, which was used to guide

visitors in the exhibition hall for 159 days and contacted

with more than 686,000 people. Besides, the work11 intro-

duced a service robot in hospital, which was able to accom-

plish navigation task in hospital environment, as the role of

medical supplies transporter.

Shopping is considered to be one of the favorite activ-

ities for many people, and therefore, many researchers are

interested in this field. In the study of Tomizawa et al.,12 a

shopping robot system was envisaged to help humans

accomplish shopping tasks via remote communication. The

idea was creative but it still remains at the conceptual stage.

Only one part of the system, a suction hand for manipulat-

ing fresh foods was implemented. RoboCart13 was

designed to help visual impaired people navigate in grocery

stores and carry purchased items (Figure 1(c)). The work14

proposed a shopping assistant robot, providing collision-

free guidance and accompanying service. It is noteworthy

that the localization function of the robots in the studies by

Kulyukin et al.13 and Shieh et al.14 was both implemented

with the radio frequency identification (RFID) tags, which

were installed at various locations in the workspace before-

hand. In the study by Kanda et al.,15 a robot was deployed in

a fixed area of a shopping mall without the ability of moving

freely, which aimed to entertain customers with natural

interaction, such as providing information with speech and

giving directions with gestures. Iwamura et al.16 investigated

two design considerations of assistive robots, the experi-

ments were conducted in the shopping scenarios with two

types of robots: a humanoid robot and a cart robot. The robot

TOOMAS17 (Figure 1(d)) roamed in stores to search the

potential customers and guided them to the locations of

requested products. The requirements of the shopping sce-

nario were investigated comprehensively and the whole sys-

tem was implemented systematically, it was even considered

as the most practical shopping robots for everyday use so far.

Compared with all the related works mentioned above,

the KeJia robot system is implemented in more detail and is

one of the few works in which field tests had been carried

out. In addition, the operating environment is more challen-

ging than most of the existing works, even the work of

Gross et al.,17 in which the robot was exactly deployed in

stores and not in shopping malls. Besides, a mobile

Figure 1. (a) RHINO in museum. (b) Robox in exhibition.
(c) RoboCart in grocery. (d) TOOMAS in store.
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application (App) is employed in the system to make the

human–robot interaction more convenient.

Cases summary, requirements,

and technical challenges

Service robots in public are expected to play two main roles:

tools and partners.16 In more detail, the robots as tools are

expected to offer physical assistance, partially for the dis-

abled and the elder. The works11,13,14 fall into this category

to a certain degree. While robots as partners are expected to

interact with people naturally and provide service similar

to human companions. The works6–8,10,17 basically belong

to this category. In accordance with the development trend

of service robots,4 a promising service robot in shopping

malls should be regarded as a partner instead of simply

offering help like in other public facilities.

Indeed, there are strong demands for service robots to

providemore convenient service in shoppingmalls. One very

common requirement is to help customers find the locations

of their desired shops. The size of a modern shopping mall is

becoming larger and larger and it usually contains hundreds

of individual commercial tenants. Customers are often con-

fused with dazzling decorations and get lost in the maze-like

environment, not tomention finding theway to a certain shop.

Sometimes, thumbnail maps and signposts are available, but

interestingly, customers still prefer to turn to staff for asking

directions.15 Apart from this, customers may hope to know

the shopping information, such as product catalogue, price

list, and product discount. Traditionally, the shopping infor-

mation is often printed on pamphlets and distributed to peo-

ple, which is inconvenient and not environment friendly.

Therefore, obtaining information from a service robot with

natural waysmight bemore attractive for customers. Further-

more, in order to ensure service quality and improve shopping

experience, the shopping mall managers have to hire more

professional guides, which inevitably increases the labor

costs. In this case, robots could be cost-efficient substitutions.

Basedon the aforementioned requirements in shoppingmalls,

the functions of KeJia robot are defined as providing gui-

dance service, information service, and entertainment ser-

vice. Although every functional capability has been tackled

individually in previous research, they still need a significant

amount of effort to develop new techniques and methods

according to the actual conditions in real shopping malls.

Here, guidance service refers to a robot, moving in front

of the users, leading them to their destinations. For robot, it

exactly depends on the function of navigation given that the

environmental map is known. Specially, robot navigation

usually involves the techniques of mapping, localization,

path plan, and obstacle avoidance. In the literature, there

are two very common solutions to implement robot naviga-

tion. The first method needs modifications of the operation

environments, making them adapt to the robot application.

For instance, in the studies by Kulyukin et al. and Shieh

et al.,13,14 a net of RFID tags is deployed in the operating

area, which facilitates robot to locate itself and follow the

routes. The other one is to exploit the onboard sensors

exclusively; however, it requires more advanced navigation

solutions.6,7,17 In the shopping mall scenario, the first

method is unacceptable in practice because additional facil-

ities or environmental modifications are not allowed by

shop mall managers, even if they would not result in sub-

stantial influence on original environments. Furthermore, it

will dramatically increase deployment cost of the system

and even worse the deployment may need to be redone

once the environment is significantly changed.

Consequently, the second solutionwas chosen in this robot

system, that is, only the use of the onboard sensors. Though

the related algorithms in robotic area are considerablymature,

it is nontrivial how to implement a robust and safe navigation

system in a realistic shoppingmall environment. The greatest

challenge is that the size of the operation environment (e.g.

more than 30,000 m2 in this case) is much larger and more

complex than most existing works. For mapping, the com-

monly used algorithms are based on particle filter, which are

confronted with prohibitive storage consumption in a large

environment. Therefore, a quadtree map presentation is pro-

posed and integrated with Rao-Blackwellized particle filter

(RBPF) based on simultaneous localization and mapping

(SLAM)18,19 to solve this problem. For localization, the

Monte Carlo localization (MCL)19 is improved according to

different environmental conditions, making the localizer less

susceptible to dynamic environments. For navigation, the

traditional methods can hardly work smoothly in dynamic

and intricate environments, thus an improved navigation

framework and a local controller are designed to enhance the

performance of navigation.

Human–robot interaction is indispensable for a service

robot in shoppingmalls, and customers obtain information and

entertainment from the interaction process. Speech-based

interaction was adopted in KeJia robot as well as in some

previous works.15,16 It is considered as the most ideal way of

human–robot interaction because it is also the primary form of

communication between humans. Due to the complexity of

speech recognition under noise background and natural lan-

guage understanding, robust speech–base interaction is quite

challenging in shopping malls. Therefore, in order to simplify

the interaction, a chatting system for handling the failures of

normal speech conversation is designed. Additionally, a

mobile application is developed,which serves as an alternative

interaction interface between the robots and customers.

In general, the main contributions of this work can be

summarized as follows:

� The RBPF SLAM algorithm based on quadtree

map representation is proposed; it greatly reduces

the memory consumption when mapping large

environments.

� The MCL is substantially improved by selecting dif-

ferent strategies under different situations, making it

more robust in crowded environments.
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� A safe navigation system in human populated envir-

onments is designed and it achieves a good practical

effect in the shopping mall.

� A multimodal interaction mechanism for a robot

shopping assistant is designed, which enhances the

experience of shopping for customers.

� The whole robot system is well integrated and fully

tested in shopping malls. The firsthand feedback

from the customers in field trials are collected and

the results from this study are encouraging.

The remainder of this article is organized as follows.

To start, the hardware and software design of the KeJia

robot are introduced. Next, an overview of the services

provided by the robot is given. Then, the navigation sys-

tem including mapping, localization, and local planner is

presented with emphases on the new proposed improve-

ments. This is followed by a description of the interactive

module. After that, the results of simulated experiments

and field tests are reported. Finally, conclusions and

future works are presented.

Design of KeJia robot

The KeJia robot designed for the shopping mall scenario is

shown in Figure 2. This prototype is based on the design of

the domestic service robot that won the world champion of

the RoboCup@Home competition in RoboCup 2014. The

following sections will give more details on the hardware

and software designs, respectively.

Hardware architecture

The appearance of KeJia is that of a young lady, dressed on

a traditional suit. With the height of 165 cm, the robot is

comparable to a professional shop assistant. The design

philosophy of KeJia is that a service robot with anthropo-

morphic shape encourages people to interact with it in a

natural way. Cartoon appearance is also popular in the

exterior design of service robots, which is attractive espe-

cially for children, but from previous experience, children

tend to be the sources of trouble for robots in public, their

curiosities often drive them to have unexpected behaviors

to robots. Touch screen is a frequently used interaction

interface with robots, but it is not adopted in KeJia robot.

Touch screen often requires that the robot is stationary,

which means that people hardly interact with robots when

robots are moving. In KeJia system, customers could inter-

act with it by speech all the time. Besides, the mobile App

provides additional method to interact with robots.

A sound equipment embedded in the base is used to play

the voice generated by speech synthesis module. The whole

robot is motorized by two differential wheels installed on

their middle axis and a castor is mounted on the rear.

Although it is not as flexible as omnidirectional wheels,

it is able to spin on the spot, this endows KeJia a good

maneuverability and stability when trapped in crowds. The

main sensor of the robot is a Hokuyo UTM-30LX (Tokyo,

Japan) laser scanner, which feeds the distance data of

obstacles around the robot (maximum distance 30 m) to

other software modules (e.g. navigation and localization).

A pinhole camera and a directional microphone are

installed behind the bow tie, which are invisible from out-

side. The camera is able to capture 30 images every second

with a resolution of 1280 � 720. The directional micro-

phone only captures the voice from a specific orientation; it

avoids noises in the input voice as much as possible, there-

fore the customers are advised to talk in front of the robot.

There is a hidden frame made by aluminum alloy and

plastic shells, which constitutes the body of the robot. The

head and two arms are fixed on the interior frame. The arms

with four degree of freedoms (DOFs) can make some ges-

tures, like greeting people, pointing directions, and so on.

The hands are made up of silicone without any degree of

freedom. The two DOFs (pan-tilt unit) head can freely turn

to a wide range of directions. Every motor on the robot is an

individual controller area network (CAN) node; thus, they

make up a CAN control network. All the external devices

are linked to a universal serial bus (USB) hub centrally, the

hub is connected to a laptop computer embedded in the

chassis, and the computer processes the data from sensors

and performs all online computation.

Software design

Overall architecture. The system mainly consists of three

parts: robots, central server, and distributed mobile Apps.

Robots could be deployed on different floors in the shop-

ping mall, which are directly faced with customers with the

speech interaction. The mobile software can be

Figure 2. (a) KeJia robot. (b) Laser scanner. (c) Robot chassis.
(d) Differential wheels.
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downloaded and installed freely on mobile phones, custom-

ers obtain running information from them, and they interact

with robots through internet. The central server is respon-

sible for maintaining data and building the bridge between

robots and mobile Apps. The robots and mobile Apps are

allowed to run multiple instances simultaneously, and all of

them are connected to a sole central server (see Figure 3).

The data exchanged between the robot and the mobile

software are classified into three categories: running infor-

mation, configuration data, and human–robot interaction

data. The running information is about the current states

of the robot, including robot position, task state, and hard-

ware state, which are reported periodically by the robot and

forwarded from the server to mobile clients. Configuration

information is the description of the shopping mall, includ-

ing environmental map, shops’ positions, shops’ introduc-

tions, and so on. Interaction data include the text strings and

speech data, which would be processed by the dialog sys-

tem on the server preliminarily. If the final result of several

round interactions turns out to be a task command that is

feasible for the robot to carry out, the task will be sent to the

robot.

There are two advantages of this structure. Firstly, the

configuration data of shopping malls are constantly chang-

ing due to the alterations of shops; it would be convenient

to modify the central stored data on the server, what the

robots need to do is to regularly update the latest data from

the server. Secondly, interaction via mobile phone makes

the robot reach its greatest potential at the operation time,

while other customers can still keep chatting with robot

during its navigation period, which increases the custom-

ers’ engagement with the robot.

Modules on robot. KeJia adopts a flexible four layered soft-

ware architecture (see Figure 4) to meet the requirements of

an integrated robot system, such as reliability, extensibility,

maintainability, and customizability. The lowest layer is

the robot operating system (ROS),20 which provides a set

of robotic software libraries and reliable communication

mechanism for modular nodes. The second layer mainly

contains hardware drivers. The laser and camera drivers

are in charge of packaging the raw sensor data to standard

formats of ROS messages and publish them to upper layers;

the motor and audio drivers interpret the command mes-

sages from upper layers to hardware executors. The next

layer is the most important one in the structure; all the

proper skills of a classic robot are placed here, such as

mapping, localization, navigation, people tracking, speech

recognition, and speech synthesis, which directly decide

which functionalities could be implemented in the upper

applications. The highest level includes task manager, con-

figuration manager, dialog manager, and robot state man-

ager. The dialog manager module attempts to understand

users’ intentions by speech interaction and translates them

to some explicit tasks. Configuration manager guarantees

the consistency of the configuration data between local and

remote, which will synchronize the data when remote con-

figuration data is modified. Robot state manager monitors

the states of both hardware and software constantly, which

will raise an alarm when exceptions occur. In addition, it

reports state information to server. Task manager is respon-

sible for task scheduling and behavior switching, which

receives tasks from server or dialog manager and decides

what to perform next.

By using such a layered structure, for adding any new

application or new skill, only the corresponding layers need

to be changed rather than the whole system. Moreover,

individual modules can be assigned to different program-

mers who just develop the desired functionality according

to the preestablished interfaces without caring the imple-

mentation details of others.

Modules on server. The server is an important part in the

whole robot system, which includes three basic modules:

permission manager, information manager, and dialog

manager. The dialog manager on the server is an interaction

module designed for the mobile App, which processes the

Figure 3. Concept map of the proposed system.

Figure 4. Software structure of the modules on robot.
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speech and texts from the mobile clients. If the input is

voice segments, it firstly translates them to texts by a

build-in speech recognition module. The texts will be put

into the speech dialog manager, which will keep on the

conversation with response texts. The information manager

loads configuration data from database and waits for the

data requests from the robot. When a request is received,

the data connection will be established and configuration

data will be sent to robot. Meanwhile, it also pushes the

robot state information to the online mobile clients. The

permission manager decides whether a mobile client could

get the control right of the robot. If the client is a normal

user, the request will be ignored when the current task is

running. But if the mobile client is identified as the shop-

ping mall manager, it would be entitled to interrupt the

current task and get control of the robot immediately.

Overview of robot services

Prior to the introductions of navigation and interaction

techniques implemented in the current version of the robot

in the following sections, a brief overview of the already

realized service functionalities is given. Before starting to

work, the shopping mall manager powers the robot on and

controls it to the initiation location with a joystick. The

initiation location is marked with rectangular line on the

ground, which facilitates the startup of the localization

module with known coordinates. Once all modules start

properly without any errors, the robot will enter into the

patrol pattern, moving along the regular route that is

defined by a series of fixed waypoints. The route could

be modified by choosing different waypoints by a special

tool. When a predefined waypoint is arrived, the robot

stops and waits for potential customers. Customers can

stand in front of the robot and attract the attention of the

robot by speech, like saying “hello” in Chinese. Once the

robot perceives that someone tries to start an interaction, it

begins to confirm the caller’s position and turns the head

to that direction. Naturally, the robot will continue the

conversation until the customer raises the request to a

desired shop and then the robot will begin guidance to

the desired location. Otherwise, if customers do not need

a guidance, the conversion will end up by saying

“goodbye.” During the guidance, robot moves in front

of the people with an appropriate speed (0.3–0.6 m/s),

which is comfortable for customers to keep pace with the

robot; meanwhile, it will give an introduction of the shop.

When arriving at the destination, the robot will notice the

customer of the arrival and it points to the direction of the

shop. If there is no further request, it will end up this

guidance successfully and convert back to the patrol mode

to the nearest waypoint.

On the mobile clients, the customers could connect to

the network in the shopping mall and download the mobile

App by scanning two-dimensional barcode. The robot pose

is shown on the information screen overlaying with the

environmental map; shops are also displayed on the map

and can be searched by name. On the chatting screen, cus-

tomers could type words in the input box or press voice

button to communicate with the dialog manager on server.

If the robot is occupied in guidance task, it will be prohib-

ited for the mobile App to issue any commands to the robot.

In spite of this, customers could still obtain enough prompt

of how to reach the shop by virtue of the annotations in the

map. The shopping manager could login the mobile App

and monitor the states of all robots. Before getting off

work, all the running tasks will be terminated by mobile

phone. If the manager is nearby the robot, he could control

the robot back to the charging area with joystick manually;

otherwise, the homeward commands will be sent to robot

by mobile App.

In general, the robot performs guidance tasks and inter-

acts with customers autonomously, once it starts up nor-

mally. All the operations on the robot are self-explanatory

with voice cues. In most cases, robot’s behaviors are cohere

with customers’ expectations, so it is not necessary to give

any antecedent instruction or teaching to customers.

Navigation system

Navigation system is the core functional module, which

provides robot the guidance ability in complex and large

environments. It is not an individual module, but a collec-

tion of related softwares, including mapping, localization,

path planning, and local controller. In this section, the

details of the improvements in each submodule will be

presented under their backgrounds.

Mapping of large environments

There are already many mature algorithms to the SLAM

problem, most of them take the grid map as the represen-

tation of environments. However, the memory exhaustion

problem emerges along with the increasing enlargement

of mapped environments, especially for particle filter

family, 18,19,21 in which every particle is generally associ-

ated with an individual map. The size of the shopping mall

is usually more than 10,000 m2, which makes the situation

worse, therefore, a quadtree map representation is intro-

duced to settle this issue.

Qaudtree representation. A quadtree is a tree data structure

in which each internal node has exactly four children, each

child indicates an equal size region divided from parent

area. It is often used to partition a two-dimensional space

by recursively subdividing it into four quadrants or regions.

In the context of robotic mapping, as usual, the cell area of

a map is measured as three states, that is, occupied, free,

and unknown. In real-world situation, the range sensors in

two dimension are usually just able to detect the surface

profile of obstacles and the interiors are assumed to be

unknown. In addition to this, the mapped environments are
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generally spacious enough for the robot to move, particu-

larly in a shopping mall. Either of the two cases result in

plenty of group grid cells with the same state of unknown or

free, which provides the opportunity to reach the full poten-

tial of the quadtree representation.

As shown in Figure 5, an example of a quadtree is com-

pared with a traditional grid map. The nodes stand for

different areas by their positions in the quadtree. The nodes

at the same depth have the same area size, the areas repre-

sented by the nodes that are at adjacent depth have double

relationship. A region containing inhomogeneous states

will be recursively divided into smaller quarter areas until

the children’s size reaches a predefined resolution. All the

leaf nodes in the tree keep a simple Boolean value indicat-

ing whether the area is occupied. If some nodes are non-

existent in tree, it means that these areas are still in an

unknown state so far. Compared with the grid map, a leaf

node that is not at the lowest level can be on behalf of at

least four or more grids that are in same state, and the

unknown areas do not take up any node in the tree.

Quadtree access acceleration. The quadtree is an ideal map

representation for mapping as described above, but as a kind

of tree data structures, it cannot get rid of the intrinsic

shortage—low access efficiency. The time cost of visiting a

node in the quadtree usually contains two parts: downward

searching from root and branch selecting at intermediate

nodes. The time cost of downward searching is often with

low proportion of total time and varies with the height of tree.

The branch selecting operation is to compare the intended

node’s position to the midplane position of current node,

which is often time-consuming. To accelerate the speed of

node access, a locational codemechanism is usually adopted,

such as Morton code or Z-order code.22 Inspired by this

method, a kind of new coding scheme between node’s posi-

tion and access key in pointer-based quadtree is designed,

which can substantially decrease the access time in quadtree.

In the proposed method, access key of a node in quad-

tree is represented as a triple ðKx ; Ky ; depthÞ. Since the

map only has two dimensions, the Kx and Ky are the sub-

components of the access key in each dimension, respec-

tively, and the depth indicates the height of the node in

quadtree. The number of valid bits in its access key is equal

to the depth and encoded from left to right in order. The

conversion between access key and node’s position in one

dimension is shown in Figure 6. Taking the leaf node A as

example, given its access key Kx ¼ 00000001, the size of

the whole space [0,1) (denoted as jSj, the left boundary of

the space is written as S begin). Now the x position (denoted

as Px) of node A can get from equation (1),

Px¼ 1=22 � ð1þ 0:5Þ þ 0 ¼ 0:375. The node A is in

depth 2, hence it represents the interval [0.25,0.5), which

is occupied. Equation (1) can also be utilized to encode the

access key form position reversely.

Px;y ¼ jSj=2 depth � ðKx;y þ 0:5Þ þ S begin (1)

Here, the properties of the proposed access key are ana-

lyzed. Firstly, the mapping from every node’s position to its

access key is unique, which guarantees the availability of

the coding scheme. Secondly, exploiting corresponding bits

in Kx and Ky, the right branch can be selected directly

without any additional comparison. The K i
x;y is the ith bit

in Kx or Ky, the number of total combinations of K i
x and K i

y

is four and each one corresponds exactly to a branch in the

quadtree. Locating a node in the quadtree needs to go

downward depth times, at ith time, the branch is chosen

according to bi 2 0; 1; 2; 3 ðbi ¼ 2� K i
x þ K i

yÞ, which is

the core of this method. For example, given the completed

access key of a node in quadtree ðKx ¼ 00000010;
Ky ¼ 00000001; depth ¼ 3Þ. From equation (1), the area

it represents is the square area fðx; yÞjx 2 ½0:25; 0:375Þ;
y 2 ½0:125; 0:25Þg. To visit this node, the sequence of

chosen branches are branch 0, branch 2, and branch 1 in

the quadtree. Besides the access key can be derived from its

parent node by equation (2), this feature can simplify the

encoding process.

Kx;yð left childÞ ¼ 2� Kx;yð parentÞ

Kx;yð right childÞ ¼ 2� Kx;yð parentÞ þ 1

Depthð childrenÞ ¼ Depthð parentÞ þ 1

8

>

<

>

:

(2)

The robotic SLAM problem can be modeled mathema-

tically as how to estimate the joint posterior distribution of

the map m and the pose x1:t ¼ x1; . . . ; xt of the robot,

given its sensor data z1:t ¼ z1; . . . ; zt and control data

u1:t�1 ¼ u1; . . . ; ut�1. This problem is further factorized

to equation (3) in the study by Murphy,23 which enables

us to use particle filter to track potential trajectories of the

robot and each particle maintains its own map created

along the trajectory

pðx1:t;mjz1:t; u1:t�1Þ ¼ pðmjx1:t; z1:tÞ � pðx1:tjz1:t; u1:t�1Þ (3)

Integrating with quadtree will not impact the procedures

of RBPF, which includes four steps: sampling, importance

weighting, resampling, and map updating. Due to the merit

of quadtree representation, particles require less memory

when they are associated with quadtree maps. According to

Figure 5. Grid map (left) and quadtree (right). Squares are leaf
nodes and circles are internal nodes. Squares (dotted line border)
represent unknown areas which actually are nulls, squares (filled
with grey color) represent occupied areas, and squares (solid line
border, not filled) represent free areas.
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this principle, the quadtree SLAM is implemented based on

the open source project Gmapping.24

Localization in complex environment

Accurate localization is the prerequisite of safe and credible

navigation behavior. Robot localization has been addressed

in many studies.19,25,26 Kalman filter is first proposed and

performs well with landmark maps in many cases, but it is

hard to handle the global localization problem. This problem

can be solved by Markov localization, which tracks the

belief of robot’s position over all possible space. However,

Markov localization is limited by the size of discrete states

(usually the grids in map) and not applicable for large envir-

onments with high resolution. The Monte Carlo localization

is the state-of-art method for robot localization, which could

deal with various noises and concentrate the computation in

the most possible areas. However, it performs badly in

dynamic environments, where sensor data is often corrupted.

In the real shopping mall, dynamic environments are due

to the shop decoration, temporary stalls (Figure 7(d)), adver-

tising board replacement, infrastructure improvement (Fig-

ure 7(b)), and so on. All of these belong to gradual changes

because they change slowly with time. The other kind of

dynamic change is the flow of crowds, which often make

the environments change quickly and hence they will be

called rapid changes. To cope with these situations, theMCL

is adopted as the fundamental method with strategy selection

in different dynamic conditions, making it more adaptive

and stable in highly dynamic shopping malls. Meanwhile,

odometry calibration is applied to ensure the robot will not

completely lose its position rapidly in exceptional cases.

Odometry calibration

The typical and thorny dynamics in shopping malls is the

dense streams of people, which often blocks most of the

laser beams, making the sensor data severely polluted.

Worse is that sometimes people like to stand around the

robot and watch other customers interacting with robot; the

laser data are totally inconsistent with the pre-built map

(Figure 7(a)). On such occasions, the most reliable percep-

tion comes from the internal data, that is, odometry. The

importance of odometry has been already stressed in many

works.27–29 It is considered as the most cheap, stable, and

self-sustaining positioning method. Even in many latest

robotic techniques, it plays an indispensable role as a priori

knowledge. But odometry often suffers from kinds of sys-

tematic and nonsystematic errors, resulting in a significant

decrease in performance.27 Thus, odometry calibration is

elaborately designed and carried out to guarantee the accu-

racy of blind localization. The base of KeJia is a differen-

tial drive structure (Figure 8(a)), and the odometry of such

structure can be calculated from the encoder data of two

wheels without any numerical approximation (Figure 8(b)).

Ignoring the nonsystematic errors in odometry (such as

wheel slippage, uneven floor, castor wheels, etc.), the fol-

lowing equation can be obtained:

Figure 6. The whole space is [0,1) with 0.125 resolution, squares are leaf nodes and circles are internal nodes. Black squares represent
occupied ranges and blue squares represent free ranges. The access key is coding with 8 bits (maximum) and the valid bits of key are
marked with red color on the right. The ranges represented by the node is associated with the access key.

Figure 7. (a) Typical shopping mall scenarios with crowds. (b)
Newly added resting chair. (c) Glass wall. (d) Temporary stall.
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In equation (4), the v and o indicate the translational and

angular velocities of robot, respectively; the oLðoRÞ and the
rLðrRÞ are the rotate speed and the radii of left (right) wheel,
respectively; b is the distance between two wheels; and theC

is the parameter matrix. The odometry of the robot is calcu-

lated by discrete-time integration of equation (4), namely

DXk ¼ Xkþ1 � Xk ¼ Tvk cos �k þ
Twk

2

0

@

1

A

DYk ¼ Ykþ1 � Yk ¼ Tvk sin �k þ
Twk
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@
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A

D�k ¼ �kþ1 � �k ¼ Twk
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(5)

The aim of odometry calibration is to determine the

parameters (i.e., rL ; rR ; and b in matrix C) of the kine-

matic model, and the deviations of these parameters cause

most of the systematic errors. Equation (5) shows that once

the accurate measurements of robot’s movements as well as

the encoder data are known, the relevant parameters will be

figured out by data fitting techniques. Via proper formula

manipulation, the linearity of the parameter matrix C can

be exploited, converting the calibration to a least-squares

estimation problem30 as following
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i¼0
wL;i

h i

(6)

In equation (6), �0;p and �Np;p are the robot’s directions at

0 and Np moments in the pth trajectory sample, and the pth

trajectory contains the encoder data of 0; 1; � � � ;Np

moments (totally Np þ 1 moments in this trajectory,

namely, Np equal intervals with time T ). The F�;p is the

overall angular change of the pth trajectory sample, which

is the sum of the minor changes in all Np intervals
PNp�1

i¼0 D�i. Therefore, a deterministic regressor for this

problem could be established by sampling p trajectories.

In the same way, the rest of the parameters in C would be

identified through equation (8).

Thus far, the calibration procedure is elicited from equa-

tions (6) and (8), but it needs to obtain the precise measure-

ments of robot’s actual movements, which is an

unavoidable problem in practical terms. In the realization,

a global motion capture system (MoCap) is utilized to

obtain the ground truth of robot’s movements, which could

provide high accuracy and real-time measurements. As far

as we know, this may be the first work to introduce such a

measuring equipment into robotic calibration.

Strategy selection

The principle of the strategy selection is that the localizer

tends to trust the odometry rather than particle filter in

highly dynamic cases, because the odometry do not depend

on observations and thus diverges slowly, but wrong obser-

vations may misguide the particle filter to an unrecoverable

situation quickly. In order to quantify the degree of

dynamics in environments, the polluted rate of laser data

at position p (assuming p is the true position of robot) is

defined as sp

sp ¼
X

N

i¼0

GðjMpðiÞ � EpðiÞj=EpðiÞ < gÞ=Num (7)

In equation (7), Num is the total number of laser beams

and the MpðiÞ is the measured distance of the ith beam in

laser data, while the EpðiÞ is the expected distance of the ith
beam in laser data when given a position p and map. g is

usually set to [0.1,0.25], which indicates maximum

Figure 8. (a) Differential drive structure with relevant variables. (b) Computation of odometry between two successive poses.
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permissible range error. G is a Boolean function and

GðxÞ ¼ 1 if x is true otherwise GðxÞ ¼ 0.

When sp is below a threshold value (e.g., 60%), it is

considered that the robot is entering exceptional cases. In

this condition, the update phase in MCL is skipped since

the matching score calculated from highly corrupted obser-

vations would be nonsense. The prediction phase is exe-

cuted as usual and more particles are generated to depict the

gradually diverging distribution of the robot position. Once

the robot gets out of the dilemma, the MCL procedures

would return to normal and particles would tend to con-

verge to the true position.

The localization on KeJia is improved based on the

implementation of the adaptive particle filters tech-

nique.31 The original implementation has two shortcom-

ings: (1) The pose is given without confident degree of the

outcomes. As a result, the robot is unsure of whether it

should believe the localization result in navigation, which

may lead the robot to dangerous situation. Obviously, sp
could be the indicator of localization confidence. (2) The

particles are generated based on the probabilistic motion

model, and the best particle is chosen to represent the most

likely pose of robot. Even so, the best particle may not

represent the exact pose due to the random sampling error.

Therefore, the process of scan match is taken on the best

particle to refine the last result.

Navigation control

The early works32–34 have proposed many methods to

achieve safe navigation in dynamic environments, the com-

mon idea is to decompose the navigation module into two

layers, global planner and local controller. The global plan-

ner aims to find an end-to-end path from current position to

the goal according to some criterions, like avoiding colli-

sion and decreasing distance traveled. The local controller

is to determine immediate action for robot actuators, which

reacts to dynamic changes and ensures the safety. The

recent works35–39 are prone to develop human-friendly

navigation under the coexistence with humans, which tries

to make robots behave more natural within their abilities.

The navigation of KeJia continues to adopt the layered

framework and emphasizes on handling of the rapid

changes caused by customers. The rapid changes affect

both the global path planner and the local controller, and

the proposed method could enhance the efficiency of path

planning and the natural of behaviors.
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Path planning under frequent blocking. In shopping malls,

many narrow crisscross passageways make the environ-

ment a complicated network, and the passageways are fre-

quently blocked by customers at some time, which changes

the connectivity of the environment. In traditional two-

layered navigation, once the local planner cannot find a

valid command when blocked by crowds, global replanning

will be triggered. But this idea is not fully applicable

because of the following reasons: (1) The robot may move

back and forth between two frequently blocked passage-

ways without progress. (2) Refinding a global path on the

whole map is time-consuming. (3) Making a long detour is

sometimes more expensive than just waiting for a while.

Making a further analysis, the global planner aims to

find a latest feasible path with the dynamic changes in the

whole map, the path may oscillate severely, and the length

of the path is not considered, but the local controller just

follows the global path, thus leading to unreasonable

behaviors. In order to eliminate this disharmony between

the global and local planner, an intermediate layer is

employed (Figure 9(a)) to limit the path searching within

an appropriate range and avoid unnecessary global

replanning.

The flow chart of the navigation is shown in the Figure

9(b). Once a goal is receiving, the path from the robot’s

position to goal is computed. Next, a series of ordered way

points are generated from the global path and dispatched to

the improved local controller described below. If the local

controller fails to find suitable control commands following

the blocked path, the intermediate planner will take charge

instead of global planner. It tries to search a nearby path by

continuously enlarging the range of local planning map

until maximum limitation is reached (usually 30 �
30 m2). Most often, if there is an alternative path around,

robot will turn to follow that path. But if the blocked path is

the only one which must be passed, the intermediate plan-

ner will send a signal to the global planner to do path

searching in the whole map. The length of the new global

path will be compared with the remainder of the blocked

path, if the former is longer than a threshold, robot will give

10 International Journal of Advanced Robotic Systems



up the new path and demand the crowds to keep out of the

way by making a sound. This strategy makes the navigation

more efficient and less disturbing as possible.

Human-aware local controller. Local controller is a fundamen-

tal component in the navigation of mobile robots, which

focuses on collision avoidance and motion control. The

problem is mostly solved by reactive algorithms, such as

vector field histogram (VFH),40 dynamic window approach

(DWA),41 and velocity obstacle.42 The VFH method is sim-

ple and easily, but it depends much on parameter tuning. The

DWA method could achieve good effects on obstacle avoid-

ance and was used for a period of time in the system.

Although the DWA reacts to the dynamics quickly, it lacks

the prediction of the environment, particularly the moving

people, which often results in overly aggressive or conser-

vative behaviors. The improved DWAmethod integrates the

predictions of human motion into the local controller and

further mends the path generated by the global planner.

The human detection approach adopted in navigation is

described in the study by Arras et al.,43 which utilizes Ada-

boost to train a classifier based on the features extracted

from laser clusters of legs. The tracking and prediction of

people is based on the constant velocity model, considering

the fact the human motion (speed and orientation) is con-

stant or changes very little in short time, which has already

been exploited in several works.44–46 As introduced in the

study by Fox et al.,41 the DWA method is a local reactive

avoidance controller that searches for optimal action (trans-

lational speed v and angular speed o) in the velocity space,

meanwhile, the dynamic constrains of the robot are taken

into account to reduce the sample space. Trajectories cor-

responding to different velocities can be represented by a

sequence of circular arcs with different curvatures. In order

to speed up the velocity sampling for fast reactive response,

it assumes that the velocity of robot in all future intervals is

constant. The sampled trajectories are evaluated by an

objective function Gðv;oÞ, which incorporates the target

heading, clearance, and velocity as criteria

Gðv;oÞ ¼ s

�

�� headingðv;oÞ þ � � distðv;oÞ

þ g� velocityðv;oÞ
� (9)

The heading ðv;oÞ is a measure of the closeness

between current orientation and goal direction, the

distðv;oÞ is the distance to the closest obstacle along the

trajectory, and the velocityðv;oÞ represents the forward

velocity of the robot with dynamics constraints. (Details

can be found in the study by Fox et al.41) The improved

DWA method is illustrated in Figure 10, the speed of the

moving people can be estimated from the tracking module

and the predicted trajectory is assumed as a line, thus the

potential collisions of sampled trajectories are calculated.

The distðv;oÞ now is evaluated by the collision distance of

static obstacles as well as the moving obstacles. Under the

circumstance shown in Figure 10, the trajectory A is most

likely selected in original DWA since it is directly toward

the target. While with the improved method, the trajectory

B is inclined to be chosen since the left trajectories may

bump into the moving people. Although the trajectory A

would not lead to immediate collisions, it may lead the

robot to an embarrassing situation. Obviously, the trajec-

tory B is more optimal and natural. In order to keep in

harmony with the global path planner, the areas of moving

people will be cleared and the areas of potential collisions

will be marked as occupied in map.

Multimodal interaction

In this section, the multimodal interaction mechanism with

customers is presented, including speech dialog system,

human detection, and mobile application.

Figure 9. (a) Three layers of navigation. (b) Flow chart
of navigation.

Figure 10. Illustration of the improved DWA method. DWA:
dynamic window approach.
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Speech dialog system

Speech dialog system is the main interface for the custom-

ers to interact with the robot. On one hand, it maintains the

conversation with customers, and on the other hand, it is

expected to understand the customers’ intentions. It con-

sists of four parts: (1) Speech detection: it is used to capture

the valid part in the voice by detecting the begin and end

points of speech. (2) Speech recognition: it is classified into

two categories, that is, general recognition and recognition

based on rules. It is responsible for turn the input speech to

corresponding text. (3) Dialog manager: it analyzes the

semantic of the input text and gives out the response text,

and meanwhile, a proper task will be generated based on

the semantic. (4) Speech synthesis: it converts normal lan-

guage text into speech and then plays the voice.

The processing procedures are shown in Figure 11. The

voice segments are put into the speech recognition module,

in most cases, the general recognition is good enough to

give an accurate text. In order to satisfy some special

requirements, the speech recognition module also supports

custom rules, and the rules will be matched prior to general

recognition. The recognized text will then be sent to the

core dialog manager, which will prejudge whether the text

falls in domain. If not, it will be sent to the chatting system,

which is a black box. But when the text is in domain, it will

be analyzed based on the semantic rules, which are

described by predefined rule files. If the text is matched

with a rule, the corresponding action (defined in rule files)

will be sent to the task manager. The whole dialog system is

developed and integrated based on commercial software.

Human detection

Information gathered from human detection is used by sev-

eral components in the system. It helps to verify the pres-

ence of customers when conversation begins, and robot

also could keep facing to customers during interaction if

the poses of customers are given. The human detection is

combined with face detection and leg detection. The face

detection can be divided into three procedures: (1) Prepro-

cess: In order to meet the real-time demand, the static

background is removed firstly, and then it focuses on the

interest region where the face is detected at last time. (2)

Detection: Cascade classifier based on Haar feature is an

effective object detection method proposed by Viola and

Jones,47 and it is also adopted in the face detection. (3)

Tracking: The tracking process performs when a new face

is detected, the pan tile servo tries to keep the recognized

cluster in the middle of the camera view. The human detec-

tion by legs from laser data is already described in previous

section. Although the face detection and leg detection are

preliminary, the integration of them results in good effects.

Mobile application

The mobile App in the system is a new interaction style,

which is rarely mentioned in previous works. There are

mainly two tabbed panels in the mobile App. One is the

chatting page (Figure 12(a)), which provides the interface

for customers to communicate with the dialog manager on

the server. The other one is the display page, as shown in

Figure 12(b); the map, the robot position (the blue dot), and

available destinations (red dots) are shown on screen, so

that customers can select the destinations and browse infor-

mation by touching screen.

Experiments and field trials

The field trials last about 40 days from December 8, 2014,

including 10 days of preparative debugging work, the

demonstration video can be watched on YouTube.48 The

robot system was deployed in GOOCOO shopping mall,

which is the largest and most prosperous one in Hefei city,

China. It worked on the first floor with size of more than

30,000 m2 (241 � 140 m2), gathering nearly 160 commer-

cial tenants as shown in the floor plan (Figure 13).

Mapping experiment

The first step to deploy the robot system was to build the

environmental map. In order to collect the laser data and

odometry data for mapping, the robot was controlled to

stroll along all passageways in the shopping mall with a

wireless joystick. The route of data collecting is drawn with

blue lines and red arrows in Figure 13 (about 1.3 km long),

including 147,800 frames of laser data. The final map built

by the proposed quadtree mapping is shown in Figure 14;

the mapped size is 236.6 �97.45 m2 with the resolution of

0.05 m. The method was compared with original Gmapping

Figure 11. Processing flow of speech dialog manager.
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(slam based on grid map) on the same collected data off-

line. Both the experiments used 30 particles to estimate the

map, new observations were inserted to the map only when

robot moved more than 1.5 m or rotated more than 60�. The

average memory required per particle, the number of grid

cells and leaf nodes, disk space of the map, and time spent

are listed in Table 1. In general, the memory and disk

consumption has a signification reduction, but the time

spent increases to 40%, which is mostly spent on the pro-

cedures of map matching and updating. In the application,

the increased time is acceptable since online mapping is not

necessary in KeJia system.

Odometry calibration and localization

The odometry calibration was conducted in laboratory,

where a passive optical MoCap was setup. The MoCap

system consists of 12 cameras equipped with infrared

light-emitting diodes around the camera lens (Figure 15).

The reflective markers are fixed on the measured objects,

and the images of the centers of the markers are matched

from various camera views using triangulation to compute

their frame-to-frame positions in 3-D space. The robot was

installed with a mark set on the base and driven to follow

the predetermined routes. In order to eliminate the possible

compensation existed in different kinds of trajectories, two

sampling modes were designed to find the actual values of

the odometry parameters, that is, moving in clockwise and

counterclockwise circles (Figure 16). In each sampling

mode, 10 trajectories were collected for the follow-up cali-

bration system, and every trajectory was about 6 m long.

Meanwhile, the encoder data was logged with the fre-

quency of 40 Hz. Thus, three data sets were prepared: data

set A includes 10 clockwise trajectories, data set B includes

10 anticlockwise trajectories, and data set C is assembled

by selecting 5 trajectories from A and B, respectively. The

results of the calibration performed on three data sets are

listed in Table 2; the three sets of parameters calibrated are

Figure 12. (a) Chatting page of mobile app. (b) Display page of mobile app.

Figure 13. The floor plan of the shopping mall is shown in this picture, and the characters are the names of the shops. The blue lines
with red arrows are the routes of mapping, the red star is the start point, and the purple star is the end point.
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almost near to each other and all different with nominal

value (NV). To verify these parameters, robot was driven to

follow a closed trajectory with length of 100 m, and the

start point was regarded as reference point. The odometry

was calculated with the three sets of parameters and the

NV, and the errors are also presented in Table 2, which are

generally restrained under 2.5% after calibration. It is hard

to say which data set is better, but they are all superior to

the uncalibrated NV.

In order to test the performance of the improved MCL

method in dynamic environments, simulated experiments

were conducted with Gazebo.49 The scenario simulated

was a crowded passageway (the pedestrians were static, see

Figure 17), a TurtleBot mounted with a laser was driven to

pass through the crowds (Figure 18). The same route would

be followed by robot many times in the same scenario, but

with different numbers of pedestrians within it, the pedes-

trians were added in new positions and kept the existing

scenario unchanged.

Figure 19(a) shows the corruption rate sp of three

comparative experiments, it is obvious that the more

crowded in the environment, the smaller of the sp will

be, proving that the proposed corruption rate could fittingly

depict the dynamics of the environment. Figure 19(b)

shows that the success rate of localization continually

reduces with the increasing number of pedestrians.

Figure 14. The quadtree map is drawn with square grids for visualization. The map has not been processed further; some measures aim
at filtering speckles or decreasing burrs can be taken to make the maps more compact and aesthetic.

Table 1. Comparison of two mapping methods.

Method Avgerage memory (MB) Number of cells Disk space Time cost (min)

Grid map 35.12 13,452,288 45.3 MB 32
Quadtree 10.08 6,252,223 287.1 KB 45

Figure 15. The diagram of MoCap system. MoCap: motion
capture system.

Figure 16. The deployed MoCap system for odometry calibra-
tion. MoCap: motion capture system.
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Meanwhile, it also proves that the proposed method is more

robust than original MCL method, even in overcrowded

condition, it still achieves a success rate more than 50%.

Navigation

In the practical navigation, the robot is only expected to

move in the passageways, hence some areas in the map are

blocked with black padding for constrained path planning

(Figure 20), which are usually the interior of shops that are

forbidden for the robot. For localization, the original map is

used to make the laser data matched as good as possible.

Figure 20(a) shows a global path based on static map from

start point (brown) to end point (red), and Figure 20(b)

shows the intermediate planner within the windows of local

map (3.5 � 3.5 m2 square box), the path planned in this

level is not exactly the same with the global path because

the new surroundings have been taken into account, and it

is the key that the system can handle with the dynamic

changes in environments.

The proposed local controller had also been tested in

Gazebo under various simulated situations, and the pro-

posed method was proved to be safer and more efficient

in general. Figure 21 shows a typical case where the robot

pursuits its goal in the presence of two moving people.

The pictures in top row show the robot’s path obtained by

original DWA method at four moments, while the pic-

tures in the bottom row are captured from the simulation

of the proposed method. Obviously, the path in the top

one is tortuous and unsmooth, exposing the shortsighted-

ness of most reactive controllers. Unlike with the original

DWA method, the path generated by the proposed

method is more similar to human behavior, straight to the

goal without any unnecessary avoidance.

Field tests

During the operational period (not including the debugging

period), the robot served about 530 customers who had kept

a dialog of more than half a minute; 289 guidance tasks

were understood correctly, and totally about 150 complete

tours were performed successfully. The results of the field

tests will be presented from the aspects of safety, reliability,

human–robot interaction, and customers’ feedback,

respectively.

Safety. The robot has never caused a dangerous situation or

an accident, which threaten the safety of customers and

facilities. No collisions occurred when robot was in high

speed, and some slight scratches happened but were typi-

cally provoked by customers themselves in the following

situations: (1) Some customers tried to stop the robot by

standing in front of it; usually, they would dare not to do

that when the robot was moving quickly. Therefore, this

case frequently occurred when robot was rotating slowly to

find openings in traps, at this time, the customers cannot be

stably perceived by the front laser. (2) Some customers

tried to draw the attention of the robot by waving their arms

in front of the robot’s eyes; since no vision information was

used in local avoidance, this behavior may cause collision,

but in fact it rarely led to substantial danger due to the

Table 2. Calibration on three datasets and nominal value.

Dataset rLð cmÞ rRð cmÞ b ð cmÞ Distance error of RP (m) Angle error of RP (�)

NV 10.00 10.00 45.00 6.53 71.3
A 9.74 9.68 46.57 2.49 25.6
B 9.78 9.70 46.34 2.03 30.6
C 9.77 9.69 46.42 2.32 27.3

RP: reference point. NV: nominal value.

Figure 17. The laser data are corrupted severely by curious
crowds.

Figure 18. A simulated scenario containing 60 pedestrians.
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Figure 20. (a) Path planning in global map. (b) Intermediate planner in local map.

Figure 21. Comparison of two local planners in a typical case involving moving people. The pictures labeled by A1-A4 and B1-B4 are
the sequential snapshots of the two compared methods at four same moments.

Figure 19. (a) Corruption rate of laser data along the path. (b) Success rate of localization varies with the number of pedestrians.
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dexterousness of human arm. (3) The height of the installed

laser is 28 cm, so the robot cannot perceive small objects

(such as bottles and cardboard boxes) and often pushes them

away on the ground, but the design of the robot chassis (an

enclosed box near the ground) can avoid wheel crushing.

Reliability. The robot worked less than 2 h in the first week

because of the high failure rate (especially the hardware),

so a lot of time was spent to troubleshoot it. But at the later

stage, the situation was much improved, robot could work

about 4 h per day with a full charge, and the success rate

was continually rising with days and lastly stabilized at

about 75%. The localization module with laser was quite

stable, and the proposed method was effective in dynamic

environments. However, the failures occurred because of

the following reasons: (1) customers pushed or rotated the

robot when it stopped, (2) the loss of laser data caused by

the drop of hardware connection, and (3) odometry jump

caused by scratches with fixed objects. Usually, the failures

in localization lead to the failures in navigation. In addition,

navigation is extremely difficult in dense crowds, and

robots were often blocked. What impressed us most was

that on NewYear’s day, a number of customers proliferated

and the robot never succeeded to pass though the passage-

way near to the entrance of the shopping mall. In general,

the success rate of the navigation task in the test filed

depends on the density of customers in environments, and

the robot would give up tasks rather than taking excessive

risk. The reasons of the recorded navigation failures (totally

89 times) are listed in Table 3, and it should be noted that

44.6% tasks are given up halfway by customers in the

guidance task, which may be explained from two aspects:

(1) Most of the customers just want to have a try without

true intentions to the goals, and they are impatient with the

long journeys and attracted by other things on the way. (2)

The behaviors of the robot in the process of guidance are

too monotonous to keep customers interested for long time.

Besides, 26.6% failures are categorized for unknown rea-

sons, which may imply that some latent defects exist in the

system.

Human–robot interaction. Customers in the shopping mall

are free to choose one of the two interactive methods:

speech or mobile App. In face-to-face mode, customers’

sentences are recognized and then passed to dialog man-

ager module, once the intentions are explicit the robot will

begin a tour guidance. Customers can also talk with KeJia

by pressing the microphone icon and the text displays on

the screen, and the shops’ positions are drawn on the map

with red dots. In general, the mobile App provides a

straightforward and effective graphical interface for users.

The customers seem to be more interested in chatting with

the robot by mobile client, and they intentionally speak

some sentences that can hardly be handled by KeJia and

expect it to respond with funny jokes.

Feedback from customers. By exploiting the customers’ com-

ments in the mobile App, a general analysis of the custom-

ers’ feedback was carried out. Customers’ feeling to the

robot was judged based on theirs comments and divided

into four classes: common, disappointment, surprise, and

fear. As shown in Table 4, most of the customers feel fresh

and surprise with the robot. While about 15% of customers

are disappointed with the robot, the reason may be that the

robot never meets their expectations of an intelligent robot

like in science fiction movies. It is noteworthy that some

customers feel horror with the robot, because the appear-

ance of KeJia is lifelike but its expression is dull. The

customers’ attitudes to the function of the robot are shown

in Table 5. The options A, B, C, and D in the table represent

that the robot now is useful but need improvements, the

robot now is useful and good enough, the robot now is

useless but promising, and the robot is useless and unprac-

tical. In general, the customer’s feedback is positive, but

there is still room for improvement.

Conclusions

From the practical operation results of KeJia robot, firstly

the reliability and effectiveness of the proposed robotic

techniques are proven, including layered software architec-

ture, mapping in large environments, localization, and

navigation in dynamic environments. Secondly, the way

to interaction with the robot by mobile phone is explored,

and it becomes the most often used and accepted way by

the customers in actual running. Lastly, from the custom-

ers’ feedback, it turns out that the general public have

intense interests in service robots, which is encouraging for

Table 3. The reasons of navigation failures.

Reason Localization failure Give up by customers Blocked by crowds Unknown reasons

Percentage (%) 10.8 44.6 18 26.6

Table 4. Customers’ feeling to the robot.

Common Fear Disappointment Surprise

18% 21% 15% 46%

Table 5. Customers’ attitude to the robot.

Options A B C D

Percentage (%) 46 30 16 6

Chen et al. 17



us. Overall, we hope this work can provide some experi-

ence and enlightenments for similar robotic applications.

However, there are still gaps between existing tech-

niques and expectations. In order to build a more intelligent

service robot, several aspects should be improved in our

future work. For robotic mapping, the 2-D maps are insuf-

ficient to contain enough environmental information since

3-D mapping techniques are more promising. Meanwhile,

how to maintain a long-term consistent map should also be

considered. The success rate of localization depends much

on the dynamics in the environment, and therefore some

other sensors (such as gyro and camera) can be integrated

to improve the robustness of localization. The research of

robot navigation in crowds is not limited to the motion

control, and the perception of environments and the under-

standing of people’s intentions are both the prerequisites

for social human-robot navigation, all of these capabilities

should be enhanced further.
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