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Abstract

This article surveys the use of natural language in robotics from a robotics

point of view. To use human language, robots must map words to aspects

of the physical world, mediated by the robot’s sensors and actuators. This

problem differs from other natural language processing domains due to the

need to ground the language to noisy percepts and physical actions.Here,we

describe central aspects of language use by robots, including understanding

natural language requests, using language to drive learning about the physi-

cal world, and engaging in collaborative dialogue with a human partner.We

describe common approaches, roughly divided into learning methods, logic-

based methods, and methods that focus on questions of human–robot inter-

action. Finally, we describe several application domains for language-using

robots.
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Grounded language
understanding:
interpreting a natural
language utterance in
terms of the physical
state of the robot and
the environment

Natural language
processing (NLP):
computational
techniques for
transforming human
languages such as
English into
machine-usable
structures

1. INTRODUCTION

As robots become more capable, they are moving into environments where they are surrounded

by people who are not robotics experts. Such robots are appearing in the home, in nondedicated

manufacturing spaces, and in the logistics industry (1, 2), among other places. Since most users

will not be experts, it is becoming essential to provide natural, simple ways for people to interact

with and control robots. However, traditional keyboard-and-mouse and touch-screen interfaces

require training and must be complex in order to enable a person to command complex robotic

behavior (3). Higher-level abstractions, such as automata (4), programming abstractions (5), and

structured language (6), offer a great degree of power and flexibility but also require a great deal

of training to use.

By contrast, people use language every day to direct behavior, ask and answer questions, provide

information, and ask for help. Language-based interfaces require minimal user training and allow

the expression of a variety of complex tasks. This article reviews the current state of the art in

natural language communication with robots, compares different approaches, and discusses the

challenges of creating robust language-based human–robot interaction (HRI). The fundamental

question for grounded language understanding is, How can words and language structures be

grounded in the noisy, perceptual world in which a robot operates (7)?

We distinguish between two dual problems: language understanding, where the robot must

interpret and ground the language, usually producing a behavior in response, and language gener-

ation, in which the robot produces communicative language, for example, to ask for explanations

or answer questions. In the latter problem, the robot may need to reason about information-

gathering actions (such as when to ask clarification questions) or incorporate other communica-

tion modalities (such as gestures). Systems that address both problems enable robots to engage in

collaborative dialogue.

There is a long history of systems that try to understand natural language in physical domains,

beginning with Reference 8. Generally, language is most effective as an interface when users are

untrained, are under high cognitive load, and have their hands and eyes busy with other tasks. For

example, in search-and-rescue tasks, robots might interact with human victims who are untrained

and under great stress (9). The context in which language is situated can take many forms; exam-

ples include sportscasts of simulated soccer games (10), linguistic descriptions of spatial elements

in video clips (11), GUI interactions (12), descriptions of objects in the world (13), spatial rela-

tionships (14), and the meaning of instructions (15). Language has also been used with a diverse

group of robot platforms, ranging from manipulators to mobile robots to aerial robots. Figure 1

shows some examples.

Language for robotics is currently an area of significant research interest, as evidenced by the

papers covered in this article and the many recent workshops on this subject (e.g., the Ground-

ing Language for Physical Systems workshop at the 2012 Conference on Artificial Intelligence,

the Model Learning for Human-Robot Interaction workshop at the 2016 Robotics: Science and

Systems conference, the Language Grounding for Robotics workshop at the 2017 Annual Meet-

ing of the Association for Computational Linguistics, theModels and Representations for Natural

Human-Robot Communication workshop at the 2018 Robotics: Science and Systems conference,

and the Combined Workshop on Spatial Language Understanding and Grounded Communica-

tion for Robotics at the 2019 Annual Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies). Other survey papers have

reviewed related topics; for example, Fong et al. (16) surveyed socially interactive robots, and

Goodrich & Schultz (17) and Thomaz et al. (18) provided broad surveys of HRI, although neither

focused on language specifically. This survey is intended for robotics researchers who wish to un-

derstand the current state of the art in natural language processing (NLP) as it pertains to robotics.
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aa b cc

d ee f

g h i

Hand me the
white table leg

Figure 1

Robots used for language-based interactions. (a) Using language to ask for help with a shared task. Panel adapted from Reference 94.
(b) A Baxter robot learning via dialogue, demonstrations, and performing actions in the world. Panel adapted from Reference 187 with
permission from IJCAI (https://ijcai.org). (c) A Jaco arm identifying objects from attributes (here “silver, round, and empty”). Panel
adapted from Reference 174 with permission from IJCAI (https://ijcai.org). (d) A Gambit manipulator following multimodal
pick-and-place instructions (32). (e) A Pioneer AT robot achieving goals specified as “go to the break room and report the location of
the blue box.” © 2009 IEEE. Reprinted, with permission, from Reference 31. ( f ) A CoBot learning to follow commands such as “take
me to the meeting room.” © 2013 IEEE. Reprinted, with permission, from Reference 188. (g) TUM-Rosie making pancakes by
downloading recipes from wikiHow. © 2012 IEEE. Reprinted, with permission, from Reference 63. (h) A socially assistive robot
helping elderly users in performing physical exercises. © 2012 IEEE. Reprinted, with permission, from Reference 146. (i) A Baxter
robot performing a sorting task synthesized from natural language (73).

Figure 2 shows a system flow diagram for a language-using robot. First, natural language in-

put is collected via a microphone or text. Words are converted to a semantic representation via

language processing; possible representations range from a finite set of actions to an expression in

a formal representation language, such as predicate calculus. For example, the words “red block”

might be converted to a formal expression such as λx : block(x) ∧ red(x). Next, symbols in the

semantic representation are connected or grounded to aspects of the physical world. For example,

the system might use inference to search for objects in its world model that satisfy the predicates

block and red. The results inform decision-making; the robot might perform a physical action

(such as retrieval) or a communicative action (such as asking, “This red block?”).Many approaches

to language for robotics fit into this framework; they vary in the behaviors they include, the prob-

lems they solve, and the underlying mathematics of the modules.

This article is organized as follows: Section 2 gives preliminary material common to all

methods. Section 3 covers technical approaches, organized around the method used to achieve

language-using robots. Section 4 provides an orthogonal view that organizes the state of the art

www.annualreviews.org • Robots That Use Language 27
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Grounded language:
language that refers to
or is interpreted in
reference to the
physical world

Language
input

Language
processing

Decision-
making

World
representation

Semantic
representation

Grounding

Language
output

Grounded
representation

Perception Language
actions

Physical
actions

Figure 2

System diagram showing language input and output integrated into a robotic system. Many approaches
include only a subset of the modules. Grayed-out modules are relevant to language interpretation but are not
reviewed in this article.

around the problem being addressed: human-to-robot communication, robot-to-human commu-

nication, and two-way communication. Section 5 concludes with a summary and a discussion of

current open questions.

2. PRELIMINARIES

In this section,we define common terminology used in this field and provide technical background

needed to understand many of the approaches described in subsequent sections. We review the

concept of grounded language, the syntactic and semantic structure of language, and statistical

language processing.

2.1. Grounded Language

Grounded language (also called situated language or physically situated language) has meaning in

the context of the physical world—for example, by describing the environment, physical actions, or

relationships between things (7, 19). Possible groundings range from low-level motor commands

to perceptual inputs to complex sequences of actions.Grounded language acquisition is the process

of learning these connections between percepts and actions. For example, if a person instructs a

robot to pick up a cup, the robot must map the word “cup” to a particular set of percepts in its

high-dimensional sensor space—for example, by recognizing that a particular pattern in its camera

sensor corresponds to this word. Then, to follow the command, it must produce a plan or policy

28 Tellex et al.
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Parse tree: a structure
that represents the
syntactic
decomposition of an
utterance in the form
of a rooted tree

Table 1 Examples of natural language and possible groundings

Natural languagea Possible sensor/actuatorb Categoryc Grounding/interpretationd

“Turn left” Wheels, legs Command understanding Contra-rotate the steering

actuators

“Red” Camera World sensing Output label red from color

classifier

“This is a laptop” Camera, RGB-D sensor Object recognition Output label laptop from

multiclass classifier

“Above you” Range sensor Understanding spatial

relationships

Location in positive z-space with

respect to the robot

“Hand me the orange mug

on the left”

Manipulator plus all sensors

above

Combined All of the above

Abbreviation: RGB-D, red, green, and blue plus depth.
aNatural language that might occur when instructing or informing a robot.
bPossible sensors or actuators providing the physical context.
cThe underlying task or reasoning problem implicitly encoded in the language.
dThe physically situated, or grounded, meaning of the language.

that causes its end effector to create a stable grasp of the cup and lift it. Many aspects of this

plan are implied by the language but not explicitly stated; for example, if the cup has water in

it, the robot should lift it in a way that does not cause the water to spill. This mapping between

language and objects, places, paths, and events or action sequences in the world is a key challenge

for language and robotics and represents the grounding problem. For robots, language is used

primarily as a mechanism for describing objects or desired actions in the physical world; much of

the work described in this survey is in the domain of grounded language.A key research question is

how to represent this mapping between words and symbols and high-dimensional data streaming

in from sensors and high-dimensional outputs that are available from actuators. Table 1 shows

examples of language and possible groundings.Note that in some cases, the grounding is a discrete

output from a classifier, while in other cases it is a high-dimensional controller command, such as

“contra-rotate the steering actuators.” These are examples of possible groundings that have been

used in the literature; two key research questions are what the grounding process should look like

and how this mapping should be carried out.

2.2. Syntactic Representations and Analysis

Natural language has a hierarchical, compositional syntax (20) that is studied in linguistics and

cognitive semantics. This structure enables people to understand novel sentences by combining

individual words in new ways (21). This syntactic structure can be used to help extract semantic

representations of the words’ meaning. A variety of formalisms have been created to express this

structure, of which the best known is context-free grammars (CFGs), developed in the 1950s by

NoamChomsky (22). CFGs and their many variants are used to describe the syntactic structure of

natural language. Sipser (23) provided a formal definition of CFGs, and Figure 3 gives an example

CFG for a small subset of English along with an associated parse tree.Many variants of CFGs exist.

Pretrained parsers are a common tool,many of them (24, 25) trained using the PennTreebank (26),

a corpus of text manually annotated with parse trees. Other parsers are trained on corpora of text,

such as newspaper articles. These data are often not a good fit for robotics tasks, which typically

contain imperative commands and spatial language, leading to reduced performance on robotics

tasks by off-the-shelf tools.

www.annualreviews.org • Robots That Use Language 29
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λ-Calculus:
a formalism for
expressing
computation in terms
of function arguments
and application

Temporal logic: logic
that includes temporal
operators; roughly
speaking, the truth
value of a formula is
evaluated over
sequences of states
labeled with the truth
values of the
propositions

VP → VB  NP

NP → DT  NN

DT → the|a|an

NN → block|ball|apple

VB → grab|move

VP

VB

Grab

NP

DT

an

NN

apple

a b

Figure 3

Grammar and parse tree for the English sentence “Grab an apple.” (a) Context-free grammar for a small
subset of English. (b) The structure defining compositional relations among word meanings. Abbreviations:
DT, determiner; NN, noun; NP, noun phrase; VB, verb; VP, verb phrase.

Many robotics applications use combinatory categorial grammars (CCGs) (27). CCGs are a

grammar formalism created to handle linguistic constructions such as coordination (e.g., “John

and Mary like apples and oranges”) that cannot be expressed by CFGs. CCGs are useful because

they model both the syntax and the semantics of language—an approach that is useful for real-

world language learning. These learned elements take the form of lexical entries, which combine

natural language, syntax, and semantics. Extensive work has been done on automatically creating

parsers (28–30), typically learning frompairs of natural language sentences and sentencemeanings.

CCGs have been applied to robotic language understanding in many contexts (29, 31–33), which

are reviewed in the following sections.

2.3. Formal Semantic Representations of Language

Semantic representations, which capture the meanings of words and sentences in a formalism that

can be operated on by computers, can be extracted with (or from) syntactic structures, such as the

example in Figure 3. A possible semantic interpretation can be captured by the first-order logic

formula ∃x(apple(x) ∧ grab(x)), which states, “There exists an x that is an apple and that is being

grabbed.” Given a consistent formal meaning for, e.g., grab(), this expression can be interpreted

and used for understanding actions in the world. Extensive work has been done on symbolic rep-

resentations of semantics (e.g., 20, 34–36). CFG productions can be combined using λ-calculus

rules to automatically construct semantic representation from a syntax tree. In this section, we

briefly mention the main semantic building blocks that are used by many approaches.

First-order predicate logic extends propositional (Boolean) logic with predicates, functions,

and quantification. Semantic meaning can be extracted using compositional operators associated

with each branch of the syntactic tree. To perform language grounding in the context of robotics,

these operators must be grounded in the physical world, i.e., through sensors and actuators; for

example, grab() could be grounded to a manipulation action. Additional information regarding

the formal syntax and semantics of first-order predicate logic can be found in logic texts, such as

the textbook by Huth & Ryan (37).

Temporal logics are modal logics that contain temporal operators (38), allowing for the

representation of time-dependent truths. (For example, the phrase “grab an apple” implies that

the apple should be grabbed at some future point in time, an operation referred to as “eventually,”

written ♦GrabApple, where GrabApple is a Boolean proposition that becomes True when the apple

is grabbed.) There are different temporal logics that vary in several important dimensions, in-

cluding whether time is considered to be discrete or continuous, whether time is linear (formulas

are defined over single executions) or branching (formulas are defined over trees of executions),

and whether the logics are deterministic or include probabilistic operators and reasoning. In a

30 Tellex et al.
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recent review, Kress-Gazit et al. (39) described the use of several temporal logics in the context

of robot control.

2.4. Statistical Natural Language Processing and Deep Learning

Substantial progress in NLP has been made by eschewing the explicit modeling of linguistics

structures. For example, n-gram models that focus on counting words (40) robustly capture as-

pects of language use without requiring a full understanding of syntax or meaning, by leveraging

the statistics of word co-occurrence. Shallow parsing or chunking is useful to capture aspects

of syntax and semantics without performing a complete analysis of the sentence (41). Many ap-

proaches rely on less linguistically plausible but more robust structures to achieve learnability

and tractability. Modern approaches use word vectors to capture or learn structure, such as long

short-termmemory units (LSTMs) (42) combined withWord2Vec (43) or Paragraph Vector (44).

These approaches learn a vector representation associated with either words or longer documents

and then compute over an entire sentence to perform tasks such as language modeling, parsing,

or machine translation. Many robotics applications leverage these techniques to learn a statisti-

cal or deep model that maps between a human language and one of the formal representations

mentioned above.

3. CLASSIFICATIONS BY TECHNICAL APPROACH

In this section, we cluster approaches based on three broad categories: lexically groundedmethods

(Section 3.1), learning methods (Section 3.2), and HRI-centered approaches (Section 3.3). The

first category, lexically grounded methods, focuses on defining word meanings in a symbol system,

typically through a manual or knowledge base grounding process, and using logics, grammars,

and other linguistic structures to understand and generate sentences. The second category of

approaches covers learning word and utterance meanings from large data sets, with inspirations

drawn from machine learning and computational linguistics. Finally, HRI-centered approaches

focus on the language experience for people interacting with robots. While we use these broad

categories to discuss approaches, in practice much of the work in this field belongs to more than

one category. The categories are not intended to be mutually exclusive; rather, they provide a

possible framework for considering the overall research space.

3.1. Lexically Grounded Methods

This section describes work that uses a priori grounded tokens such as objects and actions, with

formal symbolic representations for the underlying semantics.Many of these approaches are based

on formal logics; temporal logics are frequently used, as there are algorithms to transform the

resulting formulas into behaviors that provide guarantees on performance and correctness (39).

These approaches are often less robust to unexpected inputs produced by untrained users and can

be difficult to implement at scale due to the manually grounded lexicon; however, they enable

grounding rich linguistic phenomena such as anaphora (for example, the “it” in “grab the apple, I

want to eat it”) and reasoning about incomplete information.

3.1.1. Grounding tokens. Common to the formal approaches described in this section is the

grounding of linguistic tokens, such as nouns and verbs, to perceptual information and robot

actions. For example, the token “cup” can be grounded to the output of an object detector, or

the action “open door” can be grounded to a motion planner that controls a manipulator. These

groundings can be either learned or manually prescribed, but in contrast to learning approaches

(Section 3.2), analysis of utterances and groundings is performed using syntactic and formal
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Referring
expressions: natural
language expressions
that uniquely denote
objects, areas, or
people to which the
speaker is referring

semantic structures. Because manually grounding words in a lexicon is a time-consuming pro-

cess, existing knowledge bases and cognitive architectures are often used to automatically enrich

the lexicon using a base set of manual groundings.

3.1.1.1. Knowledge bases and ontologies. Many existing knowledge bases provide real-world,

common-sense knowledge that can be used to create language-using robots. WordNet (45) pro-

vides a lexicon of word meanings in English along with relations to other words in a hierarchy.

These relations map symbols to other symbols and can be used to initialize or enrich groundings,

especially nouns. VerbNet (46) is a large lexicon of verbs, including frames, argument structures,

and parameterized actions. Given a grounding of an action, many verbs can be used in associated

natural language utterances (47). Similarly, FrameNet (48) created a data set of verb meanings

with parameterized actions. ImageNet (49) is an image database organized using nouns in the

WordNet hierarchy. This data set has been used extensively in computer vision and provides in-

formation that could enable a robot to detect objects and ground noun phrases. Data sets that

are specific to a particular type of grounding task also exist, such as RefCOCO (50) for referring

expressions (41).

3.1.1.2. Cognitive architectures. Similar to knowledge bases, cognitive architectures encode

relationships between symbols; however, these architectures typically encode complex relations

between concepts in cognitive models designed to support reasoning mechanisms that enable

completion of inferential tasks. In the context of language and robotics, work has been done with

Soar (51; https://soar.eecs.umich.edu), ACT-R (Adaptive Character of Thought–Rational) (52),

and DIARC (Distributed Integrated Affect, Reflection, and Cognition) (53, 54), among others.

Soar (51; https://soar.eecs.umich.edu) is a theoretical framework and software tool designed

to model human cognition. It includes knowledge, hierarchical reasoning, planning, execution,

and learning, with the intent of creating general-purpose intelligent agents able to accomplish

many different tasks. Researchers have proposed NL-Soar (55), a system that enables language

understanding and generation that is interleaved with task execution.From the language side, tree-

based syntactic models, semantic models, and discourse models are constructed that enable the

system to create a dialogue with a person.Building on this work,Huffman&Laird (56) introduced

Instructo-Soar, enabling new instructions to be grounded to procedures in Soar. Instructo-Soar

assumes simple imperative sentences that are straightforward to parse and instantiate as a new

operator template. Language groundings can also be learned from mixed-initiative HRIs that

include language, gestures, and perceptual information (57). The language to be grounded is first

syntactically parsed based on a given grammar and dictionary, and then the noun phrases are

mapped to objects in the perceptual field, the verbs to actions in the Soar database, and spatial

relations to a set of known primitives.

ACT-R and ACT-R/E (Adaptive Character of Thought–Rational/Embodied), introduced by

Trafton et al. (52), are frameworks in which cognition is implemented in an embodied agent that

must move in space. ACT-R/E has as a goal the ability to model and understand human cognition

in order to reproduce and imitate human cognitive capabilities. It has some language capabilities

in order to accept commands such as “go hide” to play hide-and-seek.

The DIARC architecture (53, 54), which has been under development for more than 15 years,

adopts a distributed architecture that does not attempt to model human cognition. Instead, differ-

ent instantiations that correspond to different cognitive abilities with varying levels of complexity

can be created, determined by the intended use. In the DIARC architecture (54, 58–60), re-

searchers created a system that incrementally processes natural language utterances, creates goals
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for a planner, and executes the instructions, as shown in Figure 1e (31). In that work, the

lexicon is labeled with both syntactic annotations from a CCG (27, 29) and semantic annotations

in the form of λ-expressions related to the temporal logic CTL∗ (38) and first-order dynamic

logic. When an utterance is provided, it is incrementally parsed—i.e., a parse is available after

every token, the parse is updated as new tokens are received, and the semantics are incrementally

produced. Later work employed pragmatic inference to enable more complex language interac-

tion where the meaning of the utterances may be implicit and where context and semantics are

combined (61, 62).

PRAC (Probabilistic Action Cores) (63), while not a cognitive architecture per se, generalizes

the notion of a knowledge base by creating a system that enables inferring over, disambiguating,

and completing vague or underspecified natural language instructions by using information from

existing lexical databases and drawing on background knowledge from WordNet and FrameNet,

among other sources. From this information, the robot can infer a motor action that causes a

source object to end up in a goal location. Figure 1g shows an image from this work.

All of these architectures rely on hand-coded atomic knowledge that a human designer imparts

to the robot, plus composition operators that enable the creation of more complex knowledge.

These frameworks are carefully designed based on theories of cognition, leading to rich, evocative

demonstrations. However, it is difficult for these systems to scale to large data sets of language

or situations produced by untrained users. This sort of scaling and robustness is a key future

challenge.

3.1.2. Formal reasoning. In addition to grounding tokens such as objects and places into detec-

tors, approaches that utilize formal reasoning typically attach semantic structures to lexical items,

such as verbs, and to the production rules of the grammar. These semantic structures are used to

understand the semantics of utterances and define new lexical items, such as objects and actions.

The semantics are typically fed into either a dialogue manager or a planner that executes situated

robot actions. Broadly speaking, the following approaches to language interactions follow a similar

pipeline: Natural language utterances in the form of text are syntactically parsed and then seman-

tically resolved (and, in some work, pragmatically analyzed) to produce formal representations of

the language’s meaning.

Early examples of end-to-end systems that use formal representations for natural language

interactions were GRACE (Graduate Robot Attending Conference) and GEORGE (Graduate

Robot Attending Conference), robots that competed in the Association for the Advancement of

Artificial Intelligence (AAAI) robot challenges. At the 2004 AAAI National Conference on Arti-

ficial Intelligence, GRACE acted as an information kiosk, providing information about the con-

ference and giving directions, while GEORGE physically escorted people to their destinations

(64). Both robots utilized the Nautilus parser (65), which uses a CFG to produce an intermediate

syntactic representation that can be pattern matched to a semantic structure available to the in-

terpreter. Building on the Nautilus parser and the GRACE system, the MARCO agent (66) was

created to interpret route instructions given in natural language, combining syntactic and semantic

structures with information from the perception system regarding the environment.

The process of grounding and executing natural language instructions from websites such as

wikiHow was explored by Tenorth et al. (67). The system uses the Stanford parser (68), which

uses a probabilistic CFG to syntactically parse instructions. These instructions are grounded us-

ingWordNet (45) andCYC (69) and are captured as a set of instructions in a knowledge base.Later

work (70) discussed controlled natural language as a way to repair missing information through

explicit clarification.Nyga et al. (71) used a similar probabilistic model to utilize relational knowl-

edge to fill in gaps for aspects of the language missing from the workspace.
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Raman et al. (72) and Lignos et al. (47) grounded high-level natural language tasks to linear

temporal logic (LTL) (38) formulas by using part-of-speech tagging and parsing to create the

syntactic structure. VerbNet (46) is then used to find the sense of the verb and assign a set of LTL

formulas as the semantics. In that work, the mapping of verb senses to LTL is done manually; in

other work (73, 74), semantic mappings are learned using the distributed correspondence graph

framework (75); Figure 1i shows an image from this work.

Siskind (76) presented another framework for formally reasoning about time and state changes

with manually defined verb meanings. The approach allowed a robot to identify objects and gen-

erate actions by defining a formal framework for objects and contact.The work was based on force

dynamics and event logic, a set of logical operators about time.

3.2. Learning Methods

This section covers work on learning models of language meanings from large data sets. The

task is to learn a mapping between natural language and symbols in a formal language. In some

approaches, the symbols are given. In others, symbols are created as these groundings are learned;

these methods are robust to a wide variety of language produced by untrained users but offer few

guarantees on performance and correctness.

3.2.1. Data and domains for learning methods. Learning-based approaches use a wide va-

riety of data sets, tasks, and formats for training. Data sets typically consist of natural language

paired with some form of sensor-based context information about the physical environment. An

annotated symbolic representation is often also provided. The form of sensor data varies; raw per-

ceptual input, such as joint angles, is often too low level, but higher-level representations depend

on the specific approach.Table 2 lists some of the common data sets currently used in language

grounding and robotics along with the type of sensor, language, and annotation data.

We accompany Table 2 with a brief example of applying a data set for a robotic task. The

MARCO data set (66) of navigation instructions is the most widely used of the existing data sets

(14, 29, 66, 77, 78). Beyond being one of the earliest available data sets in this space, its wide uptake

is partly because it contains not only route directions but a complete simulation environment in

which to navigate. Thus, potential users of the data set do not need to provide their own robot

or handle potentially different sensing or actuation capabilities. Instead, language-learning ap-

proaches can be directly compared with previous approaches to the same problem by using the

natural language instructions in MARCO, then testing in the same simulated environment.

For example, 10 years after the original work used a handcrafted grammar to explicitly model

language (66), Mei et al. (79) used a long short-term memory recurrent neural network (LSTM-

RNN) to learn to follow directions. This work estimated action sequences from natural language

directions, performing end-to-end learning directly from raw data consisting of tuples of natural

language instructions, perceived world state, and actions. The LSTM-RNN encodes the naviga-

tional instruction sequence and decodes to action sequences, incorporating the observed context

(world state) as an extra connection in the decoder step.

The challenge in using any of these data sets is themismatch between the data provided and the

actual data that will be encountered in a real robotic task. The robot in a task may have different

sensors, actuators, and representations than the one used in the task. For example, the MARCO

data set uses butterflies as a landmark object; most real environments do not have these butterflies

but do have other landmarks that may not appear in MARCO. Learning more general concepts

such as “landmarks” is an important open question for future work.

A key question for data-based methods is determining a space of possible meanings for words:

Intowhat domainmight language be grounded?Domainsmay consist of specific objects or areas in
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Table 2 Data sets used in language grounding and robotics

Data set Type of data URL

MARCO (66) Navigation instructions given to a robot to

navigate a map, and the route followed

http://www.cs.utexas.edu/users/ml/clamp/

navigation

Scene (33) Images and descriptions of objects in the

image

http://rtw.ml.cmu.edu/tacl2013_lsp

Cornell NLVR (189) Pairs of images and logical statements about

them that are true or false

http://lic.nlp.cornell.edu/nlvr

CLEVR (190) Images and pairs of questions and answers http://cs.stanford.edu/people/jcjohns/clevr

EQA (104) Pairs of questions and answers in simulated

3-D environments (the agent needs to

search the environment to find the answer)

http://embodiedqa.org

IQA (191) Pairs of questions and answers in different

simulated 3-D environments

http://github.com/danielgordon10/thor-iqa-

cvpr-2018

R2R navigation (192) Panoramic views in real buildings paired with

instructions to be followed

http://bringmeaspoon.org

H2R Laboratory language

grounding (91, 102)

Predicate-based subgoal conditions paired

with natural language instructions

http://github.com/h2r/language_datasets

CIFF (106, 193) Data for three separate navigation domains in

3-D environments, containing instructions

paired with trajectories

http://github.com/clic-lab/ciff

SLU (14, 83) Pairs of language command and trajectories

for navigation and mobile manipulation

http://people.csail.mit.edu/stefie10/slu

Abbreviations: CIFF, Cornell Instruction Following Framework; CLEVR, Compositional Language and Elementary Visual Reasoning; EQA, Embodied

Question Answering; H2R, Humans to Robots; IQA, Interactive Question Answering; NLVR, Natural Language for Visual Reasoning; R2R, Room-to-

Room; SLU, Spatial Language Understanding.

the environment, perceptual characteristics, robot actions, or combinations thereof. The meaning

of language is often grounded into predefined formalisms, which maps well to existing work in

formal semantics (20). However, in work more oriented toward machine learning, there is a trend

toward systems that learn the representation space itself from data, leading to systems that do

not need a designer to prespecify a fully populated set of symbols and allowing robots to adapt

to unexpected input. For example, Matuszek et al. (13) and Pillai & Matuszek (80) showed that

symbols for shape, color, and object type can be learned from perceptual data, enabling the robot to

create new symbols based on its perceptual experience, while Richards &Matuszek (81) extended

that work to creating symbols that are not category limited.

We divide the following approaches into those that use primarily predefined languages

(Section 3.2.2), those that are more concerned with discovering the domain (Section 3.2.3), and

recent work on using deep neural networks for language understanding (Section 3.2.4). In prac-

tice, work in this area falls along a spectrum, ranging from formal-methods approaches that use

completely manually defined word meanings (66), to learning mappings between words and a

prespecified formal language (10, 73, 82), to learning new symbols from data while specifying per-

ceptually motivated features (83), to learning new features from data as well as a mapping between

word meanings and those features (13).

3.2.2. Learning to map to predefined symbolic spaces. Mapping to predefined symbolic

structures has a natural analog in machine translation research. In machine translation, the goal is

to translate a sentence from one language to another language (for example, “pick up the block” in
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English to “podnieść blok” in Polish).Many approaches take as input a parallel corpus of sentences

in the two natural languages and then learn a mapping between the languages. When applied

to robotics, the input language is a natural language, and the output is a formal representation

language that the robot can act on. The challenge is then to specify an appropriate formal robotic

language and acquire a data set or parallel corpus with which to train the model.

This approach has been applied to a variety of domains, such as enabling a robot to learn

to interpret natural language directions from pairs of directions and programs that follow those

directions (10, 66, 77). The same approach can be used for the inverse problem of generating nat-

ural language descriptions of formally represented events, such as RoboCup soccer games (84).

MacGlashan et al. (85) showed that a robot can learn to map to a predefined space of symbolic re-

ward functions using the classic IBMModel 2 machine translation approach (86); once the reward

function has been inferred, the robot finds a plan that maximizes the reward, even in environments

with unexpected obstacles. Misra et al. (87) learned to map between words and a predefined sym-

bolic planning space using a graphical modeling approach, interpreting commands such as “turn

off the stove.”

Other approaches use semantic parsing to automatically extract a formal representation of word

meanings in some formal robot language.These systems vary in terms of the formal language used.

For example,Matuszek et al. (82) created a system that learns to parse natural language directions

into Robot Control Language (RCL), a control language for movement. This work could learn

programmatic structures in language such as loops (e.g., “drive until you reach the end of the

hallway”). Alternatively, Artzi & Zettlemoyer (29) created a system for learning semantic parses

for mapping instructions to actions in order to follow natural language route instructions, while

Thomason et al. (88) used an approach that learned semantic parse information and grounded

word meanings from dialogue interactions with users. Fasola & Matarić (89) used a probabilistic

approach to learn mappings between commands and a space of actions of service robots, including

models for spatial prepositions. Boteanu et al. (73, 74), Brooks et al. (90), and Arumugam et al. (91)

grounded language to objects and specifications expressed in LTL. A key difference in all of these

approaches is the formal language chosen to represent the meaning of the human language; in

many cases, the formal language can represent only a subset of the meanings possible in natural

language.

3.2.3. Learning to map to undefined spaces. We draw a distinction between learning to map

between predefined symbol spaces and approaches that extend the space of symbols that natural

language may be grounded into.We emphasize that this is a spectrum; all learning approaches rely

to a greater or lesser extent on some predefined structure. Less prespecification means the system

is more general and can be extended to unexpected tasks and environments but also increases the

difficulty of the learning problem. Substantial current effort is focused on learning from very little

prespecified data.

The Generalized Grounding Graph (G3) framework (83) was introduced to interpret natural

language commands given to a robotic forklift, as well as to interpret route instructions for a

wheelchair (14) and a micro air vehicle (92). It uses a graphical model framework to represent the

compositional structure of language, so that the framework can map between words in language

and specific groundings (objects, places, paths, and events) in the physical world. It learns feature

weights in a prespecified feature space to approximate a function for mapping between words in

language and aspects of the world. This work has been extended to enable robots to ask natural

language questions that clarify ambiguous commands (78, 93) and to enable robots to ask for

help (94). It has also been extended to create an efficient interface for interpreting grounded
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language by mapping to planning formalisms (75), an approach that dramatically increases

the speed with which words can be interpreted by the robot. Building on this framework,

Paul et al. (95) created a system that learns to interpret subsets of objects, such as “the middle

block in the row of five blocks.”

Other approaches do not require features to be prespecified but do encode a space of possible

features as well as data sources fromwhich features are derived. Roy & Pentland (96) created a sys-

tem for learning nouns and adjectives from video of objects paired with infant-directed speech. It

learned to segment audio and map phonemes to perceptual features without a predefined symbol

system. Matuszek et al. (13) created a system for learning word meanings for words by automat-

ically creating new features for visual object attributes, while Pillai & Matuszek (80) learned to

select negative examples for grounded language learning. Guadarrama et al. (97) created a system

for interpreting open-vocabulary object descriptions and mapping them to bounding boxes in im-

ages, leveraging large online data sets combined with a model to learn how to use information

from each data set. Blukis et al. (98) developed a method that learns to create a semantic map of

the environment by projecting between the camera frame and a global reference frame. These

approaches represent emerging steps toward an end-to-end learning framework from language to

low-level robot control.

3.2.4. Grounding language using deep learning. Modern deep learning–based approaches of

convolutional neural networks, recurrent neural networks, and deep Q-networks led to successes

in computer vision, machine translation, and reinforcement learning. Using neural networks or

a connectionist architecture is not novel. Older neural network–based approaches (e.g., 99, 100)

learned robot behavior from demonstrations and mapped language to these behaviors. Roy &

Pentland (96) used recurrent neural networks to learn word boundaries by phoneme detection

directly from speech signals. However, the amount of data being used and represented in modern

deep learning methods is much larger in scale and allows for end-to-end learning. These novel

deep approaches were applied to solve problems of language grounding (e.g., 79, 101). In this

article, we do not survey these methods in great detail, but we do provide a short introduction to

the types of problems that have been tackled with deep learning–based approaches. We split this

discussion based on the problems addressed by these methods.

3.2.4.1. Instruction following with sequence-to-sequence approaches. Some of the earliest

progress was made in the area of instruction following (79, 91). This is a supervised problem

where an agent performs a sequence of actions in response to a natural language command. In

this problem setup, a common theme is to treat a language command and a sequence of actions

performed by the agent as a machine translation problem using recurrent neural network–based

sequence-to-sequence approaches (79). Others have abstracted the problem to learn the ground-

ing from natural language to subgoals or goals (102, 103). These methods have been implemented

in robots only when the abstract fixed grounding symbols have been provided (91).

Some approaches try to reduce the amount of supervision by converting this instruction-

following problem into a reinforcement learning problem.This was first done with classical policy

gradient methods by Branavan et al. (12); more recently, it has been applied to richer environments

with visual inputs (104–106). A common strategy is to model the agent and its environment as a

Markov decision process and encode the instruction given to the agent as the state of the environ-

ment. Such agents have been able to answer questions about the properties of objects or navigate

to objects in simulation. This approach is difficult to implement in a physical robot given the

number of episodes required to learn behaviors.
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Figure 4

A categorization of work using language for human–robot interaction (HRI). This visualization spans efforts that use language to
support efficient robot learning, efforts to use language in order to maximize the effectiveness of HRIs, and the use of robots as
physically situated agents to support language learning.

3.2.4.2. Grounding objects in images. Grounding or captioning objects within images to their

names is an active area of research within deep learning. Initially, this work used classifiers to

recognize an object class within an image (107). It then progressed to captioning images densely,

that is, recognizing all objects within an image (108, 109). A general approach, first described

by Karpathy & Fei-Fei (109), is to align vectorized object representations within the image with

the vectorized representations of sentences used to describe the objects in the image. These ap-

proaches are capable of labeling activities being performed by the objects of interest and also allow

retrieval of images described by natural language (108). They have been implemented in physical

robots in an object retrieval setting by training the robot on simulated images (110, 111).

3.2.4.3. Grounding control from robot perception. Blukis et al. (98) developed a system that

learned to map between navigation instructions and low-level control actions, mediated by the

robot’s sensor input and control actions. This work aimed to perform end-to-end learning from

language to control actions and has since been demonstrated in physical robots.

3.3. Approaches Centered on Human–Robot Interaction

The final broad category of work we consider is that which lies primarily in the area of HRI.While

work in the previous sections is grouped by learning and representation models, here we describe

how NLP research supports and is supported by robots that interact directly with people. It is

often these approaches that create the most robust behaviors and end-to-end systems, drawing on

insights from learning and logic-based methods.

We discuss language-based HRI efforts divided broadly by tasks, considered on a spectrum

(see Figure 4). On one end, language provides a natural supporting mechanism for robot learn-

ing (Section 3.3.1). In this area, language is used as a tool to help robots learn other tasks. On the

other end, robots provide an ideal testbed for learning to understand physically situated language;

here, the robot is a platform for learning grounded language. This subtopic is substantial and has

been covered in Section 3.2. Tied to both areas are efforts whose primary goal is the development

of systems that use language in order to support robust HRI (Section 3.3.2).

3.3.1. Language-based interactions to improve robot learning. Robots that learn have

the potential to automatically adapt to their environment and achieve more robust behavior. In

this section, we describe how language technology can enable more efficient and effective robot
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learning, especially from human teachers. Natural language provides a rich, accessible mechanism

for teaching robots while still being grounded in the physical world.The vast body of literature on

human learning provides questions about learning modalities, information presentation, reward

functions, and interaction-based learning.We describe current work on developing robot systems

that learn about the world from natural language inputs, including efforts on learning from

demonstration (LfD), learning reward functions from language, active learning, and learning how

to elicit instructional language.

When learning physical concepts like object characteristics or actions, the physical referent

must be linked to linguistic structures. This is seen both explicitly, as in referring expressions (e.g.,

“this is a yellow block”), and implicitly, as when connections are learned from the coexistence of

words and percepts during training. Exploring this connection between linguistic references and

their grounded referents is the basis of substantial work on LfD, in which demonstrations connect

the learning concepts and the language used.

In LfD, language is used as a learning signal to improve robot learning and capabilities. Steels

& Kaplan (112) used language and camera percepts to learn novel instance-based objects and

their associations with words. Billard et al. (99) used LfD to ground language with a constrained

vocabulary to sequences of actions demonstrated by the teacher. Chao et al. (113) used LfD to

ground concepts for goal learning, where the concepts are discrete, grounded percepts based in

shared sensory elements with human explanations. Concepts are denoted in words to human par-

ticipants, but language is not part of the learning problem; word meanings are provided to the

system by the designer. Krening et al. (114) used object-focused advice provided by people to im-

prove the learning speed of an agent. Language can also be used to describe actions rather than

perceived objects, as in programming by demonstration, in which demonstrations of actions are

paired with natural language commands (115). Programming by demonstration can also rely on

more complex semantic parsing, as in the approach developed by Artzi et al. (116), in which lan-

guage is interpreted in the context provided by robot state. In all of these papers, humans use

language to provide information, advice, or warnings to the robot to improve task performance.

Language can be used to provide explicit feedback to a learning system. The mechanism for

learning from that feedback can be treated as a learning problem itself. In this framework, language

is learned jointly with policies rather than jointly with direct observations, allowing learning that is

less situation specific (85). This approach can allow a nonspecialist to give an agent explicit reward

signals (117) or can model implicit feedback strategies inherent in human teaching (118, 119).

Robots asking questions about their environment is a form of active learning in which the

learning agent partially or fully selects data points to label. Asking questions that correspond to

a person’s natural teaching behavior (120) is balanced with selecting data that optimize learning,

as queries to a user are a sharply limited resource (121). In general, incorporating active learning

makes learningmore efficient andmakes it possible to learn from fewer data points (122, 123).This

form of learning can be implemented in a domain-independent way, as done by Knox et al. (124),

and can improve efficiency on learning tasks, including both explicit language grounding (125) and

more general robotics problems, such as learning conceptual symbols (126), spatial concepts (127),

or task constraints (128).

Another topic in learning from language provided by nonspecialists is how to correctly elicit in-

formation and demonstrations from people. Chao &Thomaz (129) explored conducting dialogue

correctly, with appropriate multimodal timing, turn-taking, and responsiveness behavior (130).

Learning from nonspecialists also means figuring out what questions to ask; Cakmak & Thomaz

(131) studied how humans ask questions and designed an approach to asking appropriately tar-

geted questions for LfD, while Pillai & Matuszek (80) demonstrated a method for automatically

selecting negative examples in order to train classifiers for positively labeled grounded terms.
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3.3.2. Human–robot interaction using language. HRI is one of the most active areas for

grounded language research.Language provides a natural mechanism for interacting with physical

agents in order to direct their actions, learn about the environment, and improve interactions. At

the same time, interacting with people provides a rich source of information and training data

that robots can learn from in order to improve their capabilities. Language-based HRI is a broad,

active field of study. In this section, we provide an overview of some of the categories of current

research on HRI and language.

Childhood education is a significant area of research for HRI studies (132), both because there

is a chronic shortage of personnel in education and child care and because increasing the role

of technology in childhood education is a critical part of attracting a larger and more diverse

population into STEM fields. Research in this area focuses largely on the role of interactive play

in child development. This play can take the form of acting out stories between children and

robots (133), assisting with language development (134–137), or serving as intelligent tutoring

systems (138, 139).

Language in HRI is often paired with other interaction modalities. Modalities such as gesture

and gaze direction affect everything from deictic (referential or attention-drawing) interactions to

what role a robot may play in a setting (140).There is a growing body of work in which language is

incorporated intomultimodalHRIs (141).Matuszek et al. (32) used a combination of language and

unconstrained, natural human gestures to drive deictic interactions when using language to teach a

robot about objects,whileHuang et al. (92) usedmodeling to evaluate robots’ use of gesture. In the

inverse direction, Pejsa et al. (142) used people’s speech, gaze, and gestures to learn a multimodal

interaction model, which was then used to generate natural behaviors for a narrating robot.

Another key area of HRI research is work on assistive robotics, in which robots perform tasks

designed to support persons with physical or cognitive disabilities. This support can take many

forms; with respect to language, social and cognitive support is most common. Socially assistive

robot systems have been used to engage elderly users in physical exercise (143, 144), incorporating

language pragmatics and anaphor resolution (145, 146) as well as verbal feedback. Verbal robots

have also been explored in the context of autism support (147) and tutoring for deaf infants (148).

4. CLASSIFICATIONS BY PROBLEM ADDRESSED

Most of the above approaches can be applied to more than one communication task. Here we

review those tasks, divided into three sections: understanding communications from a human to

a robot (the largest body of work), generating linguistic communication from a robot to a human,

and two-way systems that endeavor to both understand and generate language.

4.1. Human-to-Robot Communication

Human-to-robot communication is the problem of enabling robots to interpret natural language

directives given by people. Understanding a person’s language requires mapping between words

and actions or referents in the physical world. Two specific subproblems include understanding

commands and information given to the robot by a person.

4.1.1. Giving robots commands. Command understanding is the problem of mapping be-

tween language and physical actions on the part of the robot. One early and widely considered

domain is route direction following, where a mobile robot must interpret instructions on how

to move through an environment. MacMahon (66) created a large data set of route directions in

simulation, which has been used in a number of papers (10, 29). Kollar et al. (14) used a statis-

tical approach to interpret instructions for a robotic wheelchair. Shimizu & Haas (149) used a
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conditional random field approach to learn word meanings, and Matuszek et al. (77) used a ma-

chine translation approach to learn to follow instructions in real-world environments, including

counting and procedural language such as “the third door” or “until the end of the hall.” Robotic

platforms used for this problem include a robotic wheelchair (14, 66), robotic unmanned aerial ve-

hicles (92), and mobile robots (150). Understanding navigational commands remains a significant

and ongoing area of research (151).

A second class of problems is interpreting natural language commands for manipulator robots.

This problem has been studied in the subdomains of interpreting textual recipes (152, 153), fol-

lowing instructions for a robotic forklift (83), and interpreting instructions to a tabletop arm (32,

67) and in Baxter robots (73, 74). Such language may refer only to the robot’s motion; for exam-

ple, Correa et al. (154) created a robotic forklift with a multimodal user interface that interpreted

shouted commands such as “stop!”However, since manipulators manipulate things in the world at

least some of the time, this class of commands is frequently blended with understanding language

about objects.

Another frequently studied task is understanding instructions in cooking, particularly focusing

on following the semiconstrained language of recipes. Beetz et al. (153) used a reasoning system

to interpret recipes and cook pancakes. Tasse & Smith (155) created a data set of recipes mapped

to a formal symbolic representation, while Kiddon et al. (156) created an unsupervised hard

expectation–maximization approach to automatically map recipes to sequenced action graphs;

neither system used robots. Bollini et al. (152) created a system for interpreting recipes but did

not ground ingredients into perception. Although the language of recipes is constrained, under-

standing them remains a challenging problem, in part because ingredients are combined into new

things that do not exist at the time of original interpretation—for example, flour, eggs, water, and

sugar are transformed into a batter, which is then transformed into a quick bread. Interpreting

forward-looking language that maps to objects that do not yet exist is a difficult problem. Simi-

larly, instructions often require the robot to detect certain perceptual properties, as in “cook until

the cornbread is brown.” Correctly detecting these properties requires advances in perception

combined with language to create or select a visual detector to identify when this condition has

been met.

4.1.2. Giving robots information about the world. A second element of language interpre-

tation is enabling robots to use language to improve their knowledge of the world. Compared

with instruction following, this topic is a less studied area, but there is nonetheless a rich array of

approaches. Cantrell et al. (157) created a system that updates its planning model based on human

instructions, while the system ofWalter et al. (158) incorporates information from language into a

semantic map of the environment. Pronobis & Jensfelt (159) described a multimodal probabilistic

framework that incorporates semantic information from a wide variety of modalities, including

perceived objects and places as well as human input.

We briefly discuss two specific important subproblems in human-to-robot communication:

how robots can resolve references to and understand descriptions of objects, and understanding

descriptions involving spatial relationships. One of the major areas in which robots have the po-

tential to help people is in interacting with objects in the environment, meaning it is critical to

be able to learn about and understand physical references, both spatial (as in “the door near the

elevators”) and descriptive (as in “the yellow one between the two toys” or,more abstractly, “a nice

view”).

4.1.2.1. References to objects. Robots may need to retrieve, manipulate, avoid, or otherwise be

aware of objects being referred to in language. Language about objects and landmarks in the world
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can be broken down by level of specificity; we roughly categorize language at these different levels

of abstraction as (a) general language about object characteristics, such as color, shape, or size (32,

160, 161); (b) descriptions of objects at the type, or categorymembership, level,which encompasses

approaches that tie language into object recognition (80, 96, 162, 163); and (c) language about

particular instances of objects, such as “my mug” (14, 62, 83, 112). These categories often overlap.

For example, the first step for recognizing an instance is often finding all objects in that category,

or object types might be further differentiated by their attributes, as in “the yellow block.”

Another issue is interpreting complex descriptions. For example, one route direction corpus

contains the instruction “you will see a nice view,” referring to a view out of a set of windows

the robot would pass. This expression requires the robot to make a subjective judgment about the

world. A corpus of object descriptions contains the phrase “a small pyramid like the pharaohs lived

in” (32), which requires differentiating direct physical descriptions from background knowledge.

In addition, it is not always clear what defines an object. A bottle consists of a bottle and a cap, and

a person referencing “the bottle” may mean both, or they may say, “Grab the bottle and then turn

the cap,” referring to them separately. For assembly tasks, a part such as a screw and a table leg may

combine to form a completed assembly, the table (94, 164). Grounding these sorts of expressions

is an open problem.

4.1.2.2. Referring-expression resolution. Understanding natural language expressions that de-

note particular things in the robot’s environment is another key subproblem.Referring expressions

may occur in commands (e.g., “go through the door near the elevators,” in which the robot must

identify the referenced door) as well as manipulation instructions (e.g., “pick up the green pep-

per”) (62, 83). Chai et al. (165) created a system that interprets multimodal referring expressions

using a graph-based approach. Matuszek et al. (32) and Whitney et al. (166) merged information

from language and gesture to interpret multimodal referring expressions in real time using a fil-

tering approach and a joint classification approach, respectively; an image from Matuszek et al.

(32) is shown in Figure 1d. Golland et al. (167) generated spatial descriptions using game theory

to generate human-interpretable referring expressions in a virtual environment.

4.1.2.3. Spatial relationships. Interpreting spatial relationships is a well-known, complex prob-

lem in NLP. For route instructions, the language may take the form of “the door near the eleva-

tors” or “past the kitchen”; for object descriptions, it may take the form of “at the top left corner.”

Understanding these instructions frequently requires not only referring-expression resolution to

understand phrases referring to landmarks but also pragmatic disambiguation of possible mean-

ings. Spatial prepositions are frequently used to refer to objects, places, or paths in the physical

world. Spatial prepositions are a closed-class part of speech; a typical language has only a few,

and new ones are rarely added. Cognitive semantics has focused on the structure of spatial lan-

guage and how humans use it, especially the argument structure as well as semantic features that

allow it to be interpreted (36, 168). Some work has focused specifically on spatial prepositions (11,

127, 169, 170). This problem also arises in the context of referring-expression resolution, since

expressions such as “near” or “between” require identifying a place or an object from distractors.

4.2. Robot-to-Human Communication

In the context of natural language user interfaces, people frequently expect spoken responses when

they speak to a system such as a robot. Language is an obvious way to engage in active disambigua-

tion, convey information, and provide context. Researchers have studied the problem of enabling a

robot to produce natural language to answer questions, ask for help, or provide instructions. This
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problem is the inverse of language understanding: The robot desires to communicate something

to the person and must find words that convey its ideas. Subproblems include robots instructing

people, robots asking questions, and robots informing people.

4.2.1. Robots instructing people and asking questions. Often a robot might use language to

try to get a person to do something, typically by asking for help or asking the person to carry out an

action. The most basic approach to language generation is template-based or scripted approaches,

in which a designer encodes the words the robot will say. For example, Fasola & Matarić (146)

used templates to generate language to motivate physical exercise for older adults (as shown in

Figure 1h). This approach is straightforward and can result in sophisticated sentences but is lim-

ited in its adaptability to novel environments and situations. Other approaches focus on enabling

a robot to adaptively generate sentences based on the context. Knepper et al. (164) generated

natural language requests for help in assembling Ikea furniture from untrained, distracted users.

CoBots navigate an office environment delivering objects and ask for navigation help using a

human-centered planner to determine whom to ask for assistance (171).

A second sort of instruction is actively using language to induce a person to provide additional

information, for example, by asking a question.Deits et al. (93) presented an algorithm to generate

targeted questions based on information theory to reduce confusion. Rosenthal & Veloso (172)

modeled humans as information providers, using a partially observable Markov decision process

to ask questions when the robot encountered problems. Thomason et al. (173) created a system

for opportunistically collecting information from someone about objects in its environment (in

which a robot asks about objects near a person, including questions irrelevant to the immediate

task) and learning about objects from attributes (174) (as shown in Figure 1c). Pillai et al. (125),

Cakmak & Thomaz (131), and others have used active learning to select focused questions that

allow the robot to efficiently collect information.All of these approaches use statistical frameworks

to generate instructions or queries given the robot’s current physical context.

4.2.2. Robots informing people. In addition to trying to instruct people with language, a robot

may also need to inform people about aspects of the world. For example, Chen et al. (84) cre-

ated a system that learns to generate natural language descriptions of RoboCup soccer games by

probabilistically mapping between word meanings and game events. Mutlu et al. (175) created a

storytelling robot that uses language as well as gaze to engage a human listener. Cascianelli et al.

(176) created a system that enables a robot to learn to describe events in a video stream and re-

leased a data set for service robotics applications. All of these applications require the robot to

communicate with a person about aspects of the environment.

4.2.3. Generating references to objects. For the same reasons that a robot may need to un-

derstand references to things in its environment (see Section 4.1.2.1), a robot may need to gen-

erate referring expressions about objects, landmarks, or people. Dale & Reiter (177) carried out

seminal work on generating referring expressions for definite noun phrases referring to physical

objects, such as “the red cup,” following Gricean maxims of quantity and quality of the communi-

cation (178) and focusing on computational cost.This approach assumes a symbolic representation

of context, rather than grounding to perception.Golland et al. (167) generated spatial descriptions

using game theory to produce referring expressions in a virtual environment that are interpretable

by a human partner. Mitchell et al. (179) generated expressions that refer to visible objects that

a robot might observe with its camera. Tellex et al. (94) provided an inverse-semantics algorithm

for generating requests for help, including expressions such as “the black leg on the white table”

(shown in Figure 1a). Fang et al. (180) created a system for collaborative referring-expression
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generation using a graph-based approach that changes the generated language based on human

feedback, while Zender et al. (181) created a system for enabling a mobile robot to generate natu-

ral language referring expressions for objects in the environment and to resolve expressions, using

context to determine how specific or general to make the resolution. From a robotics perspective,

these examples represent different contexts in which a physical agent may use language production

to improve its ability to accomplish real-world tasks or goals.

4.3. Two-Way Communication

Two-way communication involves enabling a collaborative interaction between a human and a

robot, either asynchronously or in dialogue. Such a robot must both interpret a person’s commu-

nicative acts and generate communicative actions of its own. Two-way communication requires

more than simply combining language understanding and generation; the robotmust reason about

uncertainty in its own percepts, retain conversational state, react quickly to a person’s input, and

work toward a communicative collaboration. Partly as a result of these challenges, much work

has focused on issues that arise from building robotic systems that engage in dialogue with a user

and the associated design questions that arise. A variety of end-to-end robotic systems have been

created that use language. These systems typically involve the integration of many software and

hardware components in order to create an end-to-end user interaction. The focus is often on

multimodal communication, where language constitutes one communication mode in the overall

interaction.

For example, Bohus & Horvitz (182) created a computational framework for turn-taking that

allows an embodied conversational agent to take and release the conversational floor using gaze,

gesture, and speech. Some of these systems communicate by understanding language, performing

actions, and seeking help when problems are encountered. Matuszek et al. (32) created a system

for learning from unscripted deictic gesture combined with language in order to perform manip-

ulations. Okuno et al. (183) created a robot for giving route directions by integrating language

utterances, gestures, and timing. Fasola & Matarić (146) created a socially assistive robot system

designed to engage elderly users in physical exercise.Veloso et al. (184) created the CoBots,mobile

robots that engage in tasks in an office environment, such as fetching objects. Marge et al. (185)

created a heads-up, hands-free approach for controlling a pack-bot as it moved on the ground.Tse

&Campbell (186) created a system that incorporates and communicates probabilistic information

about the environment. A more direct approach is to learn the spatial semantics of actions directly

from language (187) (shown in Figure 1b). The CoBot systems learned to follow commands such

as “take me to the meeting room,” engaging in dialogue with humans in their environment to

improve their abilities (188) (shown in Figure 1f ).

While these robots understand language, the robot-to-human side of communication can take

a form other than, or in addition to, speech. This multimodality reflects the multimodal nature of

interagent communication: Even when talking, humans expect to be able to use gesture, gaze, and

body language, as well as utterance timing and even prosody (voice tone and inflection).Language-

using robots must therefore be aware of these expectations and work to address or mitigate them;

failing to do so runs the risk of frustrating users when attempting to communicate.

5. CONCLUSION AND OPEN QUESTIONS

Language-using robots require models that span all areas of robotics, from perception to planning

to action.Researchers from diverse communities have contributed to ongoing work in this exciting

area, and much remains to be done. In this article, we have reviewed methods for robots that use
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language. We covered technical approaches, ranging from formal methods to machine learning

to HRI approaches. We discussed problems to solve for robotic language use, including learning

from and receiving information from people, asking questions, and giving people instructions.We

presented some of the most immediately relevant NLP problems, such as referring-expression

resolution. Additionally, we briefly reviewed work in related areas, including linguistics, cognitive

science, computational linguistics, vision and language, ontologies and formal representations, and

nonverbal communication.

Research in formal methods has pointed toward mechanisms for capturing complex linguistic

phenomena such as anaphora resolution, interpreting commands about ongoing action, and ab-

stract objects. However, statistical methods often use simpler representations focused on concrete

noun phrases and commands for ease of learning. As more sophisticated formal models mature,

statistical methods will enable learning of formal-methods-based representations, combining ben-

efits of robustness with more capable and complex language understanding. At the same time,

advances in deep learning have enabled approaches that can learn from less data with end-to-end

supervision. We expect that deep learning applied to robotic language use will build on existing

work to learn with less and less supervision over time. We see opportunities for sophisticated se-

mantic structures from formal methods combined with learning approaches from deep learning

to create a new generation of language-using robots capable of robustly interpreting sophisticated

commands produced by untrained users.

The power and challenge of language lie in its ability to construct arbitrarily fine-grained and

specific sentences that apply to all parts of the robot and its environment. As a result, robust

language-using robots must integrate language with all parts of a robotic system, a formidable

task. As we move toward language-using collaborative robots, we need more robust models for

the entire planning and perceptual stack of the robot in order to integrate with natural language

requests, questions people might pose, learning from language, and the generation of appropri-

ate language and dialogue by the robot. Similarly, the robot must combine verbal and nonverbal

modalities in interactive systems in order to fully understand how people interact and to detect

and recover from errors. Although daunting, the scale and complexity of the problems described in

this survey are indicative of the potential power in bringing language into robotics and in building

flexible, interactive, and robust systems by bringing the fields together.
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