
March 2005

NASA/TM-2005-213540

ROBUS-2: A Fault-Tolerant Broadcast

Communication System

Wilfredo Torres-Pomales, Mahyar R. Malekpour and Paul S. Miner

Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

Program Office plays a key part in helping NASA

maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for NASA’s

scientific and technical information. The NASA STI

Program Office provides access to the NASA STI

Database, the largest collection of aeronautical and

space science STI in the world. The Program Office is

also NASA’s institutional mechanism for

disseminating the results of its research and

development activities. These results are published by

NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but having

less stringent limitations on manuscript length

and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services that complement the STI

Program Office’s diverse offerings include creating

custom thesauri, building customized databases,

organizing and publishing research results ... even

providing videos.

For more information about the NASA STI Program

Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7121 Standard Drive

 Hanover, MD 21076-1320

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

March 2005

NASA/TM-2005-213540

ROBUS-2: A Fault-Tolerant Broadcast

Communication System

Wilfredo Torres-Pomales, Mahyar R. Malekpour and Paul S. Miner

Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)

7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Acknowledgment

This work was supported, in part, by the FAA William J. Hughes Technical Center under

interagency agreement DTFA03-96-X90001.

iii

Abstract

The Reliable Optical Bus (ROBUS) is the core communication system

of the Scalable Processor-Independent Design for Enhanced Reliability

(SPIDER), a general-purpose fault-tolerant integrated modular

architecture currently under development at NASA Langley Research

Center. The ROBUS is a time-division multiple access (TDMA)

broadcast communication system with medium access control by means

of time-indexed communication schedule. ROBUS-2 is a developmental

version of the ROBUS providing guaranteed fault-tolerant services to the

attached processing elements (PEs), in the presence of a bounded

number of faults. These services include message broadcast (Byzantine

Agreement), dynamic communication schedule update, clock

synchronization, and distributed diagnosis (group membership). The

ROBUS also features fault-tolerant startup and restart capabilities.

ROBUS-2 is tolerant to internal as well as PE faults, and incorporates a

dynamic self-reconfiguration capability driven by the internal diagnostic

system. This version of the ROBUS is intended for laboratory

experimentation and demonstrations of the capability to reintegrate

failed nodes, dynamically update the communication schedule, and

tolerate and recover from correlated transient faults.

iv

v

Table of Contents

1. Introduction ...1

1.1. Basic services..2

1.2. Additional features..2

1.3. Document organization...3

2. System overview..5

2.1. System behavior..5

2.1.1. Basic states ..5

2.1.2. Steady-state operation..5

2.2. System structure..7

2.3. Node behavior...8

2.4. Node structure...8

2.5. Distributed coordination ...9

2.6. Redundancy management ...10

2.6.1. Fault containment ..10

2.6.2. Error detection ...10

2.6.3. Diagnosis ...11

2.6.4. Reconfiguration ...12

2.6.5. Error containment ..12

2.6.5.1. Fail-stop nodes..13

2.6.5.2. Input error detection ...13

2.6.5.3. Dynamic voting ..13

2.7. Major operational modes ..14

2.8. Startup and restart ...15

3. Communication and distributed coordination..17

3.1. ROBUS Messages ..17

3.2. Node process model..18

3.3. Communication between BIUs and RMUs...18

3.4. Distributed coordination ...20

3.5. Communication between PEs and BIUs ...21

4. Diagnostic system..25

4.1. System structure..25

4.2. Diagnostic policy..26

4.2.1. Required properties..27

4.2.2. General approach...27

4.2.3. Suspicion generation..29

4.2.4. Accusation generation..30

4.2.5. Conviction generation..31

4.2.6. Trust...31

4.2.7. Voter eligibility..31

4.2.8. Local failure and bus failure conditions...32

4.2.9. Unexpected messages ..32

5. Clique Preservation..35

5.1. Schedule Update ...35

5.1.1. Schedule Update protocol..36

5.1.2. Schedule update assessment ..39

5.1.3. Application of the schedule update assessment ...39

5.2. PE Communication...39

vi

5.2.1. PE Broadcast protocol ...40

5.2.2. Accusation Exchange protocol ..42

5.3. Synchronization Preservation ...44

5.4. Collective Diagnosis ...47

5.4.1. Collective Diagnosis protocol for RMU defendants..48

5.4.2. Collective Diagnosis protocol for BIU defendants ..51

5.4.3. Concurrent diagnosis for RMU and BIU defendants...54

6. Self-Test ..55

7. Clique Detection ..57

7.1. Local Diagnosis Acquisition...58

7.2. Synchronization Acquisition...58

7.2.1. Frame Synchronization ..59

7.2.2. Synchronization Capture..59

7.3. Collective Diagnosis Acquisition ...61

8. Clique Join...63

9. Clique Initialization ...65

9.1. Initial Diagnosis..66

9.2. Initial Synchronization..66

9.3. Collective Diagnosis ...68

10. Concluding remarks...69

10.1. ROBUS-2..69

10.2. ROBUS-X...70

Appendix A. ROBUS fault-tolerance fundamentals..77

A.1. Faults, errors, and failures..77

A.2. Fault characteristics ...77

A.2.1. Cause...77

A.2.2. Correlation and extent...78

A.2.3. Activity ...78

A.2.4. Duration ..78

A.2.5. Consistency of perception...78

A.2.6. In-line detectability ...79

A.2.7. Diagnosability...79

A.3. Fault and error containment ...79

A.4. Node health and inclusion status..80

A.5. Fault model ..80

A.5.1. Instantaneous behavioral manifestations...80

A.5.2. Node fault model ..81

A.6. Basic design of the ROBUS protocols...82

A.6.1. Properties of protocol stages ...83

A.6.1.1. Voting with exact communication ...83

A.6.1.2. Voting with inexact communication ..84

A.6.2. Properties of protocol phases ..85

A.6.2.1. Agreement generation phase..86

A.6.2.1.1. Voting with exact communication ...86

A.6.2.1.2. Voting with inexact communication ..87

A.6.2.2. Agreement propagation phase..88

A.6.2.2.1. Voting with exact communication ...89

A.6.2.2.2. Voting with inexact communication ..90

A.7. Stage operations of ROBUS protocols...92

A.7.1. Event voting..93

vii

A.7.2. Routing ...93

A.7.3. Word voting ..93

A.7.4. Bit voting ..93

A.8. ROBUS fault assumptions ...94

A.8.1.1. Clique Initialization and Clique Preservation modes...94

A.8.1.2. Clique Join mode ...94

A.8.1.3. Clique Detection mode ..95

Appendix B. Point-to-point communication..97

B.1. Physical oscillators and local-time clocks..97

B.2. Synchronization of asynchronous signals ..98

B.3. Single-message communication...99

B.3.1. Reception delay...100

B.3.2. Estimate of the local-time at the source ..101

B.3.3. Expected local time of reception...101

B.4. Coordination for synchronous communication ..102

B.5. Message streams ..105

B.5.1. Message delivery rate..105

B.5.2. Expected local time of reception...107

B.5.3. Message reception rate..107

B.5.3.1. Non-overlapping reception intervals ..108

B.5.3.2. Overlapping reception intervals ...108

B.5.4. Load size for a message reception buffer ..108

B.5.4.1. Combined message synchronization and buffering..108

B.5.4.2. Separate message synchronization and buffering...110

Appendix C. Analysis of the clock synchronization protocols ..113

C.1. Clock synchronization system..113

C.2. Timing model...115

C.2.1. Computation Module ..115

C.2.2. Communication Module..116

C.3. First stage ...117

C.3.1. Expected time of reception for process P1..117

C.3.2. Bound on the observed relative skew of received messages for process P1 ...117

C.3.3. Relative skew of the Accept outputs for process P1 ...118

C.4. Second stage...119

C.4.1. Effective reception delay for process P2...119

C.4.2. Expected time of reception for process P2..120

C.4.3. Bound on the observed relative skew of received messages for process P2 ...121

C.4.4. Relative skew of the Accept outputs for process P2 ...122

C.5. Third stage ...122

C.5.1. Effective reception delay for process P3...123

C.5.2. Expected time of reception for process P3..123

C.5.3. Bound on the observed relative skew of received messages for process P3 ...124

C.5.4. Relative skew of the Accept outputs for process P3 ...124

C.6. Fourth stage..125

C.6.1. Effective reception delay for process P4...125

C.6.2. Expected time of reception for process P4..126

C.6.3. Bound on the observed relative skew of received messages for process P4 ...127

C.6.4. Relative skew of the Accept outputs for process P4 ...127

C.7. Synchronization capture...128

C.7.1. Bound on the observed relative skew of received messages for process P3C...128

C.7.2. Relative skew of the Accept outputs for process P3C...128

C.7.3. Bound on the observed relative skew of received messages for process P4C...129

C.7.4. Relative skew of the Accept outputs for process P4C...129

C.8. Resetting the local time..129

viii

C.8.1. Relative skew of the local-time reset for process P4...129

C.8.2. Relative skew of the local-time reset for process P4C..130

C.8.3. Reset delay for process P3 ..130

C.8.4. Relative skew of the local-time reset between processes P3, and P4 or P4C..132

C.8.5. Relative skew of the local-time reset for process P3...132

C.8.6. Relative skew of the local-time reset for process P3C..132

C.8.7. Reset delay for process P2 ..133

C.8.8. Relative skew of the local-time reset between processes P2, and P3 or P3C..134

C.8.9. Relative skew of the local-time reset for process P2...134

C.8.10. Relative skew of the local-time reset for a set including processes P2 and P3C...................................134

C.8.11. Relative skew of the local-time reset for a set including processes P2 and P3135

C.8.12. Relative skew of the local-time reset for a set including processes P2 and P4C...................................135

C.8.13. Relative skew of the local-time reset for a set including processes P2 and P4135

C.8.14. Relative skew of the local-time reset for a set including processes P3 or P3C136

C.8.15. Relative skew of the local-time reset for a set including processes P3 and P4C...................................136

C.8.16. Relative skew of the local-time reset for a set including processes P3 and P4137

C.8.17. Relative skew of the local-time reset for a set including processes P3C and P4C................................137

C.8.18. Relative skew of the local-time reset for a set including processes P4 and P4C...................................138

C.8.19. Relative skew of the local-time reset for a set including all the synchronizing nodes138

C.9. Relative local-time skews for source-receiver pairs...138

C.9.1. Duration of the synchronization protocol execution ...138

C.9.2. Bounds on the resynchronization period...140

C.9.3. Relative skew between P2-synchronized BIUs and P3- or P3C-synchronized RMUs141

C.9.4. Relative skew between P3-synchronized RMUs and P4- or P4C-synchronized BIUs141

C.9.5. Bound on the relative local-time skew for all the nodes executing the synchronization protocol141

C.9.6. Generic relative local-time skew between sources and receivers for synchronous communication142

C.10. Specifying the Computation Process and Send Process delays..142

C.10.1. Computation Process delays..143

C.10.2. Send Process delays ..144

C.10.2.1. Send delay for process P0 ..146

C.10.2.1.1. Synchronization Preservation...146

C.10.2.1.2. Initial Synchronization ...147

C.10.2.2. Send delay for process P1 ..148

C.10.2.3. Send delay for process P2 ..149

C.10.2.4. Send delay for process P3 ..149

C.11. Miscellaneous considerations...150

C.11.1. Frame Synchronization ...150

C.11.2. Executing Synchronization Preservation after Synchonization Acquisition ...152

C.11.3. Time service accuracy for the Synchronization Preservation protocol ...152

Appendix D. Analysis of the Schedule Update protocol ...155

D.1.1. PE classification..156

D.1.2. PE-BIU pair classification ..156

D.1.3. Agreement generation phase...156

D.1.4. Agreement propagation phase...158

D.1.5. Schedule assessment ...159

Appendix E. Analysis of the PE Broadcast and Accusation Exchange protocols ...161

E.1.1. Bus access pattern ...161

E.1.2. PE Broadcast protocol ...161

E.1.3. Accusation Exchange protocol ..163

Appendix F. Analysis of the diagnostic system...167

F.1. Suspicion-based accusations...167

F.1.1. Processing suspicions against nodes of the opposite kind ...168

F.1.2. Processing suspicions against nodes of the same kind ..168

ix

F.2. Collective Diagnosis protocol ..169

F.2.1. Agreement generation phase..170

F.2.2. Agreement propagation phase ...172

F.3. Clique membership...172

Appendix G. Analysis of startup and restart ..175

G.1. Recovery limitations ..175

G.2. Clique initialization..177

G.2.1. Power-one enable..177

G.2.2. Local failure or bus failure..177

G.2.3. Self-Test mode..178

G.2.3.1. Duration of the Self-Test mode..178

G.2.3.2. Bound on the relative local-time skew at the end of the Self-Test mode...179

G.2.4. Clique Detection mode ...179

G.2.4.1. Local Diagnosis Acquisition..179

G.2.4.1.1. Bound on the duration of an observation phase ...180

G.2.4.1.2. Bound on the duration of Local Diagnosis Acquisition ...180

G.2.4.2. Synchronization Acquisition..180

G.2.4.2.1. Frame Synchronization ..180

G.2.4.3. Synchronization Capture..180

G.2.4.3.1. Bound on the duration of the Synchronization Capture protocol...181

G.2.4.4. Bound on the duration of Synchronization Acquisition...181

G.2.4.5. Bound on the duration of the Clique Detection mode..181

G.2.4.6. Bound on the relative local-time skew at the beginning of the Clique Initialization mode182

G.2.5. Initial Diagnosis ..182

G.2.5.1. Communication between processes P0 and P1 ..182

G.2.5.2. Bound on the duration of the Initial Diagnosis protocol..184

G.2.6. Initial Synchronization..184

G.2.6.1. Bound on the relative skew at the beginning of the Initial Synchronization protocol184

G.2.6.2. Communication between processes P0 and P1 ..184

G.2.6.3. Bound on the duration of the Initial Synchronization protocol..184

G.2.7. Bound on the relative skew during Initial Diagnosis and Initial Synchronization..................................185

G.3. Clique join ...186

References ...187

x

1

1. Introduction

The Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) is a general-purpose

distributed computer architecture currently under development at NASA Langley Research Center. The

purpose of this effort is to design a flexible architecture that can be configured to satisfy a wide range of

performance and reliability requirements, while preserving a consistent interface to application programs.

One of the development goals is to develop the architecture such that it efficiently scales from a small

configuration supporting a single aircraft function to a large distributed configuration performing multiple

functions simultaneously. The architecture is expected to support functions of various criticality levels,

including ultra-reliable and safety-critical aircraft functions with hard real-time deadlines.

SPIDER is designed as an integrated modular architecture (IMA) composed of a communication

system and a set of processing elements (PEs). The Reliable Optical Bus (ROBUS) is a fault-tolerant,

time-division multiple access (TDMA) broadcast communication system with medium access control by

means of a time-indexed communication schedule. The ROBUS provides a set of basic communication

services, and its essential goal is to ensure reliable communication between all pairs of fault-free PEs.

The PEs perform two basic functions: execute the application software and run the distributed operating

system (SPIDER-OS). The application-specific software executed by individual PEs may include

processing of data, computing control functions, reading sensors, driving actuators, or providing a

communication path to other networks (e.g., a gateway function). The SPIDER-OS handles the

communication, process management, and redundancy management at the PE level. The SPIDER-OS

consists of a commercial off-the-shelf (COTS) real-time operating system (RTOS) and a middleware

layer located between the operating system and the application software. The SPIDER middleware

provides an interface between applications running on the PEs and handles all the SPIDER-specific

functions that are not a concern of application-specific software. The middleware enables the

implementation of fault-tolerant strategies combining the PEs to provide fail-operational and fail stop

capabilities in a way that is transparent to the application software. The redundancy management

strategies at the PE level are flexible and can be adapted to support dissimilar processors.

The ROBUS is the central feature of SPIDER in the sense that it provides a set of basic services and

guarantees upon which higher-level services are built. The approach selected for the development of

SPIDER includes the design and implementation of concept demonstration versions of the ROBUS.

Although it has fairly straightforward behavior at the external interfaces, internally the ROBUS is in fact

a distributed system consisting of dedicated protocol processors that perform ROBUS-specific functions

and are interconnected by a lower-level communication network. The developmental versions of the

ROBUS will be leveraged in laboratory investigations to assess the effectiveness of the distributed

protocols and the redundancy management strategies and to expose areas where further research and

development is required. These demonstration versions of the ROBUS will also be used as test beds for

the development of the SPIDER OS.

This document provides a description of ROBUS-2, an instance of the ROBUS designed to

demonstrate the following bus capabilities: re-integration of repaired nodes, dynamic update of the

communication schedule, and fault-tolerance and recovery from correlated transient faults. This instance

of the ROBUS also serves as a design case for the study of robustness and efficiency in implementations

of the error detection, diagnosis, and reconfiguration strategies developed up to this point. In addition,

ROBUS-2 is intended to demonstrate that the bus can achieve a PE-message throughput that approaches

the available bandwidth at the physical communication layer, while preserving the fault-tolerance

guarantees.

2

The first version of the bus, ROBUS-1, is described in [Miner 02]. The design of ROBUS-2 is based

on the unified fault-tolerance protocol discovered by Miner, et al [Miner 04]. That protocol is a

generalization and extension of the Byzantine fault-tolerance protocol introduced by Davies and Wakerly

[Davies 78].

[Rushby 03] presents a comparison of bus architectures for safety-critical applications, including

SAFEbus, TTA, FlexRay, and SPIDER.

1.1. Basic services

ROBUS-2 provides four basic fault-tolerant services.

• Message broadcast: Every scheduled message sent by a PE is delivered to all of the properly

working PEs. Irrespective of the status of the source PE, all of the properly working PEs will agree

on the content of each message. If the source PE is working properly, all of its messages will be

received exactly as they are sent.

• Communication schedule update: The PEs can dynamically modify the bus access pattern by

downloading a new communication schedule to the ROBUS.

• Time reference: ROBUS-2 provides an accurate and precise time reference to the PEs, which they

can use to coordinate their actions.

• Self-diagnosis: ROBUS-2 can detect and diagnose internal failures with a high degree of coverage.

Diagnosed component failures are periodically reported to the PEs so they can react appropriately

according to their application.

1.2. Additional features

Other features of ROBUS-2 include the following.

• Time-triggered operation: Normal activity on the bus is controlled by time-indexed internal

operation schedules that specify exactly when to begin the processing for each service and, for most

protocols, exactly when to start all the transmissions. In addition, a highly effective fault-tolerant

time synchronization protocol enables the bus to measure time with fine resolution. These are critical

elements that give the bus the ability to deliver services with predictable timing, even in the presence

of faults.

• Communication schedule enforcement: ROBUS-2 grants access to the bus only as indicated by the

communication schedule. The enforcement mechanism ensures that faulty PEs do not interfere with

other PEs accessing the bus.

• Self-reconfiguration: Internal error detection and diagnosis allows ROBUS-2 to quickly identify and

neutralize failed internal components. These mechanisms also allow the bus to re-integrate repaired

components.

• Internal-fault masking: ROBUS-2 incorporates a fault-masking capability that allows it to tolerate a

3

bounded number of undiagnosed internal component failures.

• Fault-tolerant startup and restart: The error handling mechanisms are active during initialization.

This enables the bus to start up with variable initial configurations and in the presence of component

failures. In addition, the error handling mechanisms enable ROBUS-2 to detect many transient errors

and take appropriate actions to clear and re-integrate the affected components. These mechanisms

coupled with the startup capability give ROBUS-2 the means to recover from some scenarios of

massive transient faults affecting the system.

• PE-fault tolerance: ROBUS-2 design allows it to maintain internal coordination and continue service

delivery independently of the number of failed PEs. Error detection applied to the communication

schedule updates enables the detection of invalid schedules, in which case ROBUS-2 activates a

default schedule to ensure that the PEs can continue to communicate.

This version of the ROBUS is intended for implementations with a relatively small number of PEs,

say fewer than seven. Future versions will include various design optimizations to enable efficient

implementations with a much larger number of PEs.

1.3. Document organization

This document is intended to be a comprehensive and self-contained design reference including

description and analysis. The following sections describe the design of ROBUS-2 in detail. The

presentation begins with an overview of the behavior and structure of the bus. This is followed by a

description of the message format and the distributed coordination strategy for the implementation of the

ROBUS-2 protocols. The diagnostic system, including the diagnostic policy, is described. Then, the

modes of operation of the bus are presented, including descriptions for each of the protocols. The

appendices present relevant background concepts and the basic theory of fault tolerance and

communication, as well as analysis for the ROBUS-2 protocols and the startup and restart capability.

Throughout, the document provides insight into the operation of the design, including how to set up

critical aspects of the system for an actual physical implementation.

From this point on, we refer to the bus described here simply as “ROBUS”. It should be understood

everywhere, unless explicitly stated otherwise, that we are referring to the ROBUS-2 version of the bus,

and not about ROBUS in general.

4

5

2. System overview

The following introduces the design of the ROBUS and serves as an overall reference for later

sections, which cover particular design elements in detail.

2.1. System behavior

This section presents a brief overview of the behavior of the ROBUS.

2.1.1. Basic states

Figure 2.1 shows a simplified view of the high-level state transitions. The bus is deactivated by

cutting off power to the system. When enabled, it executes an initialization routine and then proceeds to

begin service delivery. The bus will remain engaged until it is deactivated or a failure condition is

detected. If a failure occurs, the bus will try to re-establish service delivery as soon as possible. For

ROBUS-2, all bus failures are presumed to be transient. Thus, the bus is designed to never give up trying

to return to normal operation.

Figure 2.1: Simplified high-level state-transition graph for ROBUS

2.1.2. Steady-state operation

The steady-state behavior of the ROBUS consists of a simple cyclic operation. As illustrated in Figure

2.2, in each cycle the bus goes through a predetermined sequence of protocols to deliver the expected

services: time reference, self-diagnosis, communication schedule update, and PE message broadcast.

Note that Figure 2.2 is not drawn to scale. Most of the time in a cycle (say, over 90%) is available for the

broadcast service.

Disabled

Initializing

Engaged

Power-on enable

Failure

Enabled

Ready

Deactivated

6

Figure 2.2: Service delivery sequence

The Time Reference service provides a periodic time update in the form of a dedicated message

simultaneously broadcast from the bus to the PEs. The period between updates, called the re-

synchronization period, is nominally specified before run time. The time reference indicates the time

kept by the bus, which is not synchronized to an external time source. (The PEs can maintain dedicated

time clocks synchronized to an external time reference independently from the ROBUS time service.

Those clocks would be updated periodically with adjustments agreed to by the PEs using an agreement

protocol and communication via ROBUS.)

During Self-Diagnosis, the bus sends out to the PEs the latest available results of internal diagnosis.

The interval from the end of one self-diagnosis to the end of the next is called a diagnostic cycle. The

protocol used for this service ensures that the PEs receive consistent diagnostic information. This

information can be used by the PEs for process and redundancy management decisions at the SPIDER

level.

During Schedule Update, all the PEs simultaneously send their desired schedule to the bus. The

schedule specifies the number of messages that will be transmitted by each PE during the next broadcast

service. Ideally, all the PEs agree on the communication schedule before it is sent to the ROBUS.

However, the ROBUS is designed to tolerate a condition in which there is no agreement among the PEs.

This is accomplished by using error detection and an agreement generation protocol. If the ROBUS

detects that the received schedule is invalid, it will reject it and a default schedule will be used. The final

decision on the schedule to be used is forwarded back to the PEs.

In PE Broadcast, the ROBUS grants bus access to individual PEs according to the communication

schedule. An interactive consistency protocol is used for each scheduled message to ensure that the PEs

receive consistent messages. The bus access pattern is a time-indexed, as-soon-as-possible (ASAP)

round-robin sequence. Figure 2.3 provides an example of the access pattern. The PEs are identified

according to the statically assigned identification numbers which uniquely identify each ROBUS port.

The PEs access the bus in ascending order according to the port identification numbers. The first

scheduled message is sent at some predetermined time. The interval between the send time of one

message and the send time of the next (known as the data introduction interval or DII) [De Micheli 94]

is constant. After all the scheduled messages for one PE have been sent, the messages for the next PE are

Self-

Diagnosis

PE

Broadcast
Time

Reference

Schedule

Update

Time

Reference

Total available

communication time

Unused

communication time

Self-

Diagnosis

Re-synchronization period

Diagnostic cycle

Time

7

broadcast maintaining the DII between messages. If one PE is not scheduled to send messages, then the

messages for the next scheduled PE are sent. After all of the scheduled messages are processed, the bus

remains idle until the time to restart the Time Reference service.

Figure 2.3: Example of an access pattern during the PE Broadcast service

2.2. System structure

Figure 2.4 shows the ROBUS topology. The bus has an active star architecture with the Bus

Interface Units (BIUs) serving as the bus access ports and the Redundancy Management Units

(RMUs) providing connectivity as network hubs. The network between BIUs and RMUs forms a

complete bipartite graph in which each node is directly connected to every node of the opposite kind.

Only the links shown are available for communication. There are no functional links between BIUs or

between RMUs, and the RMUs have no direct links to the external world. All of the communication links

are bidirectional. The design of the ROBUS is independent of the physical point-to-point communication

technology and is suitable for use with point-to-point optical data links.

Figure 2.4: ROBUS topology

The number of BIUs, denoted by N, is fixed. The number of RMUs is denoted by M and is also fixed.

Every BIU is assigned a unique node identification number from 1 to N. Likewise, the RMUs are

assigned numbers from 1 and M. Each PE is uniquely identified by the number of its corresponding BIU.

Using Figure 2.4 it is easy to see how the communication schedule can be enforced. Since the PEs are

connected to the bus via the BIUs, it is the responsibility of each BIU to ensure that the messages from its

attached PE are forwarded to the RMUs only at allowed times. Similarly, since the BIUs are attached

directly to the RMUs, the RMUs are responsible for ensuring that only the messages from the scheduled

BIU (and its corresponding PE) are relayed back to the BIUs. The most important aspect of the bus-

access enforcement mechanism is to control access the RMU-to-BIU links.

PE 1 PE 2 PE 4 PE 6 PE 7

Time

1 2 M

PEs

BIUs

RMUs

1 2 N

1 2 N

8

2.3. Node behavior

Figure 2.5 presents a simplified view of the high-level state-transition graph for the ROBUS nodes.

BIUs and RMUs. Both BIUs and RMUs follow this same pattern of behavior. This graph is essentially

the same as the one for the ROBUS shown in Figure 2.1. In the Disabled state, a node is powered off or

otherwise removed from active bus participation. Once enabled, a node enters the Initializing state where

it tries to find other nodes suitable for providing communication services to the PEs. Once a node has

confirmed that it is operating in a proper configuration with other nodes, it enters the Engaged state. To

deliver services to the PEs, it is necessary for a group of BIUs and RMUs to work together in a

coordinated way. We refer to a group of BIUs and RMUs that can be relied upon to deliver proper

services to the PEs as a clique. An initializing node becomes engaged after it identifies a clique and

becomes part of it. If a node determines that a significant failure condition is present while being part of

clique, the node transitions back to the Initializing state to reset its state and attempt to re-engage. A

ROBUS node can be designed with the capability to transition to the Disabled state when it determines

that it cannot form or join a clique due to local permanent faults or some condition that is outside the

recovery capabilities and is interpreted as a permanent failure. That feature, illustrated by the dashed

arrow, is not included in ROBUS-2.

Figure 2.5: Simplified high-level state-transition graph for BIUs and RMUs

2.4. Node structure

Figure 2.6 depicts the basic structural components of a ROBUS node. This decomposition applies to

BIUs and RMUs. The Communication Module handles all the point-to-point communication and uses

mostly commercial off-the-shelf (COTS) components. The links between BIUs and RMUs implement

broadcast communication using either one-to-one or one-to-many links. If the BIUs and the PEs are

physically separate (see the topic Fault containment in a later section), the interconnection between them

must use one-to-one links. If they are not separate, then some other means for local data transfer can be

used.

The Computation Module, also known as a ROBUS Protocol Processor (RPP), handles all the

ROBUS-specific functions including mode transition logic, low-level protocols, error detection,

diagnosis, reconfiguration, and distributed coordination.

Disabled

Initializing

Engaged

Power-on enable

Permanent

failure
Transient failure

Enabled

Deactivated

Admitted to a

clique

9

Figure 2.6: Generic node structure for BIUs and RMUs

2.5. Distributed coordination

Each ROBUS node is driven by an independent, free-running physical oscillator. These oscillators are

characterized by a known bound on their drift rate with respect to real time. Each node also has a logical-

time clock, referred to as the local-time clock, which keeps track of the passage of time as indicated by

the physical oscillator. Given an initial precision of synchronization for the local times at any two nodes,

the precision can worsen over time at a rate determined by the drift rate of the physical oscillators.

The ROBUS protocols are divided into two categories: synchronization protocols and synchronous

protocols. The synchronization protocols use event-triggered communication and event-processing

operations to generate high-precision distributed events that are used to synchronize the local-time clocks.

The synchronous protocols use time-triggered communication and operations in order to process

information. To achieve proper coordinated action in the execution of the synchronous protocols, the

local-time clocks of the participating nodes must be synchronized within some known bounded precision.

The ROBUS has two synchronization states: synchronized and unsynchronized. In the synchronized

state, the precision of synchronization is determined by an internal distributed reference event generated

by a clock synchronization protocol. The precision of this event allows the nodes to achieve very tight

local-time synchronization. The bus is in the unsynchronized state when it transitions to the startup and

restart processes. The precision of synchronization in this state is mainly determined by events not

directly controlled by the bus. It is assumed that the synchronization precision in this mode has a known

bound that can be large relative to the precision in the synchronized state. The bus transitions from the

unsynchronized state to the synchronized state after the execution of a synchronization initialization

protocol. Because the local times can drift apart, the synchronization protocol must be re-executed at

regular intervals to ensure that the local times are kept synchronized. The rate of re-synchronization is

constrained by physical parameters of the design (e.g., oscillator drift rates) as well as precision and

accuracy goals. The fault-tolerance attribute of the synchronization protocol enables the bus to maintain

synchronization even in the presence of failed nodes.

Startup and restart of the bus are particularly difficult scenarios to handle properly, especially in the

presence of arbitrary faults. The ROBUS achieves synchronization during startup and restart by

exploiting the properties of the initial synchronization protocol. With this protocol, the ROBUS can

synchronize if the nodes start within a known bound of the relative local-time skew. The critical property

concerning this capability of the synchronization protocol is that, although the initial relative skews must

Communication Module

Receivers Transmitters

Computation Module

Received

Messages
Output

Messages

10

have a known bound, this bound can be arbitrarily large. This feature enables the use of physical events

beyond the sphere of control of the nodes as distributed reference events to coordinate the startup and

restart processes. The local power-on enable, which is externally controlled by the system user, is used

by the bus as a reference event for startup. The detection of a bus failure, which is triggered by some

fault-causing phenomenon, is used as a reference event for restart. The worst-case precision of these

events determines the bound on the initial relative local-time skew in the unsynchronized state.

The execution of synchronous protocols is driven by the local time and a time-indexed operation

schedule. The low-level distributed protocols specify the node activities by defining the operations, the

operation sequencing, the message flow patterns, and the executing nodes for each operation. The timing

of the operations is determined using a model of distributed synchronous composition. This execution

scheme and the high synchronization precision in the synchronous state make the steady-state behavior of

the ROBUS highly deterministic as it precisely specifies the timing of all the internal communication

between BIUs and RMUs, as well as the communication with the PEs. The concept of distributed

synchronous composition is explained in detail in Section 3.

2.6. Redundancy management

The purpose of redundancy management is to increase the probability of continued service delivery

through effective utilization of available resources. The ROBUS is designed to manage its redundant BIU

and RMU components independent of the PEs.

2.6.1. Fault containment

Fault containment refers to the confinement of physical faults to a limited locality. This is achieved by

establishing containment boundaries defined by fault propagation barriers that prevent faults from

spreading indiscriminately throughout the system. Each area enclosed by containment boundaries is

known as a fault containment region (FCR) (see [Lala 91]). Ideally, the FCRs are independent from

each other in the sense that physical faults in one FCR will not cause faults in others. Communication

between FCRs is through carefully specified interfaces that ensure a sufficiently high degree of fault

containment. Fault containment is a fundamental requirement of most fault-tolerant systems. In [Driscoll

03], Driscoll, et al present a particularly devious fault propagation mechanism that can wreak havoc in a

system if not properly addressed in the design of the FCRs. For ROBUS, every BIU and RMU node is in

a separate FCR. Each BIU can be by itself in a FCR, or it can share an FCR with its attached PE.

Although FCRs can prevent the propagation of faults, they do not preclude the simultaneous presence

of physical faults in separate FCRs caused by independent phenomena internal to the system. In addition,

external threats like lightning and high-intensity radiated fields (HIRF) have the potential to disturb

multiple FCRs. It is presumed that the fault-containment solution does not prevent the propagation of

environment-induced faults within a FCR. Therefore, when a fault is detected in a FCR, all the

components within the FCR are presumed to be affected and no specific assumptions are made about the

behavior of the corresponding ROBUS node. The ROBUS is designed with mechanisms that can handle

a large number of coincident faults and arbitrary fault manifestations.

2.6.2. Error detection

Error detection is based on the comparison of actual attributes of observed data against expected

11

attributes. The ROBUS nodes use six categories of error detectors. These checks generate syndromes

that are used to diagnose the system.

• Communication checks: Each communication link should have a high-coverage error-detection

capability for errors occurring anywhere from the transmitter to the receiver.

• In-line checks: These checks individually compare received messages against expected

characteristics of timing and content.

• Cross-lane checks: These checks compare received messages against the result of a vote. The

checks are performed on timing and content characteristics.

• Protocol checks: These checks are essentially sanity checks on intermediate and/or final protocol

results based on expected behavioral characteristics of the ROBUS.

• Self-checks: These checks are performed by a node to monitor its own operation. The self-checks

described in this document are based on properties of the ROBUS protocols. Other protocol-

independent or application-specific checks can be defined to increase the error coverage.

• PE-error checks: These checks are not specified in this document. However, the system is designed

to accept and process error syndromes about expected PE messages at the BIUs.

2.6.3. Diagnosis

Each BIU and RMU node is an observer of every node. An observed node is known as a defendant.

A direct observer receives information from the defendant by way of a direct data communication link.

An indirect observer receives information from the defendant by way of direct observers. Due to the

ROBUS topology, a node is a direct observer of nodes of the opposite kind and an indirect observer of

nodes of the same kind, including itself. Every ROBUS node is a defendant and an observer. The

purpose of diagnosis is to assess the status of each node and the bus as a whole. The diagnostic system of

the ROBUS is a distributed system divided into two layers. In the local layer, the nodes monitor the

communication and independently diagnose each node and the bus. In the collective layer, the nodes

exchange diagnostic information to augment their local diagnoses.

The diagnostic system assesses each node to determine its suitability to participate in the delivery of

services to the PEs. A trustworthy node can be relied upon to deliver the expected services.

Untrustworthy nodes do not behave as expected and, thus, are sources of errors. The causes of errors by

a node can be physical defects or disturbances, or incorrect values held in the state variables.

There are three steps to diagnose a node: error detection, culprit identification, and assessment. The

error checks of the types described in the previous section are used to generate error syndromes. Error

sources are identified using the error syndromes and knowledge of the protocols and the topology. Some

error syndromes unequivocally point to a single error source, while others are ambiguous and require the

combination of multiple syndromes in order to locate the error source. The diagnostic system uses a local

hierarchical classification scheme and policy-based rules to assess the status of each node. Each step in

the hierarchy corresponds to an increase in the severity of the assessment. A node is suspected by an

observer when it determines that the defendant is one of several possible culprits for a detected error. A

node is blamed when an observer determines that the defendant is a source of detected errors. A node is

12

accused by an observer when it determines that the defendant is untrustworthy, but is uncertain whether

other observers have reached the same conclusion. A node is convicted when the observers agree that a

sufficient number of them consider the defendant untrustworthy. For this version of the ROBUS, each

node uses Boolean variables for all the diagnostic information.

The BIU and RMU members of a clique work together in a coordinated way to deliver services to the

PEs. A clique is considered trustworthy if it is suitable to deliver services according to the specification.

The diagnosis of the bus consists of determining if a trustworthy clique is in operation. For this version

of the ROBUS, it is assumed that at any time there is at most one stable trustworthy clique on the bus.

The diagnostic system uses error syndromes, knowledge of the protocols, the results of node diagnostics,

and policy-based rules to assess the status of the bus.

2.6.4. Reconfiguration

The purpose of reconfiguration is to enhance the ability of a clique to establish and preserve proper

service delivery in the presence of untrustworthy nodes. The membership of a clique is determined using

the results of diagnosis. A clique is reconfigured by adding or removing nodes from its membership. A

member of a clique is allowed to participate in the delivery of services to the PEs and is referred to as a

trusted node. We refer to a node searching for or trying to become part of a clique as a recovering node.

The reconfiguration strategy of the ROBUS is driven by the need to handle scenarios with a large

number of simultaneous or nearly simultaneous node failures caused by harsh environmental phenomena.

Although the ROBUS has the capability to re-initialize a failed clique, the preferred way to handle a fast

increase in the number of untrustworthy nodes is to preserve the delivery of services by quickly removing

as many untrustworthy nodes as possible. The presence of a surviving clique forces recovering nodes to

execute a re-integration procedure to rejoin the clique. The re-integration procedure of the ROBUS is

considered more robust than the re-initialization procedure, which has strict assumptions about the

duration of the fault-causing phenomenon and the failure detection delay. In addition, the coordinated

and highly deterministic activity of a clique engaged in service delivery to the PEs enables the application

of detailed error detection and diagnosis by the recovering nodes and the clique. This allows the

expansion of the clique to proceed with a high level of protection against untrustworthy nodes. Another

advantage of preserving a degraded clique is that it increases the likelihood that at least some PEs can

continue to do useful work.

2.6.5. Error containment

Error containment refers to the establishment of barriers to prevent incorrect information from

propagating throughout the system. The error propagation barriers define partitions called error

containment regions (ECRs). Similarly to the FCRs, every BIU and RMU is in a separate ECR. Also,

each BIU can be by itself in an ECR, or it can share an ECR with its attached PE.

The only error propagation path between ECRs is through their interfaces. Thus, error containment

can be achieved by placing barriers at one or both ends of each interface. The effectiveness of an error

propagation barrier, referred to as the error-containment coverage, is measured by the probability that

errors will not propagate across the barrier. For the interfaces between BIUs and RMUs, error

containment is realized by a fail-stop mechanism to block errors at the source end of an interface, and

input error detection and voting to block errors at the receive end. The use of error propagation barriers

between BIUs and PEs is optional and their definition is not part of this document.

13

2.6.5.1. Fail-stop nodes

The goal of fail-stop behavior is to increase the error-containment coverage of an interface. Errors at a

source node can affect output transmissions in unknown ways. Fail-stop behavior prevents the

indiscriminate propagation of errors out from an ECR by mapping detect failures to a condition of no

output activity, which can be consistently identified by the nodes at the receiving end as an indication of

an untrustworthy source.

The ROBUS nodes disable their output ports as soon as a local failure or a bus failure is detected.

These conditions are indications that a node should not continue with normal activity because its

transmissions are likely to be erroneous or the receiving nodes are not operating properly.

The fail-stop reaction of the ROBUS nodes is not permanent. As mentioned in a previous section, the

nodes in this version of the ROBUS do not implement a transition to a disabled state. Instead, following a

failure, the nodes always try to recover and re-enable their outputs as required by the recovery procedures.

2.6.5.2. Input error detection

Input error detection prevents errors from entering an ECR. The location of detectors at the receiving

end of an interface allows them to provide coverage for errors originating at the transmission source or

somewhere in the communication path from the source to the receiver. In the ROBUS, input error

detection is realized by the communication and in-line checks.

2.6.5.3. Dynamic voting

Most ROBUS operations involve redundant sources and voting performed at the receivers to reduce

the information to a single result. As for the case of input error detection, voting at the receiving end of

an interface provides protection against errors originating at a transmission source or in a communication

path. The voting operations used by the ROBUS fall under the general category of dynamic voting, in

which only a selected group of inputs is considered in the voting operation. The sources whose inputs are

allowed to participate are called the eligible voters. The selection of eligible voters is based on the

available results of node diagnosis and error detection performed on the inputs. Dynamic voting enables

the ROBUS to quickly apply diagnostic results in order to enhance error containment and is the

foundation of the internal-fault-masking feature of the bus. Three types of voting operations are defined

for this version of the ROBUS: middle-value-select event voting, exact-match majority word voting, and

exact-match majority bit voting.

Middle-value-select event voting is the basic operation used by the synchronization protocols to

process timing events. In these protocols, the voting function, referred to as the Accept function,

produces an output a fixed delay after it receives the middle event from the eligible voters. Let E denote

the number of eligible voters. The middle event is defined as event number �(E + 1)/2�. Equivalently, the

middle event is the first event after �E/2� events have been received.

The unit of data for exact-match majority word voting is the multi-bit word. For this operation,

referred to as a word vote, there is an exact-match majority among the input eligible voters if at least �(E
+ 1)/2� of the input words are exactly equal. Two eligible inputs are equal if they are an exact match in a

bit-by-bit comparison. If there is a majority, the result of the vote is equal to the majority word.

Otherwise, the result is undetermined and a no-majority condition is asserted.

14

The unit of data for exact-match majority bit voting is the bit. This operation, called a bit vote, is used

for processing Boolean diagnostic variables like suspicions, accusations, and convictions. For this

function there is an exact-match majority if at least �(E + 1)/2� of the eligible input bits are equal. If a

majority of the eligible inputs are FALSE, the result is FALSE. Otherwise, the result is TRUE. This

function definition is biased against the defendant. (This bias is justified by the analysis in Appendix F.)

2.7. Major operational modes

Figure 2.7 presents the mode transition graph for the ROBUS nodes. This graph applies to BIUs and

RMUs. After a power-on enable, a node goes to the Self-Test major mode to perform a local

initialization and test its circuitry. The node will remain in this mode indefinitely unless it successfully

passes the test. After exiting this mode, the node proceeds to determine the status of the bus.

Figure 2.7: Major operational mode transitions for ROBUS nodes

The Clique Detection major mode consists of three minor modes. In Local Diagnosis Acquisition, a

node uses unsynchronized local observations to make a first assessment of the likely members of a clique.

In Synchronization Acquisition, the node attempts to synchronize to the clique. In Collective Diagnosis

Clique

Initialization

Power-on enable

Local failure

or Bus failure

Enabled

Ready

Clique

Preservation

Clique Join

Clique

Detection

Self-Test

Disabled

Clique

found

No clique

found

Clique

formed

Clique

joined

Deactivated

15

Acquisition, the node captures the health assessment for each node as determined by the clique during the

execution of the distributed diagnosis protocol. If at any time during the Clique Detection mode the node

determines that no clique is present, it will exit this mode and attempt to form a new clique. Otherwise, it

will assume that a clique exists and will try to join it.

A node transitions to the Clique Initialization major mode to form a new clique. The first minor

mode is Initial Diagnosis, in which a node identifies other nodes also attempting to form a new clique.

This is followed by the Initial Synchronization and Collective Diagnosis minor modes, where the nodes

are synchronized and a consistent clique membership is established.

When a node enters the Clique Join mode, its state is in agreement with the state of the clique. In this

mode, the node runs for two diagnostic cycles, essentially trying to demonstrate that it can be trusted.

The existing members of the clique will integrate the node as soon as they confirm that the admission

rules have been satisfied.

In the Clique Preservation major mode, a clique delivers services to the PEs according to the

operation schedule. In the Schedule Update minor mode, a schedule-download protocol is executed to

allow the PEs to reprogram the bus according to their communication needs. During PE

Communication, first the PE messages are broadcast according to the communication schedule, and then

the BIUs and RMUs exchange accumulated accusations against nodes of the opposite kind, which serves

to enhance the diagnosis and reconfiguration capabilities of the bus. This is followed by a re-

synchronization of the local time in the Synchronization Preservation mode and then a reassessment of

the clique membership in the Collective Diagnosis mode.

2.8. Startup and restart

The ROBUS has a flexible capability to set up a clique and change its membership using the

reconfiguration mechanisms. These mechanisms do not have restrictions on the number of nodes that can

be simultaneously removed or admitted to a clique. As long as the clique membership is not overrun by

untrustworthy nodes, the trustworthy nodes will be able to continue service delivery.

To start up a disabled bus, a group of BIUs and RMUs must be enabled within a known bounded time

interval. Since there is no clique present, the nodes will reach the Clique Initialization mode and then

transition to the Clique Preservation mode. The size of this initial clique can range anywhere from one

BIU and one RMU to all BIUs and RMUs. Subsequently enabled nodes, if there are any, will detect the

existing clique and follow the Clique Join path to be integrated into the clique.

A node determines that a local failure has occurred when its self-check detectors are triggered or when

it is removed from the membership of a clique. In this case, the node transitions to the Self-Test mode,

and then it attempts to re-integrate into the clique.

The nodes detect a clique failure when not enough BIUs and RMUs are trusted, and when the results

of collective operations do not satisfy expected characteristics. It is possible for a clique in steady-state

operation to recover from massive coincident transient faults that overwhelm its degradation and fault-

tolerance capabilities. The re-initialization scheme assumes that the worst-case duration of a transient

fault-causing phenomenon and the delay to detect the bus failure can be bounded. This is used to

determine a bound on the initial relative local-time skew when entering the Clique Initialization mode.

16

Although highly unlikely, it is theoretically possible for coincident transient faults to corrupt the

system in such a way that the nodes are divided into multiple mutually exclusive cliques simultaneously

operating on the bus. In general, the ROBUS does not have the capability to recover from such

conditions.

17

3. Communication and distributed coordination

This section describes the mechanism for communication between BIUs and RMUs, and the approach

used to coordinate their activities. The communication between PEs and BIUs is also described,

including the general data transfer model used at the BIU interface.

3.1. ROBUS Messages

The unit of data transfer in the ROBUS is the ROBUS Message (RM). As shown in Figure 3.1, a

ROBUS message is composed of a one-bit Tag field followed by a fixed-size Payload field. This basic

format is used for all the protocols. The Tag field has one of two values: SPECIAL or DATA. The

relation between the Tag field value and the corresponding bit value on the message is implementation-

dependent. The format and content of the Payload field depends on the value of the Tag field and the

context in which the message is used.

Figure 3.1: ROBUS message format

If the Tag field is SPECIAL, then the Payload field carries a bit pattern corresponding to one of the

following labels.

• SELF_TEST • VALID_SCHEDULE • PE_ERROR

• CLIQUE_DETECTION • ZERO_SCHEDULE • SOURCE_ERROR

• CLIQUE_INITIALIZATION • INVALID_SCHEDULE • NO_MAJORITY

• CLIQUE_JOIN • INIT

• CLIQUE_PRESERVATION • ECHO

SRM denotes the number of SPECIAL ROBUS messages. The assignment of bit patterns to the

Payload labels is an implementation decision. The listed labels are a collection of all the SPECIAL

messages defined for this version of the ROBUS. The interpretation of each label is dependent on the

context in which the message is used.

If the Tag field is DATA, then the Payload field carries data with a format and content specific to the

context in which the message is used. Three minor modes use DATA messages: Collective Diagnosis,

Schedule Update, and PE Communication.

For Collective Diagnosis, the Payload field of each ROBUS message carries diagnostic data in the

form of a Boolean vector. Figure 3.2 illustrates the format of diagnostic messages for the case of D

defendants. Element bi denotes a Boolean variable corresponding to an accusation or conviction against

defendant i, which can be a BIU or an RMU. If the diagnosed defendants are BIUs, then D equals the

number of BIUs, which is denoted by N. Otherwise, D is equal to the number of RMUs, denoted by M.

The assignment of value to any unused bits is implementation-dependent.

Tag Field Payload Field

1 bit fixed number of bits

18

Figure 3.2: Payload format for diagnostic ROBUS messages

For Schedule Update, the DATA messages carry the number of messages scheduled for a particular

PE. For this version of the ROBUS, it is valid to schedule a single PE to source the maximum number of

messages that the bus can send during PE Communication, which is denoted by KPE|max. Therefore, the

Payload field for Schedule Update DATA messages corresponds to an integer in the range 0 to KPE|max.

For the PE Broadcast protocol in the PE Communication mode, the DATA messages carry

information from the PEs. The format of these messages is application-dependent. LPE denotes the

minimum Payload width requirement for PE messages. The exchange of accusations after the completion

of the scheduled broadcasts uses the payload format for diagnostic ROBUS messages.

In addition to the protocols mentioned above, each BIU uses a DATA message to send its

identification number to its attached PE. The Payload field for these messages corresponds to an integer

number in the range of 1 to N.

The width of the Payload field, denoted by LPF, must satisfy the following constraint.

LPF ≥ max(�log2(SRM)�, N, M, �log2(KPE|max + 1)�, LPE) (3.1)

3.2. Node process model

Figure 3.3 illustrates the process decomposition for the Computation Module of the ROBUS nodes.

The Mode, Local Time, Diagnostics, and Schedule Processes hold the state information of the node. The

Receive, Computation, and Send Processes perform protocol-specific operations. The Computation

Process handles all the computation required by the protocols. The Send and Receive Processes interface

with the local Communication Module and handle the ROBUS-specific communication functions. For

the BIUs, the PE Interface handles the communication with the PEs. Error checks are located throughout

the processes as appropriate. The timing patterns of the processes vary depending on the protocol being

executed.

3.3. Communication between BIUs and RMUs

The ROBUS requires bidirectional communication between each BIU and RMU pair. This is realized

using independent communication links in each direction. The communication links must provide

adequate protection against the propagation of physical faults between interconnected nodes.

Diagnostic data

--- bD Unspecified

Unused

b1 b2

19

Figure 3.3: Main processes for ROBUS nodes

The behavioral design of the ROBUS requires that every node is able to broadcast ROBUS messages

to the nodes of the opposite kind, simultaneously transmit and receive messages, and independently

receive messages from every node of the opposite kind. The broadcast transmission function can be

implemented using one-to-one or one-to-many transmitters. The reception requirements for BIUs and

RMUs are satisfied by having a separate and independent receiver for each node of the opposite kind. In

order to limit the cost and complexity of the system, the communication resources use mostly COTS

components and every node uses the same communication links for synchronization and synchronous

protocols. Contention in accessing the communication resources is prevented by the proper scheduling of

the protocols and their operations.

The operation of the links is characterized by the transmission delay and the throughput. The delivery

delay for a point-to-point link is the real time elapsed from the instant a ROBUS message is input to the

transmitter until it is output at the receiver. The delivery precision is the range of variation of the

delivery delay for a broadcast transmission. The throughput of a link is measured in terms of the

minimum data introduction interval (or DII) [De Micheli 94], which is the minimum time required by

the link between the instants at which consecutive messages are input to the transmitter. In general,

smaller values of the delivery delay, delivery precision, and minimum DII result in a better performing

system.

The BIUs and RMUs use two communication models: fixed delay and synchronous. In the fixed-

delay communication model, the transmissions are triggered by events at the sources and the receiving

nodes process the messages as soon as they arrive. For these transmissions, the information of interest is

in the timing of the message. Fixed-delay communication is used by the synchronization protocols to

enable receiving nodes to measure the relative skew of events at the source nodes. Likewise, this mode of

communication enables the source nodes to estimate the time of some events at the receiving nodes. In

the synchronous communication model, the transmissions are triggered at the local time indicated by the

time-indexed operation schedule and the receiving nodes buffer the messages until their scheduled time

for processing. This buffering of the messages implements a deskewing function that synchronizes the

received messages to the local time at the receiving nodes. The relevant information carried by the

messages is in their content. This model of communication is used by the synchronous protocols.

Computation

 Process

Send

 Process

PE Interface

(BIUs only)

Mode, Local Time, Diagnostics, and PE Schedule

Processes

Receive

 Process

20

3.4. Distributed coordination

The functionality of the nodes and their interaction must be well specified in order to achieve the

desired ROBUS behavior. The functional description of the mode logic, the diagnostic system, and the

protocols specifies the required functions, their sequencing, and the nodes where the functions are to be

performed. Those areas of the ROBUS design are discussed elsewhere in this document. This section

examines timing aspects in the implementation of the protocols.

All the synchronization protocols are composed of the same basic operations. They are all event-

driven, use only fixed-delay communication, and perform event voting using the Accept function. A

requirement for all the synchronization protocols is that the Accept functions must receive all their

corresponding valid inputs. However, the protocols differ substantially in the assumed initial precision.

For this reason, the timing of their communication and computation processes is quite different. For

Synchronization Preservation in the Clique Join and Clique Preservation modes, the nodes are assumed to

be in the synchronized state with a relatively high synchronization precision. The beginning of this

protocol is time triggered. Although the communication and computation processing are event-driven, it

is possible to use protocol events and knowledge of their precision bound to determine local-time

intervals for the expected times of transmission and reception. Based on this information, the Accept

functions can be activated at specific local times when their corresponding input messages should be

available. For Initial Synchronization in Clique Initialization mode, the nodes are in the unsynchronized

state at the beginning of the protocol. The known bound of the starting synchronization precision enables

the use of a time trigger for the protocol, but due to the large initial imprecision, no attempt is made to

estimate the time of reception at the nodes executing the protocol. Because of this, the nodes must simply

be ready to process the messages whenever they arrive. For Synchronization Acquisition in Clique

Detection mode, the bus is assumed to be synchronized, but the recovering node is not. During this

mode, a protocol is used to loosely synchronize to the re-synchronization interval of the clique operating

in Clique Preservation mode. After this, the node must be ready to process the synchronization messages

whenever they arrive. Appendix C analyzes the timing of the synchronization protocols in more detail,

including the timing requirements for the internal processes of the nodes.

The synchronous protocols use time-triggered communication and processing. The ROBUS is able to

execute synchronous protocols in the unsynchronized and synchronized states by exploiting the known

bounds on the local-time synchronization precision in each state. The timing of execution of the

synchronous protocols is specified by a time-indexed operation schedule. The scheduling of operations is

based on a distributed synchronous composition abstract model of the system in which a single

oscillator drives a common local-time clock and fixed-delay processes corresponding to the

communication and computation operations of the BIUs and RMUs.

Figure 3.4 illustrates an example of the use of synchronous composition to schedule distributed

processes. Element A of Figure 3.4 is the process dependency graph. P1 and P2 are computation

processes, and COMM is a communication process. Element B of Figure 3.4 is the local time axis for the

synchronous composition model. TP1, TCOMM, and TP2 are the start times for the processes, and ∆P1, ∆P2,

and ∆COMM are the process delays. For proper operation, the schedule must satisfy the following

constraints: TCOMM ≥ TP1 + ∆P1 , and TP2 ≥ TCOMM + ∆COMM. For the actual system, processes P1 and P2

are performed on separate nodes driven by independent oscillators. Elements C and D of Figure 3.4 are

the local time axes for the source and receiver nodes, respectively. The computation processes are simply

started at their scheduled local times and run to completion using the computational resources of their

respective nodes. The COMM process implements the synchronous communication. The message is sent

(i.e., transferred to the link transmitter) by the source at the scheduled time. πsrc-rcv denotes the bound on

21

the synchronization precision, which corresponds to the uncertainty in the time of transmission measured

in real time. The nominal link delay is denoted by ∆link, and the link delay imprecision is ePP.

Considering these uncertainties, the expected time of reception is determined to be between TL and TH. If

a message arrives earlier than TH, it is buffered at least until TH. Therefore, the communication delay

used for scheduling purposes is ∆COMM = TH - TCOMM. Appendix B presents a more detailed analysis of

the point-to-point communication process. Note that the computation delays used for scheduling are the

worst-case delays. Similarly to the communication process, if computation results are available earlier

than expected, they must be buffered until the next communication process is started.

Figure 3.4: Coordinating distributed processes using synchronous composition

A: Dependency graph, B: Timeline for synchronous composition,

C: Timeline for source node, D: Timeline for receiver node

The synchronous composition model is applied to the scheduling of the protocols and their operations.

The scheduling for an actual implementation must take into consideration the throughput capacity of the

links, computation, and diagnostic processes, and the interactions between succeeding protocols,

including the interactions between synchronous and synchronization protocols.

3.5. Communication between PEs and BIUs

The ROBUS requires a bidirectional communication capability between BIUs and their attached PEs.

A BIU and its PE can be in separate FCRs or they can share an FCR. If a BIU and its PE are in separate

FCRs, the physical communication links must provide adequate barriers to the propagation of faults

between the FCRs. In this case, the physical failure of the BIU is independent from the failure of the PE

and the failure recovery process of the BIU is completely independent from the PE. Note that if a BIU

fails, its attached PE is in effect disconnected from the bus. On the other hand, if a BIU and its PE share

an FCR, a fault can propagate between the BIU and the PE. In this case, the physical failure of one is no

different from a failure of the other. Therefore, the design must provide for the simultaneous recovery of

both components. For this version of the ROBUS, this is handled by a common process that resets the

 P1

∆P1

 Comm

∆COMM

 P2

∆P2

TP1 TCOMM TP2

LTSyncComp

TCOMM

LTSRC

TP1

TP2
LTRCVTCOMM

∆link

πsrc-rcv ePP

TL TH

A:

B:

C:

D:

22

BIU and the PE when a failure is detected on either of them. Irrespective of the FCR configuration, it is

the responsibility of the PE to monitor the communication in order to determine the state of the BIU.

The BIUs and the PEs exchange messages using two communication models: fixed delay and

synchronous. The fixed-delay model is used with the time synchronization protocols and is essentially

the same as for the communication between BIUs and RMUs. The fixed delay allows the PEs to

synchronize their time using events at the BIUs as references. Synchronous communication is used with

the synchronous protocols. Two different synchronous communication models are allowed. In the

“tight” model, the transmission of messages between BIUs and PEs follows a strict schedule in which

timing is specified down to the tick level. This is the model used for synchronous communication

between BIUs and RMUs. In the “loose” synchronous communication model, the sending and receiving

of messages by the PEs is only required to satisfy simple timing constraints. Since the BIUs have time-

triggered operation, their input and output of PE messages follows a detailed time-indexed schedule. The

send timing requirement for the PEs is that their messages must be available at the BIUs at or before the

time at which the BIUs will read them. The receive timing requirement for the PEs is that they will get

the messages after the BIUs generate them according to their schedule. The specific time at which the

PEs send their messages and the delay in receiving BIU messages for the “loose” synchronous

communication model is dependent on the implementation and the applications run by the PEs. The PE

Interface at the BIUs is designed using a first-in first-out (FIFO) buffer abstraction for input and output.

For input, it is assumed that each expected PE message is available or there is a corresponding error

indication. For output, it is always assumed that the message can be output at its scheduled time without

having to confirm that the PE is ready to receive it.

The PEs send messages only during the schedule update and PE Broadcast services. In both cases,

only DATA messages are sent. For these messages, the BIUs read the messages and broadcast them on

the bus. PE-error checks are not described in this document. These checks are used to signal the BIU

when expected messages are invalid or not available. In either case, a BIU will replace the expected PE

message with a SPECIAL message with PE_ERROR payload field.

In addition to service messages, the PEs receive mode and identification messages from the BIUs.

The mode messages enable the PEs to track the mode of their BIUs. A BIU will send a mode message to

its PE every time there is a major mode transition and after every diagnostic cycle during the Clique Join

and Clique Preservation modes. The mode messages are SPECIAL messages with the payload field set to

SELF_TEST, CLIQUE_DETECTION, CLIQUE_INITIALIZATION, CLIQUE_JOIN or

CLIQUE_PRESERVATION, as appropriate. The identification messages inform a PE of the

identification number of its BIU, which is also the PE’s identification number. These are DATA

messages with the payload field equal to the BIU’s identification number. This way of giving an

identification number to a PE is preferred over setting it directly at the PE because it allows the use of

generic software at the PEs and prevents a mismatch between the BIU and the PE identification numbers.

Figure 3.5 illustrates the message exchange between a BIU and its attached PE during the Clique Join

and the Clique Preservation modes. The mode and identification messages are sent to the PE between the

Self-Diagnosis and Schedule Update services. During Schedule Update, the BIU reads the schedule

submitted by its PE and sends to the PE the results decided by the bus for each PE. This is followed by a

single message indicating the assessment of the new schedule. This consists of a SPECIAL message with

the payload set to VALID_SCHEDULE, ZERO_SCHEDULE (i.e., the schedule is valid and equal to zero

for all the PEs), or INVALID_SCHEDULE. If the schedule is invalid, the ROBUS will automatically

switch to a default schedule. During the PE Broadcast service, a BIU will read the scheduled messages

from its PE and output to the PE the result for all the scheduled messages. A broadcast result equal to

23

PE_ERROR indicates that there was an error at the source PE. If the bus determines that the BIU of a

source PE is not operating properly, then the result of the broadcast will be SOURCE_ERROR or

NO_MAJORITY. A result of NO_MAJORITY indicates that the RMUs received different messages

from the BIU. If the assessment of the schedule was ZERO_SCHEDULE, the PE Broadcast service is

not executed and the ROBUS simply waits until it is time to execute the Time Reference service. During

the Time Reference service, a BIU outputs a SPECIAL message with the payload set to INIT. The

sending of this message is triggered by the reference event that the BIU will use to reset its local-time

clock. For the Initial Synchronization and Synchronization Acquisition, the payload is set to ECHO to

explicitly indicate that a different protocol event is used as a reference to reset the local-time clock.

During the Self-Diagnosis service, the output of a BIU consists of two messages containing the diagnostic

results for the BIUs and the RMUs. These are the last messages of the diagnostic cycle. The next

messages are the mode and identification messages for the next cycle.

Figure 3.5: Message exchange pattern between a BIU and its attached PE in Clique Preservation mode

A: PE-to-BIU messages, B: Bus services, C: BIU-to-PE messages

LTBIU

LTBIU

A:

PE Broadcast Time

Reference

Schedule

Update

Self-

Diagnosis

Schedule

Update

LTBIU

B:

C:

Mode

and Id
Schedule

assessment

Mode

and Id

BIU and RMU

diagnosis

PE messages

Synchronization

message

Schedule

processing

results

Desired

schedule

PE

messages

Schedule

processing

results

Desired

schedule

24

25

4. Diagnostic system

Conceptually, the ROBUS nodes are composed of two separate but coordinated systems. The

operational system handles the communication and computation activities required by the distributed

protocols, in addition to all the processing associated with the mode logic, local time, and PE

communication schedule. The diagnostic system monitors the operational system and provides timely

information for reconfiguration and error containment. The main purpose of the diagnostic system is to

ensure the continued operational survival of the bus. To support the fault-tolerance mechanisms, the

diagnostic processes must work in close coordination with the operational system processes. The basic

functions of the diagnostic system are to detect errors during the execution of the protocols, assess the

status of individual nodes, and assess the status of the bus. The protocols use input-error detection and

dynamic voting to protect against the propagation of errors into the error-containment regions (ECRs).

Bus reconfiguration is based on the node assessment results generated by the diagnostic system. The

ROBUS will continue to deliver services as long as the diagnostic system does not detect a failure of the

bus.

The PEs can obtain diagnostic information from the bus in several ways. The ROBUS provides

explicit periodic updates about the diagnostic status of every node. The protocol for the PE Broadcast

service not only allows the broadcasting of messages, but it also diagnoses the BIUs as they transmit

messages, and the results are forwarded to the PEs during the time of the service. In addition, the

protocols for the PE Broadcast and Schedule Update services provide diagnostic information in the form

of message content that indicates erroneous behavior by individual PEs or by the group of PEs attached to

BIUs that are part of the active clique. Each individual PE can also use observations about the behavior

of its attached BIU to derive additional information about the status of the BIU and the bus.

4.1. System structure

Each ROBUS node is an observer of every node. An observed node is known as a defendant. A direct

observer receives information from the defendant by way of a direct data communication link. An

indirect observer receives information from the defendant by way of direct observers. Due to the ROBUS

topology, a node is a direct observer of nodes of its opposite kind and an indirect observer of nodes of its

same kind, including itself. Every ROBUS node is a defendant and an observer.

Every ROBUS node performs the diagnostic functions of error detection, node assessment, and bus

assessment. Error detection is the foundation of the diagnostic system. The communication checks

monitor the communication links between the nodes. The in-line checks are applied to the received

messages and are based on expected timing and content characteristics. The cross-lane checks also

detect errors in received messages by comparing them against the result of dynamic voting. The protocol

checks inspect received messages and voting results with respect to expected properties for intermediate

and final protocol results. The self-checks are performed by a node to monitor its own operation. PE-

error checks inspect the messages received by the BIUs from their attached PEs. All these error checks

generate the syndromes from which diagnostic decisions are made.

The diagnostic system uses a distributed hierarchical classification system in which the severity of the

diagnostic assessment for a defendant is related to the degree of certainty about its untrustworthiness.

The diagnostic assessment of nodes is performed at the local and collective levels. Each ROBUS node

gathers and processes diagnostic syndromes in order to form a local opinion about the status of each

defendant, including itself. The nodes then share local assessment results to make a collective assessment

26

of each defendant. The overall assessment about the trustworthiness of a defendant is based on a

combination of the local and collective assessments.

At the local level, each node uses knowledge about the protocols to interpret the generated error

syndromes. A defendant is suspected by an observer when it determines that the defendant is one of

several possible culprits for a detected error. In this case, the observer must combine multiple error

syndromes to decide if a particular defendant is an error source. A defendant is blamed when an observer

determines that the defendant is the source of a detected error. Blame can be assigned directly from the

individual error syndromes or through the processing of suspicions. A defendant is accused when an

observer independently determines that the defendant is untrustworthy but the observer is uncertain that

other observers have reached the same conclusion. The accusations are based on assigned blame for

detected errors.

At the collective level, the nodes exchange their accusations against defendants to form a common

opinion about each one. The Collective Diagnosis protocol generates convictions by merging local

diagnoses from direct and indirect observers for each defendant. A node is convicted when a sufficient

number of observers consider the defendant untrustworthy.

The diagnostic assessment of the bus corresponds to assessing the status of the clique. The ROBUS

nodes independently assess a clique based on locally available diagnostic information consisting of

protocol check syndromes and the results of diagnostic node assessment.

The results of the diagnostic system are used for reconfiguration, error containment, and operational

mode decisions. The membership of a clique (i.e., its configuration) is the set of nodes trusted to

participate in collective operations. A clique is reconfigured by removing or adding nodes based on the

results of diagnostic node assessment. Error containment is realized by input-error detection, dynamic

voting, and fail-stop behavior. Input-error detection uses the communication and in-line checks.

Dynamic voting requires the determination of inputs eligible to participate in a voting operation. Voting

eligibility depends on the protocol and other specifics of the operation being executed. Fail-stop behavior

falls under the categories of error containment and operational mode decisions. This behavior is triggered

by the detection of critical conditions like a local failure or a clique failure. Other conditions relevant to

operational mode decisions include the results of self-tests and the absence of a valid clique.

4.2. Diagnostic policy

The diagnostic policy specifies how the diagnostic data is to be processed to generate the required

results. Among the factors taken into consideration in the design of the diagnostic policy are the

following: the fault scenarios that the system is expected to encounter; the requirement to support the

admission of new nodes into an existing clique; the requirement to support fault-tolerant startup and

restart; and the requirement to ensure validity and agreement of diagnosis among clique members.

A clique is expected to survive, albeit in a degraded form, most scenarios of correlated transient faults

in which external phenomena cause the simultaneous or nearly simultaneous failure of multiple nodes.

To successfully handle these scenarios, the diagnostic system must rapidly reconfigure the clique by

removing untrustworthy nodes before they have a chance to overwhelm the fault-masking mechanisms.

Recovering nodes must have a way to join a clique operating in Clique Preservation mode. This

requires that the recovering nodes have access to the state of the clique, specially the local time and the

27

diagnostic state, and be able to acquire it.

The ROBUS design must provide mechanisms to allow trustworthy nodes to reach agreement on the

local time and the membership of the clique when starting up or restarting the bus.

Most diagnostic decisions are independently made by the nodes based on their observations. The

diagnostic system must satisfy certain general properties that ensure that the nodes are able to establish

and maintain proper diagnostic-state agreement.

4.2.1. Required properties

A goal of the diagnostic system is to ensure that every untrustworthy defendant is eventually distrusted

(i.e., completeness) and that only untrustworthy defendants are distrusted (i.e., correctness). If the fault

model includes arbitrary asymmetric (“Byzantine”) faults (see Appendix A), it is impossible to guarantee

both of these properties [Shin 87]. The design of the ROBUS sacrifices completeness in order to ensure

correctness.

The ROBUS diagnostic system must satisfy two basic properties: correctness and agreement for non-

asymmetric defendants. The property of correctness requires that every distrusted defendant is indeed

untrustworthy. Thus, for situations in which two or more defendants are possible culprits of a detected

error, each must remain trusted unless there is additional evidence that indicates unambiguously that it is

untrustworthy. This property ensures that the trusted set held by the observers includes all of the

trustworthy defendants. The disadvantage of this required property is that the trusted set can also include

untrustworthy ones. The main reason for requiring this property is to protect against premature

exhaustion of available redundancy on the bus. The ROBUS includes a significant amount of error

detection and diagnostic functions added to achieve high error coverage and increase the chances of

successfully identifying untrustworthy nodes.

The property of agreement for non-asymmetric defendants requires that all of the trustworthy

observers of a particular kind in a clique agree on their diagnostic assessment of defendants that are not

asymmetric. To satisfy this property, all of the trustworthy members of a clique that are of the same kind

must use the same mechanisms and common information to diagnose defendants. The only exception is

when a node is diagnosing itself, in which case it is allowed to use exclusive local information.

4.2.2. General approach

The activities of the operational system are organized in a hierarchy with the following levels: major

mode, minor mode, protocol, (protocol) process, and (process) step. The diagnostic system processing

is directly dependent on the activity performed by the operational system. Every operational major mode

has a corresponding diagnostic system mode involving two diagnostic intervals. The local diagnostic

interval is time during which diagnostic information is gathered and processed locally in order to

generate accusations. The collective diagnostic interval is the time between updates of the convictions.

For this version of the ROBUS, the diagnostic information is represented in terms of Boolean variables

(i.e., TRUE or FALSE). The diagnostic state variables of a node are the ones whose values are carried

from one protocol process to the next. These include the suspicions, accusations, and convictions.

In the Clique Preservation mode, a clique tries to maintain validity and agreement on the time and

diagnostic state variables of its members. Figure 4.1 shows the minor modes and the diagnostic intervals

28

for this major mode. The nodes gather local diagnostic information from the beginning of an execution of

Collective Diagnosis to the beginning of the next. The locally generated accusations are submitted for

processing at the beginning of Collective Diagnosis and a consistent update to the convictions is received

at the end. At the beginning of Collective Diagnosis, the nodes copy their current local accusations to a

temporary memory location and then clear (i.e., set to FALSE) their suspicions and accusations to start

the next local diagnostic interval. During Collective Diagnosis, the effective accusations are formed by a

bitwise OR function of the accusations stored in the temporary memory location and any newly generated

accusations. The accusations in temporary memory are discarded at the end of Collective Diagnosis and

only accusations from the current local diagnostic interval are used from that point on. The overlap in the

use of accusations from consecutive local diagnostic intervals ensures that the clique remains guarded

from untrustworthy nodes during Collective Diagnosis and that the local accusations processed during

Collective Diagnosis are based on observations gathered during the full local diagnostic interval.

Figure 4.1: Diagnostic intervals for the Clique Preservation mode

The processing done by the diagnostic system during the Clique Join mode is essentially the same as

for the Clique Preservation mode. The only difference is that a node in the Clique Join mode expects not

to be a member of the clique when it enters this mode and to be part of it at the end.

In the Clique Detection mode, a node tries to determine if a clique is operating on the bus. This is

accomplished by operating as if a clique were present and attempting to acquire its time and diagnostic

state, while simultaneously monitoring for indications that a valid clique is not present. It is assumed that

at any time there is at most one clique present on the bus. The error processing by a node in this mode is

based on the assumption that the node is working properly unless there is unequivocal evidence that it is

not. In the absence of such evidence, all detected errors involving other nodes or the clique are blamed on

them. Figure 4.2 shows the minor modes and the range of the diagnostic intervals for the Clique

Detection mode. A node clears all its diagnostic state variables at the beginning of this mode, and the

convictions are held constant until an update is received during Collective Diagnosis Acquisition. Only

local diagnostic information is used to assess the nodes and the clique. During Local Diagnosis

Acquisition, a node allows its diagnostic system to perform a preliminary assessment of the bus before the

operational system attempts to synchronize to the clique during the Synchronization Acquisition mode.

During the Collective Diagnosis mode, a node loads the convictions computed by the clique. The

operation of the diagnostic system during Collective Diagnosis is the same as described previously for

nodes in Clique Preservation mode.

In the Clique Initialization mode, a group of nodes tries to form a new clique after failing to find a

valid clique in the Clique Detection mode. Figure 4.3 shows the minor modes and diagnostic cycles.

None of the diagnostic information gathered during Clique Detection is used in this mode. All of the

diagnostic state variables are cleared at the beginning of this mode, and the convictions are held constant

until an update is computed. As in Clique Detection mode, in this mode only local diagnostic information

is used to assess the nodes and the clique. During Initial Diagnosis, the nodes determine the initial set of

Synchronization

Preservation

Schedule

Update

Collective

Diagnosis

LT
Local Diagnostic Interval

PE

Communication

Collective

Diagnosis

Collective Diagnostic Interval

29

nodes that will be considered to form the new clique. These nodes agree on the local time during the

Initial Synchronization mode, and new convictions are computed during Collective Diagnosis. The

operation of the diagnostic system during Collective Diagnosis is the same as described previously for

nodes in Clique Preservation mode.

Figure 4.2: Diagnostic intervals for the Clique Detection mode

Figure 4.3: Diagnostic intervals for the Clique Initialization mode

In the Self-Test mode, the operational system exercises the circuitry of a node while the diagnostic

system monitors for errors. No diagnostic information about other nodes is gathered during this mode.

4.2.3. Suspicion generation

For some operational scenarios, an observer is able to detect that an error has occurred in a particular

communication path that starts at a source node of the same kind as the observer, passes through an

intermediate node of the opposite kind, and ends at the observer. The observer always assumes that its

own operation is correct unless there is evidence to the contrary. In the absence of other error syndromes

directly incriminating the source node or the intermediate node, the observer cannot determine which is

responsible for the detected error. Therefore, the best that the observer can do is to raise suspicions

against both of them. For this version of the ROBUS, suspicions are generated only for such scenarios.

Figure 4.4 illustrates the organization of suspicions in a two-dimensional matrix in which the rows

correspond to the nodes of the same kind as the observer and the columns correspond to the nodes of the

opposite kind. Θ and Ω denote the number of nodes of the same kind and of the opposite kind,

respectively. Every Si,j cell is a Boolean variable. A single instance of suspicion against a pair of nodes

is sufficient to assert (i.e., set to TRUE) the corresponding cell in the matrix.

Synchronization

Acquisition

Local Diagnosis Acquisition

LT
Local Diagnostic Interval

Collective Diagnosis

Acquisition

Collective Diagnostic Interval

Initial

Synchronization

Initial

 Diagnosis

LT
Local Diagnostic Interval

Collective

Diagnosis

Collective Diagnostic Interval

30

1 2 … Ω
1 S1,1 S1,2 … S1,Ω

2 S2,1 S2,2 … S2,Ω

… … … … …

Θ SΘ,1 SΘ,2 … SΘ,Ω

Figure 4.4: Structure of the suspicions variable

4.2.4. Accusation generation

A node has accusations variables for every node on the bus. Figure 4.5 illustrates the organization of

the accusations variables. Every ASK,i or AOK,j cell is a Boolean variable that is asserted when the

corresponding node is accused. An observer accuses a defendant when it determines that the defendant is

responsible for one or more detected errors.

Figure 4.5: Accusations variables

There are two accusation generation mechanisms. For most error checks, only one defendant can be

blamed and a single detected error is sufficient evidence to accuse the defendant. The other accusation

generation mechanism is the processing of the suspicions matrix. This generates accusations using bit

vote operations for each row and each column of the suspicions matrix. Only rows and columns

corresponding to trusted nodes are considered. Figure 4.6 illustrates this for a system with 4 nodes of the

same kind and 3 nodes of the opposite kind. AOK,i|susp denotes the suspicions-based accusation result for

the i-th node of the opposite kind. These accusations are generated by bit voting considering only the

suspicions in the rows corresponding to trusted nodes of the same kind. Suspicions-based accusations

against nodes of the same kind are similarly determined. A bitwise Boolean OR operation for each

defendant is used to combine the corresponding results of the accusation generation mechanisms.

The accusations variables remain constant during the execution of protocol processes and are updated

after the completion of the protocol process in which the incriminating evidence is found. The suspicion

matrix is processed only at the end of the PE Communication mode. The accusations and suspicions are

cleared at the end of the local diagnostic interval.

Same

Kind

Opposite Kind

1 2 … Θ
ASK,1 ASK,2 … ASK,Θ

1 2 … Ω
AOK,1 AOK,2 … AOK,Ω

Same Kind Opposite Kind

31

1 2 3

1 S1,1 S12 S1,3

2 S2,1 S2,2 S2,3

3 S3,1 S3,2 S3,3

4 S4,1 S4,2 S4,3

↓ ↓ ↓
AOK,1|susp AOK,2|susp AOK,3|susp

Figure 4.6: Example of the generation of suspicions-based accusations for nodes of the opposite kind

4.2.5. Conviction generation

Figure 4.7 illustrates the organization of the convictions variables. Every CSK,i or COK,j cell is a

Boolean variable that is asserted when the corresponding node is convicted. The convictions are

generated by the Collective Diagnosis protocol. Bit vote operations for accusations from eligible voters

are used to determine the conviction result for each defendant. The Collective Diagnosis protocol is

presented in Section 5. The conviction variables remain constant until updated at the end of the collective

diagnostic interval.

Figure 4.7: Convictions variables

4.2.6. Trust

A node uses the results of local and collective diagnoses to determine which nodes to trust. The

general rule to determine trust is that a node is trusted if it is not accused and not convicted. This rule

applies to all operational modes. Both of these diagnosis results are available to nodes in the Clique Join

and Clique Preservation modes. During the Clique Detection and Clique Initialization modes, only local

diagnostic information is available until the end of the collective diagnostic cycle. Since a node must be

trusted unless there is evidence that it is untrustworthy, nodes operating in these modes must clear their

convictions variables and, in effect, use only the accusations to determine trust.

4.2.7. Voter eligibility

Dynamic voting is applied to received messages and gathered suspicions. Distrusted nodes are not

allowed to participate in voting operations. In addition, detected input errors and message content may be

considered to determine voter eligibility for received messages. The eligibility conditions are

independently determined for each instance of voting.

Opposite Kind

Same

Kind
Not trusted;

not considered in

the voting

Bit vote operations

for each column

Same Kind Opposite Kind

1 2 … Θ
CSK,1 CSK,2 … CSK,Θ

1 2 … Ω
COK,1 COK,2 … COK,Ω

32

4.2.8. Local failure and bus failure conditions

The trigger for a node to stop its current activity and transition to the Self-Test mode is the detection

of a local failure or a bus failure. The status of the bus is always determined in terms of the status of the

clique. The application of error checks and the interpretation of their syndromes are dependent on the

activities performed by the operational system. For most checks, a detected error can be caused by a

failure of the observer or the observed object, which is either a particular defendant or a clique as a whole.

The assessment of individual nodes is always performed with the assumption that the observer and the

clique are working properly. In general, an observer can assess its own status by using clique-dependent

checks for which a clique is assumed to be operating properly, or by using clique-independent checks that

monitor the observer for conformance with its design specification. The latter type of self-checks is an

optional feature whose use should be decided with consideration given to factors like implementation

complexity and the application domain. All of the self-checks described in this document are clique-

dependent checks. Thus, there is no completely unambiguous way for a node to differentiate between a

local failure and a clique failure.

In the Clique Initialization, Clique Join, and Clique Preservation modes there is no need to distinguish

between a local failure and a clique failure because the detection of either always triggers a fail-stop

response.

In the Self-Test mode, only local operations are performed and no information from the rest of the bus

is processed. In this mode, any detected error is presumed to be due to a local failure.

In the Clique Detection mode, three events trigger abrupt transitions: local failure, clique failure, and

no clique found. In this mode, no distinction is made between the case in which a clique is not present

when the observer transitions to this mode and the case in which a clique experiences a failure while the

observer is in this mode. Both cases are considered indications that a clique is not present. In addition, a

node in this mode assesses a clique based on the assumption that the node itself is operating properly

unless there is an unambiguous indication that it is not. Given that the operations defined for this mode

do not allow a node to observe its own behavior, the only such indication is an accusation against itself.

This is discussed in detail in Section 7.

A clique is diagnosed based on its size and the validity and agreement of its processing results. The

smallest clique allowed is composed of one BIU and one RMU. To assess a clique for size, no distinction

is made between BIUs or between RMUs. A node uses its trusted set and the results of Collective

Diagnosis to determine the membership of a clique. Most protocol checks monitor a clique for validity

and agreement in state variables and processing results. For some input voting operations, an observer

expects agreement among a majority of the eligible voters, or it knows in advance what the result of the

voting should be.

4.2.9. Unexpected messages

For most modes of operation, a node expects to receive messages during particular local-time

intervals. This includes all of the synchronous protocols and the Synchronization Preservation protocol.

The reception of a message when none is expected is an indication of a timing error. In agreement with

the accusation generation policy, the detection of such an error should result in an accusation against the

corresponding node of the opposite kind.

33

In order to ensure proper coordinated action among the trustworthy members of a clique, the design of

the ROBUS nodes must ensure that untrustworthy nodes do not have a chance to influence the time at

which individual trustworthy nodes update their accusations. This is realized by updating the accusations

only at predetermined points in time. For this version of the ROBUS, this is done at the beginning and at

the end of protocol processes. Thus, if an unexpected message is detected in between protocol processes,

the corresponding accusation becomes effective at the start of the next process in which input messages

are expected. If the error detection occurs during a process, the accusation becomes effective after the

completion of the process.

34

35

5. Clique Preservation

Figure 5.1 illustrates the minor mode transitions for the Clique Preservation major mode. A node

enters this mode after confirming that it has been admitted to the clique at the end of a diagnostic cycle in

Clique Initialization or Clique Join modes. In the Clique Preservation mode, a node participates in the

delivery of services to the PEs in a continuous loop. Each one of these services is realized with a

specialized distributed protocol. The only exit condition for the Clique Preservation mode is the detection

of a local failure or a bus failure.

The local failure or bus failure conditions are either protocol-independent or protocol-dependent. The

protocol-independent conditions include each of the following: number of trusted BIUs equal to zero,

number of trusted RMUs equal to zero, and assertion of an accusation against self. The protocol-

dependent conditions are described with the corresponding protocols.

Figure 5.1: Minor-mode transitions for Clique Preservation mode

5.1. Schedule Update

In the Schedule Update mode, the PEs submit their desired schedule for the next PE Broadcast

communication service. Ideally, the PEs have agreement on the schedule before they deliver it to the

ROBUS. Let N denote the number of BIUs, which is assumed to equal the number of PEs connected to

the bus. The desired schedule is delivered by each PE to its BIU in the form of N consecutive messages

with the positions in the sequence corresponding to the identification numbers of the PEs and the payload

fields of the messages indicating the desired number of messages to be broadcast. The submitted

schedule messages are processed using an agreement protocol to ensure that all of the clique members and

the PEs agree on the result for each PE. The protocol is applied independently N times, with each

From Clique Initialization

or Clique Join

Collective

Diagnosis

Synchronization

Preservation

PE

Communication

Schedule

Update

36

iteration processing the messages delivered by the PEs that indicate the number of messages to be

broadcast by a particular PE. After all the messages have been processed, the ROBUS nodes individually

assess the resulting schedule. Since there is agreement on the protocol results and the nodes apply the

same assessment rules, their assessment results are guaranteed to be the same.

Note that this protocol is executed by nodes in the Clique Preservation and Clique Join modes.

5.1.1. Schedule Update protocol

The Schedule Update protocol was developed for ROBUS based on the theory presented in [Miner

04]. Figure 5.2 shows the message flow graph. The labels inside the circles identify the processes

executed by the ROBUS nodes. This protocol is a synchronous protocol implemented using synchronous

communication.

Figure 5.2: Message flow graph for the Schedule Update protocol

The following is the description of the basic Schedule Update protocol. This protocol determines the

number of messages to be broadcast by the i-th PE according to the schedule messages submitted to the

ROBUS by the PEs. The sublevels in the description specify the checks to be performed during particular

protocol steps. All of the checks with specific expectations will result in errors being signaled if the

expectations are not met. Note that the ROBUS messages are expressed in functional notation: RM(tag,

payload). A message with an arbitrary payload field is indicated by a ‘*’ symbol in the payload location.

P0 P2 P4

RMUs

BIUs

PEs

P1 P3

Process P0: BIUs
1. If the PE message is valid, broadcast that message. Otherwise, broadcast

RM(SPECIAL, PE_ERROR).

Process P1: RMUs
1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

37

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BUI is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(DATA, *)

3. Perform a word vote on the messages from eligible voters. If there is no majority

or there are no eligible voters, then convert the result to RM(SPECIAL,

PE_ERROR).

4. Broadcast the result of the vote.

Process P2: BIUs
1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. Perform a word vote on the messages from eligible voters. If there is no majority,

then convert the result to RM(SPECIAL, PE_ERROR).

4. Broadcast the result.

5. Send the result of the vote to the attached PE.

Process P3: RMUs

1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, PE_ERROR), RM(DATA, *)

38

A reception error, also called an input error, is a violation of the expectations for the communication or

in-line checks. An error detection by any of these checks in processes P1 through P4 is sufficient

evidence to accuse the corresponding node of the opposite kind

Note that in process P1 the expected content and the eligible content are not the same. The content

RM(SPECIAL, PE_ERROR) is a valid input, but it is not eligible to determine the voting result.

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BUI is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. Perform a word vote on the messages from eligible voters.

3.1. Cross-lane checks for each BIU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

4. Broadcast the result of the vote.

5. The result of the vote is the protocol result for the i-th PE.

Process P4: BIUs
1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. Perform a word vote on the messages from eligible voters.

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

4. The result of the vote is the protocol result for the i-th PE.

39

The cross-lane checks in processes P3 and P4 compare the result of the vote with the received input

from each node of the opposite kind. An error detection by these checks is sufficient evidence to accuse

the corresponding node of the opposite kind.

Two types of protocol checks are used. In processes P2 through P4, it is expected that at least one

node of the opposite kind is eligible to vote. In processes P3 and P4, it is expected to have agreement on

received message content for a majority of the eligible voters. An error detection by any of these checks

is an indication of a clique failure.

5.1.2. Schedule update assessment

The Schedule Update protocol determines the number of messages to be broadcast by a particular PE.

The result of the protocol can be a DATA message with the number of scheduled messages in the payload

field, or a PE_ERROR message indicating that the protocol was unable to determine a valid number of

messages for the PE being considered.

The assessment of the schedule update produces one of three results: invalid, valid, or zero. A

schedule is invalid if the result of the Schedule Update protocol is PE_ERROR for any PE, or if the total

number of scheduled messages exceeds the maximum number of messages that the ROBUS can process

during the PE Communication mode. This maximum number is a constant during run-time and is

determined by doing a timing analysis of the bus implementation. A schedule is valid if it is not invalid.

A zero schedule is a special case of a valid schedule in which the number of scheduled message is zero

for every PE.

After completing their assessment, the BIUs send a SPECIAL message to the PEs to inform them of

the result. The payload field is one of the following: INVALID_SCHEDULE, VALID_SCHEDULE, or

ZERO_SCHEDULE.

5.1.3. Application of the schedule update assessment

The schedule for the next PE broadcast session depends on the result of the schedule update

assessment. If the result is valid, the new schedule is used. If the result is zero, there will be no bus

activity during the next PE Communication mode. If the result is invalid, a default schedule is used. The

default schedule is constant during run-time and is known to all the ROBUS nodes and the PEs. For this

version of the ROBUS, the default schedule allocates the same number of transmissions for each PE.

5.2. PE Communication

In the PE Communication mode, the ROBUS broadcasts PE messages according to the

communication schedule. The access pattern is a time-indexed round-robin sequence in which the

interval between the send times of consecutive messages is constant regardless of whether they are from

the same or different PEs. The BIUs (and their attached PEs) access the bus in ascending order according

to their identification numbers. If a particular PE is not scheduled to send messages, the next one that is

scheduled will automatically take its place to ensure that the proper interval between messages is

maintained. Each PE message is broadcast using an agreement protocol to ensure that the PEs receive the

same result.

40

After all the scheduled messages have been processed, the BIUs and RMUs exchange their

accumulated accusations against nodes of the opposite kind. This exchange enhances the reconfiguration

capabilities of the bus by ensuring that the required diagnosis properties are satisfied when processing the

accumulated suspicions. This is explained in detail in Appendix F.

The suspicions matrix is processed following the completion of the Accusation Exchange protocol.

Section 4 of this document describes this operation.

Note that these protocols are executed by nodes in the Clique Preservation and Clique Join modes.

5.2.1. PE Broadcast protocol

The PE Broadcast protocol was inspired by the source congruency protocol presented in [Smith 84]

for Drapper Lab’s Fault Tolerant Processor (FTP) architecture. Figure 5.3 illustrates the message flow

graph. This protocol is a synchronous protocol implemented using synchronous communication. The

scheduled message is generated by the source PE and relayed by the attached BIU (a.k.a. the source BIU).

The result of the protocol is received by all the PE attached to BIUs that are part of the clique or are in

Clique Join mode.

The protocol is an agreement protocol with embedded diagnostic processing. If the source PE sends a

valid message and its attached BIU is working properly, then the PEs will receive the message sent. A

result of PE_ERROR indicates that the source BIU did not receive a valid message from the PE.

SOURCE_ERROR indicates that there was an error caused by the source BIU. A result of

NO_MAJORITY means that the source BIU did not broadcast the same message to each of the RMUs.

Figure 5.3: Message flow graph for the PE Broadcast protocol

The PE Broadcast protocol is presented next.

Process P0: Source BIU
1. If the PE message is valid, broadcast that message. Otherwise, broadcast

RM(SPECIAL, PE_ERROR).

P0 P2

RMUs

BIUs

PEs

P1

source

PE

only

source

BIU

only

41

Process P1: RMUs

1. Receive the message from the source BIU.

1.1. Communication checks for the source BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for the source BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, PE_ERROR), RM(DATA, *)

2. For the source BIU, if there was a reception error, the message content is ineligible,

or there is an accusation against it, then the BIU is ineligible.

2.1. Eligible content for the source BIU: RM(SPECIAL, PE_ERROR), RM(DATA,

*)

3. If the source BIU is eligible, the result is the received message. Otherwise, the

result is RM(SPECIAL, SOURCE_ERROR).

4. Broadcast the result.

Process P2: BIUs

1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, PE_ERROR), RM(SPECIAL,

SOURCE_ERROR), RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(SPECIAL, PE_ERROR), RM(SPECIAL,

SOURCE_ERROR), RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. Perform a word vote on the messages from eligible voters. If there is no majority,

then convert the result to RM(SPECIAL, NO_MAJORITY).

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol check:

3.2.1. Expecting that the vote result is not equal to RM(SPECIAL,

NO_MAJORITY) or RM(SPECIAL, SOURCE_ERROR)

3.3. Self-check: (source BIU only)

3.3.1. Is the vote result equal to the message broadcast in process P0?

42

In processes P1 and P2, a reception error is sufficient evidence to accuse the corresponding node of the

opposite kind.

In processes P2, it is expected that at least one node of the opposite kind is eligible to vote. An error

detection by this check is an indication of a clique failure. A vote result of RM(SPECIAL,

SOURCE_ERROR) or RM(SPECIAL, NO_MAJORITY) in process P2 is an indication of an error by the

source BIU and is sufficient evidence to accuse it. If the vote result in process P2 is not RM(SPECIAL,

SOURCE_ERROR) or RM(SPECIAL, NO_MAJORITY), and an error is detected for a cross-lane check,

then it is known that one or both of the corresponding RMU and the source BIU is responsible for the

error. This is sufficient evidence to generate a suspicion against the RMU and the source BIU.

The self-check in process P2 is stated as a question because the expected result depends on the mode

of the node executing this protocol process. For a node in the Clique Preservation mode or the Clique

Join mode with its output enabled, it is expected that the result of the vote is equal to the message

broadcast in process P0. For a node in the Clique Join mode with its output disabled, it is expected that

the message broadcast in process P0 and the voting result in process P2 do not match. (Furthermore, the

voting result should be SOURCE_ERROR for a node in the Clique Join mode with its output disabled.)

Irrespective of the operating mode, a violation of the expectation for this check is an indication of a local

failure.

5.2.2. Accusation Exchange protocol

Figure 5.4 shows the message flow graph for the Accusation Exchange protocol. Only BIUs and

RMUs participate in this protocol. This protocol is a synchronous protocol implemented using

synchronous communication.

Figure 5.4: Message flow graph for the Accusation Exchange protocol

The description of the protocol is presented next.

P0 P2

RMUs

BIUs

P1

4. If the source is not trusted, then convert the result to RM(SPECIAL,

SOURCE_ERROR).

5. Send the result to the attached PE.

43

Process P0: BIUs

1. Broadcast the local accusations against the RMUs.

Process P1: RMUs
1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BUI is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. For each RMU defendant, perform a bit vote on the accusations received from

eligible voters.

3.1. Cross-lane checks for each BIU:

3.1.1. Expecting agreement with the result of the vote for each RMU defendant

4. Broadcast the local accusations against the BIUs.

5. For each RMU defendant, merge the result of the bit vote with the local accusation

value. The result is the new local accusation value for the defendant.

Process P2: BIUs

1. Receive the messages from the RMUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

44

Bitwise OR functions implement the merge operations in processes P1 and P2 between the results of

the bit votes and the local accusations. The updates to the accusations become effective after the

corresponding protocol process is complete.

In processes P1 and P2, a reception error is sufficient evidence to accuse the corresponding node of the

opposite kind.

In processes P1 and P2, it is expected that at least one node of the opposite kind is eligible to vote. An

error detection by this check is an indication of a clique failure.

For each bit vote operation in processes P1 and P2, if an error is detected for a cross-lane check, then it

is known that the defendant for the bit vote, the node of the opposite kind for which the error was

detected, or both are untrustworthy. This is sufficient evidence to generate a suspicion against the

defendant and the node of the opposite kind.

5.3. Synchronization Preservation

In the Synchronization Preservation mode, the ROBUS executes a distributed synchronization

protocol to re-synchronize the local-time clocks of the BIUs and RMUs, and to provide the PEs with a

common time reference. It is assumed that the clique is already synchronized within some known

precision bound. The protocol is intended to improve the precision by eliminating any relative skew

introduced by the drift rate of the oscillators since the last synchronization.

The Synchronization Preservation protocol was originally inspired by the clock synchronization

protocol presented in [Srikanth 87], and it is an extension of the synchronization protocol in [Miner 02].

Figure 5.5 shows the message flow graph for the protocol. This protocol is a synchronization protocol

implemented using fixed-delay communication. The labels next to the arrows indicate the type of

SPECIAL message that is transmitted by the sending process. The protocol is an agreement generation

protocol with provisions for nodes trying to synchronize to the clique.

3. For each BIU defendant, perform a bit vote on the accusations received from

eligible voters.

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the vote for each BIU defendant

4. For each BIU defendant, merge the result of the bit vote with the local accusation

value. The result is the new local accusation value for the defendant.

45

Figure 5.5: Message flow graph for the Synchronization Preservation protocol

The description of the protocol is presented next. Agreement checks are performed by comparing the

time between relevant events against an expected duration. A synchronization-reset timer implements a

delay between a reference event and the resetting of the local-time clock. Appendix C provides additional

information about the timing aspects of this protocol.

P0 P2 P4

RMUs

BIUs

PEs

P1 P3

INIT INIT ECHO ECHO

INIT

Process P0: BIUs
1. If it is time to send, broadcast RM(SPECIAL, INIT).

Process P1: RMUs
1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, INIT)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BUI is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(SPECIAL, INIT)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. Compute the Accept function for the messages received from the eligible voters.

3.1. Cross-lane checks for each BIU:

3.1.1. Expecting agreement with the result of the Accept function

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

4. When the Accept output is asserted, broadcast RM(SPECIAL, INIT).

46

Process P2: BIUs

1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, INIT)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(SPECIAL, INIT)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. Compute the Accept function for the messages received from the eligible voters.

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the Accept function

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

4. When the Accept output is asserted, broadcast RM(SPECIAL, ECHO), start the

synchronization-reset timer, and send RM(SPECIAL, INIT) to the attached PE.

Process P3: RMUs
1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, ECHO)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BIU is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(SPECIAL, ECHO)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. Compute the Accept function for the messages received from the eligible voters.

3.1. Cross-lane checks for each BIU:

3.1.1. Expecting agreement with the result of the Accept function

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

47

In processes P1 through P4, a reception error or a cross-lane check error is sufficient evidence to

accuse the corresponding node of the opposite kind.

In processes P1 through P4, it is expected that at least one node of the opposite kind is eligible to vote

and also to have agreement on received message timing for a majority of the eligible voters. An error

detection by any of these checks is an indication of a clique failure.

5.4. Collective Diagnosis

In the Collective Diagnosis mode, the clique executes the Collective Diagnosis protocol to achieve a

consistent diagnostic view of every ROBUS node in the system, including those that are not part of the

clique. Two executions of the protocol are performed: one to diagnose RMUs and another to diagnose

BIUs. Each protocol execution takes the accusations against each defendant of a particular kind from all

of the nodes that are part of the clique, combines them to assess the trustworthiness of each defendant,

and then distributes the resulting conviction results. Both executions of the Collective Diagnosis protocol

use ROBUS messages formatted to carry diagnostic data corresponding to accusations or convictions.

This message format is presented in Section 3. The Collective Diagnosis protocol is a synchronous

protocol implemented using synchronous communication.

The Collective Diagnosis protocol was originally inspired the MAFT approach to on-line diagnosis

4. When the Accept output is asserted, broadcast RM(SPECIAL, ECHO) and start the

synchronization-reset timer.

Process P4: BIUs

1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, ECHO)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each BIU: RM(SPECIAL, ECHO)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. Compute the Accept function for the messages received from the eligible voters.

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the Accept function

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

48

presented in [Walter 97]. Geser and Miner [Geser 04] developed the current version of the protocol,

which is optimized for the ROBUS.

Note that the Collective Diagnosis protocol is executed by nodes in each of the major modes, except

for the Self-Test mode.

5.4.1. Collective Diagnosis protocol for RMU defendants

Figure 5.6 shows the message flow graph for the Collective Diagnosis protocol applied to diagnose

RMU defendants. The labels next to the arrows indicate the type of data transmitted by the message

sources.

Figure 5.6: Message flow graph for the Collective Diagnosis protocol for RMU defendants

The description of the protocol is presented next. The merge operation in process P1 is a two-input

Boolean OR function.

P0 P2 P4

RMUs

BIUs

PEs

P1 P3

Acc

RMUs

Conv

RMUs

Conv

RMUs

Conv

RMUs

Process P0: BIUs
1. Broadcast the local accusations against the RMUs.

Process P1: RMUs

1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BIU is not trusted, then the BIU is not an eligible voter.

49

2.1. Eligible content for each BIU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. For each RMU defendant, perform a bit vote on the accusations received from

eligible voters.

4. For each RMU defendant, merge the result of the bit vote with the local accusation

value.

5. Broadcast the results of the merge operations as a single ROBUS message.

Process P2: BIUs
1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. For each RMU defendant, perform a bit vote on the accusations received from

eligible voters.

4. Broadcast the results of the bit vote operations as a single ROBUS message.

Process P3: RMUs

1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BIU is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

50

3. Perform a word vote on the messages received from eligible voters.

3.1. Cross-lane checks for each BIU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

4. Broadcast the result of the vote.

5. The result of the vote has the updated convictions against the RMUs.

5.1. Protocol checks:

5.1.1. Expecting that not all of the RMUs are convicted

5.2. Self-check:

5.2.1. Is the local node convicted?

Process P4: BIUs

1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. Perform a word vote on the messages received from eligible voters.

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

3.2.2. Is the the result of the vote equal to the result in process P2?

4. Send the result of the vote to the attached PE.

5. The result of the vote has the updated convictions against the RMUs.

5.1. Protocol checks:

5.1.1. Expecting that not all of the RMUs are convicted

51

In processes P1 through P4, a reception error is sufficient evidence to accuse the corresponding node

of the opposite kind.

In processes P2 through P4, it is expected that at least one node of the opposite kind is eligible to vote.

In processes P3 and P4, it is expected to have agreement on received message content for a majority of

the eligible voters. An error detection by any of these checks is an indication of a clique failure.

The cross-lane checks in processes P3 and P4 compare the result of the vote with the received input

from each node of the opposite kind. An error detection by these checks is sufficient evidence to accuse

the corresponding node of the opposite kind.

In processes P3 and P4, it is expected that the result of the word vote does no indicate that all of the

RMUs are convicted. A violation of this expectation indicates a clique failure.

The self-check in process P3 is stated as a question because the expected result depends on the mode

of a node executing this protocol process. For a node in Clique Preservation mode or in the first pass in

the Clique Join mode, the result of the vote should indicate a conviction against the node. For a node in

Clique Initialization, Clique Preservation, or the second pass in the Clique Join mode, the expected result

is that the node is not convicted. In Clique Detection mode, a detected error is interpreted as a clique

failure. In all of the other cases, an error detection indicates a local failure or a clique failure.

Nodes in the Clique Join, Clique Initialization, and Clique Preservation modes expect that, for each

defendant, the results in processes P2 and P4 are equal. An error detection in any of these modes

indicates a clique failure. For nodes in the Clique Detection mode, there is no expected relation between

the results.

5.4.2. Collective Diagnosis protocol for BIU defendants

Figure 5.7 shows the message flow graph for the Collective Diagnosis protocol applied to diagnose

BIU defendants. The labels next to the arrows indicate the type of data transmitted by the message

sources.

Figure 5.7: Message flow graph for the Collective Diagnosis protocol for BIU defendants

The description of the protocol is presented next.

P1 P3

RMUs

BIUs

PEs

P0 P2 P4

Acc

BIUs

Conv

BIUs

Conv

BIUs

Conv

BIUs

52

Process P0: RMUs

1. Broadcast the local accusations against the BIUs as a single diagnostic message.

Process P1: BIUs
1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. For each defendant BIU, perform a bit vote on the accusations received from

eligible voters.

4. For each defendant BIU, merge the result of the bit vote with the local accusation.

5. Broadcast the results of the merge operations as a single diagnostic message.

Process P2: RMUs

1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BIU is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

3. For each BIU defendant, perform a bit vote on the accusations received from

eligible voters.

4. Broadcast the results of the bit vote operations as a single diagnostic message.

53

Process P3: BIUs
1. Receive the messages from the RMUs.

1.1. Communication checks for each RMU:

1.1.1. Expecting no link errors

1.2. In-line checks for each RMU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each RMU, if there was a reception error, the message content is ineligible, or

the RMU is not trusted, then the RMU is not an eligible voter.

2.1. Eligible content for each RMU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one RMU is an eligible voter

3. Perform a word vote on the messages received from eligible voters.

3.1. Cross-lane checks for each RMU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

4. Broadcast the result of the vote.

5. Send the result of the vote to the attached PE.

6. The result of the vote has the updated convictions against the BIUs.

6.1. Protocol checks:

6.1.1. Expecting that not all of the BIUs are convicted

6.2. Self-check:

6.2.1. Is the local node convicted?

Process P4: RMUs
1. Receive the messages from the BIUs.

1.1. Communication checks for each BIU:

1.1.1. Expecting no link errors

1.2. In-line checks for each BIU:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(DATA, *)

2. For each BIU, if there was a reception error, the message content is ineligible, or

the BIU is not trusted, then the BIU is not an eligible voter.

2.1. Eligible content for each BIU: RM(DATA, *)

2.2. Protocol checks:

2.2.1. Expecting that at least one BIU is an eligible voter

54

This protocol is essentially the same as the protocol for collective diagnosis of RMUs. All the

comments stated in the previous section for the error checks of that protocol apply to this one as well.

5.4.3. Concurrent diagnosis for RMU and BIU defendants

It is possible to diagnose the RMU and the BIU defendants concurrently by overlapping the message

flow graphs for the executions of the Collective Diagnosis protocol for RMU and BIU defendants. Figure

5.8 shows the resulting pattern. This pattern achieves a significant reduction in the time required to

complete the self-diagnosis of the bus.

Figure 5.8: Message flow graph for the concurrent diagnosis of RMU and BIU defendants

P0 P1 P2 P3 P4

RMUs

BIUs

PEs

P0 P1 P2 P3 P4

Conv

BIUs

Conv

RMUs

3. Perform a word vote on the messages received from eligible voters.

3.1. Cross-lane checks for each BIU:

3.1.1. Expecting agreement with the result of the vote

3.2. Protocol checks:

3.2.1. Expecting agreement among a majority of the eligible voters

3.2.2. Is the the result of the vote equal to the result in process P2?

4. The result of the vote has the updated convictions against the BIUs.

4.1. Protocol checks:

4.1.1. Expecting that not all of the BIUs are convicted

55

6. Self-Test

The Self-Test mode serves two purposes. First, it establishes a checkpoint in which the nodes are

required to exercise and assess the status of their circuitry before attempting to join other nodes on the

bus. The effectiveness of this activity in stopping faulty nodes is dependent on the fault coverage

provided by the self-test procedures, which are implementation-dependent. In a non-developmental

version of the ROBUS, the results of the self-test would be included in the decision of a node to transition

to a disabled state permanently, or to remain active and try to return to normal operation. For the current

version of the ROBUS, a failure of the self-test is considered a local failure that should trigger a re-entry

into the Self-Test mode. If the self-test can detect a particular permanent-fault condition affecting a node,

the node will remain in the Self-Test mode indefinitely.

The second purpose of the Self-Test mode is to provide a safe state to which the ROBUS nodes can go

after detecting a failure and before attempting to re-engage. A detected failure can be caused by

phenomena external to the bus (e.g., lightning or HIRF) that can have an unknown duration and can affect

multiple nodes simultaneously. The nodes do not have the means to accurately determine the cause,

duration, or number of nodes affected by a fault-causing phenomenon. Because of this, worst-case

conditions are always assumed. The nodes are programmed to disengage from the bus as soon as a failure

is detected and then run a self-test continuously for a time interval at least as long as the worst-case

duration of a fault-causing phenomenon plus the worst-case failure detection delay. This behavior

ensures that the fault-causing phenomenon has subsided and the affected nodes have disengaged from the

bus by the time a node exits the Self-Test mode.

Figure 6.1 shows the operations performed in the Self-Test mode. A ROBUS node enters this mode

during a startup after the power-on enable or during a restart after the detection of a local node failure or a

bus failure. The first action is to reset completely and disable the output. It is assumed that a fault can

propagate to all the components within an FCR. Therefore, when a fault is detected, the state data of the

node is considered corrupted, and none of it is carried over, irrespective of whether it is a local failure or a

bus failure. The disabling of the output ensures that any remaining members of the clique and other

nodes trying to rejoin the bus will consistently detect that the node is untrustworthy. The next action in

the Self-Test mode is to execute the self-test until the bus has settled. This duration is called the Upset

Abatement Delay. Appendix G examines the recovery process in detail and shows how to compute this

delay.

Figure 6.1: Activities during the Self-Test mode

Power-on enable,

Local failure, or Bus failure

Self test for the duration of

the Upset Abatement Delay

Reset and disable the

broadcast outputs

To Clique Detection mode

56

57

7. Clique Detection

After exiting the Self-Test mode, a node needs to determine if there is a clique operating in the Clique

Preservation mode or if a new clique needs to be formed. In this version of the ROBUS, the approach

selected is to assume that there is clique present on the bus and try to acquire its state while

simultaneously monitoring for any indications that the clique is not valid. Figure 7.1 shows the minor-

mode transition graph. A recovering node is unsynchronized when it enters the Clique Detection mode.

In the Local Diagnosis Acquisition mode, the recovering node observes the nodes of the opposite kind in

order to determine a trusted set operating in the Clique Preservation mode. Because it is unsynchronized,

the recovering node can only use its local time for coarse assessment of the timing characteristics of other

nodes. In the Synchronization Acquisition mode, the recovering node synchronizes to the clique

leveraging the accumulated diagnostic observations. Local-time synchronization enables the recovering

node to perform refined timing observations and to gather state data from the synchronous protocols. In

the Collective Diagnosis Acquisition mode, the recovering node gets the conviction results computed by

the clique. The information collected up to this point is considered sufficient for the recovering node to

make a final determination about the presence of a clique. If it has evidence that a clique is present, the

recovering node will proceed to the Clique Join mode to attempt to become a member of the clique.

Otherwise, it will transition to the Clique Initialization mode to form a new clique.

Figure 7.1: Minor-mode transitions for Clique Detection mode

The only protocol-independent condition that indicates a local failure of the recovering node is the

assertion of an accusation against itself. Each of the following protocol-independent conditions indicates

a clique failure: number of trusted BIUs equal to zero, and number of trusted RMUs equal to zero.

Protocol-dependent conditions corresponding to a clique failure are described with the corresponding

protocols.

From Self-Test

Collective

Diagnosis

Acquisition

Synchronization

Acquisition

Local Diagnosis

Acquisition

To Clique Join

To

Clique Initialization

Clique

not valid

58

7.1. Local Diagnosis Acquisition

During Local Diagnosis Acquisition, a recovering node determines a trusted set of opposite kind nodes

operating in the Clique Preservation mode. For this version of the ROBUS, this is accomplished by

separate in-line monitors that check the received message patterns for each opposite kind node. Many

combinations of timing and content checks are possible. There is a tradeoff between the effectiveness of

the checks and their complexity. In general, a high degree of effectiveness requires a high degree of

design refinement, which results in a more complex implementation. The chosen approach is considered

a reasonable balance between the effectiveness and the complexity of the checks.

The local diagnosis is performed in two phases. In the first phase, each in-line monitor searches for an

ECHO message from its corresponding source node. Since the sources are assumed to be in Clique

Preservation, they are expected to broadcast an ECHO message once per re-synchronization period. If a

particular monitor does not receive an ECHO within the expected time interval, the corresponding source

is accused. The monitors that receive the ECHO message transition to the second phase of diagnosis in

which the content sequence for received messages is checked. An ECHO message is the last one in the

Synchronization Preservation protocol. After that, an inline monitor expects to receive the messages for

the Collective Diagnosis, Schedule Update, and PE Communication protocols. For Collective Diagnosis,

the expected number of messages is constant and only DATA messages are expected. For Schedule

Update, the expected number of messages is also constant and only PE ERROR or DATA messages are

allowed. For PE Communication, the number of messages can vary from zero up to a known maximum

and there are only a few valid message formats. The reception of an INIT message signals the arrival at

the Synchronization Preservation protocol. The INIT should be followed by an ECHO message. If the

received message pattern was not valid or the second ECHO is not received within the time of one re-

synchronization period, the source node can be accused.

7.2. Synchronization Acquisition

After identifying a preliminary set of trusted nodes, the next step is to synchronize to the clique.

Figure 7.2 shows the required activities. During Frame Synchronization, a recovering node achieves

coarse synchronization by distinguishing received synchronization messages from different executions of

the Synchronization Preservation protocol. During Synchronization Capture, the ECHO messages of the

Synchronization Preservation protocol are used to tightly synchronize to the clique.

Figure 7.2: Activities for Synchronization Acquisition

Start

Synchronization

Capture

Frame

Synchronization

Done

59

7.2.1. Frame Synchronization

The purpose of Frame Synchronization is to ensure that the Accept function in Synchronization

Capture receives the ECHO messages from trustworthy sources participating in the Synchronization

Preservation protocol. Achieving Frame Synchronization is equivalent to finding the time gap between

consecutive executions of the Synchronization Preservation protocol. The Frame Synchronization

protocol for this version of the ROBUS is presented below. The protocol monitors the ECHO messages

from the trusted nodes identified during Local Diagnosis Acquisition. The time interval measured by the

gap timer corresponds to the maximum observed relative skew between received ECHO messages from

trustworthy nodes. The calculation of this skew is described in Appendix C. The protocol has provisions

for handling untrustworthy trusted nodes. In addition, the in-line checks can be used to identify

untrustworthy nodes. Any opposite kind node that violates the expectations can be accused.

7.2.2. Synchronization Capture

During Synchronization Capture, a recovering node synchronizes to the clique by applying the Accept

function to ECHO messages received from trusted sources. Figure 7.3 shows the message flow graph for

the Synchronization Preservation protocol augmented to include the P3C and P4C Synchronization

Capture processes. Recovering RMUs execute process P3C, and recovering BIUs execute process P4C.

A recovering BIU sends an ECHO message to its PE. The use of an ECHO message rather than an INIT

message allows the PE to easily recognize that these are different synchronization events with different

associated timing.

The P3C and P4C processes are described next. The processes are triggered by the end of the Frame

Synchronization protocol. Because the recovering nodes are only loosely synchronized, they do not have

precise expectations about the time of arrival of the ECHO messages. Any messages received that are not

ECHO messages must be ignored by the protocol. No reception checks are performed to determine the

eligible voters. These are equal to the trusted nodes of the opposite kind at the start of the protocol. The

only significant difference in the descriptions for P3C and P4C is that the BIUs in process P4C must send

an ECHO message to their PEs. Agreement checks are performed by comparing the time between

Process:
1. Start the gap timer.

2. While the gap timer has not expired:

2.1. If an error is detected, remove the corresponding source from the eligible

sources.

2.1.1. Communication checks for each opposite-kind source:

2.1.1.1. Expecting no link errors

2.1.2. In-line checks for each opposite-kind source:

2.1.2.1. At most one RM(SPECIAL, ECHO) message expected before the gap

timer expires.

2.2. If an RM(SPECIAL, ECHO) message is received from an eligible source, then

restart the gap timer.

3. Done

60

relevant events against an expected duration. Appendix C provides additional information about the

timing aspects of this protocol, including the calculation of the delays measured by the synchronization-

reset timers in processes P3C and P4C.

Figure 7.3: Message flow graph for the Synchronization Preservation protocol with Synchronization Capture

processes

RMUs

BIUs

PEs

INIT

ECHO

ECHO

ECHO

INIT

P0

P1

P3C

P2

P3

P4C

P4

INIT

Process P3C: RMUs
1. Receive the RM(SPECIAL, ECHO) messages from the BIUs.

2. Compute the Accept function for the messages received from the eligible voters.

2.1. Cross-lane checks for each BIU:

2.1.1. Expecting agreement with the result of the Accept function

2.2. Protocol checks:

2.2.1. Expecting agreement among a majority of the eligible voters

3. When the Accept output is asserted, start the synchronization-reset timer.

Process P4C: BIUs
1. Receive the RM(SPECIAL, ECHO) messages from the RMUs.

2. Compute the Accept function for the messages received from the eligible voters.

2.1. Cross-lane checks for each RMU:

2.1.1. Expecting agreement with the result of the Accept function

2.2. Protocol checks:

2.2.1. Expecting agreement among a majority of the eligible voters

3. When the Accept output is asserted, start the synchronization-reset timer and send

RM(SPECIAL, ECHO) to the attached PE.

61

A cross-lane check error in processes P3C or P4C is sufficient evidence to accuse the corresponding

node of the opposite kind.

In processes P3C and P4C, it is expected to have agreement on received message timing for a majority

of the eligible voters. An error detection by any of these checks is an indication of a clique failure.

7.3. Collective Diagnosis Acquisition

During Collective Diagnosis Acquisition mode, a recovering node gets the conviction results

computed by the clique. To do this, the recovering node executes the Collective Diagnosis protocols as if

it were part of the clique, with only one exception. For recovering BIUs executing the Collective

Diagnosis protocol for RMU defendants, there is no expectation that the result in process P4 should equal

the result in process P2. Similarly, for recovering RMUs executing the Collective Diagnosis protocol for

BIU defendants, there is no expectation that the result in process P4 should equal the result in process P2.

62

63

8. Clique Join

During the Clique Join mode, a recovering node demonstrates that it is suitable for admission to the

clique. For this version of the ROBUS, that consists of operating properly for one full diagnostic cycle.

Figure 8.1 shows the flow of operation for the Clique Join mode. When the recovering node enters

this mode, its time and diagnostic state variables are in agreement with the corresponding state variables

of the clique. This enables the recovering node to internally operate as if it were a member of the clique.

The only significant difference is that its output is disabled. The node should enable its output just before

the clique starts gathering local diagnostic observations for the next local diagnostic cycle, which occurs

at the beginning of Collective Diagnosis. Once the output has been enabled, the recovering node should

expect to be admitted to the clique after the following diagnostic cycle. This is confirmed by results of

the Collective Diagnosis protocol indicating that the node is not convicted. If so, the recovering node

transitions to the Clique Preservation mode to operate as a member of the clique. However, if the node is

convicted, this is sufficient evidence to conclude that the node or the clique has failed. Therefore, the

recovering node should transition to the Self-Test mode.

Each of the following protocol-independent conditions indicates a local failure or a bus failure:

number of trusted BIUs equal to zero, number of trusted RMUs equal to zero, and assertion of an

accusation against self. The protocol-dependent conditions are described with the corresponding

protocols.

64

Figure 8.1: Minor-mode transitions for the Clique Join mode

From Clique Detection

Collective

Diagnosis

Synchronization

Preservation

PE

Communication

Schedule

Update

Enable

output

Yes

First cycle?
No

No

Yes

To Clique Preservation

Convicted?

First cycle?
Yes

No

To Self-Test

65

9. Clique Initialization

A node transitions from the Clique Detection mode to the Clique Initialization mode after determining

that there is not a valid clique operating in the Clique Preservation mode. The purpose of this major mode

is to form a new clique. A node operates in this mode with the presumption that there is a group of nodes

trying to form a clique and that all of them enter this mode in the unsynchronized state with a known

bound on the relative local-time skew. To form a new clique, a set of nodes trying to form the clique

must be identified, and local time and diagnostic state agreement must be achieved. This is done while

simultaneously monitoring for indications that a clique cannot be formed.

Figure 9.1 shows the main activities performed in the Clique Initialization mode. None of the time

and diagnostic state gathered in the Clique Detection mode is valid once a node transitions to this mode.

The first step is to clear all the state data and enable the output to allow communication with other nodes.

In the Initial Diagnosis mode, a preliminary set of nodes trying to form a clique is found. In Initial

Synchronization, the uncertainty in the local-time synchronization is reduced to the level expected in the

synchronized state. In Collective Diagnosis, the nodes reach agreement on the membership of the clique.

Figure 9.1: Minor-mode transitions for the Clique Initialization mode

Each of the following protocol-independent conditions indicates a local failure or a bus failure for the

Clique Initialization mode: number of trusted BIUs equal to zero, number of trusted RMUs equal to zero,

and assertion of an accusation against self. The protocol-dependent conditions are described with the

corresponding protocols.

From Clique Detection

Collective

Diagnosis

Initial

Synchronization

Initial

Diagnosis

To Clique Preservation

Reset the time and

diagnostic state, and

enable the output

66

9.1. Initial Diagnosis

In the Initial Diagnosis mode, the nodes execute a synchronous protocol to determine an initial trusted

set taking advantage of the known bound on the synchronization precision when operating in the

unsynchronized state. Figure 9.8 shows the message flow graph. Notice that there is no visibility to the

behavior of nodes of the same kind. Thus, a particular node can only assess nodes of the opposite kind.

Figure 9.8: Message flow graph for the Initial Diagnosis protocol

The description of the protocol follows. A reception error in process P1 is sufficient evidence to

accuse the corresponding node of the opposite kind.

9.2. Initial Synchronization

The purpose of the local-time synchronization protocol executed in this mode is to reduce the relative

skew to the level required for normal synchronized operation. The protocol is triggered a fixed delay

after the completion of the Initial Diagnosis protocol. The Initial Synchronization protocol is based on

the same basic protocol as the Synchronization Preservation protocol, and it can handle any specified

bound on the initial relative local-time skew, even one much larger than the final skew.

Figure 9.2 shows the message flow graph for the protocol. The protocol is an agreement generation

protocol using the fixed-delay model for point-to-point communication. The labels near the arrows

indicate the type of SPECIAL message that is transmitted by the sending process. Notice that in process

P4 the BIUs send to the PEs an ECHO message rather than an INIT message, which is used only by the

Synchronization Preservation protocol.

P0 P1

RMUs

BIUs

P0 P1

Process P0: BIUs and RMUs
1. Broadcast RM(SPECIAL, CLIQUE_INITIALIZATION).

Process P1: BIUs and RMUs
1. Receive the messages from the nodes of the opposite kind.

1.1. Communication checks for each node of the opposite kind:

1.1.1. Expecting no link errors

1.2. In-line checks for each node of the opposite kind:

1.2.1. Expecting reception within a predetermined local-time interval

1.2.2. Expecting exactly one message

1.2.3. Expected content: RM(SPECIAL, INITIALIZATION)

67

Figure 9.2: Message flow graph for the Initial Synchronization protocol

The description of the protocol is presented next. Because the bound on the initial relative local-time

skew can be large, the nodes do not have precise expectations about the time of arrival of the messages.

The processes ignore any received messages that are not of the expected kind, and no reception error

checks are performed in any of the processes. The eligible voters are equal to the trusted nodes of the

opposite kind at the start of the protocol. The communication and process delays for Initial

Synchronization must be approximately equal to the ones for the Synchronization Preservation protocol in

order for the final synchronization precision to be the same. This can result in a situation in which the

protocol delay from P0 to the synchronization reset in P3 and P4 is much smaller than the initial time

skew. Since the Accept functions assert their outputs shortly after receiving more than half of the

expected inputs, it is possible that the ECHO messages are broadcast before some trustworthy nodes are

ready to send their INIT messages in processes P0 and P1. In addition, since the objective of the protocol

is to generate reference ECHO events to trigger the enabling of the synchronization-reset timers, there is

no need for a node to send an INIT message after it has sent an ECHO message. The blocking of INITs

after ECHOs ensures that, in effect, the INIT-sending processes terminate after the completion of the

ECHO-sending processes. Appendix C provides additional information about the timing aspects of this

protocol.

P0 P2 P4

RMUs

BIUs

PEs

P1 P3

INIT INIT ECHO ECHO

ECHO

Process P0: BIUs
1. If it is time to send and RM(SPECIAL, ECHO) has not been broadcast, then

broadcast RM(SPECIAL, INIT).

Process P1: RMUs
1. Receive the RM(SPECIAL, INIT) messages from the BIUs.

2. Compute the Accept function for the messages received from the eligible voters.

3. When the Accept output is asserted, if RM(SPECIAL, ECHO) has not been

broadcast, then broadcast RM(SPECIAL, INIT).

68

A cross-lane check error in processes P3 or P4 is sufficient evidence to accuse the corresponding node

of the opposite kind.

In processes P3 and P4, it is expected to have agreement on received message timing for a majority of

the eligible voters. An error detection by any of these checks is an indication of a clique failure.

9.3. Collective Diagnosis

The Collective Diagnosis protocol is described in Section 5.

Process P2: BIUs

1. Receive the RM(SPECIAL, INIT) messages from the RMUs.

2. Compute the Accept function for the messages received from the eligible voters.

3. When the Accept output is asserted, broadcast RM(SPECIAL, ECHO).

Process P3: RMUs

1. Receive the RM(SPECIAL, ECHO) messages from the BIUs.

2. Compute the Accept function for the messages received from the eligible voters.

2.1. Cross-lane checks for each BIU:

2.1.1. Expecting agreement with the result of the Accept function

2.2. Protocol checks:

2.2.1. Expecting agreement among a majority of the eligible voters

3. When the Accept output is asserted, start the synchronization-reset timer and

broadcast RM(SPECIAL, ECHO).

Process P4: BIUs
1. Receive the RM(SPECIAL, ECHO) messages from the RMUs.

2. Compute the Accept function for the messages received from the eligible voters.

2.1. Cross-lane checks for each RMU:

2.1.1. Expecting agreement with the result of the Accept function

2.2. Protocol checks:

2.2.1. Expecting agreement among a majority of the eligible voters

3. When the Accept output is asserted, start the synchronization-reset timer and send

RM(SPECIAL, ECHO) to the attached PE.

69

10. Concluding remarks

ROBUS is the central feature of the SPIDER IMA architecture currently in the research and

technology development phase. The purpose of this work is to design a flexible architecture that can be

configured to satisfy a wide range of performance and reliability requirements. It is envisioned that

ultimately the ROBUS will be a family of communication systems based on a common theory of fault-

tolerant distributed computation and communication. ROBUS-2 is a concept-demonstration version of

the ROBUS intended for laboratory experimentation and demonstrations of the capabilities. This section

summarizes the attributes of ROBUS-2 presented in the previous sections. This is followed by an

overview of some of the current ideas that may be explored to develop the concept.

10.1. ROBUS-2

ROBUS-2 provides four basic services to the PEs: message broadcast, communication schedule

update, time reference, and self-diagnosis. The message broadcast service is realized by the PE Broadcast

protocol, which is a Byzantine Agreement protocol that ensures result consistency even if the source PE

or the source BIU is arbitrarily faulty. Communication schedule update uses the Schedule Update

protocol to provide PE-fault tolerant and ensure schedule-update consistency at the RMUs, BIUs, and

PEs. The time reference service uses the Synchronization Preservation protocol, an agreement protocol

that generates precise periodic reference events used by RMUs, BIUs, and PEs to synchronize their local-

time clocks. Self-diagnosis is realized by the internal ROBUS diagnostic system, which consists of local

and collective diagnostic processing to assess the status of individual nodes and the bus as a whole. The

Collective Diagnosis protocol is an agreement protocol that processes the local diagnostic assessments

and establishes a consistent view of the status of every ROBUS node. The appendices present the

supporting fault-tolerance theory for these services, including the fault conditions that guarantee the

expected results.

Time-triggered operation is enabled by the periodic execution of the synchronization preservation

protocol. The known precision bound on the relative local-time skew is exploited by using distributed

synchronous composition to coordinate distributed operations. The synchronous communication model

solves the basic problem of transferring data between independently clocked nodes while maintaining

overall timing predictability in the execution of distributed protocols.

Enforcement of the scheduled bus access pattern for the PE-message broadcast service is relatively

simple given the system topology and the use of time-triggered operation. There are three layers of

protection against unauthorized bus access. The first line of enforcement is at the source BIUs, which are

expected to forward the messages of their attached PEs at the scheduled time only. The second layer is

realized by the routing function at each RMU, which is programmed to relay the messages from a

particular PE at the scheduled time only. The final enforcement layer is at the receiving BIUs, which use

exact-majority, dynamic word voting to filter out messages relayed by untrustworthy RMUs.

The diagnostic system is designed based on a transient-fault model for the ROBUS nodes. All node

faults are considered transient and, accordingly, a node is never permanently removed from the system.

A single instance of detected misbehavior is considered sufficient evidence to remove a node from the

trusted set. Readmission into the trusted set is allowed once a full error-free diagnostic cycle has been

completed. This is a conservative diagnostic policy.

Dynamic voting is the main mechanism for neutralizing undiagnosed node failures. Node trust and

70

voter eligibility are reassessed for each voting protocol operation using the latest collective diagnosis

results as well as the local diagnostic information in order to achieve a maximum reconfiguration rate that

is much faster than the rate of execution of the Collective Diagnosis protocol. Input-error detection,

dynamic voting, fail-stop node behavior, and fast reconfiguration allow a clique to continue service

delivery to the PEs for some scenarios in which a large number of nodes become untrustworthy within a

short time interval.

For ROBUS-2, the only difference between startup and restart is the response-triggering event. The

node recovery procedure is independent of whether the trigger is a power-on enable, a local failure, or a

bus failure. The Self-Test mode provides some assurance that a node is operating properly before it

attempts to recover. In the Clique Detection mode, a recovering node attempts to acquire the state of a

clique while monitoring for indications that one is not present. Successful acquisition of the state is

followed by a transition to the Clique Join mode to demonstrate that it is suitable for admission into the

clique. A recovering node in the Clique Detection mode transitions to the Clique Initialization mode if it

detects that there is not a valid clique operating in the Clique Preservation mode. Node diagnosis in order

to establish which nodes can be trusted is the most basic function for fault-tolerant operation in the

ROBUS distributed system. Local Diagnosis Acquisition and Initial Diagnosis compute initial trusted

sets for the Clique Detection and Clique Initialization modes, respectively. In addition to having a trusted

set, the nodes must synchronize their local-time clocks before being able to communicate efficiently. The

Synchronization Acquisition mode protocols provide the means for a recovering node to synchronize to

an existing clique. The Initial Synchronization protocol allows recovering nodes to synchronize to form a

new clique. With synchronized operation established, the nodes are able to use more rigorous error

detection and diagnosis, thus strengthening the fault-tolerance of a clique. Appendix G examines the

startup and restart capabilities.

The ability of a ROBUS clique to maintain coordination independently of PE failures is realized by

the PE-error checks, which report detected PE errors to the BIUs, and more importantly, by the agreement

generation properties of the Schedule Update and PE Broadcast protocols. Appendices D and E examine

the properties of these protocols.

10.2. ROBUS-X

ROBUS-1 was a proof-of-concept design meant to demonstrate some basic features of the ROBUS.

That version, presented in [Miner 02], had a simple initialization mechanism, no failure recovery

capability, relatively simple error detection and diagnosis, and a static communication schedule (i.e.,

loaded off-line). The scheme for collective diagnosis relied on an interactive-consistency message-

broadcast protocol to ensure diagnosis agreement, but that resulted in a heavy performance penalty.

Furthermore, the implementation allowed at most one PE message to be “in transit” through the bus at

any one time. This sequential end-to-end processing limitation severely restricted the maximum message

throughput of the bus.

ROBUS-2 is another proof-of-concept design meant to demonstrate a combination of attributes,

including robust fault tolerance, high message throughput, and a dynamically updateable communication

schedule (i.e., loaded on-line). ROBUS-2 incorporates much of the theoretical insight into the operation

of the ROBUS fault-tolerance protocols gained since the first version was designed. A hardware

realization of the BIU and RMU nodes currently under development achieves a maximum message

throughput of one PE message per clock tick by pipelining the processes of the PE Broadcast protocol.

Ultimately, the throughput of the bus measured in messages per clock tick will be limited by the

71

throughput of the communication links. That realization of ROBUS-2 will be implemented on a COTS-

based platform with the ROBUS functions programmed on field-programmable gate-arrays (FPGAs).

Fault injection in a number of environments, including VHDL simulations, high-intensity radiated fields

(HIRF) and neutron particle radiation, will likely be used to assess the robustness of the fault-tolerance

and to gain additional insight for further development.

The following ideas may be explored for further development of ROBUS.

• For ROBUS-2, the PE bus access sequence is determined by the fixed identification numbers. This

constraint can be easily relieved by augmenting the schedule update to include an access-sequence

number for each PE. The PEs would access the bus in a Round Robin with respect to the dynamically

assigned access-sequence numbers, rather than their fixed identification numbers. This is a much

more flexible access pattern.

• ROBUS-2 uses a simple message format: (Tag, Payload), with a payload of one word. A more

flexible and efficient communication system may be achieved with a variable-length message format

with one or more words per message.

• A ROBUS-2 clique operating in the Clique Preservation mode delivers services in a fixed cyclic

sequence. This sequence was chosen because it is a simple representative pattern that fulfills the

basic requirement of making these services available to the PEs, and because it simplifies the state

acquisition sequence in the Clique Detection mode. With this pattern, all the services operate at the

same rate. For real applications, additional consideration should be given to the service timing

requirements of the PEs, including the PE-to-PE communication requirements. A study should be

conducted to determine the best service-delivery sequence taking into consideration the requirements

of the ROBUS and the PEs.

• The diagnostic system of ROBUS-2 only recognizes nodes as relevant diagnosable elements. The

links are considered to be parts of the nodes. The result is that a node can be accused or convicted

when messages are not propagating properly though a majority of its input or output links, even if the

node itself is computing properly and many of its links are in good condition. One way to improve

the fault tolerance of the ROBUS may be to increase the granularity of the diagnostic system to

consider nodes and links, and then modifying the protocols to exploit the additional diagnostic

information. The preferred redundancy management strategy for some applications is to use

whatever resources are available in order to continue service delivery (i.e., “never give up”).

• The design of the diagnostic system of ROBUS-2 is based on two principles: any evidence of

misbehavior is sufficient to distrust a node, and one diagnostic cycle without errors is sufficient to re-

establish trust. The main constraint for the inclusion of error checks and diagnostic rules in the

design was to ensure compliance with the required properties of correctness and agreement on non-

asymmetric defendants. This approach is adequate for a technology development activity meant to

assess and demonstrate the potential capabilities of ROBUS, but the result may be a design that is

excessively complex for real-world applications. Furthermore, such a simple diagnostic policy may

not yield optimum reliability or the highest probability of tolerating correlated transient-fault events.

For future versions of the ROBUS, we intend to explore the use of diagnostic policies based on the

on-line diagnosis algorithms presented in [Walter 97], especially algorithm HD, which can be tuned

to differentiate between permanent and transient faults. Studies on the relation between diagnostic

policies and the resulting attributes for ROBUS (e.g., reliability, survivability, cost, etc.) would be

useful in guiding further development activities. The SPIDER reliability study presented in

72

[Latronico 04] is a good starting point. In addition to addressing high-level attributes, studies should

address issues like the selection of error checks and the rules for mapping detected errors to node

trust, voter eligibility, and other diagnostic system outputs.

• The time kept by ROBUS-2 is not synchronized to external events. In essence, the Synchronization

Preservation and Initial Synchronization protocols take as inputs a distributed event generated at the

BIUs and compute new distributed events with higher precision bounds. If synchronization to an

external time reference is required by the PEs, they must realize that capability independently from

the ROBUS time service.

The ROBUS synchronization protocols can be modified as follows to synchronize the bus and the

PEs to an external event: the external event is read by the PEs, which generate messages that are sent

to the BIUs using fixed-delay communication; once the BIUs receive these messages, they generate

INIT messages just like for the current protocols; the remaining operations of the protocols remain as

they are. Having the bus synchronized to an important external event enables timely interaction

between the PEs and the external world.

• The number of point-to-point communication links for the ROBUS topology increases with the

number BIUs and RMUs. For a system with N BIUs and M RMUs, the total number of one-

directional links for BIU-RMU communication is 2NM. Including the PE-BIU links, the total

number of one-directional links grows to 2N(M + 1). If the links are implemented using bidirectional

communication cables, the required number of cables can be reduced to NM for the BIU-RMU

communication links, or N(M + 1) including PE-BIU links. The wiring for BIU-RMU

communications can be reduced by using one-to-many broadcast links driven by a single transmitter

at each BIU and each RMU. In that case, the number of cables can be reduced to N+M for the BIU-

RMU communication links, or 2N + M overall. A study should be conducted to determine the

advantages and disadvantages of various wiring options.

• The total amount of cabling required (in terms of total aggregate length) can be reduced by using the

configuration depicted in Figure 10.1. In this configuration, BIUs and RMUs are in close proximity

to one another forming what is essentially a fault-tolerant hub. The PEs may be placed in widely

distributed locations. The total number of individual communication paths remains unchanged, but

the amount of cabling can be significantly less than for a configuration in which the BUIs and RMUs

are farther away from one another.

Figure 10.1: ROBUS in a fault-tolerant hub configuration

PEs

BIUs

RMUs

1 2 N

Fault-tolerant

hub

73

• The configuration shown in Figure 10.1 emphasizes of the PE-BIU links. One idea to develop the

ROBUS is to explore the design of PE-BIU interfaces based on common commercial communication

links (e.g. IEEE-1394 Firewire). Additional logic would have to be added at the PE and BIU ends to

complement such links in order to realize all the functionality required for operation in the ROBUS

(e.g., message format translation, clock synchronization, error detection, and BIU interfacing).

• ROBUS-2 was designed to operate with at most one active clique on the bus at any given time. No

assurance of any kind is given about the behavior of the system if this condition is violated. It is

known that if there are two or more mutually exclusive cliques simultaneously active on the bus, and

the nodes in one clique distrust the nodes in the other cliques, then the system can remain in that state

indefinitely. For some applications it is important to have assurance that such a multi-clique

condition is impossible or extremely improbable. Under relatively benign conditions such that the

BUIs and RMUs fail mainly because of physical degradation or random localized transient faults, an

existing clique should be able to remain active and attract recovering nodes. The probability that a

new clique does not form, or that multiple ones do, is likely to be higher when the bus is exposed to

harsh conditions that can overwhelm the fault tolerance of a clique. For some applications, avoidance

of harsh conditions is a practical way to ensure that the system remains safely within its fault

tolerance limits. For other applications, the ROBUS must be capable of reliably re-establishing a

single clique. If the assumptions of the Clique Initialization mode (see Section 9 and Appendices C

and G) are guaranteed to be satisfied, the restart approach in ROBUS-2 is adequate. Otherwise, some

other means to enable the ROBUS to return to normal operation, preferably on its own, will be

necessary. At this time we do not have protocols that allow the ROBUS to return to normal operation

from an arbitrary state (i.e., self-stabilize).

• ROBUS-2 nodes of a particular kind (i.e., BIU or RMU) are differentiated only by their assigned

identification numbers. In every other respect, the nodes are considered to be part of a single uniform

group. One way to improve the design is to divide the nodes into a core group and a client group.

The core group would be composed of all the RMUs and a subset of the BIUs. The core nodes and

their corresponding PEs would be responsible for computing the basic bus functions like

synchronization, collective diagnosis, and communication schedule update. The computed results for

these functions would be broadcast to the client BIUs, whose main tasks would be to provide access

to the bus to additional PEs. The client BIUs would also have to gather diagnostic information and

send it to the core group for the collective diagnosis. This allocation of functions would reduce the

complexity of the client BIUs, and possibly the RMUs as well. [Kopetz 87] proposed a similar

approach to implement a clock synchronization service in generic distributed real-time systems.

• The ROBUS enables the development of several fault-tolerance strategies combining simplex PE

nodes. Figure 10.2 presents a sample configuration with three PEs in a triple modular redundant

(TMR) configuration (labeled vPE 0, or virtual Processing Element 0), four processors in a dual-dual

configuration (vPE 2), and a single simplex processor (vPE 1). For ROBUS-2, the bus interacts with

the PEs as if they were part of a single uniform group, and the distributed SPIDER operating system

manages the PE configuration. Note that ROBUS-2 supports having only a subset of the PEs

compute the communication schedule. Since PE_ERROR messages are not eligible inputs to the

Schedule Update protocol, the PEs that are not going to send a schedule update to the bus can remove

themselves from consideration by signaling an error to their BIUs, which would then send

PE_ERROR messages. In addition, note that the design of ROBUS-2 is compatible with dynamic

reconfiguration strategies at the PE level, in which the processors get reassigned to particular virtual

PEs in real time as operating modes change or failures occur. The bus is completely unaware of such

rearrangements.

74

Future concept-development efforts could explore moving some PE-configuration support functions

to the bus. For example, consider a system in which PE-communication scheduling is done with

respect to the virtual PEs. For the configuration in Figure 10.2 during the PE Communication mode,

the ROBUS could vote on the fly messages simultaneously sent by the PEs in vPE 0 and then

broadcast the results. For vPE 2, the ROBUS could monitor messages simultaneously sent by dual

PEs 2 and 7 and broadcast the messages from one of them so long as a discrepancy is not detected

between the two input streams. If a discrepancy were detected during the transmission, the ROBUS

would immediately switch to dual PEs 4 and 5. Note that the updating of the communication

schedule could also take advantage of these features by using one predetermined virtual PE to

compute the schedule and then having the ROBUS vote only on the inputs from the corresponding

PEs. A system with such features would have a faster response to PE faults and reduced

communication bandwidth requirement. In order to support these configuration-dependent functions,

the ROBUS would have to have information about how the PEs are configured. A protocol similar to

the Schedule Update protocol can be used to download such information from the PEs to the ROBUS.

Figure 10.2: Sample PE configuration

• Figure 10.3 illustrates another concept for configuring the PEs. Here the PEs and their BIUs are

divided into groups based on common attributes (e.g., implementing a particular function). Each

group is composed of one or more PEs. The RMUs support independent broadcast communication

within each group, as well as inter-group communication. Thus, the RMUs implement multicast

communication with one or more simultaneous input message streams and each stream relayed to one

or more groups. This configuration can be visualized as being the result of merging multiple basic

ROBUS systems with corresponding RMUs linked by a routing function. Such a combined system is

more capable than a single ROBUS-2 system, but it is also more complex. The time reference service

can be easily implemented using one group as a core and the rest as clients that are synchronized with

respect to the core. The scheduling of messages would have to take into consideration inter-group

messages. Diagnosis, both local and collective, would be modified to use policies that exploit

knowledge of how the BIUs and PEs are grouped.

Other areas that may be explored for further development include ways to explicitly support event-

triggered messages with strict end-to-end latency constraints, and efficient ways of implementing the

ROBUS system in hardware and/or software. Future versions of ROBUS, generically designated as

ROBUS-X, will likely have more refined designs geared toward practical applications with strict cost and

complexity constraints.

57
PEs

ROBUS

6
3

0 1 2 4

vPE 0 vPE 1 vPE 2

75

Figure 10.3: PE groups with multicast ROBUS communication

RMUs

BIUs BIUs BIUs

PEs PEs PEs

Group 1 Group 2 Group K

76

77

Appendix A. ROBUS fault-tolerance fundamentals

This appendix describes the basic theory of distributed computation applied to the design of the

ROBUS protocols for the delivery of fault-tolerant services to the PEs.

The presentation in the following three subsections uses concepts adapted from the material in

[Avizienis 04], [Laprie 95], and [Suri 95].

A.1. Faults, errors, and failures

In general, a system has a specification and is composed of multiple components or sub-systems.

Likewise, each of these sub-systems has a specification and an internal structure of interconnected

components. In what follows, it is assumed that the specifications at every hierarchical level are correct

and free from ambiguity, omission, and other kinds of defects.

The terms fault, error, and failure are used to describe a cause-and-effect relationship between

undesired circumstances in the context of the hierarchical composition of a system. A failure occurs

when the behavior of a system fails to provide the desired service. Failure is assessed at the external

interface of a system and is determined by deviations from the behavior expected according to the

specification. An error is a deviation from the intended value and/or timing of data (including signals

and state variables) at a particular hierarchical level. A fault is a defect in a system component.

The fault, error, and failure terms facilitate the structured analysis of the failure characteristics of a

system and the determination of failure causality chains from low-level components to higher-level

components. In a simple chain, the failure of a system is due to the presence of an error in the system.

This error is caused by a faulty component that failed to deliver the expected service. At this point, the

component can be seen as a system and the failure causality chain expanded by further exploring the

hierarchical structure. The chain ends when a component is reached beyond which no internal structure

can be discerned or is of interest.

A.2. Fault characteristics

The following fault classification criteria were considered during the design process of the ROBUS.

A.2.1. Cause

The causes of faults can be divided into two main categories: design faults and physical faults. Design

faults are specification or implementation mistakes such that the system does not function as desired.

The fault-tolerance capabilities of ROBUS are not meant to handle design faults. Instead, formal analysis

and other design verification activities are used to minimize their introduction (for example, see [Geser

04] and [Pike 04]). Physical faults are caused by internal defects and external disturbances. Examples of

internal defects include manufacturing imperfections, component wear-out, internal electromagnetic

interference (EMI) (e.g., cross-talk and ground bounce), and radioactive impurities in semiconductor

parts. External disturbances that can cause faults include particle radiation, external EMI (e.g., lightning,

high-intensity radiated fields, and electrostatic discharge), input power fluctuations, and environmental

extremes (e.g., temperature, vibration, and shock). Part of the design process of a system is to assess and

78

control the time rate of occurrence of physical faults. Examples of ways to manage the physical fault

rates include component selection, shielding, environmental qualification testing, reliability testing,

control of the operational environment, and preventive maintenance.

A.2.2. Correlation and extent

Physical faults on two separate components are independent if there is no causal or common cause

relation between them. Otherwise, the faults are correlated. In real systems, faults can propagate from

one component to another and they can be caused by the same instance of a particular phenomenon,

especially when exposed to external disturbances that can reach multiple components. Thus, complete

independence between faults occurring at separate components is not entirely possible. The extent of a

fault refers to the number of affected components. For the ROBUS topology, this can range from one

node to every node on the bus. Note that the PEs can be affected by the same phenomena as the BIUs and

RMUs. The ROBUS is designed to handle scenarios involving a large number of nodes simultaneously

becoming faulty.

A.2.3. Activity

A component is said to have experienced a fault when its behavior deviates from its specification. A

fault is said to be latent or dormant if it has not affected the externally observed behavior of the

component. Once an error occurs at the interface of the component, the fault is said to be active.

Similarly, an error is latent when it has not propagated to the system interface, and it becomes active once

it causes a failure. This concept is used when considering the effects of faults at the interface of

individual BIU, RMU, and PE nodes, as well as at the interface of the ROBUS viewed as a unit.

A.2.4. Duration

Permanent faults appear and remain present in a system until they are removed through a

maintenance action. Transient faults appear for a limited duration of time. Depending on the structure

and behavior of a system, both permanent and transient faults can cause errors and failures of permanent

or transient duration. The fault type of main interest for this developmental version is the single-event

transient that is active for a bounded duration of time. Nevertheless, the redundancy management system

of the ROBUS can handle many forms of permanent and transient faults.

A.2.5. Consistency of perception

Consistency of perception refers to the degree to which observations of the fault manifestations differ

among the direct observers. A fault is symmetric if all properly working observers receive agreeing

inputs. Otherwise, the fault is called asymmetric. Consistency of perception is an important fault

characteristic for the ROBUS since asymmetric manifestations can threaten the integrity of a clique by

causing divergence in distributed computation results. The ROBUS protocols are designed to handle a

bounded number of simultaneously active asymmetric faulty nodes.

79

A.2.6. In-line detectability

If a direct observer can detect input errors caused by a fault using independent in-line observations

(i.e., without comparison against data from redundant sources), then the observer can take appropriate

actions to prevent the propagation of the errors to the computation results. Input error detection by means

of communication and in-line checks enables the ROBUS nodes to identify and remove erroneous data

from consideration in local protocol operations. In general, an increase in the percentage of in-line

detectable faults results in a reduction of the ROBUS failure probability.

A.2.7. Diagnosability

In the context of the ROBUS, a fault is diagnosable if the properly working observers of the affected

node can identify the node as a source of errors. The diagnosability of a fault is limited by the error

detection and diagnosis capabilities of the observers, as well as by the message flow patterns and types of

operations required by the distributed protocols. The ROBUS nodes handle diagnosable faults by

removing offending nodes from the trusted set. In general, an increase in the percentage of diagnosable

faults results in a reduction of the ROBUS failure probability.

A.3. Fault and error containment

The most basic element of the fault-tolerance strategy of the ROBUS is the fault containment region

(FCR). The purpose of the FCR is to ensure a high degree of independence between physical faults

occurring in different system components. Each BIU and RMU must be in a separate FCR. The building

of FCRs requires careful consideration of the physical characteristics of a system to ensure that a proper

degree of containment is present for all coupling paths. Examples of ways to achieve fault independence

include the use of independent power supplies for each FCR, independent cooling systems, separate

electromagnetic shielding for each FCR, fiber-optic data links, and physical distancing of the FCRs. In

practical terms, it is impossible to achieve complete fault independence for all possible faults. A special

concern is faults caused by external EMI, like lightning and high intensity electromagnetic fields. This

kind of phenomenon has the potential to engulf a system causing simultaneous faults in multiple FCRs.

Shielding and other techniques can be used to minimize the threat to a system, but total elimination of the

threat is not always possible. The goal in real systems is to achieve a degree of fault independence

between FCRs that is acceptable for the application.

Error containment is the second layer of the fault-tolerance strategy of the ROBUS. The error

containment mechanisms of the ROBUS are aimed at preventing the propagation of errors between FCRs.

The ultimate goal of the redundancy management strategy of the ROBUS is to prevent the propagation of

errors to the external interfaces of the bus at the BIUs. Given that each PE is attached to a single BIU,

which could be faulty, the bus is considered to have experienced a failure only when errors reach the

interface of a fault-free BIU that is a clique member. The ROBUS performs an internal failure

assessment by monitoring its own activity searching for violations to the conditions that ensure the

effective performance of the error containment mechanisms. Such a violation is an indication that error

containment cannot be guaranteed.

80

A.4. Node health and inclusion status

Due to the diagnostic and recovery capabilities of the ROBUS, the analysis must take into

consideration more than just the fault status of the nodes. A node can be operating according to its

specification, yet, if it is recovering, it may not be ready to deliver the services expected by a clique. In

addition, even if a node can be relied upon, the clique is not able to integrate it immediately because trust

is only asserted at the boundaries of collective diagnostic intervals. On the other hand, a clique may not

have enough evidence to remove a particular untrustworthy node whose behavior is not covered by the

error detection and diagnosis capabilities of the system.

The following criteria determine the health and inclusion status of a node.

• Goodness: A node is good if it behaves according to its specification. Otherwise, the node is bad or

faulty.

• Trustworthiness: A node is trustworthy if it is suitable to participate in the delivery of services to

the PEs. Otherwise, the node is untrustworthy. A trustworthy node must be good and its state must

be in agreement with the state of other good clique members.

• Diagnostic status: A node is trusted if it is a clique member, and thus allowed to participate in the

execution of distributed operations. Otherwise, the node is distrusted.

A.5. Fault model

For the analysis of the ROBUS, a distributed system in which a group of nodes collaborate to achieve

common goals, it is more useful to know how the behavior of a node is perceived at the receivers (or

direct observers) than what actually occurs at the output of the node itself. In this section, first, the

behavior of a node is classified according to its manifestations at the direct observers for a given

transmission, and then this classification is leveraged to define a general node fault model. This model is

a modified version of the hybrid fault-effect model presented by Thambidurai and Park in [Thambidurai

88].

A.5.1. Instantaneous behavioral manifestations

For this model, the classification of the behavior of a node applies to one message transmission,

expected or unexpected, from the node to its trustworthy direct observers. As used here, the validity of

the behavior of a node depends on the specific activity (e.g., process P2 of the Collective Diagnosis

protocol in the Clique Preservation mode) being carried out by the trustworthy direct observers, which are

either clique members or, in the case of recovering observers, are in state agreement with a clique. A

transmission (or a non-transmission, if one is not expected, according to the specification) from a given

node is valid if it is functionally equivalent to the behavior expected from a trustworthy node of the same

kind. Both the timing and the content characteristics of a transmission are important determinants of the

perceived behavior at the direct observers.

The following categories are mutually exclusive and, taken together, cover all possible behavioral

manifestations.

81

• Valid: The behavior of the node perceived by the trustworthy direct observers is in accordance with

the specification.

• Manifest: The node does not behave as expected by its trustworthy direct observers and this is

detected by all of them using their input error detectors.

• Symmetric: The node does not behave as expected by its trustworthy direct observers, which receive

consistent invalid inputs from the node, but fail to detect the misbehavior of the node using their input

error detectors.

• Asymmetric: The node does not behave as expected by its trustworthy direct observers, which

receive inconsistent inputs from the node, and some or all of them fail to detect the misbehavior of the

node using their input error detectors.

The classification of a given physical fault is dependent on the particular input error detectors used by

the trustworthy direct observers at the time of the message. For example, if there are no input error

detectors active on the direct observers, then a fault may be classified as symmetric or asymmetric, but

not manifest. Likewise, a fault that is classified as symmetric or asymmetric for one set of active error

detectors may be classified as manifest for a different set of detectors.

In addition to the error detectors, the membership of the set of trustworthy direct observers is a critical

determinant of the classification of a fault. For example, a fault is classified as asymmetric if only one

trustworthy direct observer receives an undetected inconsistent input, but it would be classified as either

manifest or symmetric if that particular observer became untrustworthy and everything else remained the

same.

There is not a one-to-one relation between symmetry at the transmitter (i.e., consistent generation of a

message) and consistency at the observers (i.e., consistent reception of a message). For example, it is also

possible that the trustworthy direct observers receive the same message but disagree on the result of input

error detection. This can happen if there is a timing violation in the transmission of the message such that

not all of the observers determine that the received message arrived within the expected time interval.

Note that an omissive node failure in which a node does not transmit an expected message always has

symmetric manifestations. This is one of the reasons for designing the ROBUS nodes to disable their

outputs upon detection of a failure, rather than sending some sort of “I_AM_FAULTY” message that

could have asymmetric manifestations.

A.5.2. Node fault model

The node fault model separates the nodes into two main categories: trustworthy and untrustworthy. A

node is untrustworthy if it is faulty or its state disagrees with the state of the trustworthy nodes. The

externally perceived behavior of an untrustworthy node is dependent on factors like the characteristics of

the fault affecting the node, the internal design of the node, the specific activity being carried out by the

clique, and the specific input error detectors used by its trustworthy direct observers. The fault model

avoids these complications by defining behavioral categories based on sets of instantaneous behavioral

manifestations and allowing the behavior of the nodes to vary within the range of the corresponding set.

This approach simplifies the abstract analysis of the bus, from which guidelines are then derived for the

design of the nodes. The categories for the node fault model are the following.

82

• Trustworthy: The node is good and it can be counted upon to correctly deliver the expected services.

The node exhibits only valid instantaneous behavioral manifestations.

• Benign: The node is untrustworthy with valid or manifest instantaneous behavioral manifestations.

• Symmetric: The node is untrustworthy with valid, manifest, or symmetric instantaneous behavioral

manifestations.

• Asymmetric: The node is untrustworthy with valid, manifest, symmetric, or asymmetric

instantaneous behavioral manifestations.

In addition, the timing of transitions between trustworthy and untrustworthy are modeled as follows.

• A node can transition from trustworthy to untrustworthy at any time.

• A node can transition from untrustworthy to trustworthy only at boundaries of the collective

diagnostic intervals.

A.6. Basic design of the ROBUS protocols

The ROBUS protocols perform diverse functions. However, most of the protocols are based on the

unified fault-tolerance protocol presented in [Miner 04]. This section describes the basic concepts used to

design the protocols.

The ROBUS protocols are composed of one or two processing phases, each one having of two

computation stages. A stage refers to the transmission of a message from one or more nodes of a

particular kind to nodes of the opposite kind, and it involves the Send Process of the source nodes, their

broadcast transmission links, and the Receive and Computation Processes at the nodes of the opposite

kind. A phase is a complete message flow cycle in which messages are sent by a particular set of nodes,

processed by nodes of the opposite kind, and then the results are returned to the first nodes for additional

processing. Figure A.1 illustrates these concepts. The nodes are labeled simply as LEFT and RIGHT

since, due to the symmetries of the ROBUS topology and of the basic protocol design concepts, it is not

significant in the basic theory to know which are BIUs and which are RMUs. (Stages 2 and 3 form a

third phase not shown in Figure A.1.)

Figure A.1: Illustration of protocol stages and phases

P0 P2

RIGHT

LEFT

P1

Stage 1 Stage 2

Phase 1

P4

P3

Stage 3 Stage 4

Phase 2

83

A.6.1. Properties of protocol stages

Individual stage operations are the building blocks of the ROBUS protocols. In general, a stage

consists of the transmission of data from one or more source nodes to receiving nodes of the opposite

kind, followed by the application of a voting function to reduce the received data to a single value, which

is the result of the stage operation. The ROBUS nodes use dynamic voting, in which only a selected

group of inputs is considered in the voting operation. The sources whose inputs are allowed to participate

in the vote are called the eligible voters. The eligibility conditions for a particular stage operation depend

on the purpose of the protocol, the operation performed by the stage, and the position of the stage in the

protocol.

The fundamental theory of operation of the ROBUS protocols is based on the middle-value-select

voting function. Let E denote the number of eligible voters. For this version of the ROBUS, the middle

value is given by the input in the �(E + 1)/2�-th position when the eligible input values are arranged in

order from minimum to maximum.

Two models of communication can be used to transmit data: exact and inexact. Let vs denote the

value transmitted by a trustworthy source, and let vr denote the value received by a trustworthy receiver.

In the exact communication model, each of the trustworthy receiving nodes receives the same value

transmitted by a trustworthy source (i.e., vr = vs). In the inexact communication model, the transmission

introduces uncertainty in the values received by the trustworthy nodes. The trustworthy receiving nodes

do not necessarily get the same value transmitted by a trustworthy source, but the received value at each

receiver satisfies the following constraint: vs - εl ≤ vr ≤ vs + εh, where εl and εh denote the low-side and

high-side error bounds (i.e., the error bounds in the negative and positive directions), respectively. The

bound on the total communication imprecision, denoted by e, is εl + εh.

The behavior of untrustworthy sources must be taken into consideration to determine the results of

stage operations. Only eligible voters can influence the voting results. A transmission from an

untrustworthy eligible voter can have symmetric or asymmetric manifestations at the trustworthy

receiving nodes of the opposite kind. The meaning of symmetric and asymmetric manifestations depend

on the model of communication. For exact communication, a symmetric manifestation means that all of

the trustworthy receivers get exactly the same arbitrary value. For inexact communication, a symmetric

manifestation means that the trustworthy receivers get arbitrary values that differ from one another by at

most e. An asymmetric manifestation for exact and inexact communication simply means that there are

no relational constraints for the values received by trustworthy receivers. For some voter eligibility

conditions, it is possible that the receivers do not agree on the eligibility of asymmetric sources.

The following subsections present some important properties of stage operations for the exact and

inexact communication models.

A.6.1.1. Voting with exact communication

Let vs,min and vs,max denote the bounds for the values transmitted by the trustworthy sources, and let ∆
denote the bound on the range of the values transmitted by the trustworthy sources: ∆ = vs,max - vs,min. vr,i

denotes the voting result at receiving node i.

EVi denotes the set of eligible voters at receiving node i. This set may be composed of trustworthy

and untrustworthy sources. Twy_EVi, Sym_EVi, and Asym_EVi denote the sets of trustworthy,

symmetric untrustworthy, and asymmetric untrustworthy eligible voters at node i, respectively. It is

84

assumed that all of the trustworthy sources are eligible to vote at each trustworthy receiving node. In

addition, it is assumed that the trustworthy receiving nodes agree on the eligibility of trustworthy and

symmetric untrustworthy sources, but they may not agree on the eligibility of asymmetric sources. For

the properties presented next, it is also assumed that the set of eligible voters at each trustworthy receiving

node contains more trustworthy sources than untrustworthy ones. That is:

|Twy_EVi| > |Sym_EVi| + |Asym_EVi|,

where receiving node i is trustworthy, and |*| denotes the set cardinality function.

Validity: At each trustworthy receiver, the result of the voting function is in the interval [vs,min, vs,max].

Proof: Conceptually, the middle-value-select voter at receiver i selects the value in the �(|EVi| + 1)/2�-
th position from a list of eligible input values arranged in order from minimum to maximum. The

assumption that at each trustworthy receiver the set of eligible voters contains more trustworthy sources

than untrustworthy ones implies that at least �(|EVi| + 1)/2� eligible input values (i.e., a majority) are in

the interval [vs,min, vs,max]. Thus, at each trustworthy receiver there are fewer than �(|EVi| + 1)/2�
untrustworthy eligible voters. Although the values from untrustworthy eligible voters can be arbitrary,

even if all of their values were less than vs,min, there are not enough of them to cause the selection of a

value smaller than vs,min. Likewise, even if all of their values were larger than vs,max, the selected value

would be at most vs,max. In general, the selection is a value from a trustworthy source, or the value from

an untrustworthy source in the interval [vs,min, vs,max]. �

Agreement propagation: The results of the middle-value-select voting functions at the trustworthy

receivers differ from one another by at most ∆.

Proof: The validity property shows that the values selected at the trustworthy receivers are in the

interval [vs,min, vs,max], which corresponds to a total range of ∆. The actual agreement range can be smaller

than this depending on the values received from untrustworthy eligible voters. �

Agreement generation: If the sets of eligible voters at the trustworthy receiving nodes do not include

asymmetric untrustworthy sources (i.e., |Asym_EVi| = 0 for each trustworthy receiving node i), then the

voting results at the trustworthy receivers exactly agree.

Proof: If the sets of eligible voters at the trustworthy receivers do not include asymmetric sources,

then the property of agreement for non-asymmetric defendants ensures that all the sets are identical.

Therefore, the trustworthy receivers vote on the same set of values. Thus, the voting results will be the

same. �

A.6.1.2. Voting with inexact communication

For voting with inexact communication, the same assumptions are made as for voting with exact

communication. The only significant difference here is the imprecision in the received values. The

following properties are satisfied.

Validity: At each trustworthy receiver, the result of the voting function is in the interval [vs,min - εl,

vs,max + εh].

Proof: Since the minimum value transmitted by a trustworthy source is vs,min, the minimum value

85

received by the trustworthy receivers from a trustworthy source is vs,min - εl. Likewise, the maximum

value transmitted is vs,max, and the maximum value received from a trustworthy source is vs,max + εh.

Similarly to the case of voting with exact communication, the middle-value-select voter at receiver i

selects the value in the �(|EVi| + 1)/2�-th position from a list of eligible input values arranged in order

from minimum to maximum. In addition, at least �(|EVi| + 1)/2� eligible input values (i.e., a majority) are

in the interval [vs,min - εl, vs,max + εh], and there are fewer than �(|EVi| + 1)/2� untrustworthy eligible voters.

Although the values from untrustworthy eligible voters can be arbitrary, even if all of their values were

less than vs,min - εl, there are not enough of them to cause the selection of a value smaller than vs,min - εl.

Likewise, even if all of their values were larger than vs,max + εh, the selected value would be at most vs,max

+ εh. In general, the selection is a value from a trustworthy source, or the value from an untrustworthy

source in the interval [vs,min - εl, vs,max + εh]. �

Agreement propagation: The results of the middle-value-select voting functions at the trustworthy

receivers differ from one another by at most ∆ + e.

Proof: The validity property shows that the values selected at the trustworthy receivers are in the

interval [vs,min - εl, vs,max + εh], which corresponds to a total range of: (vs,max + εh) - (vs,min - εl) = ∆ + e.

The actual agreement range can be smaller than this depending on the values received from untrustworthy

eligible voters. �

Agreement generation: If the sets of eligible voters at the trustworthy receiving nodes do not include

asymmetric untrustworthy sources (i.e., |Asym_EVi| = 0 for each trustworthy receiving node i), then the

voting results at the trustworthy receivers agree within e.

Proof: If the sets of eligible voters at the trustworthy receivers do not include asymmetric sources,

then all the sets are identical. In addition, the inexact communication model ensures that, for each eligible

voter, any two trustworthy receivers receive values that differ by at most e. Let EV denote the set of

eligible voters. The voters at the trustworthy receivers select the value in the �(|EV| + 1)/2�-th position

from a list of eligible input values arranged in order from minimum to maximum. Let node x be the

trustworthy receiver that has the result with the smallest value, denoted by vx. Thus, node x received

values smaller than or equal to vx from at least �(|EV| + 1)/2� eligible sources. The corresponding

receptions at the other trustworthy receivers can have a maximum value of at most vx + e. Therefore, the

voting results at those trustworthy receivers will be smaller than or equal to vx + e, but not smaller than vx.

Thus, the voting results at the trustworthy receivers will agree within e. �

A.6.2. Properties of protocol phases

A protocol phase is composed of two consecutive protocol stages in which the results of the first stage

determine the inputs of the second stage. For each phase in Figure A.1, the LEFT nodes are the initial

data sources and the final receivers, and the RIGHT nodes are the intermediate receivers and sources.

Phases 1 and 2 are called the agreement generation phase and the agreement propagation phase,

respectively. The processes for the agreement generation phase are labeled P0, P1, and P2. For the

agreement propagation phase, the processes are P2, P3, and P4. In what follows, we refer to processes

P1, P2, P3, and P4 in Figure A.1 as receiving processes, in order to differentiate them from process P0,

which does not involve the reception of messages.

Consider the agreement generation phase. The LEFT nodes execute processes P0 and P2, and the

RIGHT nodes execute process P1. Let EVP1,i and EVP2,j denote the set of eligible voters in process P1 at

86

RIGHT node i and in process P2 at LEFT node j, respectively. It is assumed that the set of eligible voters

at each trustworthy receiver of a particular kind includes all the trustworthy sources of the opposite kind.

In addition, it is assumed that the trustworthy receiving nodes of a particular kind agree on the eligibility

of trustworthy and symmetric untrustworthy sources of the opposite kind, but they may not agree on the

eligibility of asymmetric sources. For the properties presented next, it is also assumed that the set of

eligible voters at each trustworthy receiving node contains more trustworthy sources than untrustworthy

ones. For process P1 at the RIGHT nodes:

|Twy_EVP1,i| > |Sym_EVP1,i| + |Asym_EVP1,i|,

for trustworthy receiving RIGHT node i. For process P2 at the LEFT nodes:

|Twy_EVP2,j| > |Sym_EVP2,j| + |Asym_EVP2,j|,

for trustworthy receiving LEFT node j. Similar assumptions are made for processes P3 and P4 of the

agreement propagation phase.

In addition, it is assumed that at every trustworthy LEFT receiver or at every trustworthy RIGHT

receiver there are no asymmetric eligible voters for any of the corresponding receiving processes. That is:

|Asym_EVP1,i| = 0 and |Asym_EVP3,i| = 0 for each trustworthy RIGHT receiver i, or

|Asym_EVP2,j| = 0 and |Asym_EVP4,j| = 0 for each trustworthy LEFT receiver j.

The following subsections present some important properties of phase operations for the exact and

inexact communication models.

A.6.2.1. Agreement generation phase

Let vP0,min and vP0,max denote the bounds for the values transmitted by the trustworthy LEFT nodes for

process P0. The value transmitted by process P1 is equal to the result of its vote. Thus, vP1,min and vP1,max

denote the bounds for the voting results and the transmitted values for process P1 at the trustworthy

RIGHT nodes. vP2,min and vP2,max denote the bounds for the voting result for process P2 at the trustworthy

LEFT nodes. ∆P0, ∆P1, and ∆P2 denote the bounds on the range of the voting results at the trustworthy

nodes for processes P0, P1, and P2, respectively.

Operations with the exact communication model are considered first, followed by operations with the

inexact communication model.

A.6.2.1.1. Voting with exact communication

The following properties hold for an agreement generation phase with exact communication.

Validity: At each trustworthy LEFT node, the result of the vote in process P2 is in the interval [vP0,min,

vP0,max].

Proof: Based on the validity property for a stage operation with exact communication, the voting

results for process P1 at trustworthy RIGHT nodes are in the interval [vP0,min, vP0,max]. The validity

87

property applied to the second stage ensures that the voting results for process P2 at trustworthy LEFT

nodes are also in the interval [vP0,min, vP0,max]. �

Agreement generation: The voting results for process P2 at the trustworthy LEFT nodes exactly

agree (i.e., ∆P2 = 0).

Proof: Two cases must be considered.

Case 1: |Asym_EVP1,i| = 0: According to the agreement generation property for a stage operation with

exact communication, the voting results for process P1 at trustworthy RIGHT nodes will exactly agree

(i.e., ∆P1 = 0). The agreement propagation property ensures that the range is preserved by the second

stage. Therefore, the voting results exactly agree.

 Case 2: |Asym_EVP2,j| = 0: Based on the agreement propagation property for a stage operation, the

voting results for process P1 at trustworthy RIGHT nodes agree within ∆P0 (i.e., ∆P1 = ∆P0). The

agreement generation property for a stage operation ensures that the voting results for process P2 at

trustworthy LEFT nodes exactly agree. �

A.6.2.1.2. Voting with inexact communication

The following properties hold for an agreement generation phase with inexact communication.

Validity: At each trustworthy LEFT node, the result of the vote in process P2 is in the interval [vP0,min

- 2εl, vP0,max + 2εh].

Proof: Based on the validity property for a stage operation with inexact communication, the voting

results for process P1 at trustworthy RIGHT nodes are in the interval [vP0,min - εl, vP0,max + εh]. The

validity property applied to the second stage ensures that the voting results for process P2 at trustworthy

LEFT nodes are in the interval [vP0,min - 2εl, vP0,max + 2εh]. �

Agreement generation: The voting results for process P2 at the trustworthy LEFT nodes agree within

2e (i.e., ∆P2 = 2e).

Proof: Two cases must be considered.

Case 1: |Asym_EVP1,i| = 0: According to the agreement generation property for a stage operation with

inexact communication, the voting results for process P1 at trustworthy RIGHT nodes will agree within e.

The agreement propagation property ensures that the range of values will increase by at most e in the

second stage. Therefore, the voting results for process P2 at the trustworthy LEFT nodes agree within 2e.

 Case 2: |Asym_EVP2,j| = 0: Based on the agreement propagation property for a stage operation, the

voting results for process P1 at trustworthy RIGHT nodes agree within ∆P0 + e. The agreement

generation property ensures that the voting results for process P2 at trustworthy LEFT nodes agree within

e. �

Agreement generation is an important property for the ROBUS clock synchronization protocols. It

implies that the maximum range of the voting results for process P2 at trustworthy LEFT nodes is

independent of the initial range of values transmitted by process P0.

88

A.6.2.2. Agreement propagation phase

An agreement propagation phase operates under the same assumptions and has the same properties as

an agreement generation phase. An agreement propagation phase serves to ensure that all of the

trustworthy nodes agree on the result of the agreement generation phase and to provide a way for good

recovering nodes to acquire the protocol result, even if their set of eligible voters do not completely agree

with the set of eligible voters at the trustworthy nodes of the same kind.

The value transmitted by process P2 for the agreement propagation phase is equal to the result of its

vote for the agreement generation phase. Let vP2,min and vP2,max denote the bounds for the values

transmitted by process P2 at the trustworthy LEFT nodes. The value transmitted by process P3 is equal

to the result of its vote. Thus, vP3,min and vP3,max denote the bounds for the voting results and the

transmitted values for process P3 at the trustworthy RIGHT nodes. vP4,min and vP4,max denote the bounds

for the voting results for process P4 at the trustworthy LEFT nodes. ∆P2, ∆P3, and ∆P4 denote the bounds

on the range of the voting results at the trustworthy nodes for processes P2, P3, and P4, respectively.

In general, for the trustworthy LEFT nodes, there is little or no difference between taking the voting

result of P2 or P4 as the protocol result. For the actual ROBUS protocols, symmetry of implementation,

timing, and others factor are taken into consideration to determine which result to use.

Good recovering nodes perform the same voting operations as trustworthy nodes of the same kind in

order to acquire the result of the protocol. The processes for good recovering nodes trying to capture the

protocol result are labeled P3C and P4C, corresponding to processes P3 and P4 for trustworthy nodes,

respectively. The most significant difference between good recovering nodes and trustworthy nodes is

that their set of eligible voters can differ in the number of trustworthy, symmetric, and asymmetric voters.

For each good recovering node, it is assumed that the set of eligible voters contains more trustworthy

sources than untrustworthy ones. That is, for good recovering RIGHT node i:

|Twy_EVP3C,i| > |Sym_EVP3C,i| + |Asym_EVP3C,i|.

For good recovering LEFT node j:

|Twy_EVP4C,j| > |Sym_EVP4C,j| + |Asym_EVP4C,j|.

It is not assumed that all of the trustworthy sources of the opposite kind are considered eligible voters

at good recovering nodes. Since the eligible voter sets at trustworthy nodes of a particular kind are

assumed to include all of the trustworthy sources of the opposite kind, the set of trustworthy eligible

voters at good recovering nodes must necessarily be a subset of the set of trustworthy eligible voters at

trustworthy nodes of the same kind. Thus, for good recovering RIGHT node i:

|Twy_EVP3C,i| ≤ |Twy_EVP3,i|.

For good recovering LEFT node j:

|Twy_EVP4C,j| ≤ |Twy_EVP4,j|.

No assumption is made about the number of asymmetric untrustworthy sources in the eligible voter

sets of good recovering nodes.

The following presents properties of operations with the exact and inexact communication models for

89

trustworthy nodes and good recovering nodes.

A.6.2.2.1. Voting with exact communication

The following properties hold for an agreement propagation phase with exact communication.

Validity at the trustworthy RIGHT nodes: At the trustworthy RIGHT nodes, the result of the vote

in process P3 is in the interval [vP0,min, vP0,max].

Proof: Based on the validity property for a stage operation with exact communication, the voting

results for process P3 at trustworthy RIGHT nodes are in the interval [vP2,min, vP2,max]. According to the

validity property for the agreement generation phase, this interval is equal to [vP0,min, vP0,max]. �

Validity at the good recovering RIGHT nodes: At the good recovering RIGHT nodes, the result of

the vote in process P3C is in the interval [vP0,min, vP0,max].

Proof: The proof for process P3 at the trustworthy RIGHT nodes applies here. �

Agreement propagation at the trustworthy RIGHT nodes: The result of the vote for process P3 at

the trustworthy RIGHT nodes is equal to the result of the vote for process P2 at the trustworthy LEFT

nodes.

Proof: The agreement generation phase ensures exact agreement for process P2 at the trustworthy

LEFT nodes (i.e., vP2,min = vP2,max). The validity property and the agreement propagation property for a

stage operation ensures that the result for process P3 at the trustworthy RIGHT nodes exactly matches the

results for process P2 at the trustworthy LEFT nodes. Thus: vP3,min = vP3,max = vP2,min = vP2,max. �

Agreement propagation at the good recovering RIGHT nodes: The result of the vote for process

P3C at the good recovering RIGHT nodes is the same as the result of the vote for process P2 at the

trustworthy LEFT nodes.

Proof: The proof for process P3 at the trustworthy RIGHT nodes applies here. �

Validity at the trustworthy LEFT nodes: At the trustworthy LEFT nodes, the result of the vote in

process P4 is in the interval [vP0,min, vP0,max].

Proof: Based on the validity property for a stage operation with exact communication, the voting

results for process P4 at trustworthy LEFT nodes are in the interval [vP3,min, vP3,max]. According to the

validity property for the trustworthy RIGHT nodes in an agreement propagation phase, this interval is

equal to [vP0,min, vP0,max]. �

Validity at the good recovering LEFT nodes: At the good recovering LEFT nodes, the result of the

vote in process P4C is in the interval [vP0,min, vP0,max].

Proof: The proof for process P4 at the trustworthy LEFT nodes applies here. �

Agreement propagation at the trustworthy LEFT nodes: The result of the vote for process P4 at

the trustworthy LEFT nodes is equal to the result of the vote for process P2 at the trustworthy LEFT

nodes.

90

Proof: The vote results for process P3 at the trustworthy RIGHT nodes are known to exactly agree

with one another and with the vote results for process P2 at the trustworthy LEFT nodes. The validity

property and the agreement propagation property for a stage operation ensures that the results for process

P4 at the trustworthy LEFT nodes exactly match the results for process P3 at the trustworthy RIGHT

nodes. Thus: vP4,min = vP4,max = vP2,min = vP2,max. �

Agreement propagation at the good recovering LEFT nodes: The result of the vote for process

P4C at the good recovering LEFT nodes is equal to the result of the vote for process P2 at the trustworthy

LEFT nodes.

Proof: The proof for process P4 at the trustworthy LEFT nodes applies here. �

A.6.2.2.2. Voting with inexact communication

The following properties hold for an agreement propagation phase with inexact communication.

Validity at the trustworthy RIGHT nodes: At the trustworthy RIGHT nodes, the result of the vote

in process P3 is in the interval [vP0,min - 3εl, vP0,max - 3εh].

Proof: The application of the validity property for stages 1 through 3 constrains the result of voting

operations in process P3 at the trustworthy RIGHT nodes to the interval [vP0,min - 3εl, vP0,max - 3εh]. �

Validity at the good recovering RIGHT nodes: At the good recovering RIGHT nodes, the result of

the vote in process P3C is in the interval [vP0,min - 3εl, vP0,max - 3εh].

Proof: The proof for process P3 at the trustworthy RIGHT nodes applies here. �

Agreement at the trustworthy RIGHT nodes: The voting results for process P3 at the trustworthy

RIGHT nodes agree within 2e (i.e., ∆P3 = 2e).

Proof: Two cases must be considered.

Case 1: |Asym_EVP3,i| = 0: According to the agreement generation property for a stage operation with

inexact communication, the voting results for process P3 at the trustworthy RIGHT nodes will agree

within e.

 Case 2: |Asym_EVP2,j| = 0: The agreement generation property for a stage operation with inexact

communication ensures that the voting results for process P2 at trustworthy LEFT nodes agree within e.

The agreement propagation property for a stage operation ensures that the voting results for process P3 at

trustworthy RIGHT nodes differ by at most another e. �

Agreement at the good recovering RIGHT nodes: The voting results for process P3C at the good

recovering RIGHT nodes agree within 3e (i.e., ∆P3C = 3e).

Proof: The number of asymmetric untrustworthy eligible voters for process P3C may be nonzero. The

worst case agreement among the voting results for process P2 is 2e (i.e., ∆P2 = 2e). The agreement

propagation property for a stage operation ensures that the voting results for process P3C at good

recovering RIGHT nodes differ by at most another e. Thus: ∆P3C = ∆P2 + e = 3e. �

91

Agreement propagation at the trustworthy RIGHT nodes: The voting results for process P3 at the

trustworthy RIGHT nodes and the voting results for process P2 at the trustworthy LEFT nodes agree

within ∆P2 + max(εl, εh).

Proof: The voting results for process P2 at the trustworthy LEFT nodes are in the interval [vP2,min,

vP2,max] and agree within ∆P2. The voting results for process P3 at the trustworthy RIGHT nodes are in the

interval [vP2,min - εl, vP2,max + εh]. Thus, the maximum difference between voting results at P2 and P3 is

max((vP2,max + εh) - vP2,min, vP2,max - (vP2,min - εl)) = ∆P2 + max(εl, εh). �

Agreement propagation at the good recovering RIGHT nodes: The voting results for process P3C

at the good recovering RIGHT nodes and the voting results for process P2 at the trustworthy LEFT nodes

agree within ∆P2 + max(εl, εh) .

Proof: The proof for process P3 at the trustworthy RIGHT nodes applies here. �

Agreement between trustworthy RIGHT nodes and good recovering RIGHT nodes: The voting

results for processes P3 at the trustworthy RIGHT nodes and the voting results for P3C at the good

recovering RIGHT nodes agree within 3e.

Proof: The worst case agreement among the voting results for process P2 is 2e (i.e., ∆P2 = 2e).

According to the validity property for a stage operation, the voting results for processes P3 at the

trustworthy RIGHT nodes and P3C at the good recovering RIGHT nodes are in the interval [vP2,min - εl,

vP2max - εh], which has a range of 3e. The voting results for process P3 at the trustworthy RIGHT nodes

are in the validity interval and agree with one another within 2e. However, although the voting results for

process P3C at the good recovering RIGHT nodes are in the validity interval, their agreement bound is 3e,

which is equal to the range of the validity interval. In the worst case, voting results for processes P3 and

P3C can be at opposite extremes of the validity interval and differ by at most 3e. �

Validity at the trustworthy LEFT nodes: At the trustworthy LEFT nodes, the result of the vote in

process P4 is in the interval [vP0,min - 4εl, vP0,max - 4εh].

Proof: The application of the validity property for stages 1 through 4 constrains the result of voting

operations in process P4 at the trustworthy LEFT nodes to the interval [vP0,min - 4εl, vP0,max - 4εh]. �

Validity at the good recovering LEFT nodes: At the good recovering LEFT nodes, the result of the

vote in process P4C is in the interval [vP0,min - 4εl, vP0,max - 4εh].

Proof: The proof for process P4 at the trustworthy LEFT nodes applies here. �

Agreement at the trustworthy LEFT nodes: The voting results for process P4 at the trustworthy

LEFT nodes agree within 2e (i.e., ∆P4 = 2e).

Proof: Two cases must be considered.

Case 1: |Asym_EVP3,i| = 0: According to the agreement generation property for a stage operation with

inexact communication, the voting results for process P3 at the trustworthy RIGHT nodes will agree

within e. The agreement propagation property for a stage operation ensures that the voting results for

process P4 at trustworthy LEFT nodes differ by at most another e.

92

 Case 2: |Asym_EVP4,j| = 0: The agreement generation property for a stage operation with inexact

communication ensures that the voting results for process P4 at trustworthy LEFT nodes agree within e.

�

Agreement at the good recovering LEFT nodes: The voting results for process P4C at the good

recovering LEFT nodes agree within 3e (i.e., ∆P4C = 3e).

Proof: The number of asymmetric untrustworthy eligible voters for process P4C may be nonzero. The

worst case agreement among the voting results for process P3 is 2e (i.e., ∆P3 = 2e). The agreement

propagation property for a stage operation ensures that the voting results for process P4C at good

recovering LEFT nodes differ by at most another e. �

Agreement propagation at the trustworthy LEFT nodes: The voting results for process P4 at the

trustworthy LEFT nodes and the voting results for process P2 at the trustworthy LEFT nodes agree within

∆P2 + 2*max(εl, εh).

Proof: The voting results for process P2 at the trustworthy LEFT nodes are in the interval [vP2,min,

vP2,max] and agree within ∆P2. Application of the validity property for stages 3 and 4 constrains the voting

results for process P4 at the trustworthy RIGHT nodes to the interval [vP2,min - 2εl, vP2,max + 2εh]. Thus, the

maximum difference between voting results at P2 and P4 is max((vP2,max + 2εh) - vP2,min, vP2,max - (vP2,min -

2εl)) = ∆P2 + 2*max(εl, εh). �

Agreement propagation at the good recovering LEFT nodes: The voting results for process P4C at

the good recovering LEFT nodes and the voting results for process P2 at the trustworthy LEFT nodes

agree within ∆P2 + 2*max(εl, εh) .

Proof: The proof for process P4 at the trustworthy LEFT nodes applies here. �

Agreement between trustworthy LEFT nodes and good recovering LEFT nodes: The voting

results for processes P4 at the trustworthy LEFT nodes and the voting results for P4C at the good

recovering LEFT nodes agree within 3e.

Proof: The worst case agreement among the voting results for process P3 is 2e (i.e., ∆P3 = 2e).

According to the validity property for a stage operation, the voting results for processes P4 at the

trustworthy LEFT nodes and P4C at the good recovering LEFT nodes are in the interval [vP3,min - εl, vP3max

- εh], which has a range of 3e. The voting results for process P4 at the trustworthy LEFT nodes are in the

validity interval and agree with one another within 2e. Although the voting results for process P4C at the

good recovering LEFT nodes are in the validity interval, their agreement is within 3e, which is equal to

the range bound of the validity interval. In the worst case, voting results for processes P4 and P4C can be

at opposite extremes of the validity interval and differ by at most 3e. �

A.7. Stage operations of ROBUS protocols

The ROBUS protocols process PE messages and state data. The required computation for the actual

protocols goes beyond the basic middle-value-select voting function. However, the dynamic middle-

value-select voting function is adaptable enough to cover all the required stage operations that involve

computation processes at the ROBUS nodes. The following subsections describe how a middle-value-

select voter can be adapted for the actual ROBUS protocols. The main purpose of this section is to

93

establish a link between the theory presented in this appendix and the actual ROBUS protocols.

A.7.1. Event voting

The time synchronization protocols use middle-value-select voting for the processing of timing events.

The voting function for these protocols is referred to as the Accept function. These protocols use a fixed-

delay communication model, which corresponds to the inexact communication model presented above in

terms of the precision of received values.

A.7.2. Routing

A ROBUS node performs a routing function by relaying a message received from a particular input

source. A middle-value-select voter can perform a routing function by including in the set of eligible

voters only the input source of interest. This function is used with the synchronous communication

model, which corresponds to the exact communication model in the protocol theory. As implemented in

the ROBUS protocols, voter eligibility for the routing function also takes into consideration input errors

and local accusations. The special case of an empty set of eligible voters is handled to ensure protocol

results consistent with the basic protocol theory presented in the previous section.

A.7.3. Word voting

The unit of data for word voting is the ROBUS Message. The word voting function implemented in

the ROBUS protocols is an exact-match majority word vote. This function is used with the synchronous

communication model, which corresponds to the exact communication model. The vote result equals the

majority value if an exact-match majority exists (i.e., a majority of eligible inputs are exactly equal).

Otherwise, the result is invalid and a signal is asserted indicating that there is not a majority value among

the eligible inputs.

If there is exact agreement among a majority of the values received from eligible voters, then the result

of a word vote equals the result of a middle-value-select vote with the same set of eligible voters. The

ROBUS protocols with word voting handle a no-majority condition as an exception, and the

corresponding result and interpretation depends on the protocol and the protocol stage being executed.

A.7.4. Bit voting

The data for bit voting are the bits from the Payload field of ROBUS Messages. Bit voting is used to

process diagnostic data. This function is used with the synchronous communication model, which

corresponds to the exact communication model. The bits are interpreted as Boolean variables with TRUE

or FALSE values. Bit voting is an exact-match majority bit vote in which the result of a vote equals the

value of the majority if an exact-match majority exists. Otherwise, the result is equal to TRUE.

As for word voting, if there is exact agreement among a majority of the values received from eligible

voters, then the result of a bit vote equals the result of a middle-value-select vote with the same set of

eligible voters. The no-majority condition is an exceptional case compatible in terms of validity and

agreement with the protocol theory presented previously.

94

A.8. ROBUS fault assumptions

The ROBUS fault assumptions are derived from the generic analysis presented in this appendix and

the specific protocol analyses presented in other appendices of this document. The assumptions are

sufficient conditions for ensuring that the protocol results are correct. The assumptions depend on the

mode of operation.

A.8.1.1. Clique Initialization and Clique Preservation modes

The following conditions are assessed for each voting protocol executed in these modes. A violation

of these conditions may result in a protocol failure. Failure is assessed from the perspective of a clique

rather than individual nodes.

• For each receiving process at each trustworthy node, all trustworthy sources of the opposite kind

are eligible to vote.

• For each receiving process, the trustworthy receiving nodes of a given kind agree on the eligibility

of non-asymmetric sources of the opposite kind.

• There are no asymmetric eligible voters for any of the receiving processes at every trustworthy

BIU receiver or at every trustworthy RMU receiver.

• For each receiving process at each trustworthy node, the set of eligible voters contains more

trustworthy sources than untrustworthy ones. (For the Schedule Update and the PE Broadcast

protocols, the number of eligible voters for process P1 may be zero without compromising the

protocol properties. This is examined in Appendices D and E, respectively.)

A.8.1.2. Clique Join mode

The following conditions apply to good recovering nodes in the Clique Join mode. The conditions are

assessed for each voting protocol executed in this mode. A violation of these conditions may result in a

protocol failure for the recovering node.

• For each receiving process, all trustworthy sources of the opposite kind are eligible to vote.

• For each receiving process, the recovering node agrees with the trustworthy nodes of the same

kind on the eligibility of non-asymmetric sources of the opposite kind.

• There are no asymmetric eligible voters for any of the receiving processes at the good recovering

node and every trustworthy receiver of the same kind, or at every trustworthy receiver of the

opposite kind.

• For each receiving process, the set of eligible voters contains more trustworthy sources than

untrustworthy ones. (For the Schedule Update and the PE Broadcast protocols, the number of

eligible voters for process P1 may be zero without compromising the protocol properties. This is

examined in Appendices D and E, respectively.)

95

A.8.1.3. Clique Detection mode

The following conditions apply to good recovering nodes in the Clique Detection mode. The

conditions are assessed for each voting protocol executed in this mode. A violation of these conditions

may result in a protocol failure for the recovering node.

• For each receiving process, the set of eligible voters contains more trustworthy sources than

untrustworthy ones.

96

97

Appendix B. Point-to-point communication

This appendix examines the point-to-point communication between ROBUS nodes. Each

ROBUS node is driven by an independent physical oscillator and a logical time clock, referred to

as a local-time clock, that keeps track of the passage of time as indicated by the oscillator. The

Communication Module of each ROBUS node is composed of transmit and receive sub-modules.

The transmit sub-module consists of one or more separate transmitters to support broadcast

transmissions. The receive sub-module consists of a separate receiver for each node of the

opposite kind. The transmitters and receivers are expected to be generic components supporting

event-triggered communication. The granularity of a Communication Module transaction should

be a ROBUS Message, since the communication, processing, and diagnosis performed by the

ROBUS protocols are based on single-message transactions. For the transmitters, the reading of a

new message and the beginning of its transmission process is triggered by a send signal at the

transmitter’s input interface. Similarly, the receivers should be able to receive new messages

whenever they arrive. The only expected communication throughput constraint at the input

interface of the transmitters is the minimum data introduction interval (DII), which is the

minimum number of clock ticks between consecutive requests to send messages.

The communication system must be able to support the fixed-delay and synchronous

communication models. For some receiver designs, the output signals from the receiver are not

synchronized to the circuitry-driving signal generated by a local physical oscillator. Therefore,

the Computation Module must synchronize each received message with respect to the local

oscillator before proceeding with further processing. For the synchronous communication model,

the processing of received messages is triggered by the local-time clock. Therefore, a node must

be able to buffer received messages until it is time to process them. The timing design of the

system must be able to handle the uncertainty in the time of transmission, the transmission delay,

and the synchronization delay.

In addition, this version of the ROBUS is intended to demonstrate that the bus can achieve a

PE-message throughput that approaches the available bandwidth at the physical links. For most

transmissions, it is possible to compute a local-time interval during which a receiver should

expect to receive the message. For low link data rates, the reception intervals for individual

nodes do not overlap and each message can be processed before the next one arrives. For high

data rates, the reception intervals of consecutive messages overlap and the processing must be

pipelined in order to match the link throughput. This appendix examines some critical aspects of

pipelined communication.

In what follows, the term oscillator clock denotes the signal generated by the physical

oscillator, the local-time clock refers to the logical-time clock, and the local time refers to the

state of the logical-time clock. The process of synchronizing a signal or a message to the

transitions of the oscillator clock is referred to as signal synchronization. The process of

synchronizing a message to the local time is referred to as deskewing.

B.1. Physical oscillators and local-time clocks

Each ROBUS node is driven by an independent, free-running physical oscillator (i.e., the

phase is not controlled in any way) and a logical-time clock (i.e., a counter) that keeps track of

the passage of time as indicated by the oscillator. An oscillator tick, also called a clock tick or a

98

system tick, is the basic unit of time on the bus. Let f0 denote the nominal frequency of an

oscillator measured in ticks per second or Hertz (Hz). The duration of a tick for an ideal

oscillator is exactly 1/f0 seconds. An ideal oscillator is said to have zero drift rate with respect to

real-time since the oscillator perfectly marks the passage of time with a tick duration of exactly

1/f0 seconds. Real oscillators are characterized by non-zero drift rates with respect to real-time.

It is assumed that the drift rate of the physical oscillators is bounded by a small positive constant

ρ0, which is positive, real valued, and unitless.

The bound on the drift of the physical oscillators is interpreted as follows. Let cx(T) denote

the earliest real time at which local-time clock x reaches value T. cx(T) has units of nominal

ticks (1 nominal tick = 1/f0 seconds). T1 and T2 denote arbitrary values of the local-time clock

with the constraint T2 ≥ T1. Then:

(T2 - T1)/(1 + ρ0) ≤ cx(T2) - cx(T1) ≤ (1 + ρ0)(T2 - T1) (B.1)

Let τ0 denote the nominal tick duration measured in seconds (i.e., 1 nominal tick = τ0 seconds

= 1/f0 seconds). τx denotes the actual tick duration of local-time clock x. The bound on the drift

rate of clock x can be expressed as follows:

τ0/(1 + ρ0) ≤ τx ≤ (1 + ρ0)τ0 (B.2)

In other words, the fastest clock has a tick duration of at least 1/(1 + ρ0) nominal ticks, and the

slowest clock has a tick duration of at most (1 + ρ0) nominal ticks. This simple model accounts

for the drift with respect to real time of the physical oscillators and the local-time clocks. The

point-to-point communication model accounts for jitter on the output of the physical oscillator.

B.2. Synchronization of asynchronous signals

Single-phase edge-triggered flip-flops used as building blocks in traditional synchronous

sequential digital circuits have a simple nominal timing behavior: If the signal at the data input is

stable within a specified window around the oscillator clock’s triggering edge, then the input

value will propagate to the output of the flip-flop and stabilize within some guaranteed time. The

propagation delay of the flip-flops is the time elapsed from the triggering edge of the oscillator

clock until the output is stable. The window around the oscillator clock’s triggering edge is

characterized by the setup and hold time of the flip-flop. The setup time is the minimum time

that the input signal must remain stable before the triggering edge of the oscillator clock in order

for the output of the flip-flop to meet the nominal propagation delay. The hold time is the

minimum time that the input signal must remain stable after the triggering edge of the oscillator

clock in order for the output of the flip-flop to meet the nominal propagation delay.

The domain of an oscillator clock includes all the digital circuitry driven by that signal. A

signal is said to be synchronous with respect to a particular oscillator clock if the timing of the

signal meets the input setup and hold time constraints of the flip-flops driven the oscillator clock.

A signal that does not meet these constraints is called asynchronous with respect to the given

oscillator clock. Since the oscillator clocks in the fault containment regions of the ROBUS are

independent and the timing of their transitions is not coordinated in any way, any signal crossing

from one FCR to another is considered asynchronous when it arrives at the receiving FCR.

99

Asynchronous signals must be synchronized to the oscillator clock before they can be

processed. Various mechanisms can be used to achieve this synchronization. Ultimately,

however, consideration must be given to the problem of violations of the setup and hold times of

flip-flops reading the signal. A flip-flop sampling an input that is not stable within the setup and

hold window can enter a metastable condition in which the output does not settle to a valid logic

state within the nominal propagation delay. If not handled properly, this can result in the

generation of more asynchronous signals and the propagation of errors throughout the receiving

FCR.

The mean time between failure (MTBF) for a flip-flop reading an asynchronous input is (see

[XAPP077]):

MTBF = MET2 t*C−
e / (2*C1*fD*fC) (B.3)

where tMET denotes the time available for the metastability to resolve itself (i.e., time allowed by

downstream circuitry before reading the output of the flip-flop), fD denotes the input signal

frequency (2*fD is the input signal event rate), fC denotes the oscillator clock frequency, C1

denotes the metastability aperture of the flip-flop (related to the width of the window during

which an input can cause a metastability condition), and C2 denotes the resolution rate (related to

the speed with which the metastable condition will be resolved). Constants C1 and C2 are

functions of the process technology and flip-flop design. For current technology, the variables of

the MTBF can be selected such that the probability of metastability failures is extremely small.

In what follows, it is assumed that the problem of metastability is properly handled by the

implementation of the ROBUS. For analysis, unless explicitly stated otherwise, it is assumed that

the nodes have ideal signal synchronizers, each consisting of a single flip-flop driven by the

oscillator clock. These ideal flip-flops have no metastable states and zero propagation delay. The

timing behavior is as follows.

If the input changes just before the triggering-edge of the oscillator clock, this latest input

value will propagate to the output as soon as the triggering-edge of the oscillator clock

arrives. If the input changes at exactly the same time as the triggering-edge of the oscillator

clock, the input value will not affect the output until the next triggering-edge of the oscillator

clock (assuming that the input remains constant).

B.3. Single-message communication

The communication of a message from a source node to a receiver node is modeled as a four

step process: (1) Send: The Computation Module of the source node signals the transmitter(s) in

the Communication Module that a message is ready for transmission; (2) Transmission: The

transmitter reads the message and transmits the corresponding signals over the transmission

medium; (3) Delivery: The link receiver gets the message from the transmission medium and

signals the arrival to the signal synchronizer; (4) Reception: The synchronizer signals the arrival

of a new message to the Computation Module. Figure B.1 illustrates the point-to-point

communication path. CLKRx denotes the oscillator clock at the receiving node. The message

delivery delay is the time elapsed from the instant a transmitter receives a send request until the

message is presented at the output interface of the receiver. The message reception delay is

100

equal to the message delivery delay plus the additional time delay to synchronize the received

message to the oscillator clock at the receiving node.

Figure B.1: Point-to-point communication path

Let dPP,l and dPP,h denote the minimum and maximum point-to-point message delivery delays,

respectively, measured in units of nominal clock ticks. vPP denotes the delivery precision (i.e., the

uncertainty in the point-to-point delivery delay) measured in units of nominal clock ticks. rPP,l

and rPP,h denote the minimum and maximum point-to-point message reception delays,

respectively, measured in nominal clock ticks. ePP denotes the reception precision (i.e., the

uncertainty in the point-to-point reception delay) measured in nominal clock ticks.

B.3.1. Reception delay

Let T0 denote the local time at which the source sends the message, and let t0 denote the

corresponding real time. The real-time range of point-to-point message delivery is [t0 + dPP,l, t0 +

dPP,h]. Therefore, the delivery precision is:

vPP = dPP,h - dPP,l (B.4)

The minimum point-to-point message reception delay happens when the message is sampled

by the input synchronizer at exactly the same time it is delivered.

rPP,l = dPP,l (B.5)

The maximum point-to-point message reception delay happens when the message is sampled

by the input synchronizer exactly one tick after it is delivered. The worst case delay occurs when

the oscillator clock at the receiving node is slow.

rPP,h = dPP,h + (1 + ρ0) (B.6)

The real-time range of reception is [t0 + rPP,l, t0 + rPP,h]. Therefore, the reception precision is:

ePP = rPP,h - rPP,l = [dPP,h + (1 + ρ0)] - dPP,l = 1 + ρ0 + vPP (B.7)

ePP accounts for time-discretization errors, jitter and drift of the source and recover oscillators,

and slight differences in point-to-point communication delay due to different length wires/fibers.

Next, we define IMP(x1, x2), the Integer Mid-Point value, as the integer closest to the mid-

Delivery

Synchronizer

Reception

CLKRx

Link

Receiver
D

Flip-Flop

Link

Transmitter

TransmissionSend

101

point of x1 and x2. IMP(x1, x2) is computed in two steps:

Step 1: x = (x1 + x2)/2

Step 2: IMP = round(x), with round(x) = �x� if x < ½, or �x� if x ≥ ½

RPP denotes the expected reception delay:

RPP = IMP(rPP,l, rPP,h) (B.8)

B.3.2. Estimate of the local-time at the source

Let TRCV denote the local time at the receiver when it receives the message. To estimate the

local time at the source node, the receiver assumes that the message reception delay is RPP ticks of

its oscillator clock. The estimated local time at the source node at the time of reception is:

TSRC,E = T0 + RPP (B.9)

The error in the local-time estimate is bounded as follows. TRCV occurs no earlier than µPP,l

nominal ticks from the actual local time TSRC,E at the source:

µPP,l = (1 + ρ0)RPP - rPP,l (B.10)

TRCV occurs no later than µPP,h nominal ticks from the actual local time TSRC,E at the source:

µPP,h = rPP,h - RPP/(1 + ρ0) (B.11)

B.3.3. Expected local time of reception

Let πPP,SR denote a bound on the relative local-time skew between the source and the receiver

nodes. This bound is assumed to hold for the duration of the communication. The expected local

time of reception at the receiver is denoted by TRCV,E.

TRCV,E = T0 + RPP (B.12)

Due to the relative local-time skew and the uncertainty in the message-reception delay, the

message will arrive within some local-time interval containing TRCV,E. Let ∆PP,RCV denote the

local-time error in TRCV:

∆PP,RCV = TRCV - TRCV,E (B.13)

We want to determine the absolute maximum local-time error in TRCV, denoted by ∆PP,RCV|abs-max:

|TRCV – TRCV,E | ≤ ∆PP,RCV|abs-max (B.14)

The value of ∆PP,RCV|abs-max is derived as follows. The bound on the local-time synchronization

between the source and the receiver nodes is expressed as:

102

|cSRC(T) - cRCV(T)| ≤ πPP,SR (B.15)

where cSRC(T) and cRCV(T) denote the earliest real times at which the local times at the source and

at the receiver, respectively, reach value T. From the previous analysis, it is known that the real-

time difference between the time when the source reaches TRCV,E and the time when the message

is actually received TRCV is bounded above and below by µPP,h and µPP,l, respectively.

cSRC(TRCV,E) - µPP,l ≤ cRCV(TRCV) ≤ cSRC(TRCV,E) + µPP,h (B.16)

For local time TRCV,E, inequality (B.15) can be re-expressed as:

cSRC(TRCV,E) - πPP,SR ≤ cRCV(TRCV,E) ≤ cSRC(TRCV,E) + πPP,SR (B.17)

Combining inequalities (B.16) and (B.17), we get:

-πPP,SR - µPP,l ≤ cRCV(TRCV) - cRCV(TRCV,E) ≤ πPP,SR + µPP,h (B.18)

So:

|cRCV(TRCV) - cRCV(TRCV,E)| ≤ max(πPP,SR + µPP,l , πPP,SR + µPP,h) (B.19)

Equivalently:

|cRCV(TRCV) - cRCV(TRCV,E)| ≤ πPP,SR + max(µPP,l , µPP,h) (B.20)

Using the constraint that the local clocks are ρ-bounded, the definition of ∆PP,RCV, and the real

time duration of ∆PP,RCV ticks for the fastest allowed clock:

|∆PP,RCV|/(1 + ρ0) ≤ |cRCV(TRCV) - cRCV(TRCV,E)| (B.21)

Combining (B.20) and (B.21):

|∆PP,RCV | ≤ (1 + ρ0)(πPP,SR + max(µPP,l , µPP,h)) (B.22)

Since ∆PP,RCV is an integer, we can take the floor in (B.22):

|∆PP,RCV | ≤ �(1 + ρ0)(πPP,SR + max(µPP,l , µPP,h))� (B.23)

Therefore, the worst-case local-time difference between the actual time of reception TRCV and the

expected time of reception TRCV,E is:

∆PP,RCV|abs-max = �(1 + ρ0)(πPP,SR + max(µPP,l , µPP,h))� (B.24)

B.4. Coordination for synchronous communication

For the synchronous ROBUS protocols, the scheduling of operations is based on a distributed

synchronous composition abstract model of the system in which a single oscillator drives a

common local-time clock and fixed-delay processes corresponding to the communication and

103

computation operations of the BIUs and RMUs. Communication during time-driven operations is

time-triggered. For each transmission, the sources and receivers use a particular local-time value

as a distributed reference event to coordinate their actions. Given specific bounds for the

reception delay and the relative local-time skew between sources and receivers, it is possible to

coordinate the send and receive operations such that the transmitted messages are received within

a predetermined local-time range measured at the receivers. The receivers can then apply a

deskewing function and forward the received messages for processing at a predetermined local

time. By leveraging the previous analysis, it is possible to analyze the source-receiver

coordination problem using only global time (i.e., synchronized local time viewed from a global

perspective). Figure B.2 illustrates the relevant timing events. TREF denotes the reference local-

time value. TSND is the time at which the message is sent. RPP is the expected reception delay.

TRCV,E is the expected time of reception. WDeskew is the size of the deskewing window. WDeskew,pre

is the pre-expectation window (i.e., the size of the section of the deskewing window before the

expected time of reception). WDeskew,post is the post-expectation window (i.e., the size of the

deskewing window after the expected time of reception). TPROC,begin denotes the time for the

beginning of message processing.

Figure B.2: Timing events for point-to-point communication

 A message from a good source is expected to arrive during the following closed time interval,

which includes all triggering edges of the local clock within the expected time range of reception:

[TRCV,E - ∆PP,RCV|abs-max, TRCV,E + ∆PP,RCV|abs-max] (B.25)

The deskewing window includes all triggering edges of the clock within the expected time

range of reception, a total of 2∆PP,RCV|abs-max + 1 edges. The deskewing window is intended to

cover the duration of all local clock counts corresponding to the triggering edges of the clock

within the expected time range of reception. The local clock counts corresponding to these

triggering edges determine a time interval with a duration of 2∆PP,RCV|abs-max + 1 ticks. The

deskewing window extends for the real-time interval corresponding to the following half-closed

local-time interval:

[TRCV,E - ∆PP,RCV|abs-max, TRCV,E + ∆PP,RCV|abs-max + 1) (B.26)

So:

WDeskew = 2∆PP,RCV|abs-max + 1 (B.27)

Then:

WDeskew,pre = ∆PP,RCV|abs-max (B.28)

Global TimeTSND TRCV,E

TRCV,E - WDeskew,pre TRCV,E + WDeskew,post

RPP

TREF TPROC,begin

WDeskew

104

WDeskew,post = ∆PP,RCV|abs-max + 1 (B.29)

For proper communication, the following constraints must be satisfied:

TREF ≤ TSND (B.30)

TREF ≤ TRCV,E - WDeskew,pre (B.31)

TRCV,E = TSND + RPP (B.32)

TRCV,E + WDeskew,post ≤ TPROC,begin (B.33)

Relations (B.30) and (B.31) express basic time constraints given by the use of a common

reference time. Relation (B.32) captures the goal of source-receiver coordination, which is to

receive the message at the expected time of reception. Relation (B.33) is only relevant to the

composition of operations at the receiving node. Let ∆REF-SND denote the delay from TREF to TSND

measured in local clock ticks.

∆REF-SND = TSND - TREF (B.34)

Let ∆REF-RCVWND denote the delay from TREF to TRCV,E - WDeskew,pre measured in local clock ticks.

∆REF-RCVWND = (TRCV,E - WDeskew,pre) - TREF (B.35)

Let ∆REF-SND|min and ∆REF-RCVWND|min denote the minimum values for ∆REF-SND and ∆REF-RCVWND,

respectively. Relation (B.32) can be re-expressed as follows:

∆REF-SND + RPP = ∆REF-RCVWND + WDeskew,pre (B.36)

We are interested in finding the values for ∆REF-SND and ∆REF-RCVWND to achieve the earliest

communication satisfying (B.30), (B.31), and (B.32). We consider two cases.

Case 1: ∆REF-SND|min + RPP ≥ ∆REF-RCVWND|min + WDeskew,pre

For this case, the message can be sent as soon as possible, but the window must be delayed to

align it with the expected time of reception.

∆REF-SND = ∆REF-SND|min (B.37)

∆REF-RCVWND = ∆REF-SND|min + RPP - WDeskew,pre (B.38)

Case 2: ∆REF-SND|min + RPP < ∆REF-RCVWND|min + WDeskew,pre

For this case, the window can be opened as soon as possible, but the message must be delayed

to achieve proper alignment.

∆REF-SND = ∆REF-RCVWND|min + WDeskew,pre - RPP (B.39)

∆REF-RCVWND = ∆REF-RCVWND|min (B.40)

105

B.5. Message streams

Each message in a message stream is processed independently. Let K denote the total number

of messages in the stream. i denotes the index for the messages in the stream, with 0 ≤ i ≤ K-1.

TSND,i is the local time at which the source sends the i-th message of the stream. TRCV,E,i is the

expected local time of reception for the i-th message of the stream. Λstream denotes the data

introduction interval at the source measured in local clock ticks.

The throughput capacities of the Communication Module and the Computation Module are

characterized by their respective minimum data introduction interval [De Micheli 94]. Let ΛComm

and ΛComp denote the minimum data introduction interval for the Communication Module and the

Computation Module, respectively. ΛComm and ΛComp are measured in local-clock ticks. For

proper processing, Λstream must be larger than ΛComm and ΛComp.

Λstream ≥ max(ΛComm, ΛComp) (B.41)

B.5.1. Message delivery rate

We would like to compute the number of messages that can be delivered during a particular

time interval. We consider intervals during steady state transmission after the leading edge of the

stream and before the trailing edge. Because of the drift rate of the clocks, the observed number

of delivered messages can vary within a range.

Let WRCV denote the size of the observation window at the receiving node measured in local

clock ticks. Q denotes the number of messages delivered during the observation window. λSRC

denotes the data introduction interval measured in nominal clock ticks. wRCV denotes the size of

the observation window at the receiving node measured in nominal clock ticks. Let tdeliver,i denote

the real time at which message i is delivered.

tdeliver,i = tdeliver,0 + iλSRC (B.42)

Let tobs,l and tobs,h denote the beginning and end times, respectively, for the observation

window. The observer records received messages during the closed interval [tobs,l , tobs,h]. tobs,l and

tobs,h are related by the size of the observation window.

tobs,h = tobs,l + wRCV (B.43)

The following constraints are applied in order to determine the number of observed messages.

tdeliver,0 < tobs,l (B.44)

tdeliver,1 ≥ tobs,l (B.45)

tdeliver,Q ≤ tobs,h (B.46)

tdeliver,Q+1 > tobs,h (B.47)

106

For these constraints, a total of Q messages in the index range 1 to Q are delivered within the

observation interval. The maximum value of Q is derived as follows. Relation (B.46) can be re-

expressed as:

tdeliver,0 + QλSRC ≤ tobs,l + wRCV (B.48)

So:

Q ≤ [(tobs,l - tdeliver,0) + wRCV]/λSRC (B.49)

The right-hand side reaches its maximum value when tobs,l - tdeliver,0 = λSRC. In that case, tdeliver,1 =

tobs,1. So:

Q ≤ [λSRC + wRCV]/λSRC (B.50)

Since Q is an integer, we can take the floor on the right-hand side of the expression. Then:

Q|max = �wRCV/λSRC� + 1 (B.51)

For a fast source clock:

λSRC,fast = Λstream/(1 + ρ0) (B.52)

For a slow receiver clock:

wRCV,slow = (1 + ρ0)WRCV (B.53)

Therefore, for the maximum value of Q:

Q|max = �(WRCV/Λstream)(1 + ρ0)
2� + 1 (B.54)

The minimum value of Q is derived as follows. Relation (B.47) can be re-expressed as:

tdeliver,0 + (Q + 1)λSRC > tobs,l + wRCV (B.55)

So:

Q > [(tobs,l - tdeliver,0) + wRCV]/λSRC - 1 (B.56)

The right-hand side approaches its minimum value as tobs,l - tdeliver,0 approaches 0. So:

Q > wRCV/λSRC - 1 (B.57)

Q is an integer strictly larger than wRCV/λSRC - 1. The smallest integer that satisfies this relation is

given by:

Q|min = �wRCV/λSRC� (B.58)

For a slow source clock:

107

λSRC,slow = (1 + ρ0)Λstream (B.59)

For a fast receiver clock:

wRCV,fast = WRCV/(1 + ρ0) (B.60)

Therefore, for the minimum value of Q:

Q|min = �(WRCV/Λstream)/(1 + ρ0)
2� (B.61)

B.5.2. Expected local time of reception

The transmission times for the messages are related by the data introduction interval:

TSND,i = TSND,0 + iΛstream (B.62)

At the receiver, the relation among the messages is similar.

TRCV,E,i = TRCV,E,0 + iΛstream (B.63)

Using the analysis for single-message communication:

TRCV,E,i = TSND,i + RPP (B.64)

Let TRCV,i denote the actual time of reception for the i-th message. From the analysis of single-

message communication, TRCV,i and TRCV,E,i are related as follows:

|TRCV,i – TRCV,E,i | ≤ ∆PP,RCV|abs-max (B.65)

Re-expressing (B.65):

TRCV,E,i - ∆PP,RCV|abs-max ≤ TRCV,i ≤ TRCV,E,i + ∆PP,RCV|abs-max (B.66)

The stream as a whole should be received within the following local time interval:

[TRCV,E,0 - ∆PP,RCV|abs-max , TRCV,E,K-1 + ∆PP,RCV|abs-max] (B.67)

Re-expressing (B.67):

[TRCV,E,0 - ∆PP,RCV|abs-max , TRCV,E,0 + (K-1)Λstream + ∆PP,RCV|abs-max] (B.68)

B.5.3. Message reception rate

The Λstream communication parameter gives the nominal message reception rate for the stream

in units of ticks per message. An important consideration for the processing of message streams

is the relation between Λstream and ∆PP,RCV|abs-max. As presented above, ∆PP,RCV|abs-max measures the

uncertainty in the time of reception of each message. In particular, the total uncertainty in the

time of reception for a particular message is 2∆PP,RCV|abs-max local clock ticks centered around the

108

expected time of reception. A message from a good source can be received at any of the

2∆PP,RCV|abs-max + 1 triggering edges of the oscillator clock in the corresponding reception interval.

Let Z denote the number of messages from a good source that can be received during a

2∆PP,RCV|abs-max interval. Then:

Z = �2∆PP,RCV|abs-max/Λstream� + 1 (B.69)

B.5.3.1. Non-overlapping reception intervals

If Λstream > 2∆PP,RCV|abs-max, the expected reception intervals for consecutive messages will not

overlap or even coincide end-to-end (i.e., no shared triggering edges in consecutive expected

reception intervals). For this case, Z = 1, which means that the messages of the stream are

received as separate communications with no interaction.

B.5.3.2. Overlapping reception intervals

If Λstream ≤ 2∆PP,RCV|abs-max, the expected reception intervals for consecutive messages will

overlap or coincide at the ends. For this case, Z > 1, which means that the interaction between the

messages must be taken into consideration. This is especially important for the diagnosis of

timing errors.

B.5.4. Load size for a message reception buffer

We refer to the number of messages stored in a buffer as the load on the buffer. The function

of the message receive buffer is to collect the messages received at the Computation Process. For

single-message communication, it is expected that the processing of each message will begin at or

before the next message is received. The same can occur for a message stream in which the

reception intervals for consecutive messages do not overlap. In these cases, the load of the

receive buffer is less than or equal to 1. From this point on, we only consider cases in which the

processing of individual messages may begin after the reception of subsequent messages in the

stream. This includes cases of overlapping and non-overlapping reception intervals.

Let ∆PROC,begin denote the delay in the beginning of processing of a message with respect to the

corresponding expected time of reception. We assume that the interval between the beginning of

processing of consecutive messages is the same as the data introduction interval for the message

stream, Λstream. TPROC,i denotes the local time at the beginning of processing for message i.

TPROC,i = TRCV,E,i + ∆PROC,begin (B.70)

B.5.4.1. Combined message synchronization and buffering

Figure B.3 illustrates the interconnection of functions for this case. CLKRx denotes the

oscillator clock at the receiving node. STBRx denotes the strobe signal indicating that a new

message is ready. The Link Receiver transfers the messages to the Receive Buffer as soon as

they are ready. The output of the receiver is assumed to be asynchronous with respect to the

oscillator clock. The Receive Buffer is an asynchronous FIFO, which means that the push (i.e.,

109

write) and pop (i.e., remove) action signals may be synchronous with respect to different clock

signals. In effect, in addition to being a buffer, the asynchronous FIFO serves as a signal

synchronizer for data crossing from one clock domain to the other. Note that the data is read for

computation one tick before it is popped from the receive buffer.

Figure B.3: Reception using combined message synchronization and buffering

In order to ensure a read-after-write sequence at the Receive Buffer during normal operation,

the reading of a particular message by the Computation Process should be triggered after the end

of the corresponding reception interval. The following relation must hold in order to satisfy this

property.

∆PROC,begin > ∆PP,RCV|abs-max (B.71)

Again, note that the pop takes place one tick after the start of processing for each message.

tdeliver,i denotes the real time at which message i is written to the buffer. Note that a message gets

pushed at the same time that it is delivered. With λSRC denoting the data introduction interval at

the source node, tdeliver,i is given by the following equation.

tdeliver,i = tdeliver,0 + iλSRC (B.72)

Let tpop,i denote the real time at which message i is popped from the buffer. The pop times for

the Computation Process are given by the following relation, with λRCV equal to the data

introduction interval at the Computation Process.

tpop,i = tpop,0 + iλRCV (B.73)

Let Qdeliver(t) denote the number of delivered messages by time t. Qpop(t) denotes the number

of popped messages by time t. QAsync-Buffer(t) denotes the number of messages held by the

asynchronous Receive Buffer at time t.

For Qdeliver(t):

 0, for t < tdeliver,0

Qdeliver(t) = �[(t - tdeliver,0)/λSRC] + 1�, for tdeliver,0 ≤ t ≤ tdeliver,0 + (K-1)λSRC

 K, for t > tdeliver,0 + (K-1)λSRC (B.74)

Delivery

To Computation

Process

CLKRx

Link

Receiver

Receive

Buffer

STBRx

Asynchronous FIFO

110

For Qpop(t):

 0, for t < tpop,0

Qpop(t) = �[(t – tpop,0)/λRCV] + 1�, for tpop,0 ≤ t ≤ tpop,0 + (K-1)λRCV

 K, for t > tpop,0 + (K-1)λRCV (B.75)

For QAsyn-Buffer(t):

QAsyn-Buffer(t) = Qdeliver(t) - Qpop(t) (B.76)

To determine the maximum load for the receive buffer, we consider the case of a fast source

clock and a slow receiver clock. Thus:

λSRC = λSRC,fast = Λstream/(1 + ρ0) (B.77)

λRCV = λRCV,slow = (1 + ρ0)Λstream (B.78)

Assume that the first message is delivered at the earliest possible time. That is:

tdeliver,0 = cRCV(TRCV,E,0 - ∆PP,RCV|abs-max) (B.79)

The time of the first pop action is:

tpop,0 = cRCV(TRCV,E,0 + ∆PROC,begin + 1)

= tdeliver,0 + (1 + ρ0)(∆PP,RCV|abs-max + ∆PROC,begin + 1) (B.80)

Since the source has a faster clock, the number of buffered messages can increase up to the

instant the last message is delivered (i.e., t = tdeliver,K-1 = tdeliver,0 + (K-1)λSRC). Thus, the maximum

buffer load is given by QAsync-Buffer evaluated at tdeliver,K-1.

QAsyn-Buffer(t)|max = QAsyn-Buffer(tdeliver,K-1)

 = K - �[(K-1)λSRC,fast - (1 + ρ0)(∆PP,RCV|abs-max + ∆PROC,begin + 1)]/λRCV,slow + 1�

 = K - �(K-1)/(1 + ρ0)
2
 - (∆PP,RCV|abs-max + ∆PROC,begin + 1)/Λstream + 1� (B.81)

B.5.4.2. Separate message synchronization and buffering

Figure B.4 illustrates the interconnection of functions for this case. The receiver is assumed to

hold the message until it is processed by the synchronizer. For this synchronization mechanism,

the input rate must be slower than the local clock frequency to ensure at least one triggering edge

of the oscillator clock per delivered message. Thus, Λstream must be larger than 1. Since Λstream is

an integer, its value must at least 2 (i.e., Λstream ≥ 2).

111

Figure B.4: Reception using separate message synchronization and buffering

This configuration differs from the one using the asynchronous FIFO in that the

synchronization is performed by a dedicated synchronizer. At a minimum, this element

introduces a one-tick delay in the transfer of messages from the Link Receiver to the Receive

Buffer. The worst-case delay in storing the message in the buffer is two oscillator clock ticks.

Therefore, compared to the timing of the circuit with the asynchronous FIFO, the writing of

streamed messages to the synchronous FIFO buffer begins at least 1 local tick later and can end

up to 2 oscillator clock ticks later.

To determine the maximum load for the receive buffer, we consider the case of a fast source

clock and a slow receiver clock. The maximum load is assessed at the earliest time at which the

last message of the input stream can be written into the buffer. Let twrite,0 denote the earliest real

time at which a received message is written to the buffer.

twrite,0 = cRCV(TRCV,E,0 - ∆PP,RCV|abs-max + 1) = tdeliver,0 + (1 + ρ0) (B.82)

The delivery time for the last message is:

tdeliver,K-1 = tdeliver,0 + (K-1)λSRC,fast (B.83)

After delivery, the message must be synchronized and written to the buffer. In the fastest case,

the delivered message is immediately read by the synchronizer and presented to the buffer for

loading, which will then occur 1 tick later.

twrite,K-1 = tdeliver,K-1 + (1 + ρ0) = tdeliver,0 + (K-1)λSRC,fast + (1 + ρ0) (B.84)

Let QSync-Buffer(t) denote the number of messages held by the synchronous receive buffer at time t.

The maximum load is given by:

QSync-Buffer(t)|max = QSync-Buffer(twrite,K-1)

 = K - Qpop(twrite,K-1)

 = K - �[(twrite,K-1 - tpop,0)/λRCV,slow] + 1�

 = K - �(K-1)/(1 + ρ0)
2
 - (∆PP,RCV|abs-max + ∆PROC,begin)/Λstream + 1� (B.85)

Delivery

Synchronizer

Reception

CLKRx

Link

Receiver
D

Flip-Flop

Receive

Buffer

To Computation

Process

Synchronous FIFO

112

113

Appendix C. Analysis of the clock synchronization protocols

This appendix examines the timing aspects for the local-time synchronization scheme. The

diagnostic system works in close coordination with the clock synchronization system to

determine the status of the bus and to specify the nodes eligible to participate in clock

synchronization operations. That aspect of the ROBUS is outside the scope of this appendix.

The analysis presented here uses the fundamental fault-tolerance concepts presented in Appendix

A and the point-to-point communication concepts presented in Appendix B.

C.1. Clock synchronization system

Each ROBUS node is driven by an independent, free-running physical oscillator and a local-

time clock. The oscillators are characterized by a nominal frequency (denoted by f0) and a

bounded drift rate with respect to real time (denoted by ρ0). ρ0 is a small, positive, real-valued,

unitless constant. τ0 denotes the nominal tick duration measured in seconds: 1 nominal tick = τ0

seconds = 1/f0 seconds. Let τx denote the actual tick duration for oscillator x. The bound on the

drift rate of x can be expressed as follows:

τ0/(1 + ρ0) ≤ τx ≤ (1 + ρ0)τ0 (C.1)

So, an actual oscillator has a tick duration between 1/(1 + ρ0) and (1 + ρ0) nominal ticks.

The local-time clock of a node is essentially a counter driven by the local physical oscillator.

The local time is equal to the state of the counter. Resetting the counter sets the local time to 0.

The clock synchronization system enables the nodes to use the local time as a reference for the

coordination of distributed operations. A basic requirement for proper distributed coordination is

that the relative clock skews remain within known bounds. The relative skew between two

clocks is the real time elapsed from the instant one clock makes a particular state transition (i.e.,

the count reaches a particular value) until the other clock makes the same transition. In general,

the relative skew between two events is equal to the real time elapsed between the occurrence of

the events. Bounded relative skew is achieved by the generation and preservation of approximate

real-time agreement on the transitions of the local-time clock. The synchronization protocols

deliver high-precision distributed events used as references to reset the local-time clocks. The

state of a local-time clock indicates the time elapsed since the last synchronization-reset event.

The bound on the relative skew between synchronized clocks is tightest at the time of the

synchronization reset. After the reset, the local times can drift apart from each other and from

real time at rates determined by the drift rates of the oscillators. The clocks are synchronized at

regular time intervals in order to ensure that the relative skews remain within known bounds.

Figure C.1 illustrates the conceptual mode transitions for the clock synchronization system.

Normally there is a clique executing the Synchronization Preservation (SP) protocol to ensure

that their relative local-time skews remain within known bounds. Nodes in this mode are said to

be in a synchronized state. A goal of every node is to reach and remain in this state. In the

context of the synchronization system, nodes operating in a mode other than Synchronization

Preservation are referred to as recovering nodes. After a power-on enable or the detection of a

failure, a node examines the activity on the bus. If a clique is found, the recovering node

executes the Synchronization Acquisition (SA) mode in order to synchronize its local time to the

114

time of the clique. If a clique is not found, the recovering node transitions to the Initial

Synchronization (IS) mode. After achieving synchronization, the recovering node executes the

Synchronization Preservation protocol.

Figure C.1: Conceptual mode transitions for the clock synchronization system

At the time of entry into the Synchronization Acquisition mode, the recovering node is in an

asynchronous state in which there is no significant relation between its local time and the local

time of the clique. The recovering node uses an Accept function to capture the synchronization

events in the agreement propagation phase of the Synchronization Preservation protocol. This

requires that the Accept function only receive synchronization messages from the same execution

of the protocol. This is accomplished by enabling the Accept function after a frame

synchronization step in which the gap between executions of the Synchronization Preservation

protocol is found.

In general, a group of nodes enters the Initial Synchronization mode within a time interval of

known bounded duration. When a recovering node enters this mode, it expects that there is at

least one node of the opposite kind that also makes the transition within the bounded time

interval. This interval duration is in effect a bound on the relative local-time skew for the

initializing nodes. Before the execution of the synchronization protocol, these nodes are said to

be in an unsynchronized state since the initial skew bound can be relatively large compared to

the skew after the execution of the protocol.

Synchronization

Initialization (IS)

Power-on

enable

Failure

No

Synchronization

Acquisition (SA)

Synchronization

Preservation (SP)

Is a clique

executing

SP present

on the bus?

Yes

115

Figure C.2 illustrates how the mode transitions are related in time. A group of nodes enters

Initial Synchronization with a large bound on the relative skew, denoted by πIS. At the end of the

protocol execution, the local time is set to 0 with the bound on the relative skew reduced to the

level required for normal operation, denoted by πSP. At local time TSP, the Synchronization

Preservation protocol is executed to ensure that the skew remains within the expected bound.

This cyclic operation continues until a failure occurs or the system is shut down. A recovering

node in Synchronization Acquisition trying to synchronize to the clique executes the Frame

Synchronization (FS) protocol followed by the Synchronization Capture (SC) protocol. The

duration of the Frame Synchronization protocol execution depends on factors like the total

number of nodes of the opposite kind, the number of untrustworthy nodes of the opposite kind

active on the bus, the bound on the relative local-time skew of the nodes, and the position of the

start of the protocol relative to local time of the clique nodes. Synchronization Capture is enabled

immediately after the execution of Frame Synchronization is complete. The relative skew

achieved by Synchronization Acquisition is within the bounds of the skew for normal operation.

Figure C.2: Timing of mode transitions for the clock synchronization system

The Initial Synchronization, Synchronization Preservation, and Synchronization Capture

protocols are based on the same theory of distributed computation using Accept functions to

process timing events. Figure C.3 illustrates the message flow graph examined in this appendix.

This graph includes all the processes and messages required for the three protocols.

C.2. Timing model

This section describes how the ROBUS nodes are modeled for the analysis of the

synchronization protocols.

C.2.1. Computation Module

The Computation Module is modeled in terms of two components: Computation Process and

Send Process. The Computation Process handles the processing of received messages according

to the requirements of the protocol being executed. The Send Process handles the timing and

formatting requirements for the output messages.

IS

Real Time

πSP

SP

πIS πSP

SP

πSP

SP

πSP

SP

πSP

SP

πSP

SA

SCFS πSP

Local Time
0 TSP 0 TSP 0 TSP 0 TSP 0 TSP 0

Resynchronization

period

116

Figure C.3: Combined message flow graph for the analysis of the synchronization protocols

The Computation Process has two sub-processes: Receive and Accept. The Receive Process

provides timing delay and in-line error detection for the received messages. The input-output

delay of the Received Process depends on the synchronization process being executed. For a

particular process, every input has the same input-output delay. This behavior preserves the

relative positions of the received synchronization messages, which allows the Accept function to

properly read the relative skews of the received timing events. The delay of the Receive Process

depends mainly on the uncertainty in the time of reception and on the time required to process the

messages for error detection and diagnosis. The Accept Process performs the voting of the set of

received messages to produce a single result event. The delay of the Accept Process depends on

the protocol being executed. The Accept Process produces an output event with a predetermined

delay with respect to the time at which it receives the input event to be selected. For the events

not selected, the Accept function appears to have a variable input-output delay.

For each of the synchronization processes, the Computation Process has a fixed delay from the

time when the event to be selected is received to the time when the Accept output is asserted.

The delays of the Receive Process and the Accept Process are combined into a single parameter

denoted by A, which is measured in units of local clock ticks.

The Send Process handles the transmission of messages. The process delay depends on the

protocol and process being executed. B denotes the send delay with respect to the process-

triggering event, and it is measured in units of local clock ticks.

C.2.2. Communication Module

The behavior of the Communication Module is independent of the protocol being executed by

RMUs

BIUs

PEs

INIT

ECHO

ECHO

INIT

P0

P1

P3C

P2

P3

P4C

P4

INIT

ECHO

ECHO

Stage 1 Stage 2 Stage 3 Stage 4

117

the Computation Module. Appendix B presents the timing model for point-to-point

communication.

C.3. First stage

Figure C.4 illustrates the detailed message flow graph for stage 1 in a 3x3 system (i.e., 3 BIUs

and 3 RMUs).

Figure C.4: Detailed message flow graph for stage 1 in a 3x3 system

C.3.1. Expected time of reception for process P1

The analysis for point-to-point communication presented in the Appendix B can be leveraged

for the problem of determining the local time range of reception of INIT messages in process P1.

This is covered in section A.10.2.1 of this appendix for the Initial Synchronization and

Synchronization Preservation protocols.

C.3.2. Bound on the observed relative skew of received messages for process P1

Let ΠP1,RCV denote the bound on the relative skew observed in process P1 for the received

messages from process P0 at trustworthy BIUs. ΠP1,RCV is measured in local clock ticks. ΠP1,RCV

is used to check for agreement among the received inputs and also to check agreement with the

result of the Accept output.

Let TP0 denotes the local time at which a BIU node sends the INIT message in process P0 (i.e.,

the local time when the source’s Computation Module signals the Communication Module to

send the INIT message). tP0,l and tP0,h denote the earliest and latest real times, respectively, at

which the trustworthy BIU nodes send INIT in process P0. Let πP0 denote the bound on the

relative local-time skew for the trustworthy BIUs. πP0 is assumed to apply for the duration of the

protocol execution. πP0 also bounds the precision with which the trustworthy BIU nodes send the

INIT messages.

πP0 = tP0,h - tP0,l (C.2)

P0 P1
INIT

RMUBIU

Send INIT

at TP0

Processes

Stage 1

118

Let tP1,RCV,l and tP1,RCV,h denote the earliest and latest real times, respectively, at which an INIT

message from a trustworthy BIU node can be received in process P1 at the trustworthy RMUs.

tP1,RCV,l = tP0,l + rPP,l (C.3)

tP1,RCV,h = tP0,h + rPP,h (C.4)

Let TP1,RCV,l and TP1,RCV,h denote the earliest and latest local times, respectively, at which a node in

process P1 can receive messages from process P0 at trustworthy BIU nodes. ∆P1,RCV denotes the

measured skew between the earliest and latest received messages from trustworthy BIU nodes

(i.e., ∆P1,RCV = TP1,RCV,h - TP1,RCV,l). We need to determine the maximum value of ∆P1,RCV. Using

(C.3), (C.4), and the local-clock function (introduced in Appendix B):

cRCV(TP1,RCV,h) - cRCV(TP1,RCV,l) ≤ tP1,RCV,h - tP1,RCV,l (C.5)

From the constraint that the drift rate of the local clocks be ρ0-bounded and the definition of

∆P1,RCV:

∆P1,RCV/(1 + ρ0) ≤ cRCV(TP1,RCV,h) - cRCV(TP1,RCV,l) (C.6)

Combining (C.5) and (C.6), and using the fact that ∆P1,RCV is an integer:

 ∆P1,RCV ≤ �(1 + ρ0)(tP1,RCV,h - tP1,RCV,l)� (C.7)

ΠP1,RCV is given by the maximum value of ∆P1,RCV:

ΠP1,RCV = ∆P1,RCV|max = �(1 + ρ0)(tP1,RCV,h - tP1,RCV,l)� = �(1 + ρ0)(πP0 + ePP)� (C.8)

C.3.3. Relative skew of the Accept outputs for process P1

Let AP1 denote the delay (in local-clock ticks) of the Computation Process in process P1

measured from the local time of reception of the selected message until the Accept output is

asserted. tP1,A,l and tP1,A,h denote the earliest and latest real times, respectively, at which an Accept

output in process P1 at the trustworthy RMUs can be asserted.

tP1,A,l = tP0,l + rPP,l + AP1/(1 + ρ0) (C.9)

tP1,A,h = tP0,h + rPP,h + (1 + ρ0)AP1 (C.10)

Therefore, the Accept functions of the trustworthy RMU nodes assert their outputs during a real-

time interval with the following duration:

tP1,A,h - tP1,A,l = [πP0 + rPP,h + (1 + ρ0)AP1] - [rPP,l + AP1/(1 + ρ0)]

= πP0 + ePP + [(1 + ρ0) - 1/(1 + ρ0)]AP1 (C.11)

Let AEV_P1 denote the set of asymmetric BIU eligible voters in process P1 at a trustworthy

RMU node. |AEV_P1| denotes the cardinality of AEV_P1. πP1,A denotes the bound on the real-

119

time relative skew of the Accept outputs in process P1 at the trustworthy RMUs. If |AEV_P1| = 0

for each trustworthy RMU node, they essentially accept on the same message.

πP1,A||AEV_P1| = 0 = ePP + [(1 + ρ0) - 1/(1 + ρ0)]AP1 (C.12)

If |AEV_P1| ≠ 0 for some trustworthy RMU, all we know with certainty is that the RMU nodes

accept on a message from a trustworthy BIU node or a message from an untrustworthy BIU node

flanked by messages from trustworthy BIU nodes.

πP1,A||AEV_P1| ≠ 0 = πP0 + ePP + [(1 + ρ0) - 1/(1 + ρ0)]AP1 (C.13)

From this point on, unless otherwise stated:

πP1,A = πP1,A|max = πP1,A||AEV_P1| ≠ 0 (C.14)

C.4. Second stage

Figure C.5 illustrates the detailed message flow graph for stage 1 and 2 in a 3x3 system.

Figure C.5: Detailed message flow graph for stages 1 and 2 in a 3x3 system

C.4.1. Effective reception delay for process P2

Let BP0 denote the send delay for process P0. We want to compute the effective reception

delay for process P2. In general, this delay is measured from the time of some local event to the

time of reception. We use TP0, the local time of transmission of the INIT message in process P0,

as the local reference event to measure the reception delay from process P0 to process P2. Note

that instead of the start of the protocol, we choose the send time for process P0 as the reference

time to measure the reception delay. This approach enables the analysis of the synchronization

protocols independently of BP0. BP0 is computed based on a single-stage point-to-point

synchronous communication model (see section A.10.2.1 of this appendix).

We need to determine the earliest and latest real times of reception for process P2. Let BP1

denote the send delay for process P1. tP2,RCV,l and tP2,RCV,h denote the earliest and latest real times,

P0 P1
INIT

RMUBIU

Send INIT

at TP0

Processes

Stage 1

P2
INIT

BIU

Stage 2

120

respectively, at which an INIT message from a trustworthy RMU node can be received in process

P2 at the trustworthy BIUs.

tP2,RCV,l = tP1,A,l + BP1/(1 + ρ0) + rPP,l = tP0,l + 2rPP,l + (AP1 + BP1)/(1 + ρ0) (C.15)

tP2,RCV,h = tP1,A,h + (1 + ρ0)BP1 + rPP,h = tP0,l + πP0 + 2rPP,h + (1 + ρ0)(AP1 + BP1) (C.16)

rP0-P2,l denotes the minimum effective message-reception delay for INIT messages in process P2

and is measured from the latest time at which the trustworthy BIU nodes can send INIT to the

earliest time at which the BIU nodes can receive INIT messages from the trustworthy RMU

nodes.

rP0-P2,l = tP2,RCV,l - tP0,h = 2rPP,l + (AP1 + BP1)/(1 + ρ0) - πP0 (C.17)

rP0-P2,h denotes the maximum effective message-reception delay for INIT messages in process P2

and is measured from the earliest time at which the trustworthy BIU nodes can send INIT to the

latest time at which the BIU nodes can receive INIT messages from the trustworthy RMU nodes.

rP0-P2,h = tP2,RCV,h - tP0,l = πP0 + 2rPP,h + (1 + ρ0)(AP1 + BP1) (C.18)

The expected reception delay for process P2 is:

RP0-P2 = IMP(rP0-P2,l , rP0-P2,h) (C.19)

The IMP function is defined in Appendix B.

The total effective uncertainty in the real time of reception of the INIT messages in process P2 is:

rP0-P2,h - rP0-P2,l = 2πP0 + 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP1 + BP1) (C.20)

C.4.2. Expected time of reception for process P2

The BIU nodes expect to receive INIT messages at local time TP2,RCV,E.

TP2,RCV,E = TP0 + RP0-P2 (C.21)

The real-time error for TP2,RCV,E is bounded as follows. A BIU node will receive an INIT message

from a trustworthy RMU node no earlier than µP0-P2,l nominal ticks from TP2,RCV,E.

µP0-P2,l = (1 + ρ0)RP0-P2 - rP0-P2,l (C.22)

A BIU node will receive an INIT message from a trustworthy RMU node no later than µP0-P2,h

nominal ticks from TP2,RCV,E.

µP0-P2,h = rP0-P2,h - RP0-P2/(1 + ρ0) (C.23)

Let TP2,RCV denote the actual local time at a BIU node when an INIT message from a trustworthy

RMU node is received. In addition, let ∆P2,RCV denote the local-time error in TP2,RCV.

121

∆P2,RCV = TP2,RCV - TP2,RCV,E (C.24)

We want to determine a bound for the local-time error in the actual time of reception in process

P2, denoted by ∆P2,RCV|max.

|TP2,RCV - TP2,RCV,E| ≤ ∆P2,RCV|max (C.25)

∆P2,RCV|max is derived as follows. We know that the difference between the expected and the

actual time of reception at a BIU node for INIT messages from the trustworthy RMU nodes is

bounded by µP0-P2,l and µP0-P2,h, such that:

cRCV(TP2,RCV,E) - µP0-P2,l ≤ cRCV(TP2,RCV) ≤ cRCV(TP2,RCV,E) + µP0-P2,h (C.26)

So:

|cRCV(TP2,RCV) - cRCV(TP2,RCV,E)| ≤ max(µP0-P2,l , µP0-P2,h) (C.27)

From the constraint that the local clocks be ρ-bounded and (C.24):

|∆P2,RCV|/(1 + ρ0) ≤ |cRCV(TP2,RCV) - cRCV(TP2,RCV,E)| (C.28)

Combining (C.27) and (C.28):

|∆P2,RCV| ≤ (1 + ρ0)max(µP0-P2,l , µP0-P2,h) (C.29)

Since ∆P2,RCV is an integer:

|∆P2,RCV| ≤ �(1 + ρ0)max(µP0-P2,l , µP0-P2,h)� (C.30)

Therefore:

∆P2,RCV|max = �(1 + ρ0) max(µP0-P2,l , µP0-P2,h)� (C.31)

C.4.3. Bound on the observed relative skew of received messages for process P2

Let ΠP2,RCV denote the bound on the relative skew observed in process P2 for the received

messages from process P1 at trustworthy RMUs. ΠP2,RCV is measured in local clock ticks.

ΠP2,RCV is used to check for agreement among the received inputs and also to check agreement

with the result of the Accept output.

The worst case relative skew for received messages occurs when there are asymmetric eligible

voters in process P1 at the trustworthy RMU nodes. The bound on the relative skew of the

Accept outputs in process P1 is πP1,A. The additional uncertainty in the reception delay measured

from the time of the Accept outputs to the time of reception in process P2 is ePP + [(1+ρ0) -

1/(1+ρ0)]BP1.

ΠP2,RCV = �(1 + ρ0)(tP2,RCV,h - tP2,RCV,l)�

122

 = �(1 + ρ0){πP1,A + ePP + [(1 + ρ0) - 1/(1 + ρ0)]BP1}�

ΠP2,RCV = �(1 + ρ0){πP0 + 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP1 + BP1)}� (C.32)

C.4.4. Relative skew of the Accept outputs for process P2

Let AEV_P2 denote the set of asymmetric RMU eligible voters in process P2 at a trustworthy

BIU node. Let πP2,A denote the bound on the real-time relative skew of the Accept outputs in

process P2 at trustworthy BIUs. AP2 denotes the delay (in local-clock ticks) of the Computation

Process in process P2 measured from the local time of reception of the selected message to the

local time when the Accept output is asserted. If |AEV_P1| = 0 for each trustworthy RMU node,

the trustworthy BIU nodes may have asymmetric RMU nodes in their sets of eligible voters for

process P2 (i.e., |AEV_P2| ≠ 0 for some trustworthy BIUs). In this case, the trustworthy BIU

nodes accept within the time range delimited by messages from trustworthy RMU nodes.

πP2,A||AEV_P2| ≠ 0 = πP1,A||AEV_P1| = 0 + ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP1 + AP2)

 = 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP1 + BP1 + AP2) (C.33)

If |AEV_P1| ≠ 0 for some trustworthy RMU nodes, the trustworthy BIU nodes do not have

asymmetric RMU nodes in their sets of eligible voters for process P2 (i.e., |AEV_P2| = 0 at each

trustworthy BIU). In this case, the BIU nodes essentially accept on the same message.

πP2,A||AEV_P2| = 0 = ePP + [(1 + ρ0) - 1/(1 + ρ0)]AP2 (C.34)

From this point on, unless otherwise stated:

πP2,A = πP2,A|max = πP2,A||AEV_P2| ≠ 0 (C.35)

C.5. Third stage

Figure C.6 illustrates the detailed message flow graph up to stage 3 for a 3x3 system.

Figure C.6: Detailed message flow graph for stages 1 through 3 in a 3x3 system

P0 P1
INIT

RMUBIU

Send INIT

at TP0

Processes

Stage 1

P3
ECHO

RMU

Stage 3

P2
INIT

BIU

Stage 2

123

C.5.1. Effective reception delay for process P3

We need to determine the earliest and latest real times of reception of ECHO messages in

process P3. Let TP1,A,i denote the local time at RMU node i when it asserts the output of its

Accept function in process P1. Let tP1,A,l and tP1,A,h denote the earliest and latest real times,

respectively, at which the trustworthy RMUs can assert the Accept outputs in process P1.

πP1,A = tP1,A,h - tP1,A,l (C.36)

Let BP2 denote the send delay for process P2. tP3,RCV,l and tP3,RCV,h denote the earliest and latest

real times, respectively, at which ECHO messages from trustworthy BIU nodes can be received

by an RMU node in process P3.

tP3,RCV,l = tP1,A,l + 2rPP,l + (BP1 + AP2 + BP2)/(1 + ρ0) (C.37)

tP3,RCV,h = tP1,A,h + 2rPP,h + (1 + ρ0)(BP1 + AP2 + BP2) (C.38)

rP1-P3,l denotes the minimum effective message-reception delay for ECHO messages in process P3

and is measured from the latest time at which trustworthy RMU nodes can assert their

Accept(INIT) output to the earliest time at which the RMU nodes receive ECHO messages from

the trustworthy BIU nodes.

rP1-P3,l = tP3,RCV,l - tP1,A,h = 2rPP,l + (BP1 + AP2 + BP2)/(1 + ρ0) - πP1,A (C.39)

rP1-P3,h denotes the maximum effective message-reception delay for ECHO messages in process

P3 and is measured from the earliest time at which the trustworthy RMU nodes can assert its

Accept(INIT) output to the latest time at which the RMU nodes can receive ECHO messages

from the trustworthy BIU nodes.

rP1-P3,h = tP3,RCV,h - tP1,A,l = πP1,A + 2rPP,h + (1 + ρ0)(BP1 + AP2 + BP2) (C.40)

The expected reception delay for process P3 is:

RP1-P3 = IMP(rP1-P3,l , rP1-P3,h) (C.41)

The effective uncertainty in the real time of reception of the ECHO messages in process P3 is:

rP1-P3,h - rP1-P3,l = 2πP1,A + 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP1 + AP2 + BP2) (C.42)

C.5.2. Expected time of reception for process P3

RMU node i expects to receive ECHO messages at local time TP3,RCV,E,i.

TP3,RCV,E,i = TP1,A,i + RP1-P3 (C.43)

The real-time error for TP3,RCV,E,i is bounded as follows. RMU node i will receive an ECHO

message from a trustworthy BIU node no earlier than µP1-P3,l nominal ticks from TP3,RCV,E,i.

124

µP1-P3,l = (1 + ρ0)RP1-P3 - rP1-P3,l (C.44)

RMU node i will receive an ECHO message from a trustworthy BIU node no later than µP1-P3,h

nominal ticks from TP3,RCV,E,i.

µP1-P3,h = rP1-P3,h - RP1-P3/(1 + ρ0) (C.45)

We want to determine the maximum local-time error for the actual time of reception at the RMU

nodes, denoted by ∆P3,RCV|max.

|TP3,RCV - TP3,RCV,E| ≤ ∆P3,RCV|max (C.46)

Following the analysis for process P2:

∆P3,RCV|max = �(1 + ρ0)max(µP1-P3,l , µP1-P3,h)� (C.47)

C.5.3. Bound on the observed relative skew of received messages for process P3

Let ΠP3,RCV denote the bound on the relative skew observed in process P3 for the received

messages from trustworthy sources in process P2. ΠP3,RCV is measured in local clock ticks.

ΠP3,RCV is used to check for agreement among the received inputs and also to check agreement

with the result of the Accept output.

The worst case relative skew for received messages occurs when there are asymmetric eligible

voters in process P2 at the trustworthy BIU nodes. The bound on the relative skew of the Accept

outputs in process P2 is πP2,A. The additional uncertainty in the reception delay measured from

the time of the Accept outputs in process P2 to the time of reception in process P3 is ePP + [(1+ρ0)

- 1/(1+ρ0)]BP2.

ΠP3,RCV = �(1 + ρ0)(tP3,RCV,h - tP3,RCV,l)�

 = �(1 + ρ0){πP2,A + ePP + [(1 + ρ0) - 1/(1 + ρ0)]BP2}�

 = �(1 + ρ0){3ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP1 + BP1 + AP2 + BP2)}� (C.48)

C.5.4. Relative skew of the Accept outputs for process P3

Let AEV_P3 denote the set of asymmetric BIU eligible voters in process P3 at a trustworthy

RMU node. Let πP3,A denote the bound on the real-time relative skew of the Accept outputs in

process P3 at the trustworthy RMUs. AP3 denotes the delay (in local-clock ticks) of the

Computation Process in process P3 measured from the local time of reception of the selected

message to the local time when the Accept output is asserted. If |AEV_P2| = 0 for each

trustworthy BIU node, the trustworthy RMU nodes may have asymmetric BIU nodes in their sets

of eligible voters for process P3 (i.e., |AEV_P3| ≠ 0 for some trustworthy RMU nodes). In this

case, the trustworthy RMU nodes accept within the time range delimited by messages from

trustworthy BIU nodes.

πP3,A||AEV_P3| ≠ 0 = πP2,A||AEV_P2| = 0 + ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP2 + AP3)

125

 = 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP2 + BP2 + AP3) (C.49)

If |AEV_P2| ≠ 0 for some trustworthy BIU nodes, the trustworthy RMU nodes do not have

asymmetric BIU nodes in their sets of eligible voters for process P3 (i.e., |AEV_P3| = 0 for each

trustworthy RMU node). In this case, the RMU nodes essentially accept on the same message.

πP3,A||AEV_P3| = 0 = ePP + [(1 + ρ0) - 1/(1 + ρ0)]AP3 (C.50)

From this point on, unless otherwise stated:

πP3,A = πP3,A|max = πP3,A||AEV_P3| ≠ 0 (C.51)

C.6. Fourth stage

Figure C.7 illustrates the detailed message flow graph up to stage 4 for a 3x3 system.

Figure C.7: Detailed message flow graph for stages 1 through 4 in a 3x3 system

C.6.1. Effective reception delay for process P4

We need to determine the earliest and latest real time of reception of ECHO messages from

trustworthy RMU nodes by the BIU nodes in process P4. Let TP2,A,j denote the local time at

which trustworthy BIU node j asserts the output of its Accept function for process P2. tP2,A,l and

tP2,A,h denote the earliest and latest real times, respectively, at which the trustworthy BIUs can

assert their Accept outputs in process P2.

πP2,A = tP2,A,h - tP2,A,l (C.52)

Let BP3 denote the send delay for process P3. tP4,RCV,l denotes the earliest real time at which

ECHO messages from trustworthy RMU nodes can be received by a BIU node in process P4.

tP4,RCV,l = tP2,A,l + 2rPP,l + (BP2 + AP3 + BP3)/(1 + ρ0) (C.53)

tP4,RCV,h denotes the latest real time at which ECHO messages from trustworthy RMU nodes can

P0 P1
INIT

RMUBIU

Stage 1

P3
ECHO

RMU

Stage 3

P2
INIT

BIU

Stage 2

P4
ECHO

BIU

Stage 4

Send INIT

at TP0

Processes

126

be received by a BIU node in process P4.

tP4,RCV,h = tP2,A,h + 2rPP,h + (1 + ρ0)(BP2 + AP3 + BP3) (C.54)

rP2-P4,l denotes the minimum effective message-reception delay for ECHO messages in process P4

and is measured from the latest time at which the trustworthy BIU nodes can assert their

Accept(ECHO) outputs to the earliest time at which the BIU nodes can receive ECHO messages

from the trustworthy RMU nodes.

rP2-P4,l = tP4,RCV,l - tP2,A,h = 2rPP,l + (BP2 + AP3 + BP3)/(1 + ρ0) - πP2,A (C.55)

rP2-P4,h denotes the maximum effective message-reception delay for ECHO messages in process

P4 and is measured from the earliest time at which the trustworthy BIU nodes assert their

Accept(ECHO) outputs to the latest time at which the BIU nodes can receive ECHO messages

from the trustworthy RMU nodes.

rP2-P4,h = tP4,RCV,h - tP2,A,l = πP2,A + 2rPP,h + (1 + ρ0)(BP2 + AP3 + BP3) (C.56)

The expected reception delay for process P4 is:

RP2-P4 = IMP(rP2-P4,l , rP2-P4,h) (C.57)

The effective uncertainty in the real time of reception of the ECHO messages in process P4 is:

rP2-P4,h - rP2-P4,l = 2πP2,A + 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP2 + AP3 + BP3) (C.58)

C.6.2. Expected time of reception for process P4

BIU node j expect to receive ECHO messages at local time TP4,RCV,E,j:

TP4,RCV,E,j = TP2,A,j + RP2-P4 (C.59)

The real-time error for TP4,RCV,E,j is bounded as follows. BIU node j will receive an ECHO

message from a trustworthy RMU node no earlier than µP2-P4,l nominal ticks from TP4,RCV,E,j:

µP2-P4,l = (1 + ρ0)RP2-P4 - rP2-P4,l (C.60)

BIU node j will receive an ECHO message from a trustworthy RMU node no later than µP2-P4,h

nominal ticks from TP4,RCV,E,j:

µP2-P4,h = rP2-P4,h - RP2-P4/(1 + ρ0) (C.61)

We want to determine the maximum local-time error for the actual time of reception at the BIU

nodes in process P4, denoted by ∆P4,RCV|max.

|TP4,RCV - TP4,RCV,E| ≤ ∆P4,RCV|max (C.62)

Following the analysis for process P2:

127

∆P4,RCV|max = �(1 + ρ0)max(µP2-P4,l , µP2-P4,h)� (C.63)

C.6.3. Bound on the observed relative skew of received messages for process P4

Let ΠP4,RCV denote the bound on the relative skew observed in process P4 for the received

messages from process P3 at trustworthy RMUs. ΠP4,RCV is measured in local clock ticks.

ΠP4,RCV is used to check for agreement among the received inputs and also to check agreement

with the result of the Accept output.

The worst case relative skew for received messages occurs when there are asymmetric eligible

voters in process P3 at trustworthy RMU nodes. The bound on the relative skew of the Accept

outputs in process P3 at the trustworthy RMUs is πP3,A. The additional uncertainty in the

reception delay measured from the time of the Accept outputs in process P3 to the time of

reception in process P4 is ePP + [(1 + ρ0) - 1/(1 + ρ0)]BP3.

ΠP4,RCV = �(1 + ρ0)(tP4,RCV,h - tP4,RCV,l)�

 = �(1 + ρ0){πP3,A + ePP + [(1 + ρ0) - 1/(1 + ρ0)]BP3}�

 = �(1 + ρ0){3ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP2 + BP2 + AP3 + BP3)}� (C.64)

C.6.4. Relative skew of the Accept outputs for process P4

Let AEV_P4 denote the set of asymmetric RMU eligible voters in process P4 at a trustworthy

BIU node. Let πP4,A denote the bound on the real-time relative skew of the Accept outputs in

process P4 at the trustworthy BIUs. AP4 denotes the delay (in local-clock ticks) of the

Computation Process in process P4 measured from the local time of reception of the selected

message to the local time when the Accept output is asserted. If |AEV_P3| = 0 for each

trustworthy RMU node, the trustworthy BIU nodes may have asymmetric RMU nodes in their

sets of eligible voters for process P4 (i.e., |AEV_P4| ≠ 0 for some trustworthy BIU nodes). In this

case, the BIU nodes accept within the time range delimited by messages from trustworthy RMU

nodes.

πP4,A||AEV_P4| ≠ 0 = πP3,A||AEV_P3| = 0 + ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP3 + AP4)

 = 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP3 + BP3 + AP4) (C.65)

If |AEV_P3| ≠ 0 for some trustworthy RMU nodes, the trustworthy BIU nodes do not have

asymmetric RMU nodes in their sets of eligible voters for process P4 (i.e., |AEV_P4| = 0 for each

trustworthy BIU node). In this case, the BIU nodes essentially accept on the same message.

πP4,A||AEV_P4| = 0 = ePP + [(1 + ρ0) - 1/(1 + ρ0)]AP4 (C.66)

From this point on, unless otherwise stated:

πP4,A = πP4,A|max = πP4,A||AEV_P4| ≠ 0 (C.67)

128

C.7. Synchronization capture

Figure C.8 illustrates the detailed message flow graph for the synchronization-capture stages

in a 3x3 system. The nodes executing processes P3C and P4C are called recovering nodes.

Figure C.8: Detailed message flow graph for synchronization-capture stages in a 3x3 system

C.7.1. Bound on the observed relative skew of received messages for process P3C

Let ΠP3C,RCV denote the bound on the relative skew observed in process P3C for the received

messages from process P2 at trustworthy BIUs. ΠP3C,RCV is measured in local clock ticks.

ΠP3C,RCV is used to check for agreement among the received inputs and also to check agreement

with the result of the Accept output.

 The nodes in process P3C receive ECHO messages from process P2 at trustworthy BIUs in

the same real time range as nodes executing process P3. Therefore:

ΠP3C,RCV = ΠP3,RCV (C.68)

C.7.2. Relative skew of the Accept outputs for process P3C

Recovering RMU nodes synchronize using the ECHO messages from process P2 of the

Synchronization Preservation protocol. Because the recovering nodes may have asymmetric

faulty nodes in their sets of eligible voters, all we know is that they will accept within the time

range delimited by ECHO messages from trustworthy BIU nodes. Let πP3C,A denote the bound on

the real-time relative skew of the Accept outputs in process P3C at the good recovering RMUs.

Let AP3C denote the delay (in local-clock ticks) of the Computation Process in process P3C

measured from the local time of reception of the selected message to the local time when the

Accept output is asserted. We assume that the delay of the Computation Process in process P3C

is the same as in process P3.

AP3C = AP3 (C.69)

The worst-case real-time relative skew occurs when the trustworthy BIU nodes and the

P2 P3C
INIT

RMUBIU

Processes

Stage 3

P3

RMU

P4C
ECHO

BIU

Stage 4

129

recovering RMU nodes simultaneously have asymmetric nodes in their sets of eligible voters.

For that case:

πP3C,A = πP2,A + ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP2 + AP3C)

 = 3ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP1 + BP1 + AP2 + BP2 + AP3) (C.70)

C.7.3. Bound on the observed relative skew of received messages for process P4C

Let ΠP4C,RCV denote the bound on the maximum relative skew observed in process P4C for the

received messages from process P3 at trustworthy RMUs. ΠP4C,RCV is measured in local clock

ticks. ΠP4C,RCV is used to check for agreement among the received inputs and also to check

agreement with the result of the Accept output.

The nodes executing process P4C receive ECHO messages from process P3 at trustworthy

RMUs in the same time range as nodes executing process P4. Therefore:

ΠP4C,RCV = ΠP4,RCV (C.71)

C.7.4. Relative skew of the Accept outputs for process P4C

Recovering BIU nodes synchronize using the ECHO messages from process P3 of the

Synchronization Preservation protocol. Because the recovering BIUs may have asymmetric

faulty nodes in their sets of eligible voters, all we know is that they will accept within the time

range delimited by ECHO messages from trustworthy RMU nodes. Let πP4C,A denote the bound

on the real-time relative skew of the Accept outputs in process P4C at the good recovering BIUs.

Let AP4C denote the delay (in local-clock ticks) of the Computation Process in process P4C

measured from the local time of reception of the selected message to the local time when the

Accept output is asserted. We assume that the delay of the Computation Process in process P4C

is the same as in process P4.

AP4C = AP4 (C.72)

The worst-case real-time relative skew occurs when the trustworthy RMU nodes and the

recovering BIU nodes simultaneously have asymmetric nodes in their sets of eligible voters. For

that case:

πP4C,A = πP3,A + ePP + [(1 + ρ0) - 1/(1 + ρ0)](BP3 + AP4C)

 = 3ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP2 + BP2 + AP3 + BP3 + AP4) (C.73)

C.8. Resetting the local time

C.8.1. Relative skew of the local-time reset for process P4

Let TP4,A,j denote the local time of the Accept output in process P4 at trustworthy BIU j. HP4

130

denotes the synchronization-reset delay applied by the BIU nodes resetting with respect to the

Accept output in process P4. TP4,H,j denotes the local time at which the next cycle begins for BIU

node j synchronizing with respect to process P4.

TP4,H,j = TP4,A,j + HP4 (C.74)

πP4,H denotes the bound on the relative skew of the local-time reset for BIU nodes synchronizing

with respect to process P4. Then:

πP4,H = πP4,A + [(1 + ρ0) - 1/(1 + ρ0)]HP4

 = 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP3 + BP3 + AP4 + HP4) (C.75)

C.8.2. Relative skew of the local-time reset for process P4C

Let TP4C,A,j denote the local time of the Accept output in process P4C at a good recovering BIU

j. HP4C denotes the synchronization-reset delay applied by the nodes resetting with respect to the

Accept output in process P4C at the good recovering BIUs. TP4C,H,j denotes the local time at

which the next cycle begins for BIU node j synchronizing with respect to process P4C. The BIU

nodes executing process P4C apply the same synchronization-reset delay as the nodes executing

process P4.

HP4C = HP4 (C.76)

So:

TP4C,H,j = TP4C,A,j + HP4C = TP4C,A,j + HP4 (C.77)

The bound on the relative skew of the Accept output for process P4C at the good recovering BIUs

is given by πP4C,A. πP4C,H denotes the bound on the relative skew of the local-time reset for good

recovering BIU nodes synchronizing with respect to process P4C. Then:

πP4C,H = πP4C,A + [(1 + ρ0) - 1/(1 + ρ0)]HP4

 = 3ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP2 + BP2 +AP3 + BP3 + AP4 + HP4) (C.78)

C.8.3. Reset delay for process P3

Let TP3,A,i denote the local time of the Accept output in process P3 at trustworthy RMU i. HP3

denotes the synchronization-reset delay applied by the nodes resetting with respect to the Accept

output in process P3. TP3,H,i denotes the local time at which the next cycle begins for RMU i

synchronizing with respect to process P3.

TP3,H,i = TP3,A,i + HP3 (C.79)

HP3 is the expected delay from the time when the RMU nodes in process P3 assert their Accept

output until the BIU nodes synchronizing with respect to process P4 reset their local-time clocks.

The bound on the relative skew of the Accept outputs in process P3 at the trustworthy RMUs is

131

given by πP3,A. tP3,A,l and tP3,A,h denote the earliest and latest real times, respectively, at which the

Accept outputs can be asserted in process P3 at the trustworthy RMUs. So:

πP3,A = tP3,A,h - tP3,A,l (C.80)

tP4,H,l|P3,A and tP4,H,h|P3,A denote the earliest and latest real times, respectively, at which a

trustworthy BIU node synchronizing with respect to process P4 can reset its local-time clock.

tP4,H,l|P3,A and tP4,H,h|P3,A are measured with respect to the Accept outputs in process P3 at the

trustworthy RMUs.

tP4,H,l|P3,A = tP3,A,l + rPP,l + (BP3 + AP4 + HP4)/(1 + ρ0) (C.81)

tP4,H,h|P3,A = tP3,A,h + rPP,h + (1 + ρ0)(BP3 + AP4 + HP4) (C.82)

Let hP3,l denote the minimum effective delay from the time the Accept output in process P3 at

trustworthy RMUs is asserted to the time a trustworthy BIU node resets its local-time clock with

respect to process P4.

hP3,l = tP4,H,l|P3,A - tP3,A,h

 = rPP,l + (BP3 + AP4 + HP4)/(1 + ρ0) - πP3,A (C.83)

hP3,h denotes the maximum effective delay from the time the Accept output in process P3 at

trustworthy RMUs is asserted to the time a trustworthy BIU node resets its local-time clock with

respect to process P4.

hP3,h = tP4,H,h|P3,A - tP3,A,l

= πP3,A + rPP,h + (BP3 + AP4 + HP4)(1 + ρ0) (C.84)

HP3 is given by:

HP3 = IMP(hP3,l , hP3,h) (C.85)

The real-time error for TP3,H,i is bounded as follows. A trustworthy BIU node can reset its local-

time clock with respect to process P4 no earlier than µP3,H,l nominal ticks from local time TP3,H,i at

a trustworthy RMU node synchronizing with respect to process P3.

µP3,H,l = (1 + ρ0)HP3 - hP3,l (C.86)

A trustworthy BIU node can reset its local-time clock with respect to process P4 no later than

µP3,H,h nominal ticks from local time TP3,H,i at a trustworthy RMU node synchronizing with respect

to process P3.

µP3,H,h = hP3,h - HP3/(1 + ρ0) (C.87)

Note that this analysis also applies to the real-time error for TP3,H,i with respect to the local-time

reset of nodes synchronizing in process P4C.

132

C.8.4. Relative skew of the local-time reset between processes P3, and P4 or P4C

Let πP3-P4,H denote the bound on the relative skew of the local-time reset between RMU nodes

synchronizing with respect to process P3 and BIU nodes synchronizing with respect to process

P4.

πP3-P4,H = max(µP3,H,l, µP3,H,h) (C.88)

πP3-P4C,H denotes the bound on the relative skew of the local-time reset between RMU nodes

synchronizing with respect to process P3 and BIU nodes synchronizing with respect to process

P4C. πP3-P4,H also applies here.

πP3-P4C,H = πP3-P4,H (C.89)

C.8.5. Relative skew of the local-time reset for process P3

The bound on the relative skew of the Accept outputs in process P3 at trustworthy RMUs is

given by πP3,A. πP3,H denotes the bound on the relative skew of the local-time reset for trustworthy

RMU nodes resetting with respect to the Accept output in process P3.

πP3,H = πP3,A + [(1 + ρ0) - 1/(1 + ρ0)]HP3

 = 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP2 + BP2 + AP3 + HP3) (C.90)

C.8.6. Relative skew of the local-time reset for process P3C

Let TP3C,A,i denote the local time of the Accept output in process P3C at good recovering RMU

i. HP3C denotes the synchronization-reset delay applied by the RMU nodes resetting with respect

to the Accept output in process P3C. TP3C,H,i denotes the local time at which the next cycle begins

for RMU node i synchronizing with respect to process P3C. The RMU nodes executing process

P3C apply the same synchronization-reset delay as the RMU nodes executing process P3.

HP3C = HP3 (C.91)

So:

TP3C,H,i = TP3C,A,i + HP3C = TP3C,A,i + HP3 (C.92)

The bound on the relative skew for the Accept outputs in process P3C at the good recovering

RMUs is given by πP3C,A. πP3C,H denotes the bound on the relative skew of the local-time reset for

the nodes synchronizing with respect to the Accept output in process P3C.

πP3C,H = πP3C,A + [(1 + ρ0) - 1/(1 + ρ0)]HP3

 = 3ePP + [(1 + ρ0)- 1/(1 + ρ0)](AP1 + BP1 + AP2 + BP2 + AP3 + HP3) (C.93)

133

C.8.7. Reset delay for process P2

Let TP2,A,k denote the local time of the Accept output in process P2 at trustworthy BIU k. HP2

denotes the synchronization-reset delay applied by the BIU nodes resetting with respect to the

Accept output in process P2. TP2,H,k denotes the local time at which the next cycle begins for BIU

node k synchronizing with respect to process P2.

TP2,H,k = TP2,A,k + HP2 (C.94)

HP2 is the expected delay from the time when the BIU nodes executing process P2 assert their

Accept outputs until the RMU nodes synchronizing with respect to process P3 reset their local-

time clocks. tP3,H,l|P2,A denotes the earliest real time at which a trustworthy RMU node

synchronizing with respect to process P3 can reset its local-time clock, measured with respect to

the Accept outputs in process P2 at the trustworthy BIUs.

tP3,H,l|P2,A = tP2,A,l + rPP,l + (BP2 + AP3 + HP3)/(1 + ρ0) (C.95)

Let tP3,H,h|P2,A denote the latest real time at which a trustworthy RMU node synchronizing with

respect to process P3 can reset its local-time clock, measured with respect to the Accept outputs

in process P2 at the trustworthy BIUs.

tP3,H,h|P2,A = tP2,A,h + rPP,h + (BP2 + AP3 + HP3)(1 + ρ0) (C.96)

Let hP2,l denote the minimum effective delay from the time a trustworthy BIU node in process P2

asserts its Accept output until a trustworthy RMU node in process P3 resets its local-time clock.

hP2,l = tP3,H,l|P2,A - tP2,A,h

 = rPP,l + (BP2 + AP3 + HP3)/(1 + ρ0) - πP2,A (C.97)

Let hP2,h denote the maximum effective delay from the time a trustworthy BIU node in process P2

asserts its Accept output until a trustworthy RMU node in process P3 resets its local-time clock.

hP2,h = tP3,H,h|P2,A - tP2,A,l

= πP2,A + rPP,h + (BP2 + AP3 + HP3)(1 + ρ0) (C.98)

HP2 is given by:

HP2 = IMP(hP2,l , hP2,h) (C.99)

The real-time error for TP2,H,k is bounded as follows. A trustworthy RMU node in process P3 can

reset its local-time clock no earlier than µP2,H,l nominal ticks from local time TP2,H,k at a BIU node

synchronizing with respect to process P2.

µP2,H,l = (1 + ρ0)HP2 - hP2,l (C.100)

A trustworthy RMU node in process P3 can reset its local-time clock no later than µP2,H,h nominal

ticks from local time TP2,H,k at a BIU node synchronizing with respect to process P2.

134

µP2,H,h = hP2,h - HP2/(1 + ρ0) (C.101)

Note that this analysis also applies to the real-time error for TP2,H,k with respect to the local-time

reset of nodes synchronizing with respect to process P3C.

C.8.8. Relative skew of the local-time reset between processes P2, and P3 or P3C

Let πP2-P3,H denote the bound on the relative skew of the local-time reset between trustworthy

BIU nodes synchronizing with respect to process P2 and trustworthy RMU nodes synchronizing

with respect to process P3.

πP2-P3,H = max(µP2,H,l , µP2,H,h) (C.102)

πP2-P3C,H denotes the bound on the relative skew of the local-time reset between trustworthy BIU

nodes synchronized with respect to process P2 and good recovering RMU nodes synchronized

with respect to process P3C. πP2-P3,H also applies here.

πP2-P3C,H = πP2-P3,H (C.103)

C.8.9. Relative skew of the local-time reset for process P2

The bound on the relative skew of the Accept outputs in process P2 at trustworthy BIUs is

given by πP2,A. πP2,H denotes the bound on the relative skew of the local-time reset for trustworthy

BIU nodes synchronizing with respect to process P2. Then:

πP2,H = πP2,A + [(1 + ρ0) - 1/(1 + ρ0)]HP2

 = 2ePP + [(1 + ρ0) - 1/(1 + ρ0)](AP1 + BP1 + AP2 + HP2) (C.104)

C.8.10. Relative skew of the local-time reset for a set including processes P2 and P3C

Let tP3C,H,l|P2,A denote the earliest real time at which a good recovering RMU node

synchronizing with respect to process P3C can reset its local-time clock, measured with respect to

the Accept outputs in process P2 at trustworthy BIUs.

tP3C,H,l|P2,A = tP2,A,l + rPP,l + (BP2 + AP3 + HP3)/(1 + ρ0) (C.105)

tP3C,H,h|P2,A denotes the latest real time at which a good recovering RMU node synchronizing with

respect to process P3C can reset its local-time clock, measured with respect to the Accept outputs

in process P2 at trustworthy BIUs.

tP3C,H,h|P2,A = tP2,A,h + rPP,h + (1 + ρ0)(BP2 + AP3 + HP3) (C.106)

tP2,H,l denotes the earliest real time at which a trustworthy BIU node synchronizing with respect to

process P2 can reset its local-time clock.

tP2,H,l = tP2,A,l + HP2/(1 + ρ0) (C.107)

135

tP2,H,h denotes the latest real time at which a trustworthy BIU node synchronizing with respect to

process P2 can reset its local-time clock.

tP2,H,h = tP2,A,h + HP2(1 + ρ0) (C.108)

πP2+P3C,H denotes the bound on the relative skew of the local-time reset for a node set including all

the trustworthy or good recovering nodes synchronizing with respect to process P2 or P3C.

πP2+P3C,H = max(| tP3C,H,h|P2,A - tP2,H,l |, | tP2,H,h - tP3C,H,l|P2,A |, πP2,H, πP3C,H) (C.109)

C.8.11. Relative skew of the local-time reset for a set including processes P2 and P3

Let πP2+P3,H denote the bound on the relative skew of the local-time reset for a node set

including all trustworthy BIU nodes synchronizing with respect to process P2 or P3. With respect

to process P2, the Accept outputs in process P3 at the trustworthy RMUs and the Accept outputs

in process P3C at the good recovering RMUs can be asserted during the same real time interval.

In the presence of asymmetric faulty BIU nodes, we know that the time interval of the Accept

outputs in process P3 at the trustworthy RMUs is contained within the time interval of the Accept

outputs in process P3C at the good recovering RMUs. Therefore:

πP2+P3,H ≤ πP2+P3C,H (C.110)

C.8.12. Relative skew of the local-time reset for a set including processes P2 and P4C

Let tP4C,H,l|P2,A denote the earliest real time at which a good recovering BIU node synchronizing

with respect to process P4C can reset its local-time clock, measured with respect to the Accept

outputs in process P2 at the trustworthy BIUs.

tP4C,H,l|P2,A = tP2,A,l + 2rPP,l + (BP2 + AP3 + BP3 + AP4 + HP4)/(1 + ρ0) (C.111)

tP4C,H,h|P2,A denotes the latest real time at which a good recovering BIU node synchronizing with

respect to process P4C can reset its local-time clock, measured with respect to the Accept outputs

in process P2 at the trustworthy BIUs.

tP4C,H,h|P2,A = tP2,A,h + 2rPP,h + (1 + ρ0)(BP2 + AP3 + BP3 + AP4 + HP4) (C.112)

πP2+P4C,H denotes the bound on the relative skew of the local-time reset for a node set including all

BIU nodes synchronizing with respect to process P2 or P4C.

πP2+P4C,H = max(| tP4C,H,h|P2,A - tP2,H,l |, | tP2,H,h - tP4C,H,l|P2,A |, πP2,H, πP4C,H) (C.113)

C.8.13. Relative skew of the local-time reset for a set including processes P2 and P4

Let πP2+P4,H denote the bound on the relative skew of the local-time reset for a node set

including all trustworthy BIU nodes synchronizing with respect to process P2 or P4. With respect

to process P2, the Accept outputs in process P4 at the trustworthy BIUs and the Accept outputs in

process P4C at the good recovering BIUs can be asserted during the same real time interval. In

136

the presence of asymmetric faulty RMU nodes, we know that the time interval of the Accept

outputs in process P4 at the trustworthy BIUs is contained within the time interval of the Accept

outputs in process P4C at the good recovering BIUs. Therefore:

πP2+P4,H ≤ πP2+P4C,H (C.114)

C.8.14. Relative skew of the local-time reset for a set including processes P3 or P3C

Let πP3+P3C,H denote the bound on the relative skew of the local-time reset for a node set

including all trustworthy or good recovering RMU nodes synchronizing with respect to process

P3 or P3C. With respect to process P2, the Accept outputs in process P3 at the trustworthy

RMUs and the Accept outputs in process P3C at the good recovering RMUs can be asserted

during the same real time interval. This interval is determined by the time range during which the

trustworthy BIU nodes executing process P2 send ECHO. In the presence of asymmetric faulty

BIU nodes, the good recovering RMU nodes executing process P3C may not be able to

synchronize any better than the duration of this time range.

 πP3+P3C,H = max(πP3,H, πP3C,H) = πP3C,H (C.115)

C.8.15. Relative skew of the local-time reset for a set including processes P3 and P4C

Let tP4C,H,l|P3,A denote the earliest real time at which a good recovering BIU node synchronizing

with respect to process P4C can reset its local-time clock, measured with respect to the Accept

outputs in process P3 at the trustworthy RMUs.

tP4C,H,l|P3,A = tP3,A,l + rPP,l + (BP3 + AP4 + HP4)/(1 + ρ0) (C.116)

tP4C,H,h|P3,A denotes the latest real time at which a good recovering BIU node synchronizing with

respect to process P4C can reset its local-time clock, measured with respect to the Accept outputs

in process P3 at the trustworthy RMUs.

tP4C,H,h|P3,A = tP3,A,h + rPP,h + (1 + ρ0)(BP3 + AP4 + HP4) (C.117)

tP3,H,l|P3,A denotes the earliest real time at which a trustworthy RMU node synchronizing with

respect to process P3 can reset its local-time clock, measured with respect to the Accept outputs

in process P3 at the trustworthy RMUs.

tP3,H,l|P3,A = tP3,A,l + HP3/(1 + ρ0) (C.118)

tP3,H,h|P3,A denotes the latest real time at which a trustworthy RMU node synchronizing with

respect to process P3 can reset its local-time clock, measured with respect to the Accept outputs

in process P3 at the trustworthy RMUs.

tP3,H,h|P3,A = tP3,A,h + HP3(1 + ρ0) (C.119)

πP3+P4C,H denotes the bound on the relative skew of the local-time reset for a node set including all

trustworthy or good recovering nodes synchronizing with respect to process P3 or P4C.

137

πP3+P4C,H = max(| tP4C,H,h|P3,A - tP3,H,l|P3,A |, | tP3,H,h|P3,A - tP4C,H,l|P3,A |, πP3,H, πP4C,H) (C.120)

C.8.16. Relative skew of the local-time reset for a set including processes P3 and P4

Let πP3+P4,H denote the bound on the relative skew of the local-time reset for a node set

including all BIU nodes synchronizing with respect to process P3 or P4. With respect to process

P3, the Accept outputs in process P4 at the trustworthy BIUs and the Accept outputs in process

P4C at the good recovering BIUs can be asserted during the same real time interval. In the

presence of asymmetric faulty RMU nodes, we know that the time interval of the Accept outputs

in process P4 at the trustworthy BIU nodes is contained within the time interval of the Accept

outputs in process P4C at the good recovering BIU nodes. Therefore:

πP3+P4,H ≤ πP3+P4C,H (C.121)

C.8.17. Relative skew of the local-time reset for a set including processes P3C and P4C

Let tP3C,H,l|P2,A denote the earliest real time at which a good recovering RMU node

synchronizing with respect to process P3C can reset its local-time clock, measured with respect to

the Accept outputs in process P2 at the trustworthy BIUs.

tP3C,H,l|P2,A = tP2,A,l + rPP,l + (BP2 + AP3 + HP3)/(1 + ρ0) (C.122)

tP3C,H,h|P2,A denotes the latest real time at which a good recovering RMU node synchronizing with

respect to process P3C resets its local-time clock, measured with respect to the Accept outputs in

process P2.

tP3C,H,h|P2,A = tP2,A,h + rPP,h + (1 + ρ0)(BP2 + AP3 + HP3) (C.123)

tP4C,H,l|P2,A denotes the earliest real time at which a good BIU node synchronizing with respect to

process P4C can reset its local-time clock, measured with respect to the Accept outputs in process

P2 at the trustworthy BIUs.

tP4C,H,l|P2,A = tP2,A,l + 2rPP,l + (BP2 + AP3 + BP3 + AP4 + HP4)/(1 + ρ0) (C.124)

tP4C,H,h|P2,A denotes the latest real time at which a good recovering BIU node synchronizing with

respect to process P4C can reset its local-time clock, measured with respect to the Accept outputs

in process P2 at the trustworthy BIUs.

tP4C,H,h|P2,A = tP2,A,h + 2rPP,h + (1 + ρ0)(BP2 + AP3 + BP3 + AP4 + HP4) (C.125)

πP3C+P4C,H denotes the bound on the relative skew of the local-time reset for a node set including

all good recovering nodes synchronizing with respect to process P3C or P4C.

πP3C+P4C,H = max(| tP4C,H,h|P2,A - tP3C,H,l|P2,A |, | tP3C,H,h|P2,A - tP4C,H,l|P2,A |, πP3C,H, πP4C,H) (C.126)

138

C.8.18. Relative skew of the local-time reset for a set including processes P4 and P4C

Let πP4+P4C,H denote the bound on the relative skew of the local-time reset for a node set

including all trustworthy or good recovering BIUs synchronizing with respect to process P4 or

P4C. With respect to process P3, the Accept outputs in process P4 at the trustworthy BIUs and

the Accept outputs in process P4C at the good recovering BIUs can be asserted during the same

real time interval. This time range is determined by the time range during which the trustworthy

RMU nodes executing process P3 send their ECHO messages. In the presence of asymmetric

faulty RMU nodes, the good recovering BIUs executing process P4C may not able to synchronize

any better than the duration of this time range.

 πP4+P4C,H = max(πP4,H , πP4C,H) = πP4C,H (C.127)

C.8.19. Relative skew of the local-time reset for a set including all the synchronizing nodes

Let πALL,H denote the upper bound on the relative skew of the local-time reset for all the

trustworthy or good recovering nodes executing the synchronization protocol. The following

relations allow us to reduce the number of relative skews that must be considered:

πP2+P3C,H ≥ πP2,H and πP2+P3C,H ≥ πP3C,H (C.128)

πP2+P3C,H ≥ πP2+P3,H (C.129)

πP2+P4C,H ≥ πP2,H and πP2+P4C,H ≥ πP4C,H (C.130)

πP2+P4C,H ≥ πP2+P4,H (C.131)

πP3+P4C,H ≥ πP3,H and πP3+P4C,H ≥ πP4C,H (C.132)

πP3+P4C,H ≥ πP3+P4,H (C.133)

πP3C+P4C,H ≥ πP3C,H and πP3C+P4C,H ≥ πP4C,H (C.134)

So:

πALL,H = max(πP2+P3C,H, πP2+P4C,H, πP3+P4C,H, πP3C+P4C,H) (C.135)

C.9. Relative local-time skews for source-receiver pairs

C.9.1. Duration of the synchronization protocol execution

From global perspective, the execution of the synchronization protocol ends when all the

trustworthy and good recovering nodes have reset their local-time clocks. tsync,l and tsync,h denote

the earliest and latest times, respectively, at which a trustworthy BIU node begins to execute the

synchronization protocol. πP0 denotes the bound on the relative local-time skew for the

trustworthy BIU nodes executing process P0.

139

πP0 = tsync,h - tsync,l (C.136)

tsync,P2,H,l and tsync,P2,H,h denote the earliest and latest times, respectively, at which a trustworthy

BIU node synchronizing with respect to process P2 can reset its local-time clock.

tsync,P2,H,l = tsync,l + 2rPP,l + (BP0 + AP1 + BP1 + AP2 + HP2)/(1 + ρ0) (C.137)

tsync,P2,H,h = tsync,h + 2rPP,h + (1 + ρ0)(BP0 + AP1 + BP1 + AP2 + HP2) (C.138)

tsync,P3,H,l and tsync,P3,H,h denote the earliest and latest times, respectively, at which a trustworthy

RMU node synchronizing with respect to process P3 can reset its local-time clock.

tsync,P3,H,l = tsync,l + 3rPP,l + (BP0 + AP1 + BP1 + AP2 + BP2 + AP3 + HP3)/(1 + ρ0) (C.139)

tsync,P3,H,h = tsync,h + 3rPP,h + (1 + ρ0)(BP0 + AP1 + BP1 + AP2 + BP2 + AP3 + HP3) (C.140)

tsync,P4,H,l and tsync,P4,H,h denote the earliest and latest times, respectively, at which a trustworthy

BIU node synchronizing with respect to process P4 can reset its local-time clock.

tsync,P4,H,l = tsync,l + 4rPP,l

+ (BP0 + AP1 + BP1 + AP2 + BP2 + AP3 + BP3 + AP4 + HP4)/(1 + ρ0) (C.141)

tsync,P4,H,h = tsync,h + 4rPP,h

+ (1 + ρ0)(BP0 + AP1 + BP1 + AP2 + BP2 + AP3 + BP3 + AP4 + HP4) (C.142)

tsync,P3C,H,l and tsync,P3C,H,h denote the earliest and latest times, respectively, at which a good

recovering RMU node synchronizing with respect to process P3C can reset its local-time clock.

tsync,P3C,H,l = tsync,P3,H,l (C.143)

tsync,P3C,H,h = tsync,P3,H,h (C.144)

tsync,P4C,H,l and tsync,P4C,H,h denote the earliest and latest times, respectively, at which a good

recovering BIU node synchronizing with respect to process P4C can reset its local-time clock.

tsync,P4C,H,l = tsync,P4,H,l (C.145)

tsync,P4C,H,h = tsync,P4,H,h (C.146)

πALL denotes the bound on the relative local-time skew for all the nodes participating in the

execution of the synchronization protocol. The calculation of πALL does not include the nodes

executing the synchronization-capture processes. δsync|min and δsync|max denote lower and upper

bounds, respectively, on the real-time duration of the execution of the synchronization protocol

for the trustworthy nodes. δsync|min is measured from the latest time at which a trustworthy node

begins to execute the protocol to the earliest time at which a trustworthy node resets its local-time

clock. We choose the following value for δsync|min:

140

δsync|min = -(πALL - πP0) + min[(tsync,P2,H,l - tsync,h), (tsync,P3,H,l - tsync,h), (tsync,P4,H,l - tsync,h)] (C.147)

δsync|max is measured from the earliest time at which a trustworthy node begins to execute the

protocol to the latest time at which a trustworthy node resets its local-time clock. We choose the

following value for δsync|max:

δsync|max = (πALL - πP0) + max[(tsync,P2,H,h - tsync,l), (tsync,P3,H,h - tsync,l), (tsync,P4,H,h - tsync,l)] (C.148)

We define the following variables in order to simplify these expressions for δsync|min and δsync|max.

∆sync,P2,H,l = 2rPP,l + (BP0 + AP1 + BP1 + AP2 +HP2)/(1 + ρ0) (C.149)

∆sync,P3,H,l = 3rPP,l + (BP0 + AP1 + BP1 + AP2 + BP2 + AP3 +HP3)/(1 + ρ0) (C.150)

∆sync,P4,H,l = 4rPP,l + (BP0 + AP1 + BP1 + AP2 + BP2 + AP3 + BP3 + AP4 +HP4)/(1 + ρ0) (C.151)

∆sync,P2,H,h = 2rPP,h + (1 + ρ0)(BP0 + AP1 + BP1 + AP2 +HP2) (C.152)

∆sync,P3,H,h = 3rPP,h + (1 + ρ0)(BP0 + AP1 + BP1 + AP2 + BP2 + AP3 +HP3) (C.153)

∆sync,P4,H,h = 4rPP,h + (1 + ρ0)(BP0 + AP1 + BP1 + AP2 + BP2 + AP3 + BP3 + AP4 +HP4) (C.154)

Then:

δsync|min = -πALL + min(∆sync,P2,H,l , ∆sync,P3,H,l , ∆sync,P4,H,l) (C.155)

δsync|max = πALL + max(∆sync,P2,H,h , ∆sync,P3,H,h , ∆sync,P4,H,h) (C.156)

C.9.2. Bounds on the resynchronization period

Let δSP|min and δSP|max denote the values of δsync|min and δsync|max, respectively, for the

Synchronization Preservation protocol. TSP denotes the scheduled local time to begin the

execution of the Synchronization Preservation protocol. pmin denotes a lower bound on the real-

time duration of a synchronization cycle. pmin is measured from the time of the synchronization

reset in one cycle to the time of the synchronization reset in the next.

pmin = TSP/(1 + ρ0) + δSP|min (C.157)

pmax denotes an upper bound for the real-time duration of a synchronization cycle. pmax is

measured from the time of the synchronization reset in one cycle to the time of the

synchronization reset in the next.

pmax = (1 + ρ0)TSP + δSP|max (C.158)

P denotes the nominal resynchronization period for the analysis of relative skews. P is measured

in units of local-clock ticks. We want a count of P local-clock ticks to be larger than the

141

maximum duration of a synchronization cycle measured in nominal ticks. This constraint is

captured by the following expression:

P/(1 + ρ0) ≥ pmax (C.159)

So:

P ≥ (1 + ρ0)pmax (C.160)

We choose P to be the smallest integer that satisfies the previous inequality.

P = �(1 + ρ0)pmax� (C.161)

C.9.3. Relative skew between P2-synchronized BIUs and P3- or P3C-synchronized RMUs

Let πP2-P3 denote the bound on the relative local-time skew during the synchronization cycle

for trustworthy BIU nodes synchronized with respect to process P2 and trustworthy RMU nodes

synchronized with respect to process P3.

πP2-P3 = πP2-P3,H + [(1 + ρ0) - 1/(1 + ρ0)]P (C.162)

πP2-P3C denotes the bound on the relative local-time skew during the synchronization cycle for

trustworthy BIU nodes synchronized with respect to process P2 and good recovering RMU nodes

synchronized with respect to process P3C. πP2-P3 also applies here.

πP2-P3C = πP2-P3 (C.163)

C.9.4. Relative skew between P3-synchronized RMUs and P4- or P4C-synchronized BIUs

Let πP3-P4 denote the bound on the relative local-time skew during the synchronization cycle

for trustworthy RMU nodes synchronized with respect to process P3 and trustworthy BIU nodes

synchronized with respect to process P4. Then:

πP3-P4 = πP3-P4,H + [(1 + ρ0) - 1/(1 + ρ0)]P (C.164)

πP3-P4C denotes the bound on the relative local-time skew during the synchronization cycle for

trustworthy RMU nodes synchronized with respect to process P3 and good recovering BIU nodes

synchronized with respect to process P4C. πP3-P4 also applies here.

πP3-P4C = πP3-P4 (C.165)

C.9.5. Bound on the relative local-time skew for all the nodes executing the

synchronization protocol

πSP,ALL denotes the value of πALL for Synchronization Preservation.

πSP,ALL = πALL,H + [(1 + ρ0) - 1/(1 + ρ0)]P (C.166)

142

C.9.6. Generic relative local-time skew between sources and receivers for synchronous

communication

For synchronized operations, we would like to use a single value of the relative local-time

skew between sources and receivers for all point-to-point communication. πPP,SR denotes the

common bound on the relative local-time skew between sources and receivers for synchronized

communication. From the preceding analysis, there are only two particular source-receiver cases

that need to be considered to determine a common skew bound: the skew between P2-

synchronized nodes and P3-synchronized nodes (i.e., πP2-P3), and the skew between P3-

synchronized nodes and P4-synchronized nodes (i.e., πP3-P4). We choose πPP,SR to be the largest of

the two.

πPP,SR = max(πP2-P3, πP3-P4) (C.167)

C.10. Specifying the Computation Process and Send Process delays

A goal of this ROBUS version is to achieve nearly the same tightness for the relative local-

time skew when executing the Synchronization Preservation, Initial Synchronization, and

Synchronization Capture protocols.

The Synchronization Preservation and Initial Synchronization protocols can be decomposed

into two major phases: agreement generation and agreement propagation. The agreement

generation phase includes the first two stages of the protocol from the Send Process in P0 to the

Computation Process in P2. In this phase, the relative skew goes from a bounded initial value

denoted by πP0 to a relative skew of the Accept outputs denoted by πP2,A, which is independent of

πP0 but dependent on the process delays. The agreement propagation phase includes the last two

stages of the protocol from the Send Process in P2 to the Computation Process in P4, including

the Computation Processes in P3C and P4C for the Synchronization Capture protocol. The

synchronization-reset delays are applied with respect to the Accept outputs in processes P2, P3,

P3C, P4, and P4C. The process delays for this second phase of the protocol are important

determinants of the final relative local-time skew.

The approach taken to determine the process delays for the synchronization protocols in this

version of the ROBUS is as follows. Since we expect the value of πP0 to be different for the

Synchronization Preservation and the Initial Synchronization protocols, we specify the Send

Process delay for process P0 (i.e., BP0) independently for each protocol according to the particular

timing requirements of the protocol. To ensure that all the versions of the protocol achieve

approximately the same relative skew, we compute one set of Computation Process and Send

Process delays for the synchronization processes from P1 on. These delays must be used by all

the synchronization protocols.

An additional consideration is the constraint on the minimum data-introduction interval (DII)

for the send port of the Communication Module, ΛComm. This constraint applies to the BIUs and

the RMUs, and is satisfied by adding functional requirements to the Send Processes at the BIUs

and the RMUs. The details are described next.

143

C.10.1. Computation Process delays

The Computation Process delay is decomposed into two parts: the reception delay in the

Receive Process and the computation delay in the Accept Process. For the case of the

Synchronization Preservation protocol, the reception delay is the delay allocated to ensure that all

valid messages are received before the computation begins. This delay is similar to the

deskewing window applied for the synchronous point-to-point communication as discussed in

Appendix B. A fundamental difference between the reception delay for the synchronization

protocols and the deskewing window for the synchronous protocols is that in the synchronization

protocols the relative time spacing between received messages is preserved when forwarding the

messages to the computation, while in the synchronous protocols the messages are accumulated

and forwarded at the same time.

To specify the reception delay, we consider the timing of reception in the Synchronization

Preservation protocol. The timing of reception in the Initial Synchronization protocol is not

considered because in that protocol the uncertainty in the time of reception can be extremely

large, especially for processes P1 and P2, which would result in very large delays for the

protocol. Having a quick execution is very important for the Synchronization Preservation

protocol since the duration of the protocol determines how much time is available to execute the

synchronous protocols for a given resynchronization period.

Let AIS,P1, AIS,P2, AIS,P3, and AIS,P4 denote the Computation Process delays for processes P1, P2,

P3, and P4 of the Initial Synchronization protocol, respectively. ASP,P1, ASP,P2, ASP,P3, and ASP,P4

denote the Computation Process delays for processes P1, P2, P3, and P4 of the Synchronization

Preservation protocol, respectively. ASC,P3C and ASC,P4C denote the Computation Process delays

for processes P3C and P4C of the Synchronization Capture protocol, respectively. All the

synchronization protocols have the same Computation Process delays.

AP1 = AIS,P1 = ASP,P1 (C.168)

AP2 = AIS,P2 = ASP,P2 (C.169)

AP3 = AIS,P3 = ASP,P3 = ASP,P3C (C.170)

AP4 = AIS,P4 = ASP,P4 = ASP,P4C (C.171)

For process P1 of the Synchronization Preservation protocol, the expected time range of reception

is as follows (This interval includes all the clock edges at which valid messages can arrive.):

[TSP,P1,RCV,E - ∆PP,RCV|abs-max, TSP,P1,RCV,E + ∆PP,RCV|abs-max] (C.172)

WSP,P1 denotes the reception delay applied in process P1. For the Synchronization Preservation

protocol, this delay must be large enough to ensure that the Accept Process receives the messages

after the clock edges during which valid messages are expected to arrive.

WSP,P1 = 2∆PP,RCV|abs-max + 1 (C.173)

WSP,P2, WSP,P3, and WSP,P4 are similarly defined. Let ∆SP,P2,RCV|max, ∆SP,P3,RCV|max, and ∆SP,P4,RCV|max

denote the maximum valid local time error for the time of reception of synchronization messages

144

in processes P2, P3, and P4 of the Synchronization Preservation protocol. These variables

correspond to ∆P2,RCV|max, ∆P3,RCV|max, and ∆P4,RCV|max evaluated for the case of the Synchronization

Preservation protocol. Then:

WSP,P2 = 2∆SP,P2,RCV|max + 1 (C.174)

WSP,P3 = 2∆SP,P3,RCV|max + 1 (C.175)

WSP,P4 = 2∆SP,P4,RCV|max + 1 (C.176)

Notice that for process P1 the expected time of reception is exactly ∆SP,P1,RCV|max ticks from the

left edge of the reception interval in that process. Similar observations apply to processes P2

through P4. The computation delay is measured from the time the message to be selected is

presented to the Accept Process until the Accept output is asserted. CSP,P1, CSP,P2, CSP,P3, and

CSP,P4 denote the Accept Process delays for processes P1, P2, P3, and P4, respectively, of the

Synchronization Preservation protocol. These delays also apply to the Initial Synchronization

and Synchronization Capture protocols. Then:

AP1 = WSP,P1 + CSP,P1 (C.177)

AP2 = WSP,P2 + CSP,P2 (C.178)

AP3 = WSP,P3 + CSP,P3 (C.179)

AP4 = WSP,P4 + CSP,P4 (C.180)

C.10.2. Send Process delays

The Send Process delays must be set to ensure proper inter-process communication. The Send

Process delay for process P0 does not need to be the same for Initial Synchronization and

Synchronization Preservation. The specification of that value for each protocol is presented

below. For all the other Send Processes, we specify the delays based on two factors. First, we

would like to specify the process delays based on the execution of the Synchronization

Preservation protocol. The timing of execution of the Initial Synchronization protocol is not

preferred because in that protocol the uncertainty in the time of reception can be extremely large,

which would result in extremely large process delays for the protocol. The second factor when

specifying the Send Process delays is the need to satisfy the minimum data-introduction-interval

constraint for the send port of the Communication Module, ΛComm, which must be satisfied at the

BIUs and the RMUs.

For the execution of the Synchronization Preservation protocol, the main concern in

specifying the Send Process delays is ensuring proper coordination between the send and receive

operations. In particular, the specification of the send delay must take into consideration the

expected reception delay, the minimum delays in opening the input windows, and the size of the

input windows. This is not a consideration in the Initial Synchronization protocol since in that

case all the Computation Processes are enabled at the beginning of the execution of the protocol.

For the Synchronization Preservation protocol, we must ensure that the time separation

145

between the sending of INIT and ECHO messages satisfies the ΛComm constraint. The preferred

method to satisfy this constraint in the Synchronization Preservation protocol is to increase the

Send Process delays for the INIT messages in processes P0 and P1 and/or the ECHO messages in

processes P2 and P3 until sufficient separation between them is ensured.

For the Initial Synchronization protocol, the problem is more complicated. Because the initial

relative local-time skew can be much larger than the Computation Process and Send Process

delays, there is no way to meet the ΛComm constraint by simply changing the process delays while

still achieving the other design goals. The preferred solution for this case is to add functionality

to the Send Processes at the BIUs and the RMUs to force a minimum separation between INIT

and ECHO messages. However, the buffering of synchronization messages for a bounded but

unspecified amount of time at a Send Process is an undesired solution because it would result in

an increase in the bound on the relative local-time skew achieved by the protocol. Instead, the

solution is based on the observation that for the Initial Synchronization protocol, once the

Computation Process of a node has performed the computation that triggers the sending of an

ECHO message (i.e., Accept(INIT) in process P2 at the BIUs, and Accept(ECHO) in process P3

at the RMUs), there is no need for the node to send an INIT message. To understand this, notice

that the synchronization protocol achieves synchronization in process P2, and this is then

propagated to processes P3 and P4 using ECHO messages. For the Initial Synchronization

protocol, RMUs and BIUs reset their local times with respect to the Accept(ECHO) outputs in

processes P3 and P4, respectively. Therefore, the fact that an ECHO message is going to be sent

means that whatever critical timing information was going to be provided by processes P0 and

P1, it has already been received. Therefore, the INIT messages are redundant from that point on.

So, for Initial Synchronization, to meet the minimum data-introduction-interval constraint, the

Send Process must have the following features:

• The sending of an INIT message must be blocked if the message has not been sent by the

time the Accept output that triggers the sending of an ECHO message is asserted.

• The send delay for ECHO messages must be larger than or equal to ΛComm - 1.

The first functional requirement removes redundant INIT messages. The second requirement

ensures that, if an INIT message is sent at or before the tick at which the Accept output that

triggers the sending of an ECHO message is asserted, then the ECHO message will be sent at

least ΛComm ticks after the INIT message.

Let BIS,P0, BIS,P1, BIS,P2, and BIS,P3 denote the Send Process delays for processes P0, P1, P2, and

P3 of the Initial Synchronization protocol, respectively. BSP,P0, BSP,P1, BSP,P2, and BSP,P3 denote the

Computation Process delay for processes P0, P1, P2, and P3 of the Synchronization Preservation

protocol, respectively. For processes P1, P2, and P3:

BP1 = BIS,P1 = BSP,P1 (C.181)

BP2 = BIS,P2 = BSP,P2 (C.182)

BP3 = BIS,P3 = BSP,P3 (C.183)

BIS,P0 and BSP,P0 are specified separately for Initial Synchronization and Synchronization

Preservation.

146

C.10.2.1. Send delay for process P0

C.10.2.1.1. Synchronization Preservation

The Synchronization Preservation protocol is a time-triggered, event-driven protocol. The

communication between processes P0 and P1 follows a time-triggered pattern similar to the

point-to-point communication of the synchronous protocols. After that operation, the rest of the

Synchronization Preservation protocol proceeds driven by communication and processing events.

TSP denotes the local-time trigger for the execution of the Synchronization Preservation protocol.

BSP,P0 denotes the send delay for process P0 of the Synchronization Preservation protocol.

BSP,P0|min denotes the minimum send delay for process P0. BSP,P0|min is assumed to be the time

needed to prepare the message for transmission. BSP,P0 - BSP,P0|min is additional delay added to

align the send and receive operations. ∆SP,P1,RCVWND denotes the delay from the communication

reference time to the opening of the receive window in process P1. ∆SP,P1,RCVWND|min is the

minimum value of ∆SP,P1,RCVWND. RPP denotes the expected point-to-point reception delay. WSP,P1

is the size of the reception window. WSP,P1,pre is the pre-expectation window (i.e., the size of the

section of the reception window before the expected time of reception). Considering the analysis

in Appendix B, WSP,P1,pre corresponds to WDeskew,pre. So:

WSP,P1,pre = ∆PP,RCV|abs-max. (C.184)

TSP,P0,SND denotes the send time for process P0. TSP,P0,SND corresponds to TP0 in the general

analysis of the clock synchronization protocols. TSP,P1,RCV,E denotes the expected time of

reception for process P1. TSP,P0-P1,REF denotes the reference time for the transmission between P0

and P1.

TSP,P0-P1,REF = TSP (C.185)

Two cases must be considered.

Case 1: BSP,P0|min + RPP ≥ ∆SP,P1,RCVWND|min + WSP,P1,pre

For this case:

BSP,P0 = BSP,P0|min (C.186)

∆SP,P1,RCVWND = BSP,P0|min + RPP - WSP,P1,pre (C.187)

So:

TSP,P0,SND = TSP,P0-P1,REF + BSP,P0 = TSP + BSP,P0|min (C.188)

And:

TSP,P1,RCV,E = TSP,P0,SND + RPP = TSP + BSP,P0|min + RPP (C.189)

147

Case 2: BSP,P0|min + RPP < ∆SP,P1,RCVWND|min + WSP,P1,pre

For this case:

BSP,P0 = ∆SP,P1,RCVWND|min + WSP,P1,pre - RPP (C.190)

∆SP,P1,RCVWND = ∆SP,P1,RCVWND|min (C.191)

So:

TSP,P0,SND = TSP,P0-P1,REF + BSP,P0 = TSP + ∆SP,P1,RCVWND|min + WSP,P1,pre - RPP (C.192)

And:

TSP,P1,RCV,E = TSP,P0,SND + RPP = TSP + ∆SP,P1,RCVWND|min + WSP,P1,pre (C.193)

C.10.2.1.2. Initial Synchronization

Let πIS denote the bound on the relative local-time skew considering BIUs and RMUs during

the execution of the Initial Synchronization protocol, measured in nominal clock ticks. TIS

denotes the local time triggering the execution of the Initial Synchronization protocol. The

timing of the first-stage communication can be analyzed similarly to the point-to-point

communication for synchronous protocols.

TIS,P0-P1,REF denotes the reference time for the communication between processes P0 and P1.

TIS,P0,SND denotes the local time at which process P0 sends the message. TIS,P0,SND corresponds to

TP0 in the general analysis of the clock synchronization protocols. TIS,P1,RCV,E denotes the

expected time of reception in process P1. BIS,P0 denotes the Send Process delay for process P0.

BIS,P0|min denotes the minimum send delay for process P0. ∆IS,P1,RCVWND denotes the delay from the

communication reference time to the opening of the receive window in process P1. WIS,P1

denotes the size of the reception window in process P1. WIS,P1,pre denotes the pre-expectation

window in process P1 (i.e., the size of the section of the reception window before the expected

time of reception). We use TIS as the reference time for the communication between processes P0

and P1.

TIS,P0-P1,REF = TIS (C.194)

We use the analysis for point-to-point communication in Appendix B to determine WIS,P1,pre. To

determine WIS,P1, we need the maximum error in the expected time of reception for the Initial

Synchronization protocol messages, ∆IS,PP,RCV|abs-max.

∆IS,PP,RCV|abs-max = �(1 + ρ0)(πIS + max(µPP,l , µPP,h))� (C.195)

µPP,l and µPP,h are given in the Appendix B. So, for the reception window:

WIS,P1 = 2∆IS,PP,RCV|abs-max + 1 (C.196)

WIS,P1,pre = ∆IS,PP,RCV|abs-max (C.197)

148

BIS,P0|min is assumed to be the time needed to prepare the message for transmission.

We expect the upper bound on the relative local-time skew during the execution of the first

stage of the Initial Synchronization protocol to be much larger than any minimum timing

constraints associated with the process of communication. Based on this, we assume that the

following condition holds for the communication between processes P0 and P1.

BIS,P0|min + RPP < ∆IS,P1,RCVWND|min + WIS,P1,pre (C.198)

For this case:

BIS,P0 = ∆IS,P1,RCVWND|min + WIS,P1,pre - RPP (C.199)

∆IS,P1,RCVWND = ∆IS,P1,RCVWND|min (C.200)

So:

TIS,P0,SND = TIS,P0-P1,REF + BIS,P0 = TIS + ∆IS,P1,RCVWND|min + WIS,P1,pre - RPP (C.201)

And:

TIS,P1,RCV,E = TIS,P0,SND + RPP = TIS + ∆IS,P1,RCVWND|min + WIS,P1,pre (C.202)

C.10.2.2. Send delay for process P1

BP1 is specified based on timing considerations for Synchronization Preservation. BP1|min is

determined by the implementation. Process P1 sends INIT to process P2. However, the reference

event used to coordinate the communication between processes P1 and P2 is the trigger time for

the transmission of the message in process P0. Let TSP,P0-P2,REF denote this reference.

TSP,P0-P2,REF = TSP + BSP,P0 (C.203)

RSP,P0-P2 denotes the expected reception delay for process P2 of the Synchronization Preservation

protocol. RSP,P0-P2 is measured from the send time in process P0 to the expected time of reception

in process P2. ∆SP,P2,RCVWND denotes the delay from the reference time to the opening of the input

window in process P2. ∆SP,P2,RCVWND|min denotes the minimum value, which is determined by the

implementation. For proper communication, the following relation must be satisfied:

RSP,P0-P2 = ∆SP,P2,RCVWND + ∆SP,P2,RCV|max (C.204)

Here, both RSP,P0-P2 and ∆SP,P2,RCV|max are functions of BP1, and ∆SP,P2,RCVWND can be made larger

than ∆SP,P2,RCVWND|min. Solving this equation for BP1 is not trivial. However, note that RSP,P0-P2

varies one-to-one with respect to BP1, while ∆SP,P2,RCV|max changes by approximately 2ρ0BP1 for

each unit step in BP1. This observation allows us to use the following algorithm to determine BP1.

The notation RSP,P0-P2(BP1) and ∆SP,P2,RCV|max(BP1) highlights the dependence of RSP,P0-P2 and

∆SP,P2,RCV|max on BP1.

1. BP1 = BP1|min

2. while [RSP,P0-P2(BP1) < ∆SP,P2,RCV|max(BP1) + ∆SP,P2,RCVWND|min]

149

3. {BP1 = BP1 + 1}

4. Results:

5. BP1

6. RSP,P0-P2 = RSP,P0-P2(BP1)

7. ∆SP,P2,RCV|max = ∆SP,P2,RCV|max(BP1)

8. ∆SP,P2,RCVWND = RSP,P0-P2 - ∆SP,P2,RCV|max

C.10.2.3. Send delay for process P2

BP2 is specified based on timing considerations for Synchronization Preservation and the

minimum data-introduction-interval constraint of the Communication Module. BP2|min is

determined by the implementation. TSP,P1-P3,REF denotes the reference time for the communication

message propagation from P1 to P3. The event used to coordinate this communication is the time

of the Accept output in process P1, denoted by TSP,P1,A for the Synchronization Preservation

protocol.

TSP,P1-P3,REF = TSP,P1,A (C.205)

RSP,P1-P3 denotes the expected reception delay for process P3 of the Synchronization Preservation

protocol. RSP,P1-P3 is measured from the time of Accept output in process P1 to the expected time

of reception in process P3. ∆SP,P3,RCVWND denotes the delay from the reference time to the opening

of the input window in process P3. ∆SP,P3,RCVWND|min denotes the minimum value, which is

determined by the implementation. For proper communication, the following relation must be

satisfied:

RSP,P1-P3 = ∆SP,P3,RCVWND + ∆SP,P3,RCV|max (C.206)

As for the case of BP1, solving this equation for BP2 is non-trivial. Therefore, we use here the

same algorithm used to solve for BP1. An additional constraint is that BP2 must be larger than or

equal to ΛComm - 1.

1. BP2 = BP2|min

2. if (BP2 < ΛComm - 1), then BP2 = ΛComm - 1.

2. while [RSP,P1-P3(BP2) < ∆SP,P3,RCV|max(BP2) + ∆SP,P3,RCVWND|min]

3. {BP2 = BP2 + 1}

4. Results:

5. BP2

6. RSP,P1-P3 = RSP,P1-P3(BP2)

7. ∆SP,P3,RCV|max = ∆SP,P3,RCV|max(BP2)

8. ∆SP,P3,RCVWND = RSP,P1-P3 - ∆SP,P3,RCV|max

C.10.2.4. Send delay for process P3

BP3 is specified based on timing considerations for Synchronization Preservation and the

minimum data-introduction-interval constraint of the Communication Module. BP3|min is

determined by the implementation. TSP,P2-P4,REF denotes the reference time for the communication

150

message propagation from P2 to P4. The event used to coordinate this communication is the time

of the Accept output in process P1, denoted by TSP,P2,A for the Synchronization Preservation

protocol.

TSP,P2-P4,REF = TSP,P2,A (C.207)

RSP,P2-P4 denotes the expected reception delay for process P4 of the Synchronization Preservation

protocol. RSP,P2-P4 is measured from the time of Accept in process P2 to the expected time of

reception in process P4. Let ∆SP,P4,RCVWND denote the delay from the reference time to the opening

of the input window in process P4. ∆SP,P4,RCVWND|min denotes the minimum value, which is

determined by the implementation. For proper communication, the following relation must be

satisfied:

RSP,P2-P4 = ∆SP,P4,RCVWND + ∆SP,P4,RCV|max (C.208)

As for the case of BP2, solving this equation for BP3 is non-trivial. Therefore, we use here the

same algorithm used to solve for BP2. An additional constraint is that BP3 must be larger than or

equal to ΛComm - 1.

1. BP3 = BP3|min

2. if (BP3 < ΛComm - 1), then BP3 = ΛComm - 1.

2. while [RSP,P2-P4(BP3) < ∆SP,P4,RCV|max(BP3) + ∆SP,P4,RCVWND|min]

3. {BP3 = BP3 + 1}

4. Results:

5. BP3

6. RSP,P2-P4 = RSP,P2-P4(BP3)

7. ∆SP,P4,RCV|max = ∆SP,P4,RCV|max(BP3)

8. ∆SP,P4,RCVWND = RSP,P2-P4 - ∆SP,P4,RCV|max

C.11. Miscellaneous considerations

C.11.1. Frame Synchronization

The Frame Synchronization protocol is presented in Section 7 of this document. The protocol

is executed by recovering nodes in the Synchronization Acquisition mode. The end of the Frame

Synchronization protocol triggers the execution of the P3C or P4C synchronization-capture

processes. An assumption for the protocol is the existence of a single valid clique in Preservation

mode. The protocol monitors the ECHO messages from the trusted nodes identified during Local

Diagnosis Acquisition. Achieving frame synchronization is equivalent to finding the time gap

between consecutive executions of the Synchronization Preservation protocol. The Frame

Synchronization protocol consists of searching for a time interval during which the clique is not

sending ECHO messages. Finding such interval indicates that the clique is in between

computations of clock adjustments, and thus it is an appropriate time to start the execution of the

Synchronization Capture protocol. The Frame Synchronization protocol can achieve

synchronization even if, for the node executing the protocol, it is not true that a majority of the

151

eligible sources of the opposite kind is trustworthy. The time interval measured by the gap timer,

called the frame synchronization gap, corresponds to the maximum observed relative skew

between received ECHO messages from trustworthy nodes. The analysis presented here applies

to BIUs and RMUs.

Let ∆FS,GAP denote the duration of the frame synchronization gap, measured in local clock

ticks. ∆FS,GAP|RMU and ∆FS,GAP|BIU correspond to ∆FS,GAP for RMUs and BIUs, respectively.

∆FS,GAP|RMU = ΠSP,P3C,RCV (C.209)

∆FS,GAP|BIU = ΠSP,P4C,RCV (C.210)

We choose ∆FS,GAP|max to be the largest value of ∆FS,GAP.

∆FS,GAP|max ≥ max(ΠSP,P3C,RCV , ΠSP,P4C,RCV) (C.211)

We are interested in the worst-case duration of the Frame Synchronization protocol. ∆FS

denotes the actual duration of the execution of the Frame Synchronization protocol measured in

local clock ticks. To determine the maximum duration of the Frame Synchronization protocol,

we need to consider the possible patterns of interruption of the interval timer.

N denotes the total number of BIU nodes, and M denotes the total number of RMUs nodes.

Let ω denote the number of eligible sources of the opposite kind.

ω|max = max(N, M) (C.212)

∆FS denotes the actual duration of the execution of the Frame Synchronization protocol,

measured in local-clock ticks. An assumption for the Frame Synchronization protocol is that,

during its execution, it will encounter at most one execution of the Synchronization Preservation

protocol. Therefore, a source is allowed to interrupt the interval timer at most once during the

execution of the protocol. In the worst-case, interruptions from eligible sources can consume up

to ω|max*∆FS,GAP|max local ticks in failed attempts to find a quiet frame synchronization gap (i.e., an

interval with no gap timer interruptions). Adding an additional ∆FS,GAP for the last interval, for

which interruptions would not be allowed, then:

∆FS|max = (ω|max + 1)*∆FS,GAP|max (C.213)

δFS denotes the worst-case duration of the Frame Synchronization protocol measured in nominal

clock ticks.

δFS|max = (1 + ρ0)∆FS|max (C.214)

The assumption that, during its execution, the Frame Synchronization protocol will encounter

at most one execution of the Synchronization Preservation protocol imposes the following

constraint on the minimum duration of the resynchronization period pmin.

pmin ≥ δFS|max (C.215)

152

C.11.2. Executing Synchronization Preservation after Synchonization Acquisition

Recovering BIUs synchronize to an existing clique by executing the Synchronization Capture

protocol and synchronizing with respect to process P4C. After synchronizing, the recovering

BIUs behave synchronously just like the existing BIU members of the clique. In the first

execution of the Synchronization Preservation protocol, the recovering BIUs synchronize with

respect to process P2. There are two important differences between the existing trustworthy BIU

members of a clique and good recovering BIUs during this execution of the Synchronization

Preservation protocol.

The first difference is that good recovering BIUs do not transmit synchronization messages.

Even if they transmitted messages, the existing members of the clique would not include those

messages in the computation of the protocol. Therefore, for the existing trustworthy clique

members, the result of the synchronization protocol does not depend on the performance of

recovering BIUs.

The second (and more important) difference is that the good recovering BIUs are not

necessarily synchronized to the existing trustworthy BIU clique members as tightly as the

existing trustworthy BIU clique members are synchronized to each other. This difference is

significant in the execution of process P2 and in the definitions of the expected reception delay

RSP,P0-P2 and the worst-case local-time difference between the actual time of reception and the

expect time of reception ∆SP,P2,RCV|max. As presented previously, the definition of these parameters

uses the relative local-time skew of the transmitting BIUs in process P0 (i.e., πP0). Because good

recovering BIUs are not included in the definition of πP0, their effective reception delay and its

the worst-case error can be different than for the trustworthy BIU clique members. To correct

this problem, the relative local-time skew used to compute RSP,P0-P2 and ∆SP,P2,RCV|max must include

the good recovering BIUs.

πSP,P0|P2,RCV denotes the value of πP0 used to compute RSP,P0-P2 and ∆SP,P2,RCV|max for process P2

of the Synchronization Preservation protocol.

πSP,P0|P2,RCV = πP2+P4C,H + [(1 + ρ0) - 1/(1 + ρ0)]P (C.216)

πSP,P0 denotes the value of πP0 for the Synchronization Preservation protocol. Except for the case

above, πSP,P0 is:

πSP,P0 = πP2,H + [(1 + ρ0) - 1/(1 + ρ0)]P (C.217)

C.11.3. Time service accuracy for the Synchronization Preservation protocol

The PEs receive periodic time updates from the BIUs in the form of INIT messages. These

messages are triggered by the output of the Accept(INIT) functions in process P2 of the

Synchronization Preservation protocol. The accuracy of the time service is defined here as the

maximum error in the expect period between Accept(INIT) outputs in consecutive executions of

the Synchronization Preservation protocol.

Consider two consecutive executions of the Synchronization Preservation protocol, denoted by

SP1 and SP2. πP2,A denotes the bound on the real-time relative skew of the Accept outputs in

153

process P2 at the trustworthy BIU nodes. πP2,A applies to SP1 and SP2. Let tP2,A,l|SP1 and tP2,A,h|SP1

denote the bounds on the earliest and latest real times, respectively, at which the trustworthy BIU

nodes synchronizing with respect to process P2 of SP1 assert the output of their Accept(INIT)

functions. Thus:

πP2,A = tP2,A,h|SP1 - tP2,A,l|SP1 (C.218)

Let tP2,A,l|SP2 and tP2,A,h|SP2 denote the bounds on the earliest and latest real times, respectively,

at which the Accept outputs are asserted in process P2 at the trustworthy BIUs for SP2. The

relations between tP2,A,h|SP1 and tP2,A,l|SP1, and tP2,A,h|SP2 - tP2,A,l|SP2 are constrained by the drift rate of

the local-time clocks and the validity interval for the Accept outputs in process P2 of SP2.

tP2,A,l|SP2 = tP2,A,l|SP1 + 2rPP,l + (HP2 + TSP + BP0 + AP1 + BP1 + AP2)/(1 + ρ0) (C.219)

tP2,A,h|SP2 = tP2,A,h|SP1 + 2rPP,h + (1 + ρ0)(HP2 + TSP + BP0 + AP1 + BP1 + AP2) (C.220)

PSVC|min and PSVC|max denote the minimum and maximum intervals, respectively, between time

updates for the time-reference service, measured in units of nominal clock ticks.

PSVC|min = tP2,A,l|SP2 - tP2,A,h|SP1

 = 2rPP,l + (HP2 + TSP + BP0 + AP1 + BP1 + AP2)/(1 + ρ0) - πP2,A (C.221)

PSVC|max = tP2,A,h|SP2 - tP2,A,l|SP1

 = 2rPP,h + (1 + ρ0)(HP2 + TSP + BP0 + AP1 + BP1 + AP2) + πP2,A (C.222)

PSVC denotes the expected period between time updates for the time-reference service, measured

in units of nominal clock ticks.

PSVC = (PSVC|min + PSVC|max)/2 (C.223)

Let α denote the accuracy of PSVC.

α = (PSVC|max - PSVC|min)/2

 = πP2,A + ePP + (1/2)[(1 + ρ0) - 1/(1 + ρ0)](HP2 + TSP + BP0 + AP1 + BP1 + AP2) (C.224)

Substituting for πP2,A:

α = 3ePP + [(1 + ρ0) - 1/(1 + ρ0)][(3/2)(AP1 + BP1 + AP2) + (1/2)(HP2 + TSP + BP0)] (C.225)

154

155

Appendix D. Analysis of the Schedule Update protocol

The purpose of the Schedule Update mode is to determine the number of messages to be broadcast

during the PE Communication mode. The PEs are expected to have agreement on their desired schedule

before the start of the Schedule Update mode. In this mode, the PEs download to the ROBUS their

agreed-upon schedule, in effect, to program the bus. For a system with N BIUs, each PE sends N

consecutive messages to its attached BIU with the position in the sequence corresponding to the

identification number of the PE to be scheduled and the content of the message specifying the desired

number of scheduled messages for that PE. For each of the N PEs to be scheduled, the ROBUS applies

the Schedule Update protocol to ensure agreement by the PEs, BIUs, and RMUs on the value received by

the bus. After the desired schedule is processed, the ROBUS assesses the received entries and determines

whether they form a valid schedule. The result of this assessment is then forwarded to the PEs.

The main goal of the Schedule Update service is to allow properly working PEs to communicate as

desired. The most important objective of the Schedule Update protocol is to ensure agreement on each

schedule entry even in the presence of faulty PEs. Disagreement on the resulting schedule can result in

the disintegration of a ROBUS clique during the execution of the schedule in the PE Communication

mode. Figure D.1 illustrates the message flow graph for the Schedule Update protocol. The processes

from P0 to P2 form the agreement generation phase, and from P2 to P4 form the agreement propagation

phase. Section 5 of this document presents the detailed description of the protocol. The protocol is time-

triggered and uses synchronous communication. The protocol combines message processing and

diagnostics to ensure agreement even if the number of faulty PEs outnumbers the number of properly

working PEs.

Figure D.1: Message flow graph for the Schedule Update protocol

In process P0, the BIUs serve as relays for the messages from the PEs. Thus, the values received in

process P1 and the voting results are dependent on the status of the PEs and the BIUs.

P0 P2 P4

RMUs

BIUs

PEs

P1 P3

Stage 1 Stage 2

Agreement

generation

Stage 3 Stage 4

Agreement

propagation

156

D.1.1. PE classification

Similarly to the BIUs and RMUs, the performance of the PEs depends on whether they are operating

according to their specification and their state variables are holding correct values. The PEs are expected

to correctly and consistently perform the distributed SPIDER OS functions, including SPIDER-level

communication and diagnosis, among others. A group of coordinated PEs that can be relied upon to

properly perform these functions is referred to as a PE clique. For this version of ROBUS, it is assumed

that there is at most one active PE clique at any particular time.

For analysis, the individual PEs are classified according to the following criteria.

• Goodness: A PE is good if it behaves according to its specification. Otherwise, the PE is bad or

faulty.

• Trustworthiness: A PE is trustworthy if it is suitable to properly perform the SPIDER OS

functions. Otherwise, the PE is untrustworthy. A trustworthy PE must be good, and its state must

be correct and in agreement with the state of other PE-clique members, if there are any.

A PE clique consists of one or more trustworthy PEs.

D.1.2. PE-BIU pair classification

Because the PEs communicate with the bus through their assigned BIUs, the inputs actually processed

by the bus depend on the status of the PEs and the BIUs. A PE-BIU pair consists of a PE and its

corresponding BIU. Each pair is handled as a unit for the analysis of the input to the Schedule Update

protocol.

Each PE-BIU pair is classified according to the following categories.

• Trustworthy: A PE-BIU pair in which the PE and the BIU are individually trustworthy.

• Benign: An untrustworthy PE-BIU pair in which the PE-BIU pair either broadcasts valid values or is

safely removed from eligibility in voting operations.

• Symmetric: An untrustworthy PE-BIU pair in which the BIU is symmetric.

• Asymmetric: An untrustworthy PE-BIU pair in which the BIU is asymmetric.

D.1.3. Agreement generation phase

The voters for process P1 are the PE-BIU pairs. For proper operation of the protocol, it is required

that the trustworthy BIUs in process P0 broadcast PE_ERROR only if their attached PEs are

untrustworthy. Thus, a PE_ERROR message is an explicit indication that the PE-BIU pair is

untrustworthy. The definition of the protocol and the properties of the diagnostic system ensure that the

set of eligible voters in process P1 includes all of the trustworthy PE-BIU pairs.

In what follows, we consider the k-th execution of the Schedule Update protocol, which corresponds

to the processing of the desired number of messages for PE k in the schedule computed by the PE clique.

157

Let vPE,k denote the desired number of messages for PE k. All trustworthy PEs in the PE clique agree on

this value.

Let EVP1,i and EVP2,j denote the set of eligible voters for process P1 at RMU i and process P2 at BIU j,

respectively. Twy_EVP1,i, Sym_EVP1,i, and Asym_EVP1,i denote the set of trustworthy, symmetric, and

asymmetric eligible voters for process P1 at RMU i, respectively. Twy_EVP2,j, Sym_EVP2,j, and

Asym_EVP2,j denote the set of trustworthy, symmetric, and asymmetric eligible RMU voters for process

P2 at BIU j, respectively.

It is assumed that the set of eligible voters for process P2 at the trustworthy nodes contains more

trustworthy sources than untrustworthy ones. That is:

|Twy_EVP2,j| > |Sym_EVP2,j| + |Asym_EVP2,j| for process P2 at each trustworthy BIU j.

Following the general protocol theory presented in Appendix A, it is also assumed that in process P1 or

process P2 the eligible voters at the trustworthy nodes do not include asymmetric sources. That is:

|Asym_EVP1,i| = 0 for process P1 at each trustworthy RMU i, or

 |Asym_EVP2,j| = 0 for process P2 at each trustworthy BIU j.

The following properties hold for the agreement generation phase.

Agreement propagation: If |Twy_EVP1,i| > |Sym_EVP1,i| + |Asym_EVP1,i| for process P1 at each

trustworthy RMU i, then the results of the voting operations in process P2 at the trustworthy BIU nodes is

equal to vPE,k.

Proof: For stage 1, the trustworthy PE-BIU pairs exactly agree on their desired number of messages,

and they form a majority of eligible voters at each trustworthy RMU. Therefore, all of the word vote

results for process P1 at the trustworthy RMUs will output the value received from the trustworthy PE-

BIU pairs, namely vPE,k. For stage 2, the trustworthy RMUs exactly agree on the value vPE,k, and they

form a majority of eligible voters at each trustworthy BIU. Therefore, all of the word vote results for

process P2 at the trustworthy BIUs will output the value vPE,k. �

Agreement generation: The voting results for process P2 at the trustworthy BIU nodes exactly agree.

Proof: Two cases must be considered.

Case 1: |Asym_EVP1,i| = 0: If there are no asymmetric eligible voters in process P1, all of the

trustworthy RMUs agree on their set of eligible voters and the corresponding voting inputs. Therefore,

the voting results at the trustworthy RMUs exactly agree. The assumption that the trustworthy RMUs

form a majority of eligible voters for process P2 at the trustworthy BIUs ensures that the agreement in

process P1 propagates to process P2.

Case 2: |Asym_EVP2,i| = 0: If there are no asymmetric eligible voters in process P2, all of the

trustworthy BIUs agree on their set of eligible voters and the corresponding voting inputs. Therefore, the

voting results exactly agree. �

The protocol theory presented in Appendix A requires that, in general, the trustworthy set of eligible

158

voters for process P1 at the trustworthy nodes contains more trustworthy BIUs than untrustworthy ones.

Without the ineligibility of PE_ERROR inputs in process P1, that would indeed be the case. However,

since the voters are PE-BIU pairs, and it is known that a PE_ERROR input does not correspond to a valid

desired number of messages for PE k, it is not always true that |Twy_EVP1,i| > |Sym_EVP1,i| +

|Asym_EVP1,i| at each trustworthy RMU i. Nevertheless, the protocol is able to ensure agreement in

process P2, as shown here. Note that a PE-BIU pair can be asymmetric only if the BIU is asymmetric. A

PE cannot be asymmetric because it only communicates with its assigned BIU. Therefore, the

assumption in the general protocol theory that there are no simultaneous BIU and RMU asymmetric

eligible voters in processes P1 and P2 at the trustworthy nodes is the same assumption that ensures

agreement generation for the Schedule Update protocol. The protocol ensures agreement in process P2

irrespective of the values submitted by the PEs. It is not even required to have a group of PEs that agree

on their values. Only the status of the BIUs and RMUs are relevant in the generation of agreement.

However, if it is not true that the trustworthy PE-BIU pairs form a majority of eligible voters in process

P1 at each trustworthy RMU, it is possible that the result in process P2 is not the value submitted by any

trustworthy PE.

In addition, note that the meaning a PE_ERROR message is different in stage 1 and stage 2. In stage

1, a received PE_ERROR message means that the source PE-BIU pair is untrustworthy. In stage 2, a

received PE_ERROR message means that the source RMU determined that there is no agreement among

the eligible PE-BIU pairs on the desired number of messages for PE k. A vote result of PE_ERROR in

process P2 means that a majority of the eligible RMUs determined that there is no agreement among the

PE-BIU pairs, or that the eligible RMUs do not agree on the desired number of messages for PE k. Both

conditions are invalid for a schedule update.

Finally, note that disagreement with the result of the vote is not used as an error check in processes P1

or P2. The diagnostic system is required to generate accusations only if it is known with certainty that the

accused is untrustworthy. In process P1, it is not possible to determine if a disagreement is caused by the

PE or the BIU. In process P2, it is not possible to determine if a disagreement is caused by an

untrustworthy RMU or by asymmetric PE-BIU pairs.

D.1.4. Agreement propagation phase

It is assumed that the set of eligible voters for processes P3 and P4 at the trustworthy nodes contains

more trustworthy sources than untrustworthy ones. That is:

|Twy_EVP3,k| > |Sym_EVP3,k| + |Asym_EVP3,k| for process P3 at each trustworthy RMU k, and

|Twy_EVP4,l| > |Sym_EVP4,l| + |Asym_EVP4,l| for process P4 at each trustworthy BIU l.

The following property holds for the agreement generation phase.

Agreement propagation: The results of the voting operations for process P3 at the trustworthy RMUs

and for process P4 at the trustworthy BIUs are equal to the result for process P2 at the trustworthy BIUs.

Proof: For process P3, exact agreement propagation follows from the fact that the trustworthy BIUs

agree on the result for process P2 and they form a majority among the eligible voters in process P3. The

conditions are similar for the propagation of agreement from process P3 to process P4. �

159

D.1.5. Schedule assessment

The received schedule is the list of results for the N executions of the Schedule Update protocol. The

ROBUS examines the received schedule to determine its validity. The loaded schedule is the schedule

that is accepted by the ROBUS for use in the PE Communication mode. Two schedule validity rules are

defined for this version of the ROBUS: (1) none of the schedule entries is equal to PE_ERROR, and (2)

the sum of all the schedule entries is less than or equal to the total number of PE messages that can be

processed in the PE Communication mode. The received schedule becomes the loaded schedule if it

complies with both of these rules. Otherwise, the default schedule is loaded.

It is possible that entries in the received schedule are not equal to the corresponding values submitted

by trustworthy PEs. The schedule validity rules defined for this version of the ROBUS offer only some

protection against the loading of an undesired schedule. The rules can be augmented by appending some

sort of check word to the desired schedule list computed by the PEs and comparing the Schedule Update

protocol result for the checksum entry against a check word computed by the ROBUS for the received

schedule. Increasing the error coverage of the schedule validity rules reduces the likelihood that the

loaded schedule does not meet the communication requirements of the PEs.

160

161

Appendix E. Analysis of the PE Broadcast and Accusation Exchange

protocols

Two different protocols are executed in the PE Communication mode. The PE Broadcast protocol is

an agreement protocol with embedded diagnostic processing. This protocol is used in combination with a

routing function to ensure that the PE messages are broadcast according to the communication schedule.

The Accusation Exchange protocol is intended to enhance the diagnostic capabilities of the ROBUS by

allowing fine time granularity for reconfigurations while ensuring that the suspicion-based accusations

comply with the required properties of the diagnostic system.

E.1.1. Bus access pattern

The BIUs broadcast PE messages on the BIU-to-RMU links according to the communication schedule.

The access pattern is a time-indexed, as-soon-as-possible round-robin in which the first message is sent at

a predetermined local time and succeeding messages are sent at regular time intervals. The actual data

introduction interval (DII) for the transmissions (denoted by Λstream) must be larger than the minimum DII

of the Communication Module (denoted by ΛComm) and the minimum DII of the Computation Module

(denoted by ΛComp).

The RMUs receive and route the messages from the BIUs according to the communication schedule.

The transmission DII for the RMUs is the same as for the BIUs. The route function ensures that only the

scheduled BIU is allowed to access the RMU-to-BIU links. At the receiving end, the BIUs receive and

vote on the messages from the RMUs, thus ensuring that failed RMUs will not corrupt the results. Note

that, in effect, the output of the RMUs is a stream composed of the individual streams from the scheduled

BIU sources.

Most of the time in a diagnostic cycle is available for the broadcast of PE messages. The transmission

DII and the processing latency of the PE Broadcast protocol are the main performance determinants of the

ROBUS. A reduction in Λstream and the processing latency increases the total throughput capability of the

bus.

E.1.2. PE Broadcast protocol

The PE Broadcast protocol is an interactive consistency protocol based on the generic theory presented

in Appendix A and augmented with diagnostic processing capabilities to safely handle transmissions by

untrustworthy trusted sources and faulty distrusted sources. The protocol also allows trustworthy nodes

to observe and diagnose good recovering nodes by the same means as for trusted nodes. No assumption

is made about a relation between the content of the communication schedule and the health and diagnostic

status of BIUs.

Figure E.1 illustrates the message flow graph for the protocol. Section 5 of this document presents a

detailed description of the protocol. The main purpose of the protocol is to perform a broadcast function

in which a message from the source PE is delivered to all the PEs connected to trustworthy BIUs. From

the perspective of the ROBUS, the actual content of the message is arbitrary and meaningless. Thus,

there is no need for an agreement propagation phase.

162

Figure E.1: Message flow graph for the PE Broadcast protocol

Since the Collective Diagnosis protocol ensures agreement among all the trustworthy nodes on the

conviction results (see Appendix F), the result sent to the PEs by the trustworthy BIUs for a convicted

BIU source is SOURCE_ERROR irrespective of the actual message sent by the source BIU or the voting

results at P1 or P2. Likewise, if the trustworthy BIUs agree on accusing the source BIU, the result sent to

the PEs will also be SOURCE_ERROR irrespective of the actual voting result in process P2.

We consider the properties of the protocol at the output of the voter in process P2. Irrespective of the

health status of the source BIU, it is assumed that the set of eligible voters at each trustworthy BIU

contains more trustworthy RMUs than untrustworthy ones. That is:

|Twy_EVP2,j| > |Sym_EVP2,j| + |Asym_EVP2,j| at each trustworthy BIU j.

Validity of the voting result in process P2: If the source BIU is trustworthy, then the result of the

vote in process P2 at the trustworthy BIUs is equal to the value sent by the source.

Proof: The source BIU sends the same message to all the RMUs. Since the source is trustworthy, the

trustworthy RMUs do not detect input errors or have accusations against it. Therefore, the source BIU is

eligible in process P1 and the result at all the trustworthy RMUs is equal to the message sent by the

source. Since the trustworthy RMUs are a majority of the eligible voters for process P2 at the trustworthy

BIUs, the result of the vote is equal to the value sent by the source BIU. �

Agreement on the voting result in process P2: For a given source BIU, if |Asym_EVP1,i| = 0 at each

trustworthy RMU i or |Asym_EVP2,j| = 0 at each trustworthy BIU j, then the voting result for process P2 at

the trustworthy BIUs exactly agree.

Proof: The source BIU may be asymmetric or otherwise. Two cases are considered.

P0 P2

RMUs

BIUs

PEs

P1

source

PE

only

source

BIU

only

Stage 1 Stage 2

Agreement

generation

163

Case 1: |Asym_EVP1,i| = 0: If the source BIU is asymmetric, then it is not be eligible in process P1 at

the trustworthy RMUs and the result is SOURCE_ERROR. In process P2 at the trustworthy BIUs, the

messages received from the trustworthy RMUs is a majority of the eligible voters. Therefore, the result

of the vote in process P2 is SOURCE_ERROR.

If the source BIU is not asymmetric, then all the trustworthy RMUs agree on whether the source is

eligible. If the source is ineligible, the result for process P1 is SOURCE_ERROR. If the source is

eligible, the trustworthy RMUs received the same message and the result for process P1 is equal to the

received message. Therefore, the trustworthy RMUs agree on the result for process P1. Since the

trustworthy RMUs are a majority of eligible voters for process P2 at the trustworthy BIUs, the voting

results in process P2 exactly agree.

Case 2: |Asym_EVP2,j| = 0: Since the set of eligible voters for process P2 at each trustworthy BIU does

not include asymmetric RMUs, and the diagnostic system is required to satisfy the property of agreement

for non-asymmetric defendants, the sets of eligible voters are equal. Since the voting functions will have

the same inputs and eligibility set, the voting results in process P2 exactly agree. �

The conditions of this agreement property are protocol assumptions for non-convicted sources.

In process P2, the BIUs diagnose the source BIU based on the result of the vote. A vote result of

NO_MAJORITY indicates that the source BIU has behaved asymmetrically. A vote result of

SOURCE_ERROR indicates that at least one trustworthy RMU considers the source BIU to be

untrustworthy. Both of these results are sufficient basis for the BIUs in process P2 to accuse the source

BIU. Note that, independently of whether the source BIU is convicted or not, if the agreement property

conditions are satisfied, then the trustworthy BIUs in process P2 will agree on their local diagnostic

assessment of the source BIU.

If the source BIU is asymmetric and not accused by some trustworthy RMUs, and |Asym_EVP2,j| ≠ 0 at

some trustworthy BIUs, it is possible not to have agreement on the voting results in process P2 at the

trustworthy BIUs. However, if the source BIU is convicted, the PEs will receive the same result of

SOURCE_ERROR.

A disagreement with the result of the vote in process P2 indicates that an error occurred somewhere in

the path beginning at the source BIU, passing through the disagreeing RMU, and ending at the voting

BIU. The detection of disagreement is not sufficient evidence to determine which node is responsible for

the error. Because the diagnostic system is required to satisfy the property of correctness, the most that

can be done by a receiving BIU in process P2 is to levy a suspicion against the source BIU and the

relaying RMU.

E.1.3. Accusation Exchange protocol

The local diagnostic system of each ROBUS node collects accusations and suspicions about nodes of

the same kind and the opposite kind. Without the Accusation Exchange protocol, the BIUs would receive

information about nodes of their own kind only from the execution of the PE Broadcast protocol, and the

RMUs would not receive any information about their own kind. Furthermore, without the Accusation

Exchange protocol, the BIUs would be able to observe other BIUs only when (and if) the communication

schedule allows it. This constrains the total number of failures that can be tolerated by the bus over a

time interval while still maintaining the ability to satisfy the required properties for the generation of

164

accusations based on the processing of suspicions. The Accusation Exchange protocol allows the

processing of suspicions based on the latest available local diagnostic assessments.

Figure E.1 illustrates the message flow graph. Contrary to all of the other protocols, the content of the

message broadcast in process P1 is independent of the result computed in that process. The messages in

stage 1 are the local accusations by the BIUs against the RMUs, and the messages in stage 2 are the

accusations by RMUs against BIUs. Stages 1 and 2 of this protocol are closely related to the processing

of SOURCE_ERROR messages in stage 2 of the PE Broadcast protocol.

Figure E.1: Message flow graph for the PE Broadcast protocol

For this protocol, it is assumed that the set of eligible voters for processes P1 and P2 at the trustworthy

nodes contains more trustworthy sources than untrustworthy ones. That is:

|Twy_EVP1,i| > |Sym_EVP1,i| + |Asym_EVP1,i| for process P1 at each trustworthy RMU i, and

|Twy_EVP2,j| > |Sym_EVP2,j| + |Asym_EVP2,j| for process P2 at each trustworthy BIU j.

We consider stage 2. Similar properties hold for stage 1.

Accusation correctness: For each BIU defendant, the result of the bit vote in process P2 at the

trustworthy BIUs is TRUE only if the defendant is indeed untrustworthy.

Proof: The correctness property of the accusation generation mechanisms ensures that the trustworthy

RMUs do not accuse trustworthy defendants. Since the trustworthy RMUs form a majority of eligible

voters for process P2 at each trustworthy BIU, the result of the bit vote for these defendants is FALSE. �

Agreement for non-asymmetric BIU defendants: For each non-asymmetric BIU defendant, the

voting results for P2 at the trustworthy BIUs exactly agree.

Proof: If the BIU defendant is non-asymmetric, the trustworthy RMUs agree on the value of their

accusation variables for the defendant. Since the trustworthy RMUs are a majority among the eligible

voters in process P2, the vote results for the defendant at the trustworthy BIUs agree. �

Since the broadcast accusations are the result of diagnosis based on all the observations up to the time

of the transmission, agreement on the voting results for process P2 is possible even is the defendant is

asymmetric. The following property captures this.

P0 P2

RMUs

BIUs

P1

Acc

RMUs

Acc

BIUs

Stage 1 Stage 2

165

Agreement for a generic BIU defendant: If the trustworthy RMUs agree on the value of their

accusation variables for the defendant or |Asym_EVP2,j| = 0 at each trustworthy BIU j, then the

trustworthy BIUs agree on the voting result for the defendant in process P2.

Proof: Two cases are considered. If the trustworthy RMUs agree on the value of their accusation

variables for the defendant, then the assumption that the trustworthy RMUs form a majority of eligible

voters in process P2 ensures that the vote results for the defendant agree.

If the eligible voters for process P2 at the trustworthy BIUs do not include asymmetric RMUs, the

BIUs have the same sets of received messages and eligible voters. Therefore, their voting results for the

defendant agree. �

It is assumed that the conditions of this property are satisfied for non-convicted BIUs defendants.

These conditions are essentially the same as the agreement conditions for the PE Broadcast protocol.

Given that the inputs to the bit voter are Boolean (i.e., the value are TRUE or FALSE), if the number

of eligible voters is odd, there is always an exact-match majority among the inputs to the bit voter. If the

number of eligible voters is even and there is not an exact-match majority among the voter inputs, then

half of the inputs are TRUE and the other half are FALSE. Since it is assumed that the trustworthy

RMUs form a majority among the eligible voters, then at least one trustworthy RMU accused the

defendant. Therefore, a bit vote result of TRUE (i.e., accused) in this case conforms to the required

property of accusation correctness. This is similar to the NO_MAJORITY result in stage 2 of the PE

Broadcast protocol.

In addition, similarly to the PE Broadcast protocol, a disagreement with the result of a bit vote in

process P2 for a particular BIU defendant indicates that an error occurred somewhere in the path from the

defendant, through the disagreeing RMU, to the voting BIU. This observation is sufficient evidence to

raise suspicions against the defendant and the disagreeing RMU, but it is not enough to accuse either of

them. If the result of the bit vote is TRUE, then it is known that the defendant is untrustworthy but it does

not necessarily excuse the disagreeing RMU.

166

167

Appendix F. Analysis of the diagnostic system

This appendix examines various aspects of the diagnostic system. The properties of the suspicion-

based accusation-generation process are presented. The Collective Diagnosis protocol is analyzed using

the generic protocol theory presented in Appendix A. In addition, the characteristics of the clique

membership are examined using the known properties of the diagnostic system.

The diagnostic system has two accusation generation mechanisms: immediate and suspicion-based.

The immediate accusations are based on error detection for which there is only one possible culprit,

other than the observer itself. Suspicion-based accusations are based on the detection of errors with

multiple possible culprits and the processing of accumulated suspicions to identify untrustworthy nodes

based on accumulated observations. The immediate-accusation mechanisms are known by design to

comply with the required properties of correctness and agreement for non-asymmetric defendants. This

aspect of the diagnostic system is not explored further. The suspicion-based accusation generation

process is examined next.

F.1. Suspicion-based accusations

This section examines the properties of the suspicions-based accusations for a given collective

diagnostic interval. The expression not currently convicted refers to a node that is classified as not

convicted during the current interval. A not currently convicted node was not convicted during the

execution of the Collective Diagnosis protocol in the immediately preceding collective diagnostic

interval. In contrast, a currently convicted defendant is a convicted node during the current interval.

Figure F.1 illustrates the suspicions matrix. As described in Section 4 of this document, every node

records it suspicions in a two-dimensional matrix in which the rows correspond to the nodes of the same

kind as the observing node and the columns corresponds to the nodes of the opposite kind. Θ and Ω
denote the number of nodes of the same kind and the opposite kind, respectively. The suspicions-matrix

is processed by bit vote operations for each row and column of the matrix.

1 2 … Ω
1 S1,1 S1,2 … S1,Ω → ASK,1|susp

2 S2,1 S2,2 … S2,Ω → ASK,2|susp

… … … … … → …

Θ SΘ,1 SΘ,2 … SΘ,Ω → ASK,Θ|susp

↓ ↓ ↓ ↓
AOK,1|susp AOK,2|susp … AOK, Ω|susp

Figure F.1: Suspicions matrix and generated accusations

The suspicions are recorded only during the PE Communication mode, which is the only mode in

which the observers gather evidence about the behavior of nodes of their own kind. The BIUs record

suspicions based on observations during the execution of the PE Broadcast and Accusation Exchange

protocols. The RMUs record suspicions only during the Accusation Exchange protocol. A cell in the

suspicions matrix is asserted when there is evidence that one or both of the corresponding nodes are

Opposite Kind

Bit vote operations

for each row and

column

Same

Kind

168

untrustworthy.

The analysis for the processing at the RMUs is a special case of the analysis for the BIUs. We

examine the processing at BIU nodes only.

F.1.1. Processing suspicions against nodes of the opposite kind

The suspicions against nodes of the opposite kind correspond to the columns of the suspicions matrix.

These suspicions are processed by a separate bit vote operation for each column. The eligible voters are

the trusted nodes of the same kind. Thus, every row corresponding to a distrusted node of the same kind

is removed from consideration in the bit vote operations. The Collective Diagnosis protocol ensures

agreement among all the trustworthy nodes on the conviction results. In addition, the properties of the PE

Communication protocols ensure that, for each not currently convicted node of the same kind, the

trustworthy BIUs agree on their accusations performed up to the time at which the suspicions matrix is

processed. Therefore, the trustworthy BIUs agree on the set of eligible voters. Furthermore, it is assumed

that the set of eligible voters includes more trustworthy than untrustworthy nodes. Let EVSK,i denote the

set of eligible voters of the same kind at BIU i. Twy_EVSK,i, Sym_EVSK,i, and Asym_EVSK,i denote the

sets of trustworthy, symmetric, and asymmetric eligible voters, respectively. Thus:

|Twy_EVSK,i| > |Sym_EVSK,i| + |Asym_EVSK,i| for each trustworthy BIU i.

We need to show that the accusation results generated by the bit vote operations satisfy the required

properties of correctness and agreement for non-asymmetric defendants.

For a particular defendant of the opposite kind, if the result of the bit vote is TRUE, then, for the

suspicions-matrix column corresponding to the defendant, at least one cell corresponding to a trustworthy

node of the same kind is TRUE. This means that at least once during the PE Communication mode the

value received from the given defendant disagreed with the result of a vote involving a trustworthy node

of the same kind. The validity property for the PE Broadcast and Accusations Exchange protocols

ensures that the result of the vote is the correct value. Therefore, the given defendant is indeed

untrustworthy.

If the defendant is non-asymmetric, the trustworthy BIUs agree on their observations of the defendant.

Since the trustworthy BIUs always agree on the vote results in the PE Communication mode involving

not currently convicted nodes of their own kind, the trustworthy BIUs agree on the suspicion entries

corresponding to the eligible voters. Therefore, the trustworthy BIUs will agree on the bit vote results for

the defendant.

F.1.2. Processing suspicions against nodes of the same kind

The suspicions against nodes of the same kind correspond to the rows of the suspicions matrix. The

eligible voters for the bit vote operations along the rows are the trusted nodes of the opposite kind. Every

column corresponding to a distrusted node of the opposite kind is removed from consideration in the bit

vote operations. The properties of the diagnostic system ensure that the trustworthy BIUs agree on their

accusations for non-asymmetric nodes of the opposite kind. Furthermore, it is assumed that the set of

eligible voters includes more trustworthy than untrustworthy nodes. Let EVOK,i denote the set of eligible

voters of the opposite kind at BIU i. Twy_EVOK,i, Sym_EVOK,i, and Asym_EVOK,i denote the sets of

trustworthy, symmetric, and asymmetric eligible voters, respectively. Thus:

169

|Twy_EVOK,i| > |Sym_EVOK,i| + |Asym_EVOK,i| for each trustworthy BIU i.

For a particular defendant of the same kind, if the result of the bit vote is TRUE, then, for the

suspicions-matrix row corresponding to the defendant, at least one cell corresponding to a trustworthy

node of the opposite kind is TRUE. This means that the at least once during the PE Communication

mode the value received from a trustworthy node of the opposite kind disagreed with the result of a vote

involving the defendant. The message transmitted by a trustworthy RMU in the PE Broadcast and

Accusation Exchange protocols are a direct result of the messages received from the defendant and the

local diagnostic assessment. Therefore, the node responsible for the disagreements is the defendant,

which makes it untrustworthy. Thus, the property of correctness is satisfied.

If the defendant is non-asymmetric, the trustworthy RMUs agree on their observations and local

diagnosis of the defendant. Furthermore, since the trustworthy RMUs considered for the processing of

suspicions are always part of the majority among the eligible voters in the protocols of the PE

Communication mode, the values received from them never disagree with the result of the vote.

Therefore, for the suspicions-matrix row corresponding to the defendant, the cells corresponding to the

trustworthy RMUs are FALSE. Consequently, the bit vote result will be FALSE and no new accusations

are raised against the defendant. Since the trustworthy BIUs always agree on their local diagnostic

assessment of trustworthy RMUs, a non-asymmetric defendant of the same kind will not be accused in

any of them as a result of processing the suspicions matrix.

Consider a not-currently-convicted defendant of the same kind. The properties of the PE

Communication protocols ensure that the trustworthy BIUs agree on their vote results for the given kind

of defendant. Therefore, for a not-currently-convicted defendant, the trustworthy BIUs agree on the

suspicions-matrix entries corresponding to non-asymmetric nodes of the opposite kind. The bit vote

results at the trustworthy BIUs agree if the suspicions-matrix entries corresponding to the trustworthy

nodes of the opposite kind agree or there are no asymmetric eligible voters at any of the trustworthy

BIUs. To show this, we consider the two conditions separately. If the first condition were true, then the

bit vote results at the trustworthy BIUs would agree because the trustworthy RMUs form a majority

among the eligible voters. If the second condition were true, the bit vote results would agree because

there would be agreement on the inputs to the vote and the eligible voters.

Note that if the required conditions for the agreement properties of the PE Communication protocols

hold for a currently convicted defendant of the same kind, then the processing of suspicions for that

defendant has the same properties as for a not currently convicted one.

F.2. Collective Diagnosis protocol

The on-line diagnosis protocol was developed by Geser and Miner. The formal verification of the

protocol is presented in [Geser 04].

This section examines the Collective Diagnosis protocol for BIU defendants. The analysis of the

protocol for the diagnosis of RMU defendants is similar. Figure F.2 illustrates the message flow graph

for the Collective Diagnosis protocol for BIU defendants. The protocol processes are from P0 to P4. The

actual protocol processes multiple defendants in parallel. To simplify the presentation, we examine the

characteristics of the protocol for a single defendant. The “def” bubble represents the defendant, and the

dashed arrow represents the diagnostic evidence collected by the RMU nodes and used to generate the

accusations against the defendant. The RMUs are direct observers of the defendant, and the BIUs are

170

indirect observers. Every ROBUS protocol provides an opportunity for the RMUs to collect evidence

against the defendant. The BIUs are able to observe the defendant only in the PE Communication mode.

If the defendant is a scheduled source, the PE Broadcast protocol enables the BIUs to observe the

messages broadcast by the defendant and relayed by the RMUs after some processing. The Accusation

Exchange protocol enables the BIUs to observe the defendant only in terms of the accusations submitted

by the RMUs.

Figure F.2: Message flow graph for the Collective Diagnosis protocol for BIU defendants

It is assumed that each of the sets of eligible voters for processes P1 through P4 at the trustworthy

nodes contains more trustworthy sources than untrustworthy ones. That is:

|Twy_EVP1,i| > |Sym_EVP1,i| + |Asym_EVP1,i| for process P1 at each trustworthy BIU i,

|Twy_EVP2,j| > |Sym_EVP2,j| + |Asym_EVP2,j| for process P2 at each trustworthy RMU j,

|Twy_EVP3,k| > |Sym_EVP3,k| + |Asym_EVP3,k| for process P3 at each trustworthy BIU k, and

|Twy_EVP4,l| > |Sym_EVP4,l| + |Asym_EVP4,l| for process P4 at each trustworthy RMU l.

In addition, it is also assumed that in process P1 or process P2 the eligible voters at the trustworthy

nodes do not include asymmetric sources. That is:

|Asym_EVP1,i| = 0 at each trustworthy BIU i, or

|Asym_EVP2,j| = 0 at each trustworthy RMU j.

F.2.1. Agreement generation phase

We begin the analysis of the agreement generation phase by considering conviction agreement for a

not-currently-convicted defendant. The properties of the PE Communication protocols and of the

P1 P3

RMUs

BIUs

PEs

P0 P2 P4

Acc

BIUs

Conv

BIUs

Conv

BIUs

Conv

BIUs

def

Evidence

Stage 1 Stage 2

Agreement

generation

Stage 3 Stage 4

Agreement

propagation

171

accusation generation mechanisms, including the processing of the suspicions matrix, ensure that the

trustworthy BIUs have agreement on the accusations generated against the defendant.

Agreement for not-currently-convicted defendants: If the defendant is not currently convicted, the

trustworthy RMUs agree on the voting results for process P2.

Proof: Two cases are considered.

Case 1: |Asym_EVP1,i| = 0: Since all of the eligible voters for process P1 at the trustworthy BIUs are

non-asymmetric, they all agree on the voting inputs and the eligible voters. Therefore, they agree on the

result of the bit vote. Since there is agreement on the bit vote result and on the local accusation against

the defendant, the merge operation, a simple Boolean OR function, preserves that agreement. Stage 2 is

an agreement propagation stage, and thus the trustworthy RMUs agree on the result of the bit vote for

process P2.

Case 2: |Asym_EVP2,j| = 0: For this case, the trustworthy RMUs agree on the eligible voters and the

inputs received from them for process P2. Therefore, they also agree on the bit vote result. �

Next, consider a currently convicted defendant. In general, there is no guarantee of agreement among

the trustworthy BIUs on the local diagnosis of a currently convicted BIU.

Agreement for currently convicted defendants: If the defendant is currently convicted, and the

condition that |Asym_EVP1,i| = 0 at each trustworthy BIU i implies that the trustworthy BIUs agree on the

accusations against the defendant, then the trustworthy RMUs agree on the voting results for process P2.

Proof: Two cases are considered.

Case 1: |Asym_EVP1,i| = 0: For this case, the trustworthy BIUs agree on the eligible voters and the

inputs received from them for process P1. Thus, they agree on the result of the bit vote. By the premises,

the trustworthy BIUs agree on the accusations against the defendant. The merge operation preserves that

agreement. Stage 2 is an agreement propagation stage, and thus the trustworthy RMUs agree on the result

of the bit vote for process P2.

Case 2: |Asym_EVP2,j| = 0: For this case, the trustworthy RMUs agree on the eligible voters and the

inputs received from them for process P2. Therefore, they also agree on the bit vote result. �

Conviction correctness holds irrespective of whether the defendant is currently convicted or not.

Conviction correctness: The result of the bit vote in process P2 is TRUE only if the defendant is

untrustworthy.

Proof: Since the trustworthy BIUs are a majority among the eligible voters in process P2, a bit vote

result of TRUE implies that a value of TRUE was received from at least one trustworthy BIU. The result

of the merge operation in process P1 at a trustworthy BIU is TRUE if the local accusation is TRUE or the

result of the bit vote is TRUE. The properties of the accusation generation mechanisms ensure that the

local accusations are correct. If the result of the bit vote is TRUE, then at least one value of TRUE was

received from process P0 at a trustworthy RMU. The properties of the accusation generation mechanisms

ensure that the accusations at the trustworthy RMUs are correct. Therefore, the defendant is convicted

only if it has been accused by a trustworthy observer. �

172

For a BIU defendant, the Collective Diagnosis protocol guarantees convictions for the following cases.

• The defendant is benign or symmetric untrustworthy and accused by BIUs or RMUs.

• The defendant is asymmetric untrustworthy and accused by: (1) a subset of trustworthy RMUs that

is at least half of the eligible voters for process P1 at each trustworthy BIU, or (2) a subset of

trustworthy BIUs that is at least half of the eligible voters for process P2 at each trustworthy

RMU.

F.2.2. Agreement propagation phase

The agreement generated in the first phase is propagated in the second one irrespective of the status of

the defendant.

Agreement propagation: The results of the voting operations for process P3 at the trustworthy BIUs

and for process P4 at the trustworthy RMUs are equal to the results for process P2 at the trustworthy

RMUs.

Proof: For process P3, exact agreement propagation follows from the fact that the trustworthy RMUs

agree on the result for process P2 and they form a majority among the eligible voters in process P3. The

conditions are similar for the propagation of agreement from process P3 to process P4. �

F.3. Clique membership

For a given node, the set of trusted nodes of the same kind and the set of trusted nodes of the opposite

kind constitute the node’s view of the clique membership. The required properties of correctness and

agreement for non-asymmetric defendants establish basic constraints on the trusted sets. Correctness of

diagnosis ensures that the trustworthy nodes trust one another. Thus, at each trustworthy node, the trusted

set includes all of the trustworthy nodes of the same kind and the opposite kind. This is a basic

requirement for maintaining the unity of the clique. The property of agreement for non-asymmetric

defendants ensures that the trustworthy nodes of a particular kind agree on their trust assessment for non-

asymmetric defendants. This property is needed to ensure that the protocols are able to generate

agreement.

When trustworthy nodes of a particular kind have agreement on the clique membership, their

agreement has the following characteristics.

• They agree on trusting all trustworthy nodes, irrespective of whether they are of the same or

opposite kind.

• For each non-asymmetric node, they agree on either trusting it or not, irrespective of whether the

node is of the same or opposite kind.

• For each not-currently-convicted node of the same kind, they agree on either trusting it or not.

• There is no certainty of agreement for asymmetric nodes that are of the opposite kind or currently

convicted.

173

When trustworthy nodes of opposing kinds have agreement on clique membership, they agree as

follows.

• They agree on trusting all trustworthy nodes, irrespective of whether they are of the same or

opposite kind.

• There is no certainty of agreement for untrustworthy nodes of any kind or status.

174

175

Appendix G. Analysis of startup and restart

This appendix examines the startup and restart capabilities. The mode transition graph for the ROBUS

nodes is presented in Section 2.

Recovery is the process of reaching the Clique Preservation mode from a disabled or failed state.

Startup is a recovery triggered by a power-on enable. Restart is triggered by the detection of a local

failure or a bus failure. The recovery process involves the following sequence of steps: reset, self-test,

search for an active clique, and attempt to join or form a clique. Four basic recovery cases are defined

based on the trigger and whether there is a clique present during recovery. Table G.1 illustrates the

relation among the recovery cases. The recovery trigger can be a power-on enable or the detection of a

local failure or a bus failure. A clique-join case is a recovery with a clique already active on the bus.

There is no active clique for a clique-initialization case.

Power-On Enable Failure Detection

Yes Join Rejoin

No Initialization Re-initialization

Table G.1: Recovery cases

G.1. Recovery limitations

The trustworthy nodes enter the Clique Preservation mode synchronized and with agreement on the

diagnostic state. Highly deterministic time-triggered behavior in this mode enables it to have

substantially robust fault-tolerance. The Clique Join mode shares similar advantages. Other major modes

are less robust.

The most important characteristic for the Self-Test mode is the coverage of the test. Ideally, the

coverage is sufficiently high to detect most faults, especially permanent faults, and the nodes are

implemented in such a way that a node will not exit this mode unless it is fault-free. Such behavior

essentially corresponds to a fail-stop on recovery, which increases the chances that other good recovering

nodes will successfully reach the Clique Preservation mode.

The Clique Detection mode consists of attempting to acquire the state of a clique while simultaneously

monitoring for the absence of one. The effectiveness of this mode is limited by the ability of recovering

nodes to correctly diagnose observed nodes without referencing its local state or comparing messages

received from different nodes. The error detection and diagnosis mechanisms are less effective without

these references. In addition, accusations asserted during the Clique Detection mode could last two or

three times the duration of accusations made in the Clique Preservation mode. This can result in

scenarios in which trustworthy nodes newly arrived to a clique are accused. Thus, there is a chance of

false positive and false negative diagnoses in the Clique Detection mode. If a clique is present, successful

diagnosis and state acquisition requires that a sufficient number of untrustworthy nodes are removed from

the trusted set such that a majority of trusted nodes are trustworthy. Successful detection that no clique is

present during recovery requires that the recovering node correctly diagnose that there are no trustworthy

nodes of one kind or another. The Clique Detection mode as presented in Section 7 has the special

Trigger

Active

Clique

Present

176

vulnerability that, if the set of eligible voters does not have more trustworthy nodes than untrustworthy

ones, the Synchronization Capture protocol may not correctly synchronize the local time and may not

even finish at all. Such a violation of the protocol assumptions can occur not only due to the inability of

Local Diagnosis Acquisition and Frame Synchronization to identify a sufficient number of untrustworthy

nodes, but also if there is a decrease in the number of trustworthy clique members after Synchronization

Capture is started.

It is a requirement that a group of recovering nodes must have a relative local-time skew that remains

within a known bound during Initial Diagnosis and Initial Synchronization. Compliance with the

bounded-skew requirement enables the nodes to execute Initial Diagnosis with synchronous

communication even if the skew bound is large. The specification of the time interval for reception, the

number of expected messages, and the message content for Initial Diagnosis enhances the effectiveness of

its error detection and diagnosis. The success of Initial Synchronization is dependent on the validity of

the actual local-time skew and the eligible voter sets. Similarly to the Synchronization Capture protocol

in the Clique Detection mode, the Initial Synchronization protocol presented in Section 9 has the

vulnerability that a violation of the protocol assumptions can result in an incorrectly synchronized local

time or a state of indefinite suspended activity.

The limitations of the diagnostic system in the Clique Detection and Clique Initialization modes, and

the requirement of having a known bound on the relative local-time skew in the Clique Initialization

mode constrain the effectiveness of the ROBUS recovery scheme. Providing a comprehensive design that

ensures a successful recovery for all possible scenarios is beyond the scope of this ROBUS version. The

ROBUS recovery capability is intended to handle scenarios of independent and non-overlapping recovery

cases. For example, proper handling of scenarios in which a set of good nodes is initializing a new clique

while another good node is simultaneously trying to join a clique are not considered essential for the

design. Although there are circumstances for which such scenarios eventually result in a clique that

includes all of the recovering nodes, in general, the recovery cases are only considered to occur

separately. The robust diagnostic capabilities of the ROBUS nodes should allow them to detect a failed

recovery and initiate a retry, thus increasing the chances of successful recovery. Analysis of the success

rate for all possible recovery scenarios is beyond the scope of this appendix.

 The response of the ROBUS nodes for the previously mentioned failure modes of the Synchronization

Capture and Initial Synchronization protocols can be improved by adding a pair of error checks. The first

one is a timeout check to ensure that the nodes eventually exit out of the synchronization protocols even if

the assumptions are not satisfied. A timeout check resource can also be used for a check on the

resynchronization period in the Clique Preservation and Clique Join modes. The second additional check

for Synchronization Capture and Initial Synchronization is a comparison between the number of eligible

voters at the beginning of the protocol and the number of eligible voters at the end. This requires the

execution of an error detection and diagnosis activity in parallel with the synchronization protocols. For

the Synchronization Capture protocol, this diagnostic activity can be realized by continuing the Local

Diagnosis Acquisition checks during Synchronization Acquisition. For the Initial Synchronization

protocol, the diagnostic activity may consist of custom checks based on the expected message pattern for

each opposite kind source during this protocol. For Synchronization Acquisition and Initial

Synchronization, it is assumed that the number of trustworthy eligible voters is greater than the number of

untrustworthy ones, and that the trustworthy voters will remain so during the execution of the protocols.

If fewer than a majority of the initially eligible voters satisfy the eligibility conditions at the end of the

protocol, then the protocol assumption have been violated and a failure detection can be asserted.

The triggering of recovery is modeled as discrete distributed events that involve a particular set of

177

nodes where recovery is triggered during a given finite time interval. Each instance of these discrete

distributed events is referred to as a recovery-trigger event and is characterized by a precision and a set

of recovering nodes. The relative skew of a recovery trigger between two recovering nodes is the real

time elapsed between the triggering of the recovery at the two nodes. The precision of a recovery-trigger

event is the largest relative skew of the recovery trigger for the set of recovering nodes. The recovery

process for a particular recovery-trigger event is the activity on the bus from the start of the event until

the completion of the recovery.

The precision of a recovery-trigger event is an important determinant of the relative local-time skew

during Initial Diagnosis and Initial Synchronization in the Clique Initialization mode. Other relevant

factors are the duration of the Self-Test and Clique Detection major modes, and the duration of the Initial

Diagnosis and Initial Synchronization minor modes. Once a recovery is triggered, a certain amount of

time is required for the bus to return to normal steady-state operation. The time between recovery-trigger

events should be large enough so the recovery process of one event is complete before the next event

arrives. For the design and analysis of the ROBUS recovery scheme, it is assumed that there is a known

bound for the precision of the recovery-trigger events, and that the events occur sufficiently apart so that

the recovery processes are effectively independent and non-overlapping.

G.2. Clique initialization

We examine the timing aspects of the clique-initialization recovery cases, which include initialization

with a power-on enable recovery trigger and re-initialization triggered by the detection of a failure. For

these cases, a clique is not present on the bus during recovery, and thus the major mode path through the

Clique Initialization mode is followed to reach the Clique Preservation mode.

G.2.1. Power-one enable

It is assumed that the nodes enter the Self-Test mode immediately after power-on enable. δPOE denotes

the actual duration of the time interval within which the nodes are enabled, measured in units of seconds.

δPOE|max denotes the upper bound for δPOE. πPOE denotes the upper bound on the relative time skew at

power-on enable, measured in nominal clock ticks. τ0 denotes the nominal duration of a clock tick

measured in seconds. δPOE and πPOE are related as follows:

πPOE = δPOE|max/τ0 (G.1)

G.2.2. Local failure or bus failure

δFCP denotes the actual duration of a fault-causing phenomenon measured in units of seconds. We

assume that the duration of the fault-causing phenomenon as experienced by individual nodes can be

effectively 0. (Note that δFCP = 0 means that the phenomenon has a negligibly small duration, not that the

phenomenon has no effect.) So:

δFCP|min = 0 (G.2)

δFCP|max depends on the characteristics of the fault-causing phenomenon for which the design is targeted.

∆FD denotes the actual duration of the failure-detection delay measured in local clock ticks. We

178

assume that it is possible for a node to detect a failure condition immediately. ∆FD|max is implementation-

dependent. δFD denotes the actual duration of the failure-detection delay measured in nominal clock ticks.

δFD|min = 0 (G.3)

δFD|max = (1 + ρ0)∆FD|max (G.4)

Let tFCP,0 denote the time at which the fault-causing phenomenon begins. Let trestart,l and trestart,h denote

the earliest and latest times, respectively, at which nodes affected by the fault-causing phenomenon enter

the Self-Test mode.

trestart,l = tFCP,0 + δFCP|min + δFD|min

 = tFCP,0 (G.5)

And:

trestart,h = tFCP,0 + δFCP|max/τ0 + (1 + ρ0)∆FD|max (G.6)

Let πrestart denote the upper bound on the relative time skew when entering the Self-Test mode for

restart, measured in nominal clock ticks.

πrestart = trestart,h - trestart,l

 = δFCP|max/τ0 + (1 + ρ0)∆FD|max (G.7)

G.2.3. Self-Test mode

We want to determine the duration of the Self-Test mode and the bound on the relative skew upon

exiting this mode.

G.2.3.1. Duration of the Self-Test mode

The Local Upset Abatement Delay (LUAD) for a transient-fault scenario is defined as the delay from

the time the fault-causing phenomenon reaches a node until the node has regained control of its local

operation. Local regaining of control is assumed to occur after the node has detected the failure

condition, at which time the node disables its broadcast outputs and transitions to the Self-Test mode. In

the Self-Test mode, the node first performs a full local reset and then begins the execution of the self-test

procedure. This local reset activity should cover the Communication and Computation modules. The

duration of the reset is implementation-dependent. Let δLUAD denote the actual duration of the Local

Upset Abatement Delay, measured in units of nominal clock ticks.

δLUAD|max = trestart,h - tFCP,0

 = δFCP|max/τ0 + (1 + ρ0)∆FD|max (G.8)

The Observed Upset Abatement Delay (OUAD) for a transient-fault scenario is defined as the delay

from the time the fault-causing phenomenon begins until the affected nodes can be consistently

179

recognized by all direct observers as being untrustworthy. Note that this delay is defined with respect to

the effects perceived by the observing nodes. Thus, the reception delay must be taken into consideration.

Let δOUAD denote the actual duration of the Observed Upset Abatement Delay, measured in units of

nominal clock ticks.

δOUAD|max = δLUAD|max + rPP,h

 = δFCP|max/τ0 + (1 + ρ0)∆FD|max + rPP,h (G.9)

∆STM denotes the duration of the Self-Test mode for a ROBUS node, measured in units of local clock

ticks. ∆STM is assumed constant. The duration of the Self-Test mode must satisfy the timing requirements

for the expected transient-fault scenarios. To increase the probability that a restarting node does not trust

an affected node, we require that the restarting nodes exit the Self-Test mode only after the latest time at

which affected nodes can be recognized as untrustworthy. So:

trestart,l + ∆STM/(1 + ρ0) ≥ trestart,h + rPP,h

∆STM/(1 + ρ0) ≥ πrestart + rPP,h

∆STM/(1 + ρ0) ≥ δOUAD|max (G.10)

In terms of local clock ticks, the above inequality corresponds to the following constraint:

∆STM ≥ �(1 + ρ0)δOUAD|max� (G.11)

G.2.3.2. Bound on the relative local-time skew at the end of the Self-Test mode

πSTM denotes the upper bound on the relative time skew at the end of the Self-Test mode, measured in

nominal clock ticks. So:

πSTM = max(πPOE, πrestart) + [(1 + ρ0) - 1/(1 + ρ0)]∆STM (G.12)

G.2.4. Clique Detection mode

The Clique Detection mode is composed of three main operations: Local Diagnosis Acquisition,

Synchronization Acquisition, and Collective Diagnosis Acquisition.

G.2.4.1. Local Diagnosis Acquisition

Local Diagnosis Acquisition is composed of two consecutive observation intervals, each with a

duration at least as large as a resynchronization interval. ∆LDA,begin denotes the delay from the time a node

exits the Self-Test mode until the beginning of the first observation interval, measured in local-clock

ticks. The value of ∆LDA,begin is determined by the implementation and assumed constant.

180

G.2.4.1.1. Bound on the duration of an observation phase

It is assumed that, at the earliest, a node in Local Diagnosis Acquisition can detect the absence of a

valid clique as soon as it enters the observation phase. ∆LDA,OW denotes the duration of the observation

intervals (or “windows”), measured in local-clock ticks. The value of ∆LDA,OW is determined by the

implementation and assumed constant. ∆LDA,OW should be large enough to cover the duration of a

resynchronization cycle measured in local-clock ticks. So:

∆LDA,OW ≥ P (G.13)

P is given in Appendix C.

G.2.4.1.2. Bound on the duration of Local Diagnosis Acquisition

Let δLDA denote the actual duration of Local Diagnosis Acquisition measured in nominal clock ticks.

δLDA|min = ∆LDA,begin/(1+ρ0) (G.14)

δLDA|max = (1+ρ0)(∆LDA,begin + 2∆LDA,OW) (G.15)

G.2.4.2. Synchronization Acquisition

Synchronization Acquisition is composed of the Frame Synchronization and Synchronization Capture

protocols. Synchronization Acquisition ends with the synchronization reset, at which point the local time

is set to 0.

G.2.4.2.1. Frame Synchronization

It is assumed that a node can detect the absence of a valid clique at any time during Synchronization

Acquisition. ∆FS,begin denotes the delay from the end of the second observation window during Local

Diagnosis Acquisition to the beginning of the Frame Synchronization protocol during Synchronization

Acquisition, measured in local clock ticks. ∆FS,begin is implementation-dependent and assumed constant.

∆FS denotes the actual duration of the execution of the Frame Synchronization protocol measured in

local clock ticks. ∆FS is given in Appendix C.

δFS denotes the actual duration of the Frame Synchronization protocol measured in nominal clock

ticks.

δFS|max = (1 + ρ0)∆FS|max (G.16)

G.2.4.3. Synchronization Capture

We assume that the Synchronization Capture protocol begins immediately after the Frame

Synchronization protocol is complete.

181

G.2.4.3.1. Bound on the duration of the Synchronization Capture protocol

δSC denotes the actual duration of the execution of the Synchronization Capture protocol measured in

nominal clock ticks. The execution of the protocol may begin shortly after the ECHO messages are

transmitted by the clique during the execution of the Synchronization Preservation protocol. In that case,

the end of the Synchronization Capture protocol would occur after the reset is applied during the next

execution of the Synchronization Preservation protocol. To specify a bound for the duration of the

Synchronization Capture protocol, we consider an interval containing two consecutive executions of the

Synchronization Preservation protocol. δSP|max denotes the upper bound on the real-time duration of the

execution of the Synchronization Preservation protocol. δSP|max is given in Appendix C. TSP denotes the

scheduled local time at which the execution of the Synchronization Preservation protocol begins.

δSC|max = pmax + δSP|max

 = (1 + ρ0)TSP + 2δSP|max (G.17)

G.2.4.4. Bound on the duration of Synchronization Acquisition

Let δSA denote the actual duration of the execution of the Synchronization Acquisition measured in

nominal clock ticks.

δSA|max = (1+ρ0)∆FS,begin + δFS|max + δSC|max (G.18)

∆SA denotes the actual duration of Synchronization Acquisition measured in local clock ticks. We

want to ensure that a count of ∆SA|max local ticks takes no fewer than δSA|max nominal ticks.

∆SA|max/(1+ρ0) ≥ δSA|max (G.19)

We choose the minimum value that satisfies the constraint. That is:

∆SA|max = �(1+ρ0)δSA|max� (G.20)

G.2.4.5. Bound on the duration of the Clique Detection mode

Synchronization Acquisition ends with the synchronization reset, at which point the local time is set to

0. From that point on, the local time should be synchronized to the clique in Preservation mode. The

delays to begin and complete the Collective Diagnosis Acquisition protocol in the Clique Detection mode

are the same as for the Collective Diagnosis protocol in Clique Preservation mode. ∆CD,begin denotes the

time from the synchronization reset to the beginning of the Collective Diagnosis protocol, measured in

local clock ticks. ∆CD denotes the time to complete the execution of the Collective Diagnosis protocol in

local clock ticks. The transition to the Clique Join mode occurs at the beginning of execution of the

Schedule Update protocol. Before that point, a detected failure attributable to the absence of a clique

results in a transition to the Clique Initialization mode. ∆SU,begin denotes the time from the end of the

Collective Diagnosis protocol to the beginning of the Schedule Update protocol, measured in local clock

ticks. ∆CD,begin, ∆CD, and ∆SU,begin are implementation-dependent and determined by the time-indexed

operation schedule specifying the timing for bus activities. Section 3 presents the concept of distributed

synchronous composition.

182

After detecting the absence of a valid clique, a node clears its state and transitions to the Clique

Initialization mode. ∆CDM-CIM denotes the delay to transition to the Clique Initialization mode after

detecting the absence of a valid clique, measured in units of local clock ticks. ∆CDM-CIM is

implementation-dependent and assumed constant. δCDM denotes the actual duration of the Clique

Detection mode for a ROBUS node, measured in units of nominal clock ticks.

δCDM|min = δLDA|min + ∆CDM-CIM/(1 + ρ0) (G.21)

δCDM|max = δLDA|max + δSA|max + [(1+ρ0) (∆CD,begin + ∆CD + ∆SU,begin + ∆CDM-CIM)] (G.22)

G.2.4.6. Bound on the relative local-time skew at the beginning of the Clique Initialization mode

πCIM,BEGIN denotes the upper bound on the relative time skew at the beginning of the Clique

Initialization mode, measured in nominal clock ticks.

πCIM,BEGIN = πSTM + (δCDM|max - δCDM|min) (G.23)

G.2.5. Initial Diagnosis

To simplify the presentation, we would like to compute a single upper bound for the relative local-

time skew during the execution of the Initial Diagnosis and Initial Synchronization protocols. Let πID+IS

denote that bound, measured in nominal clock ticks.

For Initial Diagnosis, the BIUs and RMUs are assumed to have the same timing characteristics. The

analysis presented here does not refer to the kind of the node sending or receiving messages for any of the

protocol processes.

∆ID,begin denotes the delay from the time a node enters the Clique Initialization mode until the time it

begins the execution of the Initial Diagnosis protocol, measured in units of local clock ticks. The value of

∆ID,begin is determined by the implementation and assumed constant.

G.2.5.1. Communication between processes P0 and P1

The following variables are defined: TID denotes the local time triggering the execution of the Initial

Diagnosis protocol; TID,P0-P1,REF denotes the reference time for the communication between processes P0

and P1; TID,P0,SND denotes the time at which process P0 sends the message; TID,P1,RCV,E denotes the

expected time of reception in process P1; SID,P0 denotes the Send Process delay for process P0;

∆ID,P1,RCVWND denotes the delay from the communication reference time to the opening of the receive

window in process P1; RPP denotes the nominal point-to-point reception delay; WID,Deskew denotes the size

of the deskewing window in process P1; WID,Deskew,pre denotes the pre-expectation window in process P1

(i.e., the size of the section of the deskewing window before the expected time of reception); WID,Deskew,post

denotes the post-expectation window in process P1 (i.e., the size of the section of the deskewing window

after the expected time of reception); ∆ID,PP,RCV|abs-max denotes the absolute value of the maximum error in

the actual time of reception in process P1 for a good source-receiver pair; CID,P1 denotes the computation

delay in process P1 (The computation delay is measured from the end of the deskewing window. CCD,P1 is

assumed constant.); ∆ID,P1,C-END denotes the delay in process P1 from the end of the computation to the end

of the execution of the Initial Diagnosis protocol (∆ID,P1,C-END is assumed constant.); and ∆ID denotes the

183

duration of the execution of the Initial Diagnosis protocol.

TID is the reference time for the communication between processes P0 and P1. Given that the local

time is reset at the start of the Clique Initialization mode, then:

TID,P0-P1,REF = TID = ∆ID,begin (G.24)

To determine WID,Deskew, we need the maximum error in the expected time of reception for the Initial

Diagnosis protocol messages, ∆ID,PP,RCV|abs-max. Based on the analysis presented in Appendix B for point-

to-point communication:

∆ID,PP,RCV|abs-max = �(1 + ρ0)(πID+IS + max(µPP,l , µPP,h))� (G.25)

µPP,l and µPP,h are given in Appendix B. So, for the deskewing window:

WID,Deskew = 2∆ID,PP,RCV|abs-max + 1 (G.26)

WID,Deskew,pre = ∆ID,PP,RCV|abs-max (G.27)

WID,Deskew,post = ∆ID,PP,RCV|abs-max + 1 (G.28)

We expect the upper bound on the relative local-time skew during the execution of the protocol to be

much larger than any minimum timing constraints associated with the process of communication. Based

on this, we assume that the following condition holds for the communication between processes P0 and

P1.

SID,P0|min + RPP < ∆ID,P1,RCVWND|min + WID,Deskew,pre (G.29)

For this case:

SID,P0 = ∆ID,P1,RCVWND|min + WID,Deskew,pre - RPP (G.30)

And:

∆ID,P1,RCVWND = ∆ID,P1,RCVWND|min (G.31)

So:

TID,P0,SND = TID,P0-P1,REF + SID,P0

 = TID + ∆ID,P1,RCVWND|min + WID,Deskew,pre - RPP (G.32)

And:

TID,P1,RCV,E = TID,P0,SND + RPP

 = TID + ∆ID,P1,RCVWND|min + WID,Deskew,pre (G.33)

184

G.2.5.2. Bound on the duration of the Initial Diagnosis protocol

Let TID,P1,C denote the local-time at which the Computation Process outputs the result for process P1.

TID,P1,C = TID,P1,RCV,E + WID,Deskew,post + CID,P1 (G.34)

Let TID,P1,END denote the local-time at which the execution of the Initial Diagnosis protocol ends.

TID,P1,END = TID,P1,C + ∆ID,P1,C-END (G.35)

The duration of the execution of the Initial Diagnosis protocol is:

∆ID = TID,P1,END - TID

 = ∆ID,P1,RCVWND|min + WID,Deskew + CID,P1 + ∆ID,P1,C-END (G.36)

G.2.6. Initial Synchronization

Let TIS denote the local time triggering the execution of the Initial Synchronization protocol. ∆IS,begin

denotes the delay from the end of Initial Diagnosis to the beginning of Initial Synchronization, measured

in units of local clock ticks. The value of ∆IS,begin is determined by the implementation and assumed

constant.

∆IS,begin = TIS - TID,P1,END (G.37)

G.2.6.1. Bound on the relative skew at the beginning of the Initial Synchronization protocol

Let πIS,BEGIN denote the upper bound on the relative local-time skew at the beginning of the Initial

Synchronization protocol, measured in nominal clock ticks.

πIS,BEGIN = πCIM,BEGIN + [(1 + ρ0) - 1/(1 + ρ0)](∆ID,begin + ∆ID + ∆IS,begin) (G.38)

G.2.6.2. Communication between processes P0 and P1

This is discussed in Appendix C. There, πIS denotes the bound on the relative skew during the

execution of the Initial Synchronization protocol. Thus:

 πIS = πID+IS (G.39)

G.2.6.3. Bound on the duration of the Initial Synchronization protocol

δIS|max denotes the upper bound on the real-time duration of the execution of the Initial Synchronization

protocol measured from the earliest time at which a node begins executing the protocol to the latest time

at which a node applies the synchronization reset. δIS,sync|max, ∆IS,P2,H,h , ∆IS,P3,H,h , and ∆IS,P4,H,h are given by

δsync|max, ∆sync,P2,H,h , ∆sync,P3,H,h , and ∆sync,P4,H,h in the Appendix C with BP0 replaced by BIS,P0.

185

δIS|max = πIS,BEGIN + max(∆IS,P2,H,h , ∆IS,P3,H,h , ∆IS,P4,H,h) (G.40)

Let ∆IS|max denotes the upper bound on the duration of the execution of the Initial Synchronization

protocol measured in local clock ticks. We want the fastest count of ∆IS|max ticks to be larger than δIS|max.

∆IS|max/(1 + ρ0) ≥ δIS|max (G.41)

We choose the following value for ∆IS|max.

∆IS|max = �(1 + ρ0)δIS|max� (G.42)

G.2.7. Bound on the relative skew during Initial Diagnosis and Initial Synchronization

The bound on the relative local-time skew during Initial Diagnosis and Initial Synchronization is:

πID+IS = πIS,BEGIN + [(1 + ρ0) - 1/(1 + ρ0)]δIS|max (G.43)

The following variables are defined in order to simplify the expressions presented below.

XIS,H,h = max(∆IS,P2,H,h, ∆IS,P3,H,h, ∆IS,P4,H,h) (G.44)

σ0 = [(1 + ρ0) - 1/(1 + ρ0)] (G.45)

Then:

πID+IS = πIS,BEGIN + σ0(πIS,BEGIN + XIS,H,h)

 = σ0XIS,H,h + (1 + σ0)πIS,BEGIN

 = σ0XIS,H,h + (1 + σ0)[πCIM,BEGIN + σ0(∆ID,begin + ∆ID + ∆IS,begin)]

 = σ0XIS,H,h + (1 + σ0)[πCIM,BEGIN + σ0(∆ID,begin + ∆IS,begin)] + σ0(1 + σ0)∆ID (G.46)

The following inequality holds for WID,Deskew:

WID,Deskew ≤ 2(1 + ρ0)[πID+IS + max(µPP,l, µPP,h)] + 1 (G.47)

Applying this inequality to ∆ID, then:

πID+IS ≤ σ0XIS,H,h + (1 + σ0)[πCIM,BEGIN + σ0(∆ID,begin + ∆IS,begin)]

+ σ0(1 + σ0){∆ID,P1,RCVWND|min + CID,P1 + ∆ID,P1,C-END

+ [2(1 + ρ0)(πID+IS + max(µPP,l, µPP,h)) + 1]} (G.48)

Again, the definition of the following variable simplifies the presentation.

186

Y = σ0XIS,H,h + (1 + σ0)[πCIM,BEGIN + σ0(∆ID,begin + ∆IS,begin)]

+ σ0(1 + σ0)(∆ID,P1,RCVWND|min + CID,P1 + ∆ID,P1,C-END) (G.49)

So:

πID+IS ≤ Y + σ0(1 + σ0)[2(1 + ρ0)(πID+IS + max(µPP,l, µPP,h)) + 1]

πID+IS ≤ {Y + σ0(1 + σ0)[2(1 + ρ0)max(µPP,l, µPP,h) + 1]}/{1 - 2σ0(1 + σ0)(1 + ρ0)} (G.50)

We choose the right side of this expression as the value for πID+IS.

πID+IS = {Y + σ0(1 + σ0)[2(1 + ρ0)max(µPP,l, µPP,h) + 1]}/{1 - 2σ0(1 + σ0)(1 + ρ0)} (G.51)

G.3. Clique join

The clique-join recovery cases include joining after a power-on enable trigger and rejoining triggered

by the detection of a failure. A clique is present on the bus for these recovery cases, and thus the major

mode path through the Clique Join mode is followed to reach the Clique Preservation mode. The most

important element of clique-join recovery is the loading of the state information from the clique.

The full state of the clique consists of the local time, the diagnostic state (i.e., suspicions, accusations,

and convictions), and the PE communication schedule. All of these state variables are recomputed in

each execution cycle. The local time is recomputed periodically by the Synchronization Preservation

protocol. The suspicions are accumulated during a diagnostic cycle and then cleared after being

processed to generate the suspicions-based accusations. The accusations are also accumulated during a

diagnostic cycle and cleared when the convictions are updated. The convictions are recomputed at the

end of every diagnostic cycle by the Collective Diagnosis protocol. The PE communication schedule is

loaded anew in the Schedule Update mode immediately after each execution of the Collective Diagnosis

protocol.

This state-update pattern results in a straightforward state-acquisition process for a recovering node.

Because the suspicions and accusations are cleared every diagnostic cycle, keeping up with a clique after

synchronizing and loading the convictions is a matter of receiving and processing messages as the clique

members do. The most critical aspect of the recovery process is achieving the proper diagnostic state

before attempting to capture the time and convictions state variables. To ensure a successful state

loading, the sets of eligible voters in Synchronization Acquisition and Collective Diagnosis Acquisition

should have more untrustworthy nodes that untrustworthy ones. The probability of achieving this is

limited by the ability of Local Diagnosis Acquisition to correctly diagnose the observed nodes.

[Pike 05] presents a formal verification of synchronization sequence, including the protocols in the

Local Diagnosis Acquisition and Synchronization Acquisition modes.

The presentation for the clique-initialization recovery cases up to the completion of the Clique

Detection mode applies for clique-join recovery. No further timing analysis is presented here.

187

References

[Avizienis 04] Avizienis, Algirdas; Laprie, Jean-Claude; Randell, Brian; and Landwehr, Carl: Basic

Concepts and Taxonomy of Dependable and Secure Computing. IEEE

Transactions on Dependable and Secure Computing, Vol. 1, No. 1, January-

March 2004, pp. 11-33.

[Davies 78]
Davies, Daniel; and Wakerly, John F.: Synchronization and matching in redundant

systems. IEEE Transactions on Computers, 27(6), June 1978, pp. 531-539.

[De Micheli 94]
De Micheli, Giovanni: Synthesis and Optimization of Digital Circuits. McGraw-

Hill, 1994.

[Driscoll 03]
Driscoll, Kevin; Hall, Brendan; Sivencrona, Hakan; and Zumsteg, Phil: Byzantine

Fault Tolerance, from Theory to Reality. 22
nd

 International Conference on

Computer Safety, Reliability and Security (SAFECOMP03), Edinburgh, Scotland,

UK, October 2003, pp. 235-248.

[Geser 04]
Geser, Alfons; and Miner, Paul: A New On-line Diagnosis Protocol for the SPIDER

Family of Byzantine Fault Tolerant Architectures. NASA TM-2004-212432,

2004.

[Kopetz 87] Kopetz, Hermann; and Ochsenreiter, Wilhelm: Clock Synchronization in Distributed

Real-Time Systems. IEEE Transactions on Computers, Vol. C-36, No. 8, August

1987, pp. 933-940.

[Lala 91] Lala, Jaynarayan H.; Harper, Richard E.; and Alger, Linda S.: A Design Approach

for Ultrareliable Real-Time Systems. IEEE Computer, Vol. 24, No.5, May 1991,

pp. 12-22.

[Laprie 95] Laprie, Jean-Claude: Dependability − Its Attributes, Impairments and Means.

Predictably Dependable Computing Systems, B. Randell, J.-C. Laprie, H. Kopetz,

and B. Littlewood, eds., Springer, 1995, pp. 3-24.

[Latronico 04]
Latronico, Elizabeth; Miner, Paul; and Koopman, Philip: Quantifying the Reliability

of Proven SPIDER Group Membership Service Guarantees. Dependable Systems

and Networks (DSN), 2004.

[Miner 02] Miner, Paul S.; Malekpour, Mahyar; and Torres, Wilfredo: A Conceptual Design for

a Reliable Optical Bus (ROBUS). Presented at the 21st Digital Avionics Systems

Conference (DASC), Irvine, California, October 27-31, 2002.

[Miner 04] Miner, Paul S.; Geser, Alfons; Pike, Lee; and Maddalon, Jeffrey: A Unified Fault-

Tolerance Protocol. Formal Techniques, Modeling and Analysis of Timed and

Fault-Tolerant Systems (FORMATS-FTRTFT), Yassine Lakhnech and Sergio

Yovine, eds., volume 3253 of Lecture Notes in Computer Science, Springer, 2004,

pp. 167-182.

[Pike 04] Pike, Lee; Miner, Paul; and Torres-Pomales, Wilfredo: Model Checking Failed

Conjectures in Theorem Proving: A Case Study. NASA TM-2004-213278, 2004.

188

[Pike 05] Pike, Lee: The Formal Verification of a Reintegration Protocol. NASA TM, 2005.

To be published.

[Rushby 03] Rushby, John: A Comparison of Bus Architectures for Safety-Critical Embedded

Systems. NASA CR-2003-212161, March 2003.

[Shin 87] Shin, K; and Ramanathan, P.: Diagnosis of processors with Byzantine faults in a

distributed computing system. 17
th

 Fault Tolerant Computing Symposium (FTCS

17), 1987, pp. 55-60.

[Smith 84] Smith, T. Basil: Fault Tolerant Processor Concepts and Operation. The Fourteenth

International Conference on Fault-Tolerant Computing (FTCS 14), Kissimmee,

Florida, June 20-22, 1984, pp. 158-163.

[Srikanth 87] Srikanth, T. K.; and Toueg, Sam: Optimal Clock Synchronization. Journal of the

Association for Computing Machinery, Vol. 34, No. 3, July 1987, pp. 626-645.

[Suri 95] Suri, N, et al: Advances in Ultra-Dependable Distributed Systems. IEEE Computer

Society Press, 1995.

[Thambidurai 88] Thambidurai, Philip; and Park, You-Keun: Interactive consistency with multiple

failure modes. In 7
th

 Reliable Distributed System Symposium, October 1988, pp.

93-100.

[Walter 97]
Walter, Chris J.; Lincoln, Patrick; and Suri, Neeraj: Formally verified on-line

diagnosis. IEEE Transactions on Software Engineering, 23(11), November 1997,

pp. 684-721.

[XAPP077]
Xilinx Application Note XAPP077: Metastability Considerations. version 1.0,

Xilinx Corporation, January 1997.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

ROBUS-2: A Fault-Tolerant Broadcast Communication System

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; and Miner, Paul S.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19099

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor Independent Design for Enhanced
Reliability (SPIDER), a general-purpose fault-tolerant integrated modular architecture currently under development at NASA Langley
ResearchCenter. The ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium access control by
means of time-indexed communication schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant
services to the attached processing elements (PEs), in the presence of a bounded number of faults. These services include message broadcast
(Byzantine Agreement), dynamic communication schedule update, clock synchronization, and distributed diagnosis (group membership).
The ROBUS also features fault-tolerant startup and restart capabilities. ROBUS-2 is tolerant to internal as well as PE faults, and incorporates
a dynamic self-reconfiguration capability driven by the internal diagnostic system. This version of the ROBUS is intended for laboratory
experimentation and demonstrations of the capability to reintegrate failed nodes, dynamically update the communication schedule, and
tolerate and recover from correlated transient faults.

15. SUBJECT TERMS

Avionics bus; Broadcast communication; Fault tolerance; Integrated modular architecture

18. NUMBER
 OF
 PAGES

201

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18

Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-063-30-RF

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2005-213540

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

03 - 200501-

