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Abstract—Principal component analysis (PCA) is widely used
methods for dimensionality reduction and Lots of variants have
been proposed to improve the robustness of algorithm, however,
these methods suffer from the fact that PCA is linear combination
which makes it difficult to interpret complex nonlinear data, and
sensitive to outliers or cannot extract features consistently, i.e.,
collectively; PCA may still require measuring all input features.
2DPCA based on ℓ1 − norm has been recently used for robust
dimensionality reduction in the image domain but still sensitive to
noise. In this paper, we introduce robust formation of 2DPCA by
centering the data using the optimized mean for two-dimensional
joint sparse as well as effectively combining the robustness of
2DPCA and the sparsity-inducing lasso regularization. Optimal
mean helps to improve the robustness of joint sparse PCA further.
The distance in spatial dimension is measure in F-norm and sum
of different datapoint uses 1-norm. 2DR-JSPCA imposes joint
sparse constraints on its objective function whereas additional
plenty term help to deal with outliers efficiently. Both theoret-
ical and empirical results on six publicly available benchmark
datasets shows that Optimal mean 2DR-JSPCA provides better
performance for dimensionality reduction as compare to non-
sparse (2DPCA and 2DPCA-L1) and sparse (SPCA, JSPCA).

Keywords—CA, 2DPCA, Sparse PCA, PCA Optimization, Prin-
cipal Component AnalysisCA, 2DPCA, Sparse PCA, PCA Optimiza-
tion, Principal Component AnalysisP

I. INTRODUCTION

Dimensionality reduction is a classical problem in pattern
recognition and plays an important roles due to its contribution
to alleviate the so-called ”curse of dimensionality”. Its aim
is to project the high-dimensional feature space into low-
dimensional space by preserving the importance of statistical
properties of data, so that it could be interpreted efficiently.
During the last decades, we have witnessed many algorithms
have been proposed to robustly reduce the effect of complex
noise or outliers in realistic data. Among these methods, unsu-
pervised dimensionality reduction methods are more useful in
piratical application since data labeling is usually expensive
and oftenly absense of prior knowledge for most scientific
problems.

PCA is one of the extensively used unsupervised method,
which projects high-dimensional data into liner orthogonal
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space. However, one of the major drawback is that PCA is
linear combination and loading are non-zero. This makes PCA
data interpretation difficult and it is still sensitive to outliers (as
its co-variance matrix is derived from ℓ2 − norm ) that affect
its performance. Thus, it fails to deal with outliers that often
appears in real world data. Moreover, before applying PCA and
LDA, there is need to convert image into one dimensional vec-
tor, thus it may not exploit image’s spatial structural informa-
tion very well which is very important for image representation
[9]. To overcome these issues, several variants of PCA have
been proposed to improve the effectiveness of dimensionality
reduction and robustness against outliers. Recently, ℓ1−norm-
based subspace learning methods have been widely used for
dimensionality reduction to deal with outliers, i.e., imposing
ℓ1 − norm on loss term [1], [3], [5], [5], [8]. Although, these
methods are able to reduce the effect of outliers to some
extent, low-dimensional feature space is linear combination of
all original features in high-dimensional features which makes
it difficult to interpret complex nonlinear data. To deal with
this issue, 2D-PCA [15], 2DLDA [16], multi-linear PCA [6]
and JGSPCA [4] etc. have been developed. Two-dimensional
PCA (2DPCA) is more efficient, due to its direct formulation
based on raw two-dimensional images i.e. two dimensional
subspace learning methods directly calculate the class scatter
metrics from images, hence can reveal the spatial structural
information of image that is quite important for image classi-
fication task. However, the limitation of 2DPCA is the dense
basis which makes it difficult to explain the resulting features.
As such, it is desirable to select the most relevant or salient
elements from a large number of features. Sparse modeling has
received increased attention to deal with this issue that could
be achieved by regularizing objective variables with a lasso
penalty term using the ℓ1−norm. In 2DPCA, ℓ1−norm works
as a robust measure for sample dispersion, not regularizing
basis vectors. Although the above discussed variations either
1D or 2D are able to reduce the effect of outliers to some
extent however one major disadvantage is that each new feature
in low dimensional subspace is linear combination of all the
original features exist in high dimensional space that effect
the accuracy due to features redundancy. Whereas it is quite
difficult to interpret new features. Sparseness could be the
solution to overcome this issue. Sparse principal component



analysis has no ability to jointly select features. 2D Joint sparse
PCA can effectively integrates feature selection into subspace
to exclude the redundant features [10]. To address this issue,
in this paper, we have presented a novel approach called 2D
Robut Joint Sparse PCA (2DR-JSPCA) that simultaneously
optimizes mean and sparse projection matrix in the criterion
function that helps to integrate feature selection into subspace
learning to exclude the redundant features.

II. 2DR-JSPCA

Dimensionality reduction methods try to preserve a certain
kind of linear representation after projection. As the existing
methods fail to select useful features or not efficient for
outliers. In this section, we propose robust 2D joint sparse
principal component analysis in detail. As described earlier,
projection procedure involves all the original features and it
may have redundant or irrelevant features.Inspired by SPCA
and JSPCA, We aim to learn transformation matrix with
sparsity. The objective function called optimal mean 2D robust
JSPCA has more freedom to jointly select the useful features
from low-dimensional representation. As the objective function
is based on F-norm thus it helps to reduce the effect of outliers.
The objective function imposes simultaneously optimize mean
and sparse projection due to joint sparsity constraints on it
objective function as show in in equation 4.

A. Objective Function

Considering the outliers appearance in the dataset and
consistent selection of optimal features, we propose two-
dimensional joint sparse principal component analysis (2DR-
JSPCA) for reconstructing the data matrix. 2DR-JSPCA aims
to seek the projection matrix that makes the value of objective
function minimum. The objective function given below in
equation 1 uses optimal mean that helps to improve the robust-
ness against outliers. The objective of proposed function is to
effectively combine the robustness of 2DPCA and the sparsity-
inducing lasso regularization by imposing jointly sparse con-
straints on its objective function as well as introducing the
additional penalty term. As a resultant, we hope to obtain
robust low dimensional subspace that is not is not uniquely
determined up to an orthogonal transformation.

Consider the observed data A′ ( e.g., image patch, video
frame or speech signal), corrupted by noise η, i.e.

A = A′ + η

Where A′ is clean data and η is the additive noise in the
image.

A = [A1, ..., AN ]

where Aj ∈ Rm×n.

To this end, consider the optimization problem

min
Q,P

J(Q,P ) = min
Q,P

N
∑

j=1

∥

∥Kj −QPTKj

∥

∥

2

F
+ λ‖Q‖2F (1)

where Kj is Aj −M . Matrix Q ∈ R
n×d transforms each

sub-image into lower-dimensional subspace and the matrix
P ∈ R

n×d recovers the data matrix. Furthermore, while we
require P to be orthogonal (PTP = Id), we do not require
the orthogonality of the matrix Q. This enables the 2DR-
JSPCA has more freedom to learn low dimensional space that
approximate to high dimensional data in flexible manner.

To prove the objective function mentioned in equation 1,
firstly we consider the objective function of 2DPCA and add
optimal mean and sparseness respectively. V = [v1, v2, ...vd] ∈
R

n×d is the projection matrix, where v1 is the first basis vector
of 2DPCA that maximizes the ℓ1-norm-based dispersion of
projected samples.

V ∗ = argminV TV=Id

N
∑

n=1

||Ai −AiV V T ||2F (2)

Based on the Optimal mean, the above equation can be
written as

V ∗ = argminV TV=Id

N
∑

n=1

||(Aji−M)− (Aj −M)V V T ||2F

(3)
The above objective function is called optimal mean 2DPCA

with F-norm minimzation. In order to model the sparsity, the
above equation can be rewritten as

min
Q,P

J(Q,P ) = min
Q,P

N
∑

j=1

∥

∥(Aj −M)−QPT (Aj −M)
∥

∥

2

F
+λ‖Q‖2F

(4)

where the matrix Q ∈ R
n×d transforms each sub-image

into lower-dimensional subspace and the matrix P ∈ R
n×d

recovers the data matrix. Directly solving the above equation
is difficult as both loss term and regularization term are non-
smooth. To find optimal solution for equation II-A, we applied
some mathematical relations. The following theorems plays
important role in solving the minimizers of the optimization
problem as shown in equation II-A.

The minimizers of the optimization problem 4 satisfy the
equation





N
∑

j=1

(AT
j −M)(Aj −M)



P =





N
∑

j=1

(AT
j −M)(Aj −M)



Q

(5)

Proof: First, utilizing definition of the Frobenius norm,
the cyclic and linearity properties of the trace function, and
the orthogonality of P , we rewrite the objective function J in
a more computationally tractable way.



J(P,Q) =

N
∑

j=1

∥

∥(Aj −M)− (Aj −M)QPT
∥

∥

2

F
+ λ‖Q‖2F

J(P,Q) =

N
∑

j=1

tr
[(

(Aj −M)T − PQT (Aj −M)T
)

(

Aj −M)− (Aj −M)QPT
)

+ λtr
(

QTQ
)

J(P,Q) =

N
∑

j=1

tr[(ZZT − ZZTQPT − PQTZZT ]

+PQTZZTQPT + λtr
(

QTQ
)

J(P,Q) =
N
∑

j=1

tr
(

ZZT − 2ZZY QPT+

ZZTQQT + λtr
(

QTQ
)

Where Z = Aj −M .

Now, differentiating above equation with respect to Q,

∂J

∂Q
=

N
∑

j=1

(

−2AT
j AjP + 2AT

j AjQ
)

+ 2λQ.

Therefore,

∂J

∂Q
= 0 ⇒

N
∑

j=1

(

−2ZZTP −M + (2ZZT )Q
)

+ 2λQ = 0

(6)

N
∑

j=1

(

(ZZT )P
)

=

N
∑

j=1

(

(ZZT )Q+ λQ
)

(7)





N
∑

j=1

ZZT



P =





N
∑

j=1

(λIn + ZZT )



Q (8)

Hence, the result follows.

In order to reduce the feature redundancy, we imposed
orthogonal constraints In where Q is the project the weighted
data matrix an P is used to recover it.

To optimize the mean matrix, we fix P and Q and differ-
entiating with respect to M, we get.

M = argminM

N
∑

n=1

tr
[

(MdnM
T + 2MT dnAnPQT

−2MT dnAn − 2MT dnMQPT + Ei + 2AT
ndiPQT +

λtr(QTQ)

where dn =
[

||E||2F ]
−1

By differentiating with respect to M we get

M=
∑N

n=1 dnAn/
∑N

n=1 dn(9)

Observe that, if λ = 0 , then P = Q as a results objective
function degenerate to OMF-2DPCA [14].





N
∑

j=1

ZZT



P =





N
∑

j=1

(ZZT



Q

Q =





N
∑

j=1

ZZT





−1 



N
∑

j=1

ZZT



P = P.

Furthermore, the objective function simplifies to

J(Q,P ) =

N
∑

j=1

∥

∥Z − ZPPT
∥

∥

2

F

Hence, the proposed 2DR-JSPCA degenerates to OMF-
2DPCA. As such, in some sense 2DR-JSPCA generalizes the
2DPCA.

Observe that, if λ > 0, then Q is sparse .

min
Q,P

N
∑

j=1

∥

∥Z − ZQPT
∥

∥

2

F
+ λ‖Q‖2F =

N
∑

j=1

(

−2ZZTP

+2ZZTQ+ 2λQ

V = argminV TV=Id

N
∑

n=1

||(Xi −M)− (Xi −M)V V T ||2F

The objective function in equation 4 is to find sparse matrix
Q and orthogonal matrix P





N
∑

j=1

AT
j Aj



P =
N
∑

j=1

(

λIn +AT
j Aj

)

Q

Hence, the proposed 2DR-JSPCA is sparse when λ > 0.

If UDV T is the singular value decomposition (SVD) of
∑N

j=1 A
T
j AjQ, then

P = UIn×dV
T (10)



is orthogonal and minimizes Equation (II-A) for a given Q.

Proof:

Recall that U and V are orthogonal matrices of sizes n×n
and d× d, respectively. As such,

PTP = V ITn×dU
TUIn×dV

T = Id

Before showing the convergence of 2DR-JSPCA, we need
to give the following lemma.

For any nonzero vector

P,Q ∈ Rc

, the following results hold:

‖P‖F −
‖P‖2F
2‖Q‖F

≤ ‖Q‖F −
‖Q‖2F
2‖Q‖F

Below in table I we describe an iterative algorithm of 2DR-
JSPCA for training samples A1, ..., An of size m × n, and
regularization parameter λ.

TABLE I. ALGORITHMIC PROCEDURE OF 2D JOINT SPARSE PCA

Input: Aj ∈ R
m×n for j = 1, ..., N where A is centralized, and parameter λ.

Output: Matrices P and Q

Step-I: Initialize the matrix P

While not converge do

Step-II: Update the optimal mean M = argminM
∑N

n=1
tr(ET

n dnEn)
by using Equation (9)

Step-III: Minimize the objective function with respect to Q by computing the matrix

Q using Equation (5)

Step-IV: Compute the SVD of
∑N

j=1
ZZTQ

Step-V: Minimize the objective function with respect to P by updating the matrix

P using Equation (10).

end while

B. Convergence Analysis

Lemma II-A plays important role in determining the proof
of convergence of proposed objective function.

Given all the variables in objective function equation 4,
iterative scheme of 2DR-JSPCA described in table 1 monoton-
ically decrease the objective function value in each iteration
and converge to local optima.

Proof: Given the initial value of P , say P0, we calculate
Q0 by minimizing J(P0, Q).
Hence,

J(P0, Q0) ≤ J(P0, Q)

We calculate P1 by minimizing J(P,Q0). Therefore,

J(P1, Q0) ≤ J(P0, Q0)

Since Q1 minimizes J(P1, Q), we have

J(P1, Q1) ≤ J(P1, Q0) ≤ J(P0, Q0).

Iteratively, we obtain

J(Pt+1, Qt+1) ≤ J(Pt, Qt)for t = 0, 1, 2, .......

Since the SVD as shown in step-III of table I gives the
optimal P t that further reduces the objective value. Once we
obtained optimal value of P and Q, the next iteration further
converge P to local optima.

Hence, the sequence J(Pt, Qt) is monotonically decreas-
ing. Thus, by the Monotonic Convergence Theorem, J(Pt, Qt)
converges to a local optimal value.

N
∑

j=1

tr
[(

ZT − P∞QT
∞ZT

) (

Z − ZQ∞PT
∞

)]

+ λtr
(

QT
∞Q∞

)

III. DISCUSSION AND ANALYSIS

In order to evaluate the performance of proposed ro-
bust joint sparse PCA, in this section we have discussed
and compared its performance on six popular image dataset
including AR, ORL FERET, Yale, COIL20 and CMU PIE
and compared its performance with unsupervised methods in-
cluding PCA, PCAL1, JSPCA, 2DPCA, R2DPCA, PCA2DL1
and PCA2DL1-S on corrupted and non-corrupted benchmark
datasets. In order to compare dimensionality reduction per-
formance objectively and persuasively we evaluated using
nearest neighbour classifier. Experiment is divided into two
groups: Experiment-I is on non-contaminated(original) dataset
and experiment-II is on contaminated datasets to validate the
robustness against outliers. We have corrupted small portion of
all dataset by adding random noise (salt and pepper or block
of different sizes) as shown in figure 1. It shows some original
images in first two rows and third row is corrupted by random
blocks whereas forth row is contaminated by 10% and 15%
salt and pepper noise.

A. Datasets

In order to evaluate the performance of proposed robust
joint sparse PCA, in this section we have discussed and com-
pared its performance on six popular image dataset including
AR, ORL FERET, Yale, COIL20 and CMU PIE. Furthoremore,
we have contaminated the dataset to test the robustness against
outliers, we have randomly selected 20% images to add noise
in the datasets. We corrupted the dataset i.e. random noise
well as block occlusions. Random noise is salt and pepper
noise spread randomly at 10%, 15% on random selection of
images from dataset as shown in figure 1. Similarly, block
occlusion is added block of different sizes at random locations
with variable size 5x5, 10x10, 10x15 as shown in figure 1. For
evaluation on contaminated datasets, we have selected 60%
and 70% and 80% samples per individual for each dataset as
training dataset (3,5 and 7 ; 8, 13 and 18 ; 22, 27 and 32 ; for
ORL, AR and Yale datasets respectively). We have conducted
various number of experiments on each dataset and average
classification accuracy is computed as shown in figure 3 , 4
and table II and table III .



Fig. 1. Sample images of CMU PIE, COIL2o, Yale [11] and AR [7] First two rows real dataset, Row 3 contaminated with block and Row 4 is contaminated
with salt and paper noise 15%

Fig. 2. Comparative evaluation at different value of λ for real and contaminated datasete

TABLE II. COMPARATIVE EVALUATION BASED ON AVERAGE CLASSIFICATION ACCURACY ON REAL DATASET AT OPTIMAL RESULT OF 2DJSPCA

Dataset PCA RPCA SPCA JSPCA 2DPCA PCA2DL1 2DJSPCA

AR 0.6832 ± 0.005 0.6459 ± 0.008 0.7345 ± 0.0221 0.7896 ± 0.006 0.7589 ± 0.0071 0.8477 ± 0.0023 0.8482 ± 0.003

ORL 0.7891 ± 0.0028 0.8009 ± 0.0091 0.8322 ± 0.0011 0.8981 ± 0.0032 0.8843 ± 0.0411 0.8637 ± 0.0071 0.931 ± 0.0091

Yale 0.6886 ± 0.0031 0.5976 ± 0.0061 0.5723 ± 0.0009 0.7563 ± 0.0021 0.7911 ± 0.0091 0.7305 ± 0.0071 0.8721 ± 0.0531

FERET 0.8400 ± 0.0039 0.8322 ± 0.0039 0.8409 ± 0.0014 0.9222 ± 0.0022 0.9112 ± 0.0042 0.8900 ± 0.0022 0.9469 ± 0.0009

CMU PIE 0.7445 ± 0.0091 0.7666 ± 0.0027 0.8334 ± 0.0091 0.9011 ±1 0.0011 0.8987 ± 0.0026 0.8607 ± 0.0015 0.939 ± 0.0041

COIL20 0.7923 ± 0.0023 0.7523 ± 0.0044 0.7744 ± 0.0012 0.8587 ± 0.0042 0.8639 ± 0.0036 0.8688 ± 0.0032 0.932 ± 0.0007

TABLE III. COMPARATIVE EVALUATION BASED ON AVERAGE CLASSIFICATION ACCURACY ON CONTAMINATED DATASET AT OPTIMAL RESULT OF

2DJSPCA

Dataset PCA RPCA SPCA JSPCA 2DPCA PCA2DL1 2DJSPCA

AR 0.5741 ± 0.0023 0.5387 ± 0.0022 0.6178 ± 0.0091 0.6481 ± 0.0091 0.6576 ± 0.0049 0.6277 ± 0.0053 0.6711 ± 0.0203

ORL 0.6385 ± 0.0012 0.7411 ± 0.00321 0.8201 ± 0.0081 0.7181 ± 0.0087 0.8161 ± 0.0094 0.838 ± 0.0021 0.8511 ± 0.00221

Yale 0.5153 ± 0.0034 0.4865 ± 0.0083 0.5177 ± 0.0073 0.5978 ± 0.0065 0.5983 ± 0.0043 0.621 ± 0.0091 0.7300 ± 0.0091

FERET 0.6831 ± 0.0029 0.6948 ± 0.0042 0.59851 ± 0.0065 0.7186 ± 0.0043 0.6771 ± 0.0054 0.6184 ± 0.0087 0.7413 ± 0.0065

CMU PIE 0.577 ± 0.0032 0.5981 ± 0.0007 0.6771 ± 0.0054 0.6987 ±1 0.0054 0.7181 ± 0.0091 0.6886 ± 0.0083 0.754 ± 0.0088

COIL20 0.5743 ± 0.0024 0.6081 ± 0.0032 0.7179 ± 0.0049 0.7474 ± 0.0076 0.7144 ± 0.0077 0.7786 ± 0.0053 0.7911 ± 0.0141

B. Evaluation

In order to compare the dimensional reduction of different
methods objectively and persuasively, we have used nearest
neighbour to obtain classification accuracy. We have repeated
experiment on each dataset ten times and average evaluation
results shows that as classifier, 2DR-JSPCA achieved better
accuracy as compared to JSPCA [17], SPCA [2], 2RDPCA
[13] and 2DPCAL1-S [12] as shown in table II, III and
figure 3, 4. In first experiment, we have selected datasets with
original but re-sized to 32x32. Table II shows the variation of
classification accuracy with different subspace dimensionality
at optimal λ = 0.18. For evaluation purpose, we have selected
60% and 70% and 80% samples per individual for each dataset
as training dataset and rest of the datasets for validation. Due
to the complexity of datasets such as illumination, variations
and occlusions etc, it is quite challenging to obtain high classi-

fication accuracy, however, the experimental results shows that
2DR-JSPCA obtained better classification accuracy as compare
to the PCA, 2DPCA, SPCA and JSPCA. It is due to sparsity
in two dimension, selection of robust features as well as
discarding the redundant patterns. Furthermore, it enables the
2DR-JSPCA has more freedom to learn low dimensional space
that approximate to high dimensional data in flexible manner.
In addition, regularization term ‖Q‖2F is convex and can easily
be optimized as it can gradually trending to smaller value
iteratively. Moreover it reduces the constraints and enables our
method to jointly select features.

To investigate the performance of 2D joint sparse PCA,
25% of dataset are contaminated with .e. random noise and
block occlusions. Rectangular noise located at different posi-
tion of different size (10x10 and 20 x 20) is added as shown
in figure 1 whereas random noise is salt and pepper noise



Fig. 3. Comparison: Classification accuracy on real dataset

spread randomly at 10%, 15% on random selection of images
from datasets. After dataset corruption, we have selected 70%
of corrupted images for training and rest of the images are
part of validation datasets. Results shows that 2DR-JSPCA
performed well for corrupted data as compare to other PCA
based methods as shown in figure 4 and table III, however,
it suffers from random corruption due to its feature selection
ability. In conclusion, we can say that 2DR-JSPCA is robust to
slight variations rather than random variations in the datasets.

2DR-JSPCA provided poor in term of reconstruction as
compared to non-sparse methods due to the loss of extensive
information, however, in comparison to sparse methods, 2DR-
JSPCA reconstruction is better and able to select those features
for that are effective for reconstruction. In conclusion, we
can say that 2DR-JSPCA finds the representative features
from high dimensional space that are used for classification.
Results showed that 2DJSPCA out perform the other PCA
based methods especially SPCA and Joint SPCA in term of
classification. Traditional methods are not able to to interpret
new feature whereas it is quite important to interpret new
features especially when they have spatial meaning. 2DR-
JSPCA outperform state of the art sparse methods Joint sparse
PCA as it selected features by maintaining the images spatial
structural information.

IV. CONCLUSION

In this paper, we presented new subspace learning meth-
ods robust joint sparse two dimensional principal component
analysis by removing the mean automatically and relaxing the
orthogonal constraints of transformation matrix and imposing
a penalty function on regularization term. Both mathematical
analysis and empirical results proved that 2DR-JSPCA with
optimal mean has more freedom to jointly select the useful fea-
tures from low-dimensional representation and robust against
outliers as well as reduces the data dimensionality efficiently,
moreover addition of penalty function into objective function
results in robustness against outliers. Evaluation results show
the improvement in effectiveness of 2DR-JSPCA for image
reconstruction and classification. In conclusion, the numerical
results suggest that our method is superior to previous ap-
proaches.
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