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Abstract. We study the problem of action recognition from depth
sequences captured by depth cameras, where noise and occlusion are
common problems because they are captured with a single commodity
camera. In order to deal with these issues, we extract semi-local features
called random occupancy pattern (ROP) features, which employ a novel
sampling scheme that effectively explores an extremely large sampling
space. We also utilize a sparse coding approach to robustly encode these
features. The proposed approach does not require careful parameter tun-
ing. Its training is very fast due to the use of the high-dimensional integral
image, and it is robust to the occlusions. Our technique is evaluated on
two datasets captured by commodity depth cameras: an action dataset
and a hand gesture dataset. Our classification results are superior to
those obtained by the state of the art approaches on both datasets.

1 Introduction

Recently, the advance of the imaging technology has enabled us to capture the
depth information in real-time, and various promising applications have been
proposed [1–4]. Compared with conventional cameras, the depth camera has
several advantages. For example, segmentation in depth images is much easier,
and depth images are insensitive to changes in lighting conditions. In this paper,
we consider the problem of action recognition from depth sequences.

Although skeleton tracking algorithm proposed in [1] is very robust for depth
sequences when little occlusion occurs, it can produce inaccurate results or even
fails when serious occlusion occurs. Moreover, the skeleton tracking is unavailable
for human hands thus cannot be utilized for hand gesture recognition.

Therefore, we aim at developing an action recognition approach that directly
takes the depth sequences as input. Designing an efficient depth sequences repre-
sentation for action recognition is a challenging task. First of all, depth sequences
may be seriously contaminated by occlusions, which makes the global features
unstable. On the other hand, the depth maps do not have as much texture as
color images do, and they are too noisy to apply local differential operators
such as gradients on. These challenges motivate us to seek for features that are
semi-local, highly discriminative and robust to occlusion.

In this paper, we treat a three-dimensional action sequence as a 4D shape and
propose random occupancy pattern (ROP) features, which are extracted from
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randomly sampled 4D subvolumes with different sizes and at different locations.
Since the ROP features are extracted at a larger scale, it is robust to noise.
At the same time, they are less sensitive to occlusion because they only encode
information from the regions that are most discriminative for the given action.

An Elastic-Net regularized classification model is developed to further se-
lect the most discriminative features, and sparse coding is utilized to robustly
encode the features.The feature encoding step further improves the proposed
method’s robustness to occlusion by modeling the occlusion noise as the sparse
coding reconstruction errors. The proposed approach performs well on the depth
sequence dataset and is robust to occlusion. The general framework of the pro-
posed method is shown in Fig. 1.

We evaluate our method on two datasets captured by commodity depth cam-
eras. The experimental results validate the effectiveness of the proposed method.

Our main contributions are as follows: First, we propose a computationally
efficient method to perform action recognition from depth sequences. Second, a
novel weighted sampling scheme is proposed to effectively explore an extremely
large dense sampling space. Third, we propose to employ sparse coding to deal
with the occlusion in the depth sequences.

Fig. 1. The framework of the proposed method. The 3D subvolumes are shown for
illustration purpose. In the implementation, 4D subvolumes are employed.

2 Related Work

The Haar wavelet-like features have been successfully applied in [5] for face
detection. A boosted classifier is learned by applying AdaBoost algorithm [6] on
a very large pool of weak classifiers. The weak classifier pool is constructed based
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on the features extracted from the rectangles at all possible locations and scales.
While this approach is successful for 2D images, when the data becomes 3D or
4D, the number of possible rectangles becomes so large that enumerating them or
performing AdaBoost algorithm on them becomes computationally prohibitive.
[7] utilizes 3D occupancy features and models the dynamics by an exemplar-
based hidden Markov model. The proposed ROP feature is much simpler and
more computationally efficient than Haar-like features, while achieving similar
performances in depth datasets.

Randomization has been applied in [8] and [9] to address this problem. [9]
employs a random forest to learn discriminative features that are extracted ei-
ther from a patch or from a pair of patches for fine-grained image categorization.
[8] applies a random forest to mine discriminative features from binary spatial
arrangement features for character recognition. Their work demonstrates the
effectiveness of randomization in dealing with this problem. We exploit random-
ization to perform action recognition from depth sequences, in which the data
is sparse and the number of the possible subvolumes is much larger.

[10] and [11] also employ randomization in the learning process. These ap-
proaches randomly map the data to features with a linear function whose weights
and biases are uniformly sampled. Their empirical and theoretical results show
that their training is much faster than AdaBoost’s, while their classification
accuracy is comparable to AdaBoost’s. The proposed approach also randomly
maps the data to features. Unlike [10] and [11], however, our approach exploits
the neighborhood structure of depth sequences, and extracts features from the
pixels that are spatially close to each other. Furthermore, we propose a weighted
sampling technique that is more effective than uniform sampling.

Recently, a lot of efforts have been made to develop features for action recog-
nition in depth data. [12] represents each depth frame as a bag of 3D points
on the human silhouette, and utilizes HMM to model the temporal dynamics.
[13] uses relative skeleton position and local occupancy patterns to model the
human-object interaction, and developed Fourier Temporal Pyramid to charac-
terize temporal dynamics. [14] also applies spatio-temporal occupancy patterns,
but all the cells in the grid have the same size, and the number of cells is empiri-
cally set. [15] proposes a dimension-reduced skeleton feature, and [16] developed
a histogram of gradient feature over depth motion maps. Instead of carefully
developing good features, this paper tries to learn semi-local features automat-
ically from the data, and we show that this learning-based approach achieves
good results.

3 Random Occupancy Patterns

The proposed method treats a depth sequence as a 4D volume, and defines
the value of a pixel in this volume I(x, y, z, t) to be either 1 or 0, depending on
whether there is a point in the 4D volume at this location. The action recognition
is performed by using the value of a simple feature called random occupancy

patterns, which is both efficient to compute and highly discriminative.
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This paper employ four dimensional random occupancy patterns to construct
the features, whose value is defined to be the soft-thresholded sum of the pixels
in a subvolume:

oxyzt = δ(
∑

q∈binxyzt

Iq) (1)

where Iq = 1 if the point cloud has a point in the location q and Iq = 0 otherwise.
δ(.) is a sigmoid normalization function: δ(x) = 1

1+e−βx . This feature is able to
capture the occupancy pattern of a 4D subvolume. Moreover, it can be computed
in constant complexity with the high dimensional integral images [17].

As shown in Fig. 1, we extract ROP features from the subvolumes with dif-
ferent sizes and at different locations. However, the number of possible simple
features is so large that we are not able to enumerate all of them. In this paper,
we propose a weighted random sampling scheme to address this problem, which
will be described in Section 4.

4 Weighted Sampling Approach

Since the number of possible positions and sizes of a 4D subvolume is extremely
large and the information of these features is highly redundant, it is neither
necessary nor computationally efficient to explore all of them. In this section, we
propose a random sampling approach to efficiently explore these 4D subvolumes.

4.1 Dense Sampling Space

Recall that a ROP feature is extracted from a 4D subvolume. It is computa-
tionally prohibitive to extract the features from all possible subvolumes, thus we
would like to sample a subset of discriminative subvolumes and extract the fea-
tures from them. This subsection characterizes the dense sampling space, from
which we randomly sample subvolumes.

Denote the size of a depth sequence volume to be Wx × Wy × Wz × Wt. A
subvolume can be characterized by two points [x0, y0, z0, t0] and [x1, y1, z1, t1],
and is denoted as [x0, y0, z0, t0] ∼ [x1, y1, z1, t1]. A normal subvolume has the
property that x0 ≤ x1, y0 ≤ y1, z0 ≤ z1, and t0 ≤ t1, and the subvolume is the
set of points

{[x, y, z, t] : x0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

z0 ≤ z ≤ z1, t0 ≤ t ≤ t1}
(2)

Our sampling space consists of all the subvolumes [x0, y0, z0, t0] ∼ [x1, y1, z1, t1]
where x0, x1 ∈ {1, 2, · · · ,Wx}, y0, y1 ∈ {1, 2, · · · ,Wy}, z0, z1 ∈ {1, 2, · · · ,Wz},
t0, t1 ∈ {1, 2, · · · ,Wt}. If we take (Wx,Wy,Wz ,Wt) = (80, 80, 80, 80), the size
of the dense sampling space is 808 = 1.67× 1015. This dense sampling space is
so large that exhaustively exploring it is computationally prohibitive. However,
since the subvolumes highly overlap with each other, they contain redundant in-
formation, and it is possible to employ randomization to deal with this problem.
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4.2 Weighted Sampling

One way to sample from the dense sampling space is to perform uniform sam-
pling. Nevertheless, since in the depth sequences many subvolumes do not con-
tain useful information for classification, uniform sampling is highly inefficient.
In this section, to efficiently sample from the dense sampling space, we propose
a weighted sampling approach based on the rejection sampling, which samples
the discriminative subvolumes with high probability.

To characterize how discriminative a subvolume is, we employ the scatter
matrix class separability measure [18]. The scatter matrices include Within-

class scatter matrix (SW ), Between-class scatter matrix (SB), and Total scatter

matrix (ST ). They are defined as SW =
∑c

i=1

∑ni

j=1 (hi,j −mi)(hi,j −mi)
T ,

SB =
∑c

i=1 ni(mi −m)(mi −m)T , ST = SW + SB, where c is the number of
the classes, ni denotes the number of training data in the i-th class, and hi,j

denote the features extracted from the j-th training data in the i-th class. mi

denotes the mean vectors of the features hi,j in the i-th class and m the mean
vector of the features extracted from all the training data. A large separabil-
ity measure means that these classes have small within-class scatter and large
between-class scatter, and the class separability measure J can be defined as

J =
tr(SW)

trSB
(3)

Denote V as the 4D volume of a depth sequence. For each pixel p ∈ V , we define
a neighborhood subvolume centered at p, and extract the 8 Haar feature values
from this neighborhood subvolume. These 8 feature values form an 8-dimensional
vector which is used as the feature vector h to evaluate the class separability
score Jp at pixel p.

A subvolume should be discriminative if all the pixels in this subvolume are
discriminative, and vice versa. Therefore, we utilize the average of the separa-
bility scores of all the pixels in the region R as the separability score of R.

The probability that a subvolume R is sampled should be proportional to its
separability score JR, that is,

PR sampled ∝ JR =
1

NR

∑

p∈R

Jp (4)

where NR is the number of pixels in the subvolume R.
We can uniformly draw a subvolume, and accept the subvolume with

probability

PR accept =
WxWyWzWt∑

p∈V Jp
JR (5)

Note that PR uniformPR accept = PR sampled. Therefore, with the rejection sam-
pling scheme, the probability that R is selected is equal to the desired probability
as specified in equation (4). The derivation of the acceptance rate can be found
in the supplemental material.
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Because we are able to compute the average separability score in a subvolume
very efficiently using the high dimensional integral image, this sampling scheme
is computationally efficient. The outline of the algorithm is shown in Alg. 1.

Let NS denote the number of subvolumes to sample, Jp the separability score at1

pixel p.
Compute P =

WxWyWzWt∑
p∈V Jp2

repeat3

Uniformly draw a subvolume R.4

Compute the average separability score in this subvolume JR with integral5

image.
Compute the acceptance rate Paccept = PJR.6

Uniformly draw a number N from [0, 1].7

if N ≤ Paccept then8

Retain the subvolume R.9

end10

else11

Discard the subvolume R.12

end13

until the number of subvolumes sampled ≥ NS ;14

Algorithm 1. Weighted Sampling Algorithm

5 Learning Classification Functions

Given the training data pairs (xi, ti), i = 1, · · · , n, where xi ∈ RL denotes a
training data, and ti ∈ T is the corresponding label, the aim of the classification
problem is to learn a prediction function g : RL → T . Without loss of generality,
we assume the classification problem is a binary classification problem, i.e., T =
{0, 1}. If the problem is a multiclass problem, it can be converted into a binary
classification problem with the one-vs-others approach.

An Elastic-Net regularization is employed to select a sparse subset of features
that are the most discriminative for the classification. Choosing a sparse subset
of features has several advantages. First, the speed of the final classifier is faster
if the number of the selected features is smaller. Second, learning a sparse clas-
sification function is less prone to over-fitting if only limited amount of training
data is available [19].

For each training data sample xi, Nf ROP features are extracted: hi
j , j =

1, · · · , Nf , and the response is predicted by a linear function

yi =

Nf∑

j=1

wjh
i
j (6)

Denote w as the vector containing all wj , j = 1, · · · , Nf . The objective of the
learning is to find w that minimizes the following objective function:
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E =

n∑

i=1

(ti − yi)2 + λ1‖w‖1 + λ2‖w‖22 (7)

where λ1 is a regularization parameter to control the sparsity of w, and λ2 is
used to ensure that the margin of the classifier is large. It has been shown that if
the number of features Nf is much larger than that of the training data n, which
is the case of this paper, Elastic-Net regularization works particularly well [19].
SPAMS toolbox [20] is employed to numerically solve this optimization problem.

The selected feature f is obtained by discarding the features xj with corre-
sponding wj less than a given threshold and multiplying the rest of xj by weight
wj .

All the training data is utilized as the dictionary A = [f1,f2, · · · ,fn]. For a
test data with feature f , we can solve the following sparse coding problem:

min
1

2
‖f −Aα‖22 + λ‖α‖1 (8)

where α is called the reconstruction coefficients, and λ is a regularization param-
eter. This model assumes the feature vector f can be represented as the linear
combination of the features of the training data plus a noise vector ǫ.

f =

n∑

i=1

αif
i + ǫ (9)

The reconstruction coefficients α are employed to represent a depth sequence,
and an SVM classifier is trained for action classification.

6 Experimental Results

In this section, we evaluate our algorithm on three datasets captured by commod-
ity depth cameras: the MSR-Action3D datasets [12], Gesture3D dataset. The
experimental results show that our algorithm outperforms the existing methods
on these datasets, and is not sensitive to occlusion error. The β of the sigmoid
function for ROP feature is set to be 10 in all the experiments.

6.1 MSR-Action3D

MSR-Action3D dataset [12] is an action dataset of depth sequences captured by
a depth camera. This dataset contains twenty actions: high arm wave, horizontal
arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick,
draw circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, golf swing, pick up & throw. Each action
was performed by ten subjects for three times. The frame rate is 15 frames per
second and resolution 640 × 480. Altogether, the dataset has 23797 frames of
depth maps for 402 action samples. Some examples of the depth map sequences
are shown in Fig. 2.
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Those actions were chosen to cover various movement of arms, legs, torso and
their combinations, and the subjects were advised to use their right arm or leg if
an action is performed by a single arm or leg. Although the background of this
dataset is clean, this dataset is challenging because many of the actions in the
dataset are highly similar to each other. In this experiment, 50000 subvolumes
are sampled unless otherwise stated.

Fig. 2. Sample frames of the MSR-Action3D dataset

In order to ensure the consistency of the scale, Each depth sequence is resized
to the same size 80× 80× 80× 10. The separability scores of the MSR-Action3D
are shown in Fig. 3. The regions with high separability scores are human’s arms
and legs, which is consistent with the characteristics of the dataset, and the
beginning and the ending parts of an action is less discriminative than the middle
part of an action. Moreover, in Fig. 3(d), it can be observed that the center of the
human does not have high separability score, because the center of the human
usually does not have many movements and does not contain useful information
for classification.
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Fig. 3. The projection of the separability scores for MSR-Action3D, where red color
means high intensity. (a) the projection of the separability scores to x-y plane. (b) the
projection of the separability scores to y-z plane. (c) the projection of the separability
scores to y-t plane. (d) the cross section of the separability scores on x-y plane at
z = 40, t = 1.

We compare our algorithm with the state-of-the-art method [12] on this
dataset, which extracts the contour information from the depth maps, with half
of the subjects as training data and the rest of the subjects as test data. Ta-
ble 1 shows the recognition accuracy. The recognition accuracy is computed by
running the experiments 10 times and taking the average of each experiment’s ac-
curacy. Our method outperforms this method by a large margin. Notice that our
classification configuration uses half of the subjects as the training data and the
rest of them as test data, which is difficult because of the larger variations across
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the same actions performed by different subjects. Our method is also compared
with the STIP features. [21], which is a state-of-the-art local feature designed
for action recognition from videos. The local spatio-temporal features do not
work well for depth data because there is little texture in depth maps. Another
method we compare with is the convolutional network. We have implemented
a 4-dimensional convolutional network by extending the three-dimensional con-
volutional network of [22]. Finally we compare with a Support Vector Machine
classifier on the raw features consisting of the pixels on all the locations. Al-
though the Support Vector Machine performs surprisingly well on our dataset,
the training time of the SVM is very long because the dimension of the features
is very high. In contrast, the proposed method is simple to implement and is
computationally efficient in both training and testing. Moreover, it outperforms
all the other methods including SVM. In addition, we can see that the proposed
ROP feature performs comparably with Haar features.

Table 1. Recognition Accuracy Comparison for MSR-Action3D dataset

Method Accuracy

STIP features [21] 0.423
Action Graph on Bag of 3D Points [12] 0.747
High Dimensional Convolutional Network 0.725
STOP feature [14] 0.848
Eigenjoints [15] 0.823
Support Vector Machine on Raw Data 0.79

Proposed Method (Without sparse coding) 0.8592

Proposed Method (Haar Feature) 0.8650

Proposed Method (Sparse Coding) 0.8620

In order to test the sensitivity of the proposed method to occlusions, we divide
each depth sequences into 2× 2× 1× 2 subvolumes, i.e., we partition each depth
sequences into two parts in y, x and t dimensions. Each volume only covers half of
the frames of the depth sequences. Occlusion is simulated by ignoring the points
that fall into the specified occluded subvolume, illustrated in Fig. 4. We run the
simulation with one subvolume occluded, the performance is shown in Table. 2.
It can seen that employing sparse coding can greatly improve the robustness.

The confusion matrix is shown in Fig. 5. The proposed method performs very
well on most of the actions. Some actions, such as “catch” and “throw”, are too
similar to each other for the proposed method to capture the difference.

We also compare the classification accuracy of the proposed sampling scheme
to that of the uniform sampling scheme in Fig. 6(a). It can be observed that the
weighted sampling scheme is more effective than the uniform sampling scheme.
Moreover, the proposed scheme does not suffer from overfitting even when the
number of the sampled subvolumes is very large. [23] gives an intuitive proof of
the generalization ability of classifier of the randomly generated features.

The depth sequences are downsampled into different resolutions, and we ex-
plore the relationship between the resolution of the data and the classification
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Table 2. Robustness to occlusion comparison

Occlusion Accuracy without using sparse coding Accuracy using Sparse Coding

1 83.047 86.165
2 84.18 86.5
3 78.76 80.09
4 82.12 85.49
5 84.48 87.51
6 82.46 87.51
7 80.10 83.80
8 85.83 86.83

Fig. 4. An occluded depth sequence.
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Fig. 5. The confusion matrix for the proposed method on MSR-Action3D dataset. It
is recommended to view the figure on the screen

accuracy. The relationship found is shown in Fig. 6(b). Our observation is that
the performance of the SVM classifier may drop when we increase the resolution
of the data, but for our random sampling scheme, increasing the data resolution
always increases the classification accuracy.

6.2 Gesture3D Dataset

The Gesture3D dataset [24] is a hand gesture dataset of depth sequences cap-
tured by a depth camera. This dataset contains a subset of gestures defined by
American Sign Language (ASL). There are 12 gestures in the dataset: bathroom,
blue, finish, green, hungry, milk, past, pig, store, where, j, z. Some example frames



882 J. Wang et al.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1000 5000 10000 50000 100000

Uniform Sampling

Weighted Sampling

Number of subvolumes sampled

C
la

ssifi
ca

�
o

n
 A

ccu
ra

cy

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random  Sampling

SVM on raw features

C
la

ssifi
ca

�
o

n
 A

ccu
ra

cy

The resolu�on of the 4D volume

(b)

Fig. 6. The comparison between different sampling methods, and the relationship be-
tween the resolution of data and the classification accuracy for SVM and the proposed
sampling method.

of the gestures are shown in Fig. 7. Notice that although this dataset contains
both the color and depth frames, only depth frames are used in the experiments.
Further description of the gestures can be found in [25]. All of the gestures used
in this experiment are dynamic gestures, where both the shape and the move-
ment of the hands are important for the semantics of the gesture. There are ten
subjects, each performing each gesture two or three times. In total, the dataset
contains 336 depth sequences. The self occlsion is more common in the gesture
dataset.

(a) blue gesture (b) green gesture (c) hungry gesture

Fig. 7. The sample frames of the Gesture3D dataset, (a) the blue gesture. (b) green
gesture. (c) hungry gesture.

In this experiment, all gesture depth sequences are subsampled to size 120×
120 × 3 × 10. The leave-one-subject-out cross-validation is employed to evalu-
ate the proposed method. The recognition accuracy is shown in Table 3. The
proposed method performs significantly better than the SVM on raw features
and the high dimensional convolutional network. Our performance is also slight
better than the action graph model which uses carefully designed shape features
[24].

The separability score map for Gesture3D dataset is shown in Fig. 8. We
observe that the score map of the gestures is very different from that of the
actions shown in Fig. 3, because the movement pattern of the gestures and
the actions is very different. In gesture depth sequences, the semantics of the
gesture are mainly determined by the large movement of the hand, while the
human actions are mainly characterized by the small movements of the limbs.
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Fig. 8. The projection of the scores for Gesture3D, (a) the projection of the scores to
x-y plane. (b) the projection of the scores to y-t plane.

The confusion matrix is shown in Fig. 9. The proposed method performs quite
well for most of the gestures. It can be observed from the confusion matrix that
large confusion exists between the gesture “where” and “green”. Both gestures
involve the movement of one finger, and only the directions of the movement are
slightly different.
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Fig. 9. The confusion matrix of the proposed method on Gesture3D dataset

Table 3. Recognition Accuracy Comparison for Gesture3D dataset

Method Accuracy

SVM on Raw Features 0.6277
High Dimensional Convolutional Network [22] 0.69
Action Graph on Occupancy Features [24] 0.805
Action Graph on Silhouette Features [24] 0.877

Proposed Method (Without sparse coding) 0.868

Proposed Method (Sparse coding) 0.885
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7 Conclusion

This paper presented a novel random occupancy pattern features for 3D action
recognition, and proposed a weighted random sampling scheme to efficiently
explore an extremely large dense sampling space. A sparse coding approach is
employed to further improve the robustness of the proposed method. Experi-
ments on different types of datasets, including an action recognition dataset and
a gesture recognition dataset, demonstrated the effectiveness and robustness of
the proposed approach as well as its broad applicability.
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