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Abstract—This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical

application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present

a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the

gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the

shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change

characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak

classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different

schemes are designed for verification and identification to pursue high performance in both recognition and computation. The

experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR

of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about

3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient.

Index Terms—3D shape matching, collective shape difference classifier, face recognition, signed shape difference map.

Ç

1 INTRODUCTION

AUTOMATIC face recognitionhas apparent advantages over
other biometric technologies due to the natural, non-

intrusive, and high throughput properties in face data
acquisition. Over the past three decades, much effort has
been made on 2D face recognition using intensity images as
input data. Although some 2D face recognition systems have
good performance under constrained conditions, face recog-
nition is still a great challenge due to variations in illumina-
tion, pose, and expression [2], [34] since an intensity face
image is a projection of a 3D face with one dimension lost.

With the rapid development and dropping cost of 3D
digital acquisition devices, 3D face data, which represents
faces as 3D point sets or range data, can be captured more
quickly and accurately [7]. The use of 3D information in face
recognition has attracted great attention and various techni-
ques havebeenpresented in recent years [4], [7]. Since 3D face
data contain explicit 3D geometry, more clues can be used to
handle the variations of face pose and expression. Thus, 3D
face recognition is expected toovercome the challenges facing
2D face recognition and improve the system performance [1].

1.1 Related Work

Although there are two extensive surveys of 3D face
recognition methods published in 2005 [4] and 2006 [7],

new progress has been made since then [42], [40], [43], [45].
Here, we give a brief review of the previous work in three
parts. The first part looks atmethods that appeared relatively
early and were tested on relatively small or nonpublic data
sets. Approaches in the second part focus on handling
expression variations, which is a great challenge in 3D face
recognition. The last part concentrates on the work tested on
the whole FRGC v2 database [38], which is the largest public
data set for comparing different methods. The three parts
may have some overlaps. Besides, we focus on face recogni-
tion only by 3D face shapes. For some multimodal methods
mentioned, only their 3D face engines are discussed.

1.1.1 Basic Methods

The methods discussed in this section mostly handle
relatively small or nonpublic data sets. Some methods work
under special conditions (e.g., manually labeled landmarks).
We roughly categorize them into four classes according to
the types of the features.

1. Facial curve-based. This kind of method extracts
representative facial curves from 3D face data as
features to help surface matching or to replace
surface matching with curve matching for recogni-
tion. The key problem is how to develop the schemes
of curve extraction and matching. Using five feature
points, Nagamine et al. [8] aligned face range data
and found three curves at which the face surface
intersects vertical and horizontal planes and a
cylinder. The euclidean distance was used for curve
matching. In [33], a symmetry plane was determined
to help compute the bilateral profile of the face
and the matching of profile was based on a modified
Hausdorff distance measure. Beumier and Acheroy
[32] searched for the central profile with maximal
protrusion and two parallel profiles along side. Local
curvature values along the profile curves were
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estimated to compare the profiles. Recently, Samir
et al. [9] proposed a method which represents a face
surface by the union of the level curves of a depth
function. Then a metric was defined for comparing
the unions based on the similarity between curves.

2. Shape descriptor-based. Shape descriptors are designed
to be invariant to rotation to encode the local surface
shapes. Chua et al. [27] used point signature, a
representation of free-form surfaces for 3D face
recognition in which the rigid parts of a face are
extracted to deal with different facial expressions. A
similar representation named local shape map was
proposed in [28]. Tanaka et al. [15] adopted an
extended Gaussian image (EGI) as a mediate feature
after curvature-based segmentation on which prin-
cipal directions are mapped as local features. The
spherical correlation was used to compare EGIs. The
curvature shrinks a local neighborhood to a point
and can be seen as a special shape descriptor.

3. Holistic matching-based. Achermann et al. [17], Bron-
stein et al. [36], and Hesher et al. [18] explored PCA
on images obtained by the projections of 3D faces.
Medioni and Waupotitsch [1], Lu et al. [13], [21],
Wang et al. [12], Chang et al. [5], and Maurer et al.
[29] matched face surfaces by the iterative closest
point (ICP) algorithm [3] or its modified versions.
The Hausdorff distance was also used for holistic
surface matching [16], [19], [20].

4. Prominent regions (points)-based. In these methods,
prominent regions or points of the facial surface are
detected to form feature vectors. Comparison be-
tween two faces ismade based on their relationship in
the feature space. Gordon [14] extracted both high
level features (such as eyes and nose) and low level
ones (such as distances and curvatures) to build a
feature vector. By the signs of the mean and Gaussian
curvatures, Moreno et al. [10] segmented the face
surface into regions and lines on which features were
constructed. A feature vector was formed by a feature
selection procedure. Gupta et al. [11] manually
located anthropometric facial fiducial points and
used a feature vector based on the anthropometric
distances between the points for recognition. Xu et al.
[24] converted a 3D face into a regular mesh and
constructed an intrinsic feature vector to encode the
3D shape. AdaBoost was used for selecting the most
effective local features. Zhong et al. [25] calculated
Gabor features from each divided patch of a 3D face
and made a learned visual codebook (LVC) based on
the results of K-means clustering on the filter
response vectors. By LVCs, recognition was achieved
with a nearest neighbor classifier.

1.1.2 Methods Handling Expression Variations

Expression variations cause the distortion of the facial
surface and have been an impediment to achieve high
performance in 3D face recognition. Motivated by the fact
that distortions do not cover the whole facial surface, Chang
et al. [6] selected three regions around the nose, which are
believed to be relatively rigid formatching. Based on ICP, the
matching scores were fused by the product rule. The results
show that the scheme improves the performance compared

with the ICP baseline. Chua et al. [27] also investigated the
rigid parts for recognition. However, how to find an optimal
group of rigid parts with sufficient discriminating power is
still a problem [7]. An alternative method is to set up an
approximate expression model and, for a given nonneutral
face, a virtual 3D face is generated by the model which
suppresses the expression effect. Recognition is performed
using the virtual 3D face. Bronstein et al. [37] assumed that
facial expressions can be modeled as isometries of facial
surfaces. An expression-invariant face representation named
canonical form was constructed by geodesic distances and
multidimensional scaling (MDS). Lu et al. [21], [22] intro-
duced a deformable model into facial surface matching. By a
control group, a neutral face was transferred to several faces
which were synthesized into a deformable face before being
fitted to a test scan. Using the Poisson equation and a rigid
constraint, Wang et al. [40] proposed a guidance-based
constraint deformation model (GCD) for deformation from a
nonneutral face to a neutral one. This kind of work is
interesting and improves the performance to some extent,
but it is computationally demanding.

1.1.3 Methods Tested on FRGC v2

Since the Face Recognition Grand Challenge (FRGC) started
[38], public 3D face databases and predefined settings of
experiments have been available. There are 466 people and
4,007 3D faces in FRGC v2 for validation and the design of
Experiment 3 aims to examine the performance of a 3D face
recognition method which includes three settings, ROC I,
ROC II, and ROC III masks. The target of FRGC is an order of
magnitude increase in performance over FRVT 2002 [34],
whichmeans a verification rate of 98 percent at the fixed FAR
of 0.1 percent. More and more recent work used FRGC v2 as
experimental data. Such a large data set forces researchers to
further improve their algorithms and the same protocol
allows for comparison between different methods.

Husken et al. [30] explored 2D and 3D multimodal face
recognition. Eachmodality uses hierarchical graphmatching
(HGM) to evaluate the performance. A verification rate of
89.5 percent was obtained with the FAR of 0.1 percent on the
ROC III mask by their 3D verification engine. A PCA 3D face
modeling method was proposed by Russ et al. [53] in which
the synthesis of 3D faces by the PCA basis vectors can
potentially correct some nonrigid distortion caused by facial
expression. Maurer et al. [29] tried the ICP method on the
whole FRGC v2 database (4,007 versus 4,007 full cross run)
and obtained an 87 percent verification rate with the FAR of
0.1 percent. A log-Gabor templatemethod proposed by Cook
et al. [31] achieves a verification rate of 93.71 percent on ROC
I, 92.91 percent on ROC II, and 92.01 percent on ROC III.
Kakadiaris et al. [42] proposed a deformablemodel to fit a 3D
face to aligned 3D facial scans and measured the difference
between two faces. Based on the fitting results, geometry and
normal map images were constructed. Then the Haar
wavelets and pyramid transform were applied to extract
features for comparison.Verification rates of about 97percent
were reported on ROC I , ROC II, and ROC III.Mian et al. [43]
investigated fusion of 2D and 3D methods for recognition.
The eyes-forehead and nose regionswere segmented for a 3D
classifier, with a rejection classifier constructed by a spherical
face representation and SIFT for efficiency. High verification
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rates of about 97-99 percent were reported at a 0.1 percent
FARwhen the neutralmodelswere placed in the gallerywith
their R3D algorithm. However, they did not give the results
of the FRGC v2 standard protocol, namely, Experiment 3.
Faltemier et al. [45] introduced a matching fusion of
28 overlapped small regions of the facial surface with Borda
Count and Consensus Voting methods. A rank-1 recognition
rate of 97.2 percent was reported when the earliest scans
wereput into the gallery andaverification rate of 94.8percent
at a 0.1 percent FARwas obtainedonROC III of Experiment 3.
Mian et al. [44] constructed graphs from the local feature set
based on detected key points. The similarity between two
faces was measured as the similarity between their graphs.
Both 2D and 3D data of faces are used for recognition. For the
3D engine alone, 93.5 percent rank-1 recognition rate and
97.4 percent verification rate were achieved on the “Neutral
versus All” experiment with FRGC v2. Boehnen et al. [54]
recently proposed a 3D signature method for face recogni-
tion. A 3D signature is a vector with its elements being some
fixed surface points. Faces are preregistered to a reference
face in a canonical coordinate system, obviating the need of
iterative alignment for each matching. Eight 3D signatures
corresponding to eight predefined regions are constructed
and used for fusion duringmatching. It achieves 95.5 percent
rank-1 recognition rate on the FRGC v2 database with the
earliest images constituting the gallery.

Although the recent algorithms for 3D face recognition
have reached relatively high performance on large data-
bases [42], [43], [45], [35], challenges still exist.

The first problem is how to efficiently extract the main
facial region from the raw face data with arbitrary posture.
The raw data may contain hair, shoulders, and neck as well
as some artifacts such as holes and spikes [7]. It is very
important since the cropping error usually cannot be
rectified by later procedures. Mian et al. [43] proposed a
coarse-to-fine approach to detect the nose tip for facial
region cropping. Several slices of the raw data were
generated on which nose tip candidates were found. A
facial region was cropped by a sphere positioned at the
selected nose tip. However, the face has to be placed in the
top-bottom posture, and the slice computing and repeated
searching on them are time consuming. Faltemier et al. [45]
located the nose tip by a consensus of two or three methods,
e.g., ICP and curvature analysis.

The second problem is how to quickly and precisely
align two face models. The ICP algorithm is frequently used
for 3D face alignment [45], [43], [29]. However, it suffers
from facial surface distortion due to expression variations
and noise. Besides, the iterative process makes ICP
computationally expensive and the registration must be
done for each model in the gallery, which is not suitable for
the identification task with a large gallery.

The third problem is how to optimize the combination of
small rigid facial regions for matching to reduce the effect of
expressions. It has been proven that recognition using rigid
facial regions can improve the performance on a data set
with expression variations [45], [43], [6]. However, the
selection of rigid regions was based on intuition and the
optimal selection and combination are still unsolved.

The last problem is computational efficiency. More
information in 3D face data leads to more computational
cost. Although some effective techniques can work in

verification scenario with time cost of about 10 seconds on
a common PC [42], [45], fast identification is still a problem
when thousands of faces are in the gallery.

1.2 Overview of Our Method

This paper proposes a new 3D face recognition approach,
called Collective Shape Difference Classifier (CSDC), to deal
with the problems described above. The main contributions
of our work are summarized as follows:

1. A fast and effective face posture alignment techni-
que is presented to place all face models to a
standard position and orientation. This alignment is
self-dependent and precise for recognition. It avoids
the registration between an input face against every
face in the gallery so that high computational
performance in face identification can be obtained.
A fast face cropping method is also proposed.

2. A Signed Shape Difference Map (SSDM) is defined
between two depth images sampled from two
aligned 3D face models. The different parts of the
SSDM do not contribute the same discriminability
due to nonrigid distortion on the face. Besides, the
shape changes caused by the same expression may
have similar patterns for different persons. The
characteristics of these two aspects on SSDMs are
described by three features, Haar-like feature [48],
Gabor feature [49], and Local Binary Pattern (LBP)
[50], on different positions of SSDMs. Based on the
intrapersonal and interpersonal SSDMs, the most
discriminative local features are chosen by a boosting
algorithm [41] and used to build three strong CSDCs.

3. During evaluation, the multiclass 3D face recogni-
tion problem is converted to a two-class classifica-
tion problem, i.e., interpersonal and intrapersonal
classes, similar to the case in 2D face recognition
[52]. Different schemes are developed for verifica-
tion and identification. Three CSDCs are fused to
obtain a high verification rate, and only the most
effective CSDC, Haar feature-based CSDC is used
for efficient face identification.

The framework of our method is shown in Fig. 1. The
requirements of an applicable 3D face algorithm are
considered in our method, e.g., fast self-dependent align-
ment and optimally selected local regions to overcome
expression variations.

Our method has been tested on the FRGC v2 database
according to the standard protocol. With ROC I, ROC II,
and ROC III masks in FRGC v2, verification rates of above
97.9 percent with the FAR of 0.1 percent are obtained and
the rank-1 recognition rate of above 98.3 percent is achieved.
These results are comparable to (more exactly, slightly
better than) the best approaches published. Besides, not
only verification but also identification (1,000 models in the
gallery) can be finished within 4 seconds. Thus, our work is
of both high recognition performance and computational
efficiency in 3D face recognition.

The paper is an extension and improvement of our
previous work in [46]. The rest of this paper is organized as
follows: Section 2 presents the methods of denoising and
facial region cropping. Section 3 gives the detail of our fast
alignment approach. In Section 4, we explain the represen-
tation of shape difference. The training and testing methods
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for multiple features are described in Section 5. Experi-
mental results are shown in Section 6. Finally, Section 7
draws the conclusion.

2 DENOISING AND FACE CROPPING

Many commercial 3D scanners can take a range sample and
a registered 2D texture image [38]. Since the texture channel
and the 3D face data correspond well, Chang et al. [6]
applied a skin detection method on the texture channel to
help 3D facial region extraction. We also preform 3D facial
region cropping with the help of the texture channel. Unlike
Chang et al.’s work, we use the face detection method on 2D
images [47] to achieve 3D face extraction. It should
be mentioned that we only use 2D images to assist 3D face
cropping. The steps of denoising and cropping are
described as follows:

1. Three Gaussian filters are designed to remove
spikes, fill small holes, and smooth the data with
different variances, as shown in Fig. 2b.

2. On the texture channel, a face region is detected and
the corresponding 3D points of the region in the 3D
raw data are labeled as a set Fc (see Fig. 2c).

3. A plane �c is fitted using the points in Fc, which cuts
these data into two parts. For each part, we compute a
mean squared distance (MSD) from the points in the
part to its centroid. The one with the smaller MSD is
selected as another set F 0

c. As shown in Fig. 2d,
among the points in both F 0

c and the middle 1/4 area
of the detected face region, the point with the largest
distance to the plane �c is selected as the approx-
imate nose tip pnt.

4. By placing a sphere centered at pnt, the facial region
is cropped from the denoised face data (see Fig. 2e).

This method includes the effects of removing the hair,
shoulders, and neck. It is simple and fast, and works well
on the FRGC v2 database. All 4,007 models in FRGC v2 are
correctly handled. Even for some samples with big holes,
the correct facial regions are detected, as shown in Fig. 2f. In
comparison, a recent method in [45] generates 72 errors for
the same database.

3 SELF-DEPENDENT ALIGNMENT

The proposed alignment is carried out by finding the facial
symmetry plane. With the normal of the symmetry plane,
nose tip, and the direction of nose bridge, six degrees of
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Fig. 1. The framework of our method.

Fig. 2. Denoising and facial region cropping. (a) 3D raw data. (b) Results after denoising. (c) Face detection on the texture channel. (d) Fitted planes
on the 3D data corresponding to the detected 2D face regions. (e) Cropped regions. (f) Correctly cropped examples with big holes in nose regions.



freedom in a 3D face are fixed and thus a standard alignment
posture can be obtained.

3.1 Symmetry Plane Determination

Let M ¼ fpi j pi ¼ ðxi; yi; ziÞ
T ; 1 � i � Ng denote the point

set of a cropped 3D facialmodel and�be the face’s symmetry
plane. Suppose thatpsi is themirror image ofpi 2M about�.
Clearly, � can be determined if we know psi for each pi.

With respect to a certain plane�m, a mirror ofM, denoted
by M 0, is calculated with pi mapped to pmi, as shown in
Fig. 3a. Then we register M 0 to M with M fixed, which
transforms pmi to pmri. It can be seen from Fig. 3b that pmri is
exactly psi (the mirror image of pi about�) if the registration
is correct. Thus, psi can be obtained by the two transforma-
tions. We summarize the method of finding the symmetry
plane in Algorithm 1.

Algorithm 1. Finding the symmetry plane of a face model

Input: A cropped face model M.

Procedure:
1) Mirror M about a certain plane �m to

M 0 ¼ fpmi j pmi ¼ ðxmi; ymi; zmiÞ
T ; 1 � i � Ng, where

the correspondence between pi and pmi is naturally

set up.

2) Register M 0 to M, which converts M 0 to M 00 ¼

fpmri j pmri ¼ ðxmri; ymri; zmriÞ
T ; 1 � i � Ng.

3) Obtain the symmetry plane � by fitting it on the set of

points B ¼ fpbi j p
b
i ¼ ðpi þ pmriÞ=2; 1 � i � Ng.

Output: The symmetry plane � of M.

The three steps can bewell understood by Figs. 3a, 3b, and
3c. In step 1, the plane �m for the computation ofM 0 should
be carefully chosen. Consider the special pose of the input
facial model and �m shown in Fig. 3d. This mirror plane can
lead to nonconvergent registration in step 2. Observing the
shape of the face, we find that the largest variance happens in
the face top-bottom direction, while the smallest variance
occurs in the normal direction of the front face. Hence, by
principal component analysis (PCA) on M, three eigenvec-
tors, v1, v2, and v3, are obtained with their corresponding
eigenvalues �1 � �2 � �3, where v1 approximately corre-
sponds to the face top-bottom direction, v3 corresponds to

the face normal direction, and v2 is perpendicular to both v1

and v3. The mirror plane �m is chosen as the plane passing
through the centroid ofM andwith its normal being v2. Such
a plane passes through M, making M 0 and M already
roughly coincident, which leads to fast convergence in step 2.

In step 2 of Algorithm 1, we use ICP [3] for the registration
betweenM andM 0. Inmanypreviousmethods, ICP is used to
register an input model to every model in the gallery set for
matching. Thus, the number of ICP executions is the same as
thenumberofmodels in thegallery.However, in ourmethod,
we only run it once for an input face.

It should be mentioned that our algorithm is based on the
fact that the human face is self-symmetric. However, the
extracted facial region may not be so ideal, especially along
the boundary, as shown in Fig. 3e. To guarantee better
convergence and registration with ICP, the points close to
the boundary are discarded in the registration. Our experi-
ments show that this method of symmetry plane determina-
tion is sufficiently robust. Two difficult examples are given
in Fig. 4 where the 3D face data are not so symmetric.

3.2 Finding the Nose Tip and Nose Bridge Direction

3.2.1 Nose Tip Location

With the symmetry plane � of the face modelM, the central
profile C is obtained by the intersection between � and M
(see Fig. 5). The nose tip is one of the most distinctive
landmarks on M and can be located from C.

As stated in Section 2, the fitted plane �c of the detected
facial region Fc cuts the facial data into two parts. The part
with the smaller MSD contains the nose. Thus, a point, pt,
is considered as the nose tip if it satisfies the following
three conditions:
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Fig. 3. Symmetry plane finding. (a) An input face M and its mirror M 0.
(b) Registration of M 0 to M. (c) The symmetry plane �. (d) A special
mirror plane which may lead to nonconvergence in ICP. (e) Points inside
the closed white curve used for registration.

Fig. 4. Symmetry plane detection for two difficult samples in the FRGC v2
data set. (a) 04339d300. (b) 04760d76.

Fig. 5. Locating the nose tip on the profile by fitting a plane to the
detected facial region.



1. pt is on the profile C and in the middle 100 mm�
100 mm area of the detected facial region Fc;

2. pt is in the part with the smaller MSD;
3. among all points meeting 1 and 2, pt is the point

with the largest distance to the plane �c.

In this method, the symmetry plane limits the search for
the nose tip on the central profile. The facial region avoids
the effects of the hair and the bias of the face cropping. The
plane �c reduces the effects of pose changes. Besides, the
spike removal, hole filling, and smoothing steps help
accurately find the symmetry plane and �c.

To evaluate the precision of our nose tip location
method, we manually label the nose tips for the samples
in FRGC v2 as the ground truth. Two samples with big
holes on the noses (see Fig. 2f) are not included in the
evaluation. In the first experimental setting (a), the spike
removal, hole filling, smoothing, and cropping are applied
to all 4,005 samples before the nose tip detection. To test the
stability of our method to noise, in another setting (b), only
the spike removal and cropping are conducted. Two
examples in the two settings are shown in Fig. 6. Lu et al.
[22] proposed a method of nose tip detection based on
directional maximum. In their scheme, the nose tip and the
profile of a face are determined with mutual aid. The nose
tip is assumed to be both with the largest z value for the
front pose and on the central profile, while the central
profile is assumed to pass through the nose tip and is
identified by a subspace method. We have implemented
their method and compared it with our method.

It should be noted that the nose tip actually is a tiny
region for which different people may give slightly different
labeling results. Thus, the distances away from the ground
truth are computed and the numbers of detected nose tips
falling in different distance ranges away from the ground
truth are shown in Table 1. In setting (a), our method obtains
99.75 percent nose tips within 4 mm away from the ground

truth. All results do not exceed a distance of 6 mm from the
ground truth. In setting (b), there is only one sample with the
result more than 12 mm away. However, the method in [22]
obtains 63 and 75 nose tips that are 12 mm or more away
from the ground truth in the two settings, respectively. From
Fig. 6, it can be seen that 4-5 mm displacement is quite small.
Thus, our method of nose tip detection is accurate and
robust enough for recognition.

3.2.2 Nose Bridge Direction

Along the profile C, the nose bridge direction is a stable
feature across a variety of expressions and the changes of
face shapes. It can be found by the following three steps, as
shown in Fig. 7:

1. A coarse direction np along the profile C is
determined by PCA with the points on C, which is
the eigenvector corresponding to the largest eigen-
value. Along np, the points on C are sorted and the
nose tip pt separates C into two parts (see Fig. 7a).

2. On each side of C separated by pt, the points on C
within a distance dp from pt form a set Ppl or Ppr.
Using the least square method, two lines are fitted
for Ppl and Ppr (see Fig. 7b).

3. The side with the nose bridge should result in a
smaller fitting error and the direction ny of the
corresponding line is selected as the nose bridge
direction (see Fig. 7b).

The first step is to make our method work for different
face poses. In our experiments, dp is set to 40 mm.

3.3 Standard Posture

With the nose tippt, the nose bridge directionny, and the unit
normal n� of the symmetry plane � known, the posture of a
facemodel can be fixed. Next, we show how to transform the
face model to a special posture and position, called the
standard posture. As shown in Fig. 8e, in the standard
posture, the nose tip is placed at the origin, the top-bottom
direction of the face is along the y axis, the face normal
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TABLE 1
Numbers of Detected Nose Tips Falling in

Different Distance Ranges Away from the Ground Truth

(a) Spike removal, hole filling, and smoothing are carried out. (b) Only
spike removal is conducted. (total 4,005 samples)

Fig. 7. Finding the nose bridge direction. (a) A coarse direction np of the
profile C and the two parts of points near the nose tip pt. (b) Line fitting
and the direction ny of the nose bridge.

Fig. 6. Nose tip detection on sample 04531d399. The points marked with
“+” are the detection results and the points “*” are the ground truth. (a) A
hole filled and smoothed sample where “+” and “*” are 4.58 mm apart.
(b) A noisy sample where “+” and “*” are 5.01 mm apart.

Fig. 8. Transformation of a face model to the standard posture. (a) The
face model with an arbitrary posture. (b) Result after translation TA.
(c) Result after rotation R1. (d) Result after transformation S1. (e) Final
standard posture after rotation R2.



direction is along the z axis, and the x axis is naturally set up
according to the right-hand coordinate system.

The transformation of a face to the standard posture is
represented by Rs ¼ R2S1R1TA, and given a point ðx; y; zÞT ,
its coordinate in the standard posture is computed by
ðx�; y�; z�; 1ÞT ¼ Rsðx; y; z; 1Þ

T , where the four matrices are
defined as follows:

TA ¼
I3�3 �pt
0 1

� �

; ð1Þ

R1 ¼

nT� 0

nTy 0

n��ny

jn��nyj

� �T
0

0 1

2

6

6

6

4

3

7

7

7

5

; ð2Þ

S1 ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

2

6

6

4

3

7

7

5

or I4�4; ð3Þ

R2 ¼

1 0 0 0

0 cosð�Þ �sinð�Þ 0

0 sinð�Þ cosð�Þ 0

0 0 0 1

2

6

6

4

3

7

7

5

; ð4Þ

where I3�3 and I4�4 are two identity matrices, � denotes the
cross product of two vectors, and � ¼ �30�. The geometric
meanings of these transformations are illustrated in Fig. 8.
After the transformation of R1TA, if the majority of the data
points have positive z coordinates, we set S1 to the first
matrix in (3) so that the x axis is toward the left-hand side of
the face. Otherwise, S1 is set to I4�4.

Our posture alignment is based on the determination of
pt, ny, and n�. Clearly the denoising step in Section 2 is
important to support the accurate detection of these features
for the alignment. With the aligned samples after denoising,
it can be seen that our alignment method is accurate enough
for high performance from the results of our recognition
experiments (see Section 6). Here we analyze the reliability
of the alignment by comparing the alignment results
between denoised and noisy samples (see Fig. 6 for one
sample pair). The average distance between each pair is
computed after the alignment. Among the 4,005 samples
with full noses in FRGC v2, 4,002 sample pairs have their
average distances from 0.77 mm to 2.58 mm. The other three
average distances are 9.62 mm, 10.1 mm, and 24.9 mm,
respectively, caused by the displacements of the detected
nose tips on the noise data (see Table 1). This result shows
that 99.93 percent of the faces in FRGC v2 with the original
noise can be aligned reliably. It also verifies the effectiveness
of our method of determining the nose bridge direction.
Thus, our alignment method works well on common faces
of approximate mirror-symmetry with a full nose.

4 SHAPE DIFFERENCE REPRESENTATION

Based on the aligned models, we investigate shape
differences and convert 3D face recognition to a two-class
classification problem, i.e., the problem of determining
whether a shape difference is interpersonal or intraperso-
nal. To represent the shape difference between two aligned

models, we need to generate their depth images. By a
sphere with radius r centered at the nose tip, the region of
interest is picked out and projected to a w� w depth image
with the nose tip at the center of the image (we choose
w ¼ r ¼ 75 in our experiments).

Let I be adepth image, Iði; jÞbe thedepthvalue at position
ði; jÞ.Here,weconsider twoshapedifference representations:
signed shape difference map (SSDM) and shape difference
map (SDM).Given twodepth images I1 and I2, their SSDMDs

and SDM D are defined as Dsði; jÞ ¼ I1ði; jÞ � I2ði; jÞ and
Dði; jÞ ¼ jI1ði; jÞ � I2ði; jÞj, respectively. The SSDM contains
richer information of the difference. For example, it has the
information of whether some areas of one shape are upon/
below those of the other. It helps to capture not only the shape
difference, but also its change pattern. Fig. 9 shows the
distributions of the first two Haar features on SDMs and
SSDMs (see Section 5 for the detailed discussion of the
features). It can be seen that there is less overlap between
intrapersonal and interpersonal features from SSDMs than
that from SDMs, which makes SSDMs easier to be classified.

However, using I1-I2 or I2-I1 to compute the SSDM may
give different recognition results. Our strategy is to keep
consistency in training (for example, subtract a “small”
expression face from a “large” expression one) and to
compute SSDMs with both I1-I2 and I2-I1 during testing, as
shown in Fig. 1. More detail can be found in Section 5. This
scheme is not trivial and improves verification performance
remarkably (see the experiments).
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Fig. 9. The distributions of the first two features from (a) SDMs and from
(b) SSDMs, respectively, where there are 2,000 randomly selected
samples, with 1,000 being intrapersonal and 1,000 being interpersonal.



5 COLLECTIVE SHAPE DIFFERENCE CLASSIFIER

The SSDM keeps the information of the similarity between
two face models and the Root-Mean-Square (RMS) is a
choice for the dissimilarity measure. However, the RMS
runs into trouble when there are noise and expression
distortion on facial surfaces.

It is obvious that different parts of the SSDM have
different contributions to recognition. Although we do not
knowwhich areas are themost discriminative across a broad
range of expression variations, the boosting algorithm can
help select and combine them with suitable weights. This is
the main idea of the proposed classifier, called Collective
Shape Difference Classifier (CSDC). The CSDC is a collective
classifier of the form, HT ðDsÞ ¼

PT
t¼1 ctðDsÞ, where Ds

denotes a SSDM, ctðDsÞ is a weak classifier selected based
on the local features on the SSDMs during the boosting
training [41], and T is the number of the weak classifiers. The
output of ctðDsÞ is a real value, i.e., confidence, and the final
summed confidence is used as the similarity measure
between the two 3D face models yielding Ds.

5.1 Local Features

Three kinds of features are used based on the SSDM which
are expected to capture the different characteristics of the
SSDM. First, Haar-like features [48] are used for their good
computational efficiency, which measure the differences
between region averages of the SSDM. To reduce the
number of features, square filters other than rectangle filters
are used in our framework. Besides, the averages of square
regions with different sizes on the SSDM are also used, as
shown in Fig. 10. Without confusion, we also call them Haar
features. Different region averages reflect the local differ-
ence between two shapes and the differences of region
averages encode the change pattern of the shape difference.

Gabor features are chosen as the second kind of local
features to encode the characteristics of a set of spatial
localities and orientations of the SSDM. The Gabor kernels
are defined as [49]

 u;vðzÞ ¼
kku;vk

2

�2
e�kku;vk

2kzk2=ð2�2Þðeiku;vz � e��
2=2Þ; ð5Þ

where z ¼ ðx; yÞ, k 	 k is the norm operator, u and v denote
the orientation and scale, respectively, and

ku;v ¼
kmax
fv

ei�u=8; ð6Þ

where f is the spacing factor between the kernels and kmax
is the maximum frequency. Five scales and six orientations
are used in our experiments.

The local binary patterns (LBPs) [50] are able to describe
the texture characteristics of the SSDM. The LBP is extended

to multiblock LBP in [51], which is used as the third kind of
features constructed by comparing the average of a central
rectangle with the averages of its neighbor rectangles
(see Fig. 11).

Two advantages of the local features should be empha-
sized. 1) The positions of the local features selected from the
SSDM in fact correspond to the local regions of the original
3D face. Thus, the CSDC essentially uses rigid patches on
the 3D face surfaces for expression-invariant matching and
the rigid patches are optimally selected. 2) The local
features (Haar, Gabor, and LBP) of the SSDM also capture
the characteristics of intraclass shape change of 3D faces
besides the similarity of facial shapes.

5.2 Learning and Testing

In the learning of the CSDC, intrapersonal and interperso-
nal SSDMs are built from given 3D face models, which
compose the training set Q. When computing intrapersonal
SSDMs, we always subtract a face with “small” expression
from another face with “large” expression so as to keep
consistency for the SSDMs. The BU-3DFE database [39] is
used for training in our work, which provides the
expression level for each face.

Usually, the size of Q is very large, mainly due to many

different pairs of interpersonal depth images. It is imprac-

tical to use all SSDMs in Q for training simultaneously.

Thus, bootstrapping is used in learning by starting with all

of the intrapersonal and part of the interpersonal SSDMs

which form a subset Qw of Q. Then we keep exchanging the

interpersonal SSDMs between Qw and Q so that all

interpersonal samples can be used during the learning

procedure. The detail of the learning is shown in Algo-

rithm 2. The three kinds of features, Haar, Gabor, and LBP,

are used for training individually and three CSDCs, HHaar
T ,

HGabor
T , and HLBP

T , are finally obtained.

Algorithm 2. Collective Shape Difference Classifier

Training

Input:

1) Q ¼ fðXi; YiÞ j 1 � i � vg and Qw ¼ fðXi; YiÞ j 1 �

i � mþ ng, where Xi is the ith SSDM and Yi ¼ 1

or �1 indicates Xi is an intra-personal or

inter-personal sample, Q and Qw contain all samples

and starting samples, respectively, and m and n are

the numbers of the starting intra-personal and

inter-personal samples, respectively.

2) T : the target number of the weak classifiers.

Initialization:

w0;i ¼
1
2m ; Yi ¼ 1
1
2n ; Yi ¼ �1

; 1 � i � mþ n

�

.

Learning:

For t ¼ 1; 2; . . . ; T
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Fig. 10. Haar features used in the CSDC, where the first one denotes the
average of a square region.

Fig. 11. The computation of multiblock LBPs.



1) Normalize the weights:

wt;i ¼

1
2

wt�1;i
P

i
wt�1;i

; Yi ¼ 1

1
2

wt�1;i
P

i
wt�1;i

; Yi ¼ �1
; 1 � i � mþ n

8

<

:

.

2) For each feature, train a weak classifier on Qw and

find the best weak classifier ct with the minimum

weighted error using the algorithm in [41].

3) Update the current CSDC: Ht ¼ Ht�1 þ ct.

4) If signðHtÞ successfully classifies all the samples in
Qw, update Qw by swapping 20 percent smallest

weight interpersonal samples with the interpersonal

samples not used in Q.

5) Update the weights:

wt;i ¼
1
2m e

�YiHtðXiÞ; Yi ¼ 1
1
2n e

�YiHtðXiÞ; Yi ¼ �1
; 1 � i � mþ n

�

.

Output: HT .

We apply different schemes for face verification and
identification. For verification, three CSDCs are used and the
results are fused. For identification, the fusion gives trivial
improvement on the recognition rate; onlyHHaar

T can already
perform very well. Thus, we just useHHaar

T for identification,
which also runs faster. The testing procedure is shown in
Algorithm 3.

Algorithm 3. Collective Shape Difference Classifier Testing

Identification:

Let G ¼ fI1; . . . ; Irg be the gallery of depth images and

Ip be a probe depth image.

For i ¼ 1; 2; . . . ; r

1) Compute the SSDMs:

Diþ
s ¼ ðIi � IpÞ and Di�

s ¼ ðIp � IiÞ.

2) Compute the score:
�i ¼ maxfHHaar

T ðDiþ
s Þ, HHaar

T ðDi�
s Þg.

Result: Label(Ip) ¼ argmax1�i�rð�iÞ.

Verification:

Let I be a depth image in the gallery, Ip be a probe depth

image, and � be a threshold.

1) Compute the SSDMs:

Dþ
s ¼ ðI � IpÞ and D�

s ¼ ðIp � IÞ.
2) Compute the scores:

�1 ¼ maxfHHaar
T ðDþ

s Þ, H
Haar
T ðD�

s Þg.

�2 ¼ maxfHGabor
T ðDþ

s Þ, H
Gabor
T ðD�

s Þg.

�3 ¼ maxfHLBP
T ðDþ

s Þ, H
LBP
T ðD�

s Þg.

3) Compute the score: � ¼
P3

i¼1 �i.

Result:

Accept: if � > �.

Reject: if � � �.

6 EXPERIMENTS

Two 3D face databases, FRGC v2 [38] and BU-3DFE [39], are
used in our experiments. The BU-3DFE database includes
100 people and 2,500 models. Each person has seven kinds
of expressions, one neutral and six other expressions. Each
expression includes four levels of intensity from “small” to
“large.” FRGC v2 has 466 people and 4,007 test models, in
which 41 percent of the models are nonneutral.

In our experiments, the BU-3DFE database is used to
generate intrapersonal and interpersonal SSDMs for train-
ing and FRGC v2 is used for testing. Since these two
databases were captured with different devices and in
different environments, the experiments can well test the
ability of our algorithm for practical applications. Accord-
ing to the expression levels in the BU-3DFE database, we
put models with neutral, first level, and second level
expressions into a set Set1 (1,300 models) and the rest to
Set2 (1,200 models). The intrapersonal SSDMs are con-
structed by subtracting each model in Set1 from the one of
the same person in Set2. The interpersonal SSDMs are
generated between each pair of faces from different people,
one from Set1 and the other from Set2. As a result, a total of
15,600 intrapersonal and 1,544,400 interpersonal SSDMs are
obtained. All of the intrapersonal SSDMs and randomly
selected 10,000 starting interpersonal SSDMs are initially
input for training. Bootstrapping is used to enumerate the
rest of the interpersonal SSDMs.

For testing with FRGC v2, both verification and
identification are carried out. For verification, the standard
protocols of FRGC v2, ROC I, ROC II, and ROC III masks
are used for comparison with related algorithms. Other
partition methods, “neutral versus all,” “neutral versus
neutral,” and “neutral versus nonneutral” in [43], are also
tested. Receiver Operating Characteristic (ROC) curves
from the false accept rate (FAR) of 0.001 are plotted for
verification comparison. As for identification, according to
the routine in the previous literature, we evaluate two
partition methods: one using the first session of the 466
people as the gallery and the remaining 3,541 as the probes
[42], [45], and the other using the first neutral session as the
gallery and the remainder as the probes [43].

The models in BU-3DFE have been preprocessed by the
provider. Before testing, the models in FRGC v2 are
smoothed and cropped by the preprocessing methods given
in Section 2. All models in these two databases are aligned
to the standard posture by our posture alignment method
before training and testing. In training, total 3,000 features
are selected for each CSDC.

6.1 Comparison between SSDM and SDM

First we compare the performances of SSDM and SDM. The
test is carried out by a single CSDC classifier with the Haar
features. The verification results are shown in Fig. 12 with
the standard ROC I, ROC II, and ROC III masks of FRGC v2.
About 2 percent improvement of the verification rates are
obtained by SSDMwith the FAR of 0.1 percent. These results
indicate that the scheme with the signed shape difference
map is more significant thanks to its ability to encode more
information than the absolute shape difference map.

6.2 CSDCs and Their Fusion

The three individual CSDCs, HHaar
T , HGabor

T , and HLBP
T , and

the fusion of them are tested in this section. Fig. 13 and
Fig. 14 indicate the verification results by the ROC curves.
The former uses the ROC I, ROC II, and ROC III masks in
FRGC v2 and the latter tests the ability of the CSDCs to
handle expression variations by separating the data into
neutral and nonneutral parts.

From Fig. 13 and Fig. 14, we can see that the Haar features
have higher performance than the Gabor and LBP features.
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Intuitively, Gabor and LBP are relatively “stronger” features
and can encode richer information than Haar. The under-
lying reasons of such results are as follows: 1) As shown in
Table 1, there are still small displacements among aligned
samples using our pose alignment method. The Haar
features using the differences between patches in the SSDMs
can remove the small alignment errors to some extent in local
neighborhoods. 2) With different orientations and scales in
the Gabor kernels and different neighborhood sizes in the
LBP computing, a huge amount of features is generated. For
practical programming, two subsets are randomly selected
from the huge pools of the Gabor and LBP features, which
may not include all of the “stronger” features.

The fusion of the three classifiers gives higher verification
rates than the individual classifiers. With the FAR of
0.1 percent in the fusion, the verification rates of 97.97 percent

forROCImask, 98percent forROCIImask, and98percent for
ROC III mask are obtained. On the neutral and nonneutral
partition with neutral faces enrolled, we have verification
rates of 99.2 percent for the neutral set, 97.7 percent for the
nonneutral set, and98.6percent for all themodels. The results
demonstrate that the Haar, Gabor, and LBP features can be
complementary in describing the local characteristics and the
combination of them achieves higher performance.

6.3 Identification

Fig. 15 shows the identification results with Cumulative
Match Characteristic curves. Only HHaar

T is used for
identification. One curve corresponds to using the earliest
scan in the gallery and the rest as probes, and the other
curve corresponds to using the earliest neutral scan in the
gallery and the rest as probes. The experiments give rank-1
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Fig. 13. ROC curves using individual features and their fusion in FRGC Experiment 3. (a) ROC I. (b) ROC II. (c) ROC III.

Fig. 14. ROC curves using individual features and their fusion in the experiment with neutral faces enrolled. (a) Neutral versus all. (b) Neutral versus
neutral. (c) Neutral versus nonneutral.

Fig. 12. ROC curves using SDMs and SSDMs in FRGC Experiment 3. (a) ROC I. (b) ROC II. (c) ROC III.



recognition rates of 98.3 percent and 98.4 percent, respec-
tively. By the fusion of the three CSDCs, slight rank-1
improvements of about 0.2-0.5 percent can be obtained, but
it takes much more time than the single CSDC with the
Haar features because the computation of the Gabor
features is slower than that of the Haar features. While
the increased time cost of the fusion is trivial for verification
(1 versus 1), it is expensive for identification (1 versus N).
Therefore, we only use the single Haar CSDC for
identification, considering the computational efficiency.

6.4 Comparison with the State-of-the-Art Methods

We compare our method with the most recent published
methods that use FRGC v2 as the testing database in their
experiments. The comparisons concern both verification
and identification.

Table 2 shows the verification results with the FAR of
0.1 percent. The results of the other methods are quoted
from their papers. For the standard protocol testings, ROC I,
ROC II, and ROC III masks of FRGC v2, we obtain the
verification rates of around 98 percent, which are compar-
able to, or even slightly better than, the best published
results. In the “All versus All” experiment, our method
obtains about 5 percent improvement compared with the
best one in the table. Thus, our verification method can
handle more general cases (such as nonneutral faces in the
gallery), since we include the SSDMs between nonneutral
faces for the training of the CSDCs.

The comparison of identification is shown in Table 3. Our
CSDCwith theHaar features obtains rank-1 recognition rates

of better than 98 percent, outperforming all other methods in
the two experiments.

6.5 Computational Performance

Although some of the previous methods can do verification
nearly real-time, the high computational cost of identification
is still a challenging problem since identification needs to
match the probe face against every gallery face. Thus, the size
of the gallery and the matching time are the main obstacle to
fast identification. Most related papers do not report the time
consumed by their algorithms for identification. The
approach proposed by Kakadiaris et al. [42] has relatively
good computational efficiencywhile keeping high identifica-
tionperformance. The timeused in theirmetadata generation
for one input model is about 15 seconds and the comparison
of themetadata is at a rate of 1,000 per second on a typical PC.
Mian et al. [43] proposed a rejection classification method to
improve the efficiency, but the ICP algorithm used for 3D
matching is computationally expensive. Faltemier et al. [45]
also used ICP to match multiple regions. The reported time
cost of data preprocessing is about 7.5 seconds and each
matching spends about 2.3 seconds, which is slow for
identification when the number of models in the gallery is
large. At a late stage of the review of this paper, we were
introduced thework of 3D signature [54]. A 3D signature is in
a vector form extracted from preregistered faces. The
matching computation of the 3D-signatures is much faster
than ICP-based matching methods since it only needs to
compute vector distances (102,594 matching scores per
second). Except for the matching time, the time cost of face
cropping, denoising, face/region alignment, and 3D signa-
ture generation is not reported in the paper [54].

Usually the running time of all steps, especially the
preprocessing, depends on the numbers of points in 3D
face models. We select the models with the minimum and
maximum numbers of points from FRGC v2 to test our
algorithm and also compute the average identification
time. The consumed time on a PC with CPU P4 3.0 GHz
and 2 GB RAM is shown in Table 4 (the registration in the
symmetry plane determination has been accelerated com-
pared with our previous work [46]).

The SSDM computation and the classification by HHaar
T

are very fast. In this experiment, since there are 466 models
in the gallery, we need to compute 932 (466� 2) SSDMs
and 932 scores for classification for each probe (see
Algorithm 3 for why it is 932 instead of 466). Thus, if
the gallery has 1,000 models, the average identification
time is about 3.6 seconds.

For verification, the time cost by HLBP
T and HHaar

T is
trivial and the one matching by HGabor

T is about 3 ms.
Thus, the average time cost of our algorithm is about
2.2 seconds for verification.
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Fig. 15. Cumulative match characteristic curves (only HHaar
T is used).

TABLE 2
Verification Rate Comparison with the

State-of-the-Art Methods for FAR ¼ 0:1%

The mark “*” means that only the results of their 3D engines are shown
from their 2D + 3D multimodal methods.

TABLE 3
Comparison of Rank-1 Recognition Rates

“E-S” means the earliest scan in the gallery and the remaining as
probes. “E-N-S” means the earliest neutral scan in the gallery and the
remaining as probes.



7 CONCLUSION

We have proposed an automatic 3D face recognition
method which can obtain both high accuracy and computa-
tional efficiency. From the experimental results on the
largest available public database, FRGC v2, the following
conclusions can be drawn:

1. The results of verification and identification ob-
tained by our algorithm indicate that the SSDMs
between 3D faces contain rich information of the
similarity/dissimilarity between 3D face shapes and
the developed local features are complementary and
effective. Another key component is the optimal
combination of these features.

2. Two factors are important to result in the high
computational performance of our algorithm. Our
self-dependent alignment approach greatly reduces
the time cost in face matching. The SSDMs further
reduce the processing time by converting 3D data
into 2D image maps.

3. Our framework is relatively simple and easy to
implement. With the low computational cost and the
high recognition accuracy, it is promising for use in
practical 3D face recognition systems.

Although our method works well on common faces of

approximate mirror-symmetry with a nose, it can fail when

too many data points of the nose are missing, which causes

incorrect alignment. This is the main limitation of our

method. Fortunately, this is a rare case andmost 3D scanners

generate faces that can be well handled by our algorithm.
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