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Abstract

This paper presents a robust method for tracking the po-
sition and orientation of a head in videos. The proposed
method can overcome occlusions and divergence problems.
We introduce an online registration technique to detect and
register feature point of the head while tracking. A set of
point features is registered and updated for each reference
pose serving a multi-view head detector. The online fea-
ture registration rectifies error accumulation and provides
fast recovery after occlusion has ended, while preventing di-
vergence problem which frequently occurs in conventional
frame-to-frame tracking methods. The robustness of the
proposed tracker is experimentally shown with video se-
quences that include occlusions and large pose variations.

1. Introduction

3D head tracking is more than tracking a face in video. It
estimates 3 rotation parameters and 3 translation parameters
of the head.

Selecting a geometric model to represent the head is im-
portant. The complexity of the model affects the working
range of the tracker, ease of initialization, and degree of
computation. A planar model is simple, but not covering
large rotations [1–3], it works properly only when the head
rotation was around the frontal view. To obtain larger work-
ing ranges and more accurate motion, an ellipsoidal model
[4], cylinder models [5–8] and more sophisticated mod-
els [9, 10] have been studied. Complicated models can
provide more accurate motion; however, they generally re-
quire careful initialization as well as more computation. We
have chosen a cylinder model to represent the 3D shape of a
head. The cylinder model includes both circular and ellipti-
cal cylinder. The simplicity of the cylinder model provides
robustness from initialization error compared to other more
sophisticated models.

A good tracking method should be able to deal with
varying head poses, occlusions, illumination changes and
facial expressions. Many methods were proposed by us-

ing template update and registration. Cascia et al. formu-
lated an image registration problem in the cylinder’s texture
map [5]. They used a linear combination of texture-warped
templates and illumination templates to handle illumination
changes in tracking. Brown improved the texture-mapped
cylinder approach by proposing adaptive motion templates
to enhance the motion between successive frames and addi-
tional templates to cover large head rotations [6]. Xiao et
al. applied a dynamic template technique in order to accom-
modate gradual changes in lighting and self-occlusion [8].
Some frames associated certain head poses were stored as
references to prevent error accumulation due to the dynamic
template.

It is obvious that two conflicting strategies, updating
templates and keeping reference templates, should be bal-
anced. Updating templates can cause error accumula-
tion and divergence in tracking, while keeping reference
templates cannot accommodate appearance changes. Al-
though template update methods are used in many stud-
ies [3, 7, 8, 11], it is difficult to obtain both adaptabil-
ity and stability in tracking performance. One easy way
to avoid the divergence problem is tracking-by-detection
[12,13]. A detector can be applied to each individual frame
to prevent drift and divergence, which may occur in con-
ventional frame-to-frame tracking using the template up-
date technique. However, in the 3D head tracking problem,
there is difficulty in making a universal detector, which can
cover appearance differences among individuals, wide out-
of-plane rotation, illumination, etc.

In this paper, we propose a cylinder model-based 3D
head tracker using the online feature registration. The cylin-
der model covers a wide range of head motions and the on-
line feature registration deals with the tracking-by-detection
issue mentioned above. To avoid making a generic head de-
tector, we only focus on the current individual in tracking
sequence, since it makes detection problems much easier.
The online feature registration technique stores the feature
points of a head for each reference pose while tracking.

The overall tracking system is shown in Figure 1. An
initial estimation of head pose uses Bayesian tangent shape
model (BTSM) face alignment method [15]. The BTSM
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Figure 1. Overall architecture of the 3D head tracker

face alignment gives a set of facial points, so that we can es-
timate the 3D pose of the head. Even though it only works
properly for frontal face, it is more informative to initialize
the 3D head pose than general face detectors which give a
bounding box. Once a frontal head is initialized, our tracker
works automatically. The scale invariant feature transform
(SIFT) [14] is used to extract and match feature points. The
set of SIFT feature points forms a view-based head feature
database (DB), which provides robust performance in oc-
clusions. Normalize correlation method is used to find cor-
responding points between successive frames together with
SIFT. Kalman filter is then applied to combine the estimated
motion between successive frames and the estimated pose
with head feature DB.

2. Cylinder Motion Estimation

2.1. Rigid motion under perspective projection

This section presents a method that estimates a rigid
cylinder motion, Δμ = [Δθx,Δθy,Δθz,Δx,Δy,Δz]T ,
where Δθx,Δθy,Δθz represent 3 rotations (pitch, yaw, and
roll) and Δx,Δy,Δz represent 3 translations. Let a point
in an image at time t be pt = [ut, vt]T . Given a known pose
μt−1 of a cylinder at time t − 1, we can calculate 3D point
Xt−1 = [xt−1, yt−1, zt−1]T in the world coordinate by as-
suming that the point pt−1 is on the cylinder surface. The
motion between Xt−1 and Xt can be represented by using
twist representation [16]:
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Figure 2. Cylinder motion estimation using known corresponding
point pairs
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(1)
An expected projection point, p′t, is calculated by using

the 3D point and motion vector Δμ.

p′t =
[

xt−1 − yt−1Δθz + zt−1Δθy + Δtx
xt−1Δθz + yt−1 − zt−1Δθx + Δty

]

· f

−xt−1Δθy + yt−1Δθx + zt−1 + Δtz
,

(2)

where f is camera focal length. We assume that the focal
length is unknown. If the depth variation of a cylinder is
relatively smaller than the distance between the cylinder and
the camera, the unknown focal length does not cause a large
error in pose estimation [7].

The equation (2) maps pt−1 to new location p′t. Assum-
ing that the corresponding point pair, pt−1 and pt, is found
by image observation, we can compute the motion vector to
minimize the sum of distance error, et, between expected
and observed locations of corresponding point pairs:

et =
N∑

i=1

‖p′i,t − pi,t‖ , (3)

where N ≥ 3. Figure 2 shows cylinder motion estimation
method using known corresponding point pairs.



We use weighted least squares (WLS) estimation to find
motion vector. The WLS deals with outliers which can be
obtained in the process of finding corresponding point pairs.
The weight for each point is updated by using the distance
error of the point:

wi,t ← wi,t · exp(−c · ei,t) , (4)

where c is a positive constant and ei,t = ‖p′i,t − pi,t‖. Ev-
ery point has a weight value which indicates how much the
point is consistent to the cylinder motion. The WLS is iter-
atively applied until convergence.

2.2. Feature matching

To find the corresponding point pairs between two im-
ages, two kinds of feature matching approaches are used.
First, SIFT is used to obtain distinctive feature points in
images. It is invariant under scaling, rotation and limited
view change. Each feature point has a 128-dimensional de-
scriptor for matching. The advantage of SIFT feature is that
it provides wide baseline matching with low false positive
rate. Therefore, it is suitable to make up a head feature DB
(see section 3), which is to detect head feature points re-
gardless of the pose difference between two images.

Second, we generate regularly placed feature points in-
side of the head region based on current pose estimation.
Normalized correlation method is applied to find matching
points. A rectangle region centered on a grid-type point is
extracted to compute normalized correlation to adjacent re-
gions. A point which has the maximum correlation value
(larger than proper threshold) is chosen as a correspond-
ing point by searching over the adjacent regions of each
point. We consider this feature as a complementary feature
to SIFT. Because SIFT feature points may not uniformly
appear inside of the head region and the number of SIFT
feature points varies with image quality. We can control the
number and the location of grid-type feature points. Nor-
malized correlation works when motion between two im-
ages is relatively small, so that candidate search regions
should be assigned properly.

Both kinds of features are used to find corresponding
points between successive frames. SIFT features are also
used to find corresponding points between current frame
and head feature DB presented in the following section.

3. Online Feature Registration

The proposed tracker gathers head feature points from
a past sequence to improve its tracking performance in the
future sequence. 2D image observation of the head region
varies a lot when the head moves with large rotation, es-
pecially out-of-plane rotation. Use of an initial reference
template throughout the whole tracking sequence is not rec-
ommended. For example, typical head tracking starts with

(a) SIFT feature points (b) Regularly placed feature
points

Figure 3. Two kinds of feature points

the frontal face region as a reference template. When the
head rotates about axis Y , one of the eyes becomes invisi-
ble and the profile area of the head appears. The reference
template does not cover the new appearing region, which
may contain useful features to help tracking.

We use SIFT features to make up a head feature DB.
Although we successfully obtain the SIFT feature points
which indicate the same 3D points between two images, the
descriptor may be not matched well when out-of-plane ro-
tation exceeds some bounds. To make the head feature DB
cover a large range of out-of-plane rotation, multi-view ap-
proach is considered. Basically, SIFT features and an asso-
ciate head pose are stored when current estimation of head
pose comes close to one of certain reference poses. Refer-
ence poses are decided in out-of-plane rotations (pitch and
yaw), because in-plane rotation (roll) is covered by SIFT
features which is invariant to that rotation.

A head feature DB consists of many view-based tem-
plates, and each view template contains a set of SIFT fea-
tures and head pose. Generated head feature DB is used to
estimate poses in the remaining frames. When input frame
comes into tracker, a template which has the most number
of matched feature points is selected as the best matched
template. The head pose of input is estimated by using the
best matched template in the same way as described in sec-
tion 2. An example of a head feature DB obtained in a real
tracking sequence is shown in Figure 4. The locations of the
feature points are displayed with certain views of the head.
It is not necessary for feature points to have corresponding
points among templates.

Each feature point in the DB has an accumulated weight
as a confidence value. When a point is matched between
the current frame and head feature DB, the accumulation of
weight is

wacc
i,t = wacc

i,t−1 + wi,t , (5)

where wi,t is a weight from the WLS in (4). A point
with high weight means that it was matched frequently and
moved consistently with head motion. The accumulated



Figure 4. Example of a head feature DB

weight is used to assign the initial weight in the WLS it-
erations, therefore, the WLS gets rid of outliers at an earlier
iteration. Feature points in the newly generated template
inherit the accumulated weights from feature points in the
existing neighbor view template, if they are matched.

Once the online feature registration method makes a
head feature DB to cover a large range of view, the ob-
tained DB can be seen as a multi-view head detector for
the current individual. Our approach is different from the
previous studies [6, 8], that store view-based templates to
cover a large range of rotation. In their methods, both a
candidate head region in the input frame and the closest
template must be selected properly, which is difficult when
the head pose in the current frame and that of the selected
template are quite different. Especially, divergence in track-
ing occurs frequently when the candidate head region is
selected inaccurately. To recover divergence in tracking,
their methods need to pick a starting frame of divergence
and re-initialize by using general detectors. On the other
hand, our individual-specific head detector works regard-
less of the pose difference. SIFT feature points are matched
in the whole input frame so that a candidate head region is
not needed. Therefore, it fundamentally avoids divergence
in tracking problems.

4. Tracking with Kalman Filter

There are two ways of estimating the current pose of a
head in our method. The first is from accumulating motions
between successive frames and the other is from estimating
pose of the current frame using head feature DB. Kalman
Filter is applied to combine the two kinds of information.
Let u be a pose difference between successive frames; it is
regarded as a control input in Kalman filter framework. The
state transition equation is derived as

μt = μt−1 + ut−1 + αt−1 , (6)

where αt represents the process noise. This equation stands
for the transition of state vector, μ. Many studies for track-
ing problems use dynamics based on smooth movement,
which makes the prediction stage fail when a sudden rapid
movement occurs. We do not assume a smooth head move-
ment, so that the state transition equation contains the con-
trol input u. The noise αt is assumed to be normally dis-
tributed as, αt ∼ N(0, Qt). The covariance matrix Qt is
assumed by a diagonal matrix whose elements are set by
using root mean square error (RMSE) of distance errors ei,t

in (4).
Let h be a head pose calculated with the head feature

DB. Then the observation equation is derived as

ht = μt + βt , (7)

where βt represents the observation noise with βt ∼
N(0, Rt). Similar to Qt, Rt is set by using RMSE in the
pose estimation process from the current frame and the head
feature DB. The outputs of Kalman filter are estimated pose
μt and covariance matrix Pt as a confidence measure of
current estimation. The head feature DB is updated using
Pt. The current view template replaces an existing view
template, if the current estimated pose is close to the pose
of the existing template and the covariance matrices satisfy
following equation:

‖Pt‖ < ‖Ptpl‖ , (8)

where ‖Ptpl‖ means covariance matrix of the existing tem-
plate. Pt is stored as Ptpl after template replacement. The
accumulated weights of feature points are inherited from the
old template for matched points.

5. Experimental Results

We tested the proposed tracking system in three exper-
iments. Throughout the experiments, an elliptical cylinder
with a radius ratio of 1.3 was used to cover the side regions
of the head, including ears.

5.1. Sequences with ground truth

The first experiment was done using Boston University
dataset which provided the ground truth of the 3D pose [5].
We compared the pitch, yaw, and roll estimated by our
tracker to the ground truth. Figure 5 shows the rotation
parameters for two different sequences. We tested 45 se-
quences in the dataset; the average estimation errors for
pitch, yaw, and roll were 3.7◦, 4.6◦ and 2.1◦, respectively.



P
it

ch
Y

aw
R

ol
l

Sequence 1 Sequence 2

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

P
it

ch
Y

aw
R

ol
l

Sequence 1 Sequence 2

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

50 100 150 200
-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 5. Comparison with the ground truth. Each column shows
3 rotation parameters from a sequence. Blue sold lines indicate
estimated results, and black dashed lines indicate the ground truth.

5.2. Comparison with texture-mapped tracker

For the second experiment, we compared our method
to a texture-mapped cylinder tracker which incorporated a
dynamic template and multi-view template registration [8].
Optical flow method was used to track cylinder surface re-
gions. The dynamic template dealt with the appearance
changes, however, it caused the divergence in tracking. As
shown in Figure 6(a), the tracker chased a hand after the
hand occluded the head region. Their method needed re-
initialization by using a face/head detector to recover the
pose after occlusion had ended, although multi-view tem-
plates were prepared. Because view-based texture tem-
plates were only available on the assumption that the cur-
rent candidate head region was extracted successfully. Our
method overcame the occlusion and divergence problem as
shown in Figure 6(b). Once the head region reappeared
enough to match input feature points from the registered
feature DB, our tracker immediately recovered the pose.

5.3. Sequences with large motion and occlusions

As the third experiment, the proposed tracker was tested
with 40 real sequences that contained large head rotations,
partial occlusions and complete occlusions. Figure 7 shows
some examples. In the first frame 7(a), initial head pose

(a) Texture-mapped cylinder tracker

(b) Proposed tracker

Figure 6. Comparison between the texture-mapped cylinder
tracker and the proposed tracker

was estimated by using BTSM face alignment. The tracker
covered wide ranges of rotations, 7(b), 7(c), 7(d), and the
online feature registration technique generated a head fea-
ture DB to make an individual-specific head detector. This
detector covered a large range of views observed in previ-
ous frames in the sequence. The tracker showed robust-
ness to partial occlusion in 7(e), 7(f). When the head was
completely occluded 7(g), the tracker lost the head and held
the last successfully estimated pose. In 7(h), the tracker re-
covered the head pose immediately when the head region
started to show partially. It should be noted that the tracker
rapidly recovered the head pose, even though the head reap-
peared with a largely rotated view. The tracker started with
only frontal head information, after that, it learned the other
views of the head in tracking sequence and constructed a
multi-view head detector to improve the tracking perfor-



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Tracking results under large rotations and occlusions. Blue points indicate matched points from the head feature DB.

mance.

6. Conclusions

In this paper, we presented a robust 3D head track-
ing system using online feature registration. The proposed
method incorporates motion estimation between successive
frames with pose estimation from the head feature DB.
The WLS method was used to reject outlier feature points.
After observing the current individual’s head movement,
our tracker generated an individual-specific head detector.
The obtained detector prevented tracking error accumula-
tion and divergence, and recovered head pose rapidly when
occlusion ended.

For future work, we plan to research head tracking with
non-rigid motion. Analyzing the multiple observations of
the same feature points is needed to discriminate the non-
rigid points from rigid points.
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