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Abstract— In this article, we present a new algorithm for
fast, online 3D reconstruction of dynamic scenes using times of
arrival of photons recorded by single-photon detector arrays.
One of the main challenges in 3D imaging using single-photon
lidar in practical applications is the presence of strong ambi-
ent illumination which corrupts the data and can jeopardize
the detection of peaks/surface in the signals. This background
noise not only complicates the observation model classically
used for 3D reconstruction but also the estimation procedure
which requires iterative methods. In this work, we consider
a new similarity measure for robust depth estimation, which
allows us to use a simple observation model and a non-iterative
estimation procedure while being robust to mis-specification
of the background illumination model. This choice leads to a
computationally attractive depth estimation procedure without
significant degradation of the reconstruction performance. This
new depth estimation procedure is coupled with a spatio-temporal
model to capture the natural correlation between neighboring
pixels and successive frames for dynamic scene analysis. The
resulting online inference process is scalable and well suited for
parallel implementation. The benefits of the proposed method

are demonstrated through a series of experiments conducted
with simulated and real single-photon lidar videos, allowing the
analysis of dynamic scenes at 325 m observed under extreme
ambient illumination conditions.

Index Terms— 3D reconstruction, single-photon lidar, robust
estimation, Bayesian filtering, variational methods.
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I. INTRODUCTION

F
AST and reliable reconstruction of 3D scenes using

single-photon light detection and ranging (lidar) is

extremely important for a variety of applications, including

environmental monitoring [1], [2], autonomous driving [3]

and defence [4], [5]. While 3D profiles can be obtained

from a range of modalities, single-photon lidar (SPL) offers

appealing advantages, including low-power imaging, a capa-

bility for long-range imaging [6]–[8] or imaging in complex

media such as fog/smoke [5] and turbid underwater environ-

ments [9] with excellent range resolution (of the order of

millimetres [10]).

Over the last few years, a wide range of reconstruc-

tion algorithms has been proposed to reconstruct individ-

ual depth images from SPL data, e.g., [11]–[18]. Several

algorithms have also been proposed to analyze distributed

objects [16], [19]–[23], i.e., when multiple surfaces are visible

within each pixel. Irrespective of the number of surfaces

visible in each pixel, one of the main goals of these algorithms

is to reconstruct high quality depth profiles from as small a

photon budget as possible (see also [10], [24]–[26]) and it

was shown that reconstruction from as few as one photon

per pixel is possible under favorable observation conditions.

Since single-photon lidar technology consists of illuminating

the scene with a pulsed laser and analyzing the time of

arrival (ToA) of reflected photons, successful reconstruction

from a few return photons enables the consideration of shorter

integration/acquisition times and thus the analysis of highly

dynamic scenes. Note that most existing methods are to be

used offline since the computational time required to recon-

struct a point cloud is usually longer than the acquisition

time allocated for a single frame. However, a recent study

has presented results of the reconstruction of complex scenes

at video frame rates [23].

A shared property of all the algorithms mentioned above

is that they concentrate on the reconstruction of one point

cloud per time frame, processing a video as a sequence of

independent frames. While a method was recently proposed

in [27] to jointly process batches of SPL frames, it remains

computationally intractable for long video sequences due to

memory requirements. Thus, there is a clear need for scalable

and reliable methods able to adaptively process the increasing

amount of single-photon data recorded by new single-photon

avalanche diode (SPAD) detector arrays [28], [29], offering
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a growing number of pixels. In [30], we proposed an online

reconstruction method, relying on individual photon-detection

events, e.g., binary frames, which was used to reconstruct

sequentially a series of depth images using at most one photon

per pixel and frame. Although this sequential approach lever-

ages correlations between successive time frames, the method

does not allow the analysis of histograms (i.e., reconstruction

after several illumination periods), as the estimation is per-

formed after each illumination period. Moreover, this method

is not adapted to situations where the ambient illumination

levels lead to low signal-to-background ratio (in particular,

smaller than one).

In this article, we consider lidar data acquired using SPAD

arrays and investigate a new 3D reconstruction algorithm

that accounts for the temporal correlation between successive

point clouds to be reconstructed. More precisely, we address

the problem of the reconstruction of a temporal series of

point clouds, where each point cloud is associated with a

different integration period, over which the pulsed laser emits

an arbitrary number of pulses. This integration period is user-

defined and we assume that the scene is quasi-static during

that period. In contrast to [30], the sequential reconstruction

by the proposed algorithm is performed after an arbitrary

number of periods and thus does not make any assumptions

regarding the number of detection events to be used in

the reconstruction of each point cloud. The most basic and

fastest method to estimate the distance of an object from a

SPL histogram is via log-matched filtering but this method

fails if the background level due to ambient illumination

and light scattering is too high. In such cases where the

background cannot be neglected, it is traditionally included

in the observation model and is estimated to improve the

depth estimation. However, the resulting model makes the

estimation process more complicated and slower iterative

schemes (optimization-based [19] or simulation-based [24])

are classically used. Strong ambient levels are encountered in

many practical applications, for instance in long-range imaging

applications in free-space [6]–[8] and challenging imaging

applications through scattering media such as turbid under-

water environments [9], [31], [32] and through fog/smoke [5].

It is thus extremely important to develop methods adapted to

such challenging observation conditions.

In contrast to existing reconstruction methods, we pro-

pose a depth estimation method that does not require the

background level to be modeled while allowing robust depth

estimation when the background cannot be neglected. Instead

of defining a likelihood function based on an observation

model assumed fully specified and accurate, we define a

pseudo-likelihood which only depends on the target depth.

A robust estimation procedure is then developed to account

for the mismatch between the simplified observation model

and the actual data distribution. More precisely, the proposed

data fidelity term is based on a β-divergence instead of

the classical Kullback-Leibler divergence, allowing efficient

reconstruction performance in the presence of an unknown

(and high) ambient illumination level. Adopting a Bayesian

approach, this pseudo-likelihood is coupled, for each pixel and

each frame, with a depth prior model to derive the so-called

pseudo-posterior distribution of the position of each surface.

This distribution is then used to perform surface detection (i.e.,

deciding if a surface is actually visible or not) and to define

the prior distribution of the point cloud in the next frame, in an

adaptive fashion.

The main contributions of this work are:
• A new pseudo-Bayesian model for robust 3D reconstruc-

tion using streams of photon detection events in the

presence of high ambient illumination levels

• An efficient depth estimation strategy which presents a

fixed and predictable computational cost (in contrast to

most existing methods which are iterative and which

require a convergence criterion to be reached).

• A new online/sequential estimation strategy, proposed

to the best of our knowledge for the first time, for

reconstruction of dynamic 3D scenes from streams of

photon detection events. This method based on assumed

density filtering is highly scalable and computationally

attractive. It also includes an automatic and principled

surface detection method originally proposed in [33],

included for the first time in a sequential reconstruction

process.

• A re-interpretation of the classical matched-filtering

approach adopted for depth estimation using SPL as a

robust estimator.

The remainder of the paper is organized as follows.

Section II recalls the classical observation models for 3D

reconstruction using SPL measurements in the photon-

starved regime, introduces the similarity measure based on

β-divergences for robust estimation, and demonstrates its

benefits for the analysis of a single frame. The spatio-temporal

model and new online reconstruction method are detailed in

Section III. Results of simulations conducted with real and

synthetic sequences of frames/histograms are presented and

discussed in Section IV. Conclusions are finally reported in

Section V.

II. ROBUST DEPTH ESTIMATION

A. Observation Models

In this work, we consider a sequence of N temporal frames

which consist of P pixels. More precisely, for each frame,

the data associated with each pixel consists of a set of photon

ToAs. This article addresses the reconstruction of dynamic

3D scenes where the N frames are processed sequentially to

reduce data storage requirements and account for the tem-

poral correlation between successive frames. In this section,

we discuss observation models and estimation strategies for the

analysis of a pixel of a single frame. For now, we assume that

one surface is visible in each pixel and we do not introduce

pixel/frame indices in this section to keep notation clear.

1) Ideal Model: Assuming that the ambient illumination

and detector dark counts can be neglected, the recorded ToAs

are only associated with photons originally emitted by the laser

source. For a given pixel, the probability density function of

a photon ToA y ∈ (0, T ), where T is the repetition period of
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the laser source, is given by

f0(y|d) = s0

(

y − 2d

c

)

, (1)

where d is the distance between the imaging system and the

surface of interest and c is the light speed in the medium. In

(1), we assume that the scene is approximately static (within

each frame) and s0 (·) is the normalized instrumental response

function (IRF) of the lidar system which can be measured

during calibration of the imaging system. To simplify notation,

we assume that s0 (·) is the same for all the pixels but the

method proposed also applies if the shape of the IRF is pixel-

dependent. Note that we also assume that the shape of s0 (·)
remains the same for all the admissible values of d .

When K photons are detected, if the dead-time of the

detector can be neglected, the photon ToAs are mutually

independent (given d) and the joint likelihood is given by

f (y|d) =
∏

k f0(yk|d) with y = {yk}k . Due to the finite

timing resolution of SPAD detectors, the recorded ToAs are

not continuous variables but instead live on a grid, whose

resolution depends on the system used. Thus, the photon-

starved regime it is possible to consider a model equivalent

to (1), based on Poisson noise and which can be expressed as

zt |r, d ∼ P

(

r s̃0

(

t − 2d

c

))

, t = 1, . . . , NT (2)

where NT is the number of non-overlapping time bins span-

ning (0, T ), s̃0

(

t − 2d
c

)

=
∫ tT/NT

y=(t−1)T/NT
s0

(

y − 2d
c

)

dy, and zt

is the number of photons detected in the t th time bin. In (2),

P(λ) denotes the Poisson distribution with mean λ. Moreover,

r ≥ 0 is an amplitude parameter which mainly depends on the

number of laser pulses sent during the frame, the efficiency of

the detector and the reflectivity of the object. In this case,

we obtain the joint likelihood f (z|r, d) =
∏

t f (zt |r, d),

where z = [z1, . . . , zNT ]T is the ToA histogram constructed

from y and the maximum likelihood estimator of d can be

computed by maximizing the cross-correlation between the

logarithm of s̃0 = [s̃0

(

1 − 2d
c

)

, . . . , s̃0

(

T − 2d
c

)

]T and z [34].

2) Accounting for Background Detections: In many prac-

tical applications however, the models in (1)-(2) are not

well adapted as background illumination cannot be neglected.

Detection events arising from dark counts and additional

sources (e.g., solar background) often present a uniform distri-

bution and a more accurate observation model is the following

mixture of distributions [13].

f (y|d, w) = ws0

(

y − 2d

c

)

+ (1 − w)U(0;T )(y), (3)

where w is the pixel and frame dependent probability of a

detected photon to be a “signal” photon originally emitted by

the laser source. Note however that other distributions could be

used to account for the nature of the background photons. This

probability relates to the signal-to-background ratio (SBR)

defined by SBR = w/(1 −w). In that case, estimating d from

the joint likelihood f (y|d, w) =
∏

k f (yk |d, w) becomes

more challenging since w is usually unknown and needs to be

estimated jointly with d . Even if w is known, the estimation

of d is challenging as the evaluation of f (y|d, w) consists of

a product of K mixtures. Similarly, the model in (2) becomes

zt |r, d ∼ P

(

r s̃0

(

t − 2d

c

)

+ b

)

, t = 1, . . . , NT , (4)

where b ≥ 0 represents the average background level which

can be correlated with the target reflectivity r . The relationship

between r, b and w is obtained through the SBR, i.e., SBR =
w/(1 − w) = r/(bNT ).

Although the models described in (3)-(4) are more appro-

priate than those in (1)-(2), they can still fail to describe the

data accurately, in particular in scattering media where the

distribution of the background photons is not uniform [32].

Moreover, the joint estimation of (w, d) or (r, b, d) requires

iterative algorithms (e.g., [11], [13], [24], [28]) which can

result in a significant computational bottleneck. For these

reasons, we investigate robust estimation of d based on (1),

whereby robustness relates to the mismatch between the pos-

tulated model and the actual distribution of the ToAs.

B. Robust Estimation Using β-Divergences

Modern methods for depth estimation from single-photon

data are statistical methods which use the data likelihood

either in a maximum penalized likelihood fashion or within

a Bayesian framework [11], [13], [24], [28]. Maximum like-

lihood estimation (MLE) in this context is equivalent to

minimizing the Kullback-Leibler (KL) divergence

DKL( f̂ (y)|| f (y|θ)) =
∫

f̂ (y) log

(

f̂ (y)

f (y|θ)

)

dy,

= Const. − 1

K

∑

k

log ( f (yk |θ)) (5)

between the empirical distribution of the ToAs, denoted as

f̂ (y) = 1

K

∑

k δ(y − yk), with δ(·) the Dirac delta function,

and the distribution f (y|θ), where θ is the set of parameters of

the postulated model (i.e., θ = d if (1) is used, and θ = (d, w)

if (3) is used). Moreover, maximum penalized likelihood

approaches can be seen as methods aiming at minimizing a

penalized KL divergence (see discussion in Section II-C).

In this work, we propose to investigate a robust divergence

instead of the classical KL divergence when estimating d

to account for the mismatch between f̂ (y) and the postu-

lated observation model. Moreover, since (1) is simple, i.e.,

it involves a single parameter, and yields satisfactory results

in the low to moderate background regime, it seems reasonable

to use this model f0(y|d) in our 3D imaging strategy instead

of (3).

Among the different families of divergences, we concentrate

on β-divergences defined by

Dβ(g||h) = 1

β

∫

g(y)1+βdy

−β + 1

β

∫

g(y)h(y)βdy +
∫

h(y)1+βdy, (6)

with β > 0, which generalize the KL divergence [35].

In addition to being robust to model mismatch (as will be
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shown in Section II-D), this family of divergences allows a

computationally attractive estimation of d , since the evaluation

and minimization of the β-divergence is simple (e.g., simpler

than γ -divergences [36]). Note that the KL divergence is

asymptotically recovered when β → 0. For our problem,

we obtain

Dβ ( f̂ (y)|| f0(y|d)) = Const. − β + 1

βK

∑

k

f0(yk|d)β (7)

where the constant (which depends on β) does not depend on

d since we assume that the shape and the integral of s0(·) does

not depend on d , i.e.,
∫

f0(y|d)1+βdy does not depend on d ,

for any d in its admissible set. The performance of any depth

estimator based on this β-divergence depends on the value of

the divergence parameter β. Its impact on the proposed method

will be discussed in Section II-D.

An interesting result is that using the histogram z (defined

in the paragraph below (2)) instead of y in (7), i.e., using

discretized ToAs, minimizing the β-divergence reduces to

maximizing the cross-correlation between z and s̃
β
0 , where

the exponential function is applied element-wise. Indeed, the

sum on the left-hand side of (7) becomes zT s
β
d . In particular,

when β = 1, the resulting estimator reduces to the depth

estimator obtained via matched filtering. Matched filtering is

a classical method for peak localization, and is optimal in

the presence of white Gaussian noise. Nonetheless, it has

been widely used in single-photon lidar analysis [37] and it

has been shown empirically to provide similar or even better

results than log-matched filtering. In this article, we focus on

Bayesian estimation of the depth. Thus, detailed analysis of the

minimum divergence estimator, i.e., using only (7) to estimate

d (without additional prior information), is out of scope of

this work and is left for future work.

C. Pseudo-Bayesian Estimation

While robust depth estimation using only point estimates

is interesting, we are interested in computing measures of

uncertainty about d as such information can also be propagated

to estimate the object depth in future frames. Thus, we adopt

a Bayesian viewpoint and use the β-divergence to construct a

pseudo-Bayesian method. Let us assume that d is assigned a

prior distribution f (d). Note that this assumption is consistent

with the method discussed in Section III, where the depth

parameters of a given frame will be assigned a product of P

independent distributions.

When considering the KL divergence as a similarity mea-

sure, the classical posterior distribution of d , can be obtained

by solving

min
p(d)∈P

L(p(d)), (8)

where P is the set of all probability distributions, −L(p(d))

is the evidence lower-bound (ELBO),

L(p(d)) = K Ep(d) [CEKL(d)] + DKL(p(d)|| f (d)), (9)

with Ep(d) [·] the expectation with respect to p(d) and

where CEKL(d) = − 1

K

∑

k log ( f (yk |d)) is the cross-entropy

between f̂ (y) and f0(y|d) [36]. Note that in (9), the term

DKL(p(d)|| f (d)) acts as a penalty enforcing the solution p(d)

to be similar to the prior distribution f (d). Indeed the solution

of (8) yields

p(d) = f (d| y) ∝ f (d) exp−K CEKL(d) . (10)

As expected in (10), exp−K CEKL(d) is indeed proportional to

the likelihood f (y|d).

In a similar fashion, we build a pseudo-posterior distribu-

tion, which maximize the β-ELBO −Lβ(p(d)), i.e.,

min
p(d)∈P

Lβ(p(d)), (11)

where

Lβ(p(d)) = K Ep(d)

[

CEβ(d)
]

+ DKL(p(d)|| f (d)), (12)

and where

CEβ(d) = −β + 1

βK

∑

k

f (yk|d)β (13)

is the β-cross-entropy between f̂ (y) and f0(y|d) [36]. The

solution of (11) yields

p(d) = f̃ (d| y) ∝ f (d) exp−K CEβ(d) . (14)

The solution f̃ (d| y) of (11) and the traditional posterior

distribution f (d| y) in (10) present very similar expressions,

the main difference being the likelihood term in (10) which

is replaced by exp−K CEβ (d) in (14). Thus, f̃ (d| y) is referred

to as pseudo-posterior distribution, as it relies on the pseudo-

likelihood exp−K CEβ (d).

While f̃ (d| y) is generally non-standard, its mean and

variance can be efficiently computed via numerical integration,

e.g., by discretizing the admissible domain of definition of

d , especially since the expected support of d is bounded in

practice. Thus, we use as depth point estimate the mean of the

pseudo-posterior f̃ (d| y) and as measure of the uncertainty the

variance of f̃ (d| y). In addition to providing summary statistics

about the current depth, the mean and variance of the posterior

distribution in (14) can also be incorporated in the prior model

of the next frame, as will be discussed in Section III.

Although this article focuses on robust depth estimation

from single-wavelength SPL, the approach proposed here can

also be used when multispectral lidar data are available. The

resulting β-divergence and pseudo-posterior distribution are

detailed in Appendix.

D. Preliminary Comparative Study

Prior to applying the proposed robust depth estimation

strategy to online 3D imaging, we assess the depth estimation

quality for a single pixel. For this study, we consider two

normalized IRFs with unitary integrals, depicted in Fig. 1

(top). We generated synthetic data using T = 1500 and NT =
1500 time bins. The first IRF (red curve) in Fig. 1 is a real IRF

measured in [38], [39] (473 nm) and presents a full width at

half maximum (FWHM) of 28 bins. Each time bin corresponds

to a 2 ps time interval. The second IRF (blue curve) presents a

Gaussian shape with the same FWHM. This second IRF allows
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Fig. 1. Top: Real (red) and Gaussian (blue) IRFs used to simulate synthetic
data. The position of the peak is bin 600 for each IRF. Bottom: Example of
expected (red) and noisy (blue) histogram of photon counts, using the real

IRF, for 300 signal photons and SBR = 10−2 (the peak is located at bin 600).

us to investigate the impact of the asymmetry of the IRF on

the depth estimation. For simplicity, we assume the position of

the surface is associated with the time instant where the IRF

has the highest amplitude. Given the high resolution of the

discretization grid (compared to the shape of the IRF), using

(3) or (4) yields similar results thus we do not distinguish the

two models. For each IRF, we generated data from (4) and

investigated various illumination scenarios with SBR in the

interval [10−4, 102] and mean signal counts (MSC) (in each

pixel) ranging from 10 to 1000. To illustrate the difficulty

of the problem, an example of histogram with 300 signal

photons and SBR of 0.01 is depicted in Fig. 1 (bottom).

For each couple of SBR/signal photon values, we generated

NMC = 2000 histograms, drawing each depth parameter from

a Gaussian distribution with mean 600 and variance 2500.

Here, the depth estimation performance for a single pixel

is assessed through a comparison of (pseudo-)posterior means

based on a fixed depth prior distribution. For such estimators,

the prior distribution used is the Gaussian distribution with

mean 600 and variance 2500 used to generate the data,

which is a relatively weakly informative prior distribution. The

reference estimator, referred to as “Oracle”, is the minimum

mean squared error (MMSE) estimator of d associated with

(4), assuming that (r, b) is perfectly known. Similarly the

MMSE estimator associated with (2) is referred to as “BF” for

background-free. We also include a non-parametric estimator

of d , namely the half-sample mode estimator [40], denoted

by “HSM”. Additional robust estimators could be considered,

such as the Huber estimator [41], [42]. However, the latter

requires sensitive parameter tuning (depending on the SBR)

and does not provide satisfactory results in the low SBR

regime of interest here, where the photon detections considered

as outliers can represent more than 99% of the detected

photons. Thus, we only report the results of HSM. Finally,

we consider the pseudo-posterior mean (pseudo-MMSE esti-

mator) obtained from (14). It is referred to as “PB” for pseudo-

Bayesian.

Fig. 2. Curves of satisfactory detection (pd = 85%, with η = 28) as a
function of the SBR and mean signal count (MSC) using the real IRF (top)
and Gaussian IRF (bottom). This figure compares HSM and (pseudo-)MMSE
estimators using the same Gaussian prior distribution with mean 600 and
variance 2500.

To assess if the competing methods can accurately estimate

the depth parameters, we define the empirical probability of

“satisfactory” detection [33] as

pd = 1

Niter

Niter
∑

n=1

I

(

|d̂n − dn| < η
)

(15)

where dn (resp. d̂n) is the actual (resp. estimated) depth

estimate and I(·) is the indicator function, which is equal

to 1 if |d̂n − dn| < η and 0 otherwise. Moreover, η is a

parameter reflecting which error is deemed acceptable. Here

we set η = 28 (the FWHM of the IRFs).

Fig. 2 compares the depth estimation performance of HSM,

Oracle, BF and PB for five values of β. This figure displays,

for each method, the curve of satisfactory detection (pd =
85%) as a function of the SBR and signal photon counts.

On the right-hand side of each curve, each method yields

pd > 85%. As mentioned above, the prior distribution has

been set to be weakly informative to better highlight the

behavior of the different methods. If the prior distribution

was more informative and correct (e.g., properly centered

around the actual depth value), it would dominate the (pseudo-

)likelihood factors in the (pseudo-)posterior distributions and

all the methods would present similar behaviors and improved

performance. Fig. 2 thus illustrates how the different meth-

ods perform when limited information is available about the

unknown depth. As expected, the Oracle provides the best

results for both IRFs. The BF estimator is significantly less

accurate for low SBRs. Using the PB estimators, the curves

approach those of BF for small values of β, while they tend

to converge towards the Oracle curves when increasing β,

provided that the MSC is large enough. This figure also shows

that performance of all the estimators depends on the skewness

of the IRFs.
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Fig. 3. Comparison of the log-likelihood (BF) and log-pseudo-likelihood
terms (PB) for (MSC, SBR) = (10, 10) (top) and (MSC, SBR) = (300, 0.01)
(bottom), as a function of d ∈ [200, 500]. The dashed black lines represent
the actual position of the object (d = 620). Note that the scale of the y-axis
is different in the two plots.

Overall, HSM leads to less accurate results than the other

methods, partly because it does not leverage the shape of the

underlying IRF, and because it does not use additional prior

information. Note also that HSM is not accurate when the

MSC is low since the mode of the distribution then becomes

difficult to estimate (see Fig. 2 (top)).

Irrespective of the IRF shape, the parameter β of the

divergence plays a key role in the working region of the

resulting algorithm. For a given MSC level, increasing β

allows a reduction of the limiting SBR below which the

algorithm starts to fail. This limiting SBR however remains

bounded by the limiting SBR of the Oracle. On the other hand,

increasing β also increases the minimum MSC required for

the algorithm to perform satisfactorily. For instance, in Fig. 2

(top), with β = 0.5 it is still possible to estimate the depth

accurately for SBR > 1 and 35 signal photons while setting

β = 0.7 in such scenarios leads to poor results, potentially

worse than BF. Setting β depends on shape of the IRF but also

on the expected SBR/MSC. Note that if the SBR is sufficiently

large, the background effect is not significant and the depth

reconstruction does not require a robust method. These first

results show near-optimal results can be obtained with PB

for large values of β (provided that MSC is large enough),

without estimating additional model parameters and with a

fixed computational budget.

To better illustrate the impact of the β-divergence in

the various MSC/SBR scenarios, we show in Fig. 3 how

the parameter β affects the pseudo likelihood term and in

turn the pseudo-posterior distribution. In these two examples,

we generated data with (MSC, SBR) = (10, 10) and (MSC,

SBR) = (300, 0.01). The actual position of the object is at

bin 620 and the Gaussian prior distribution has a mean of 600

and variance 2500. The curves in Fig. 3 represent the logarithm

of the (pseudo)-likelihood terms for different values of β, the

likelihood term assuming no background (BF) and the log-

prior. All the curves are normalized such that the maximum of

each curve is 0 since vertical offsets do not affect the posterior

distribution.

When (MSC, SBR) = (10, 10) (Fig. 3, top plot), the

likelihood (1) is similar to the actual distribution of the data

and the maximum of the log-likelihood is located around the

actual depth value. When β increases, the pseudo-likelihood

term becomes flatter, which gives more weight to the prior dis-

tribution in the pseudo-posterior distribution in (14). Thus the

mean of the pseudo-posterior distribution tends to the mean of

the prior distribution. In this regime, small values of β should

be preferred. When (MSC, SBR) = (300, 0.01) (Fig. 3, bottom

plot), the likelihood (1) becomes very concentrated, potentially

around a value that is far from the actual depth due to the

mismatch between the background-free observation model and

the actual distribution of the data. This likelihood term is more

concentrated than the prior and thus dominates the posterior

distribution, leading to a poor MMSE depth estimate. In a

similar fashion to the previous scenario, when β increases,

the pseudo-likelihood term becomes flatter, which gives more

weight to the prior distribution in the pseudo-posterior distri-

bution in (14). Note that the mode of the pseudo-likelihood

can also change when β changes. For instance, the mode for

β = 0.3 is much closer to the actual depth than when using

the likelihood (1). As discussed when analyzing Fig. 2, in this

regime, larger values of β are preferred.

For practical applications, it is thus important to select

β sensibly based on the expected observation conditions,

balancing performance at low MSCs and low SBRs. Fortu-

nately, it is possible to pre-compute performance bounds as

in Fig. 2, for any real instrumental response. Moreover, from

the preliminary experiments we conducted, it seems that using

β ∈ [0.3, 0.6] leads to a good trade-off for both the low SBR

and low MSC regimes.

E. Target Detection and Additional Parameter Estimation

In Section II-C, we proposed to estimate the depth of a

surface in a given pixel based on (1). This model assumes

that an object is actually present in the pixel considered,

which is not always true, especially for long range imaging

applications. Thus, it is important to be able to decide whether

a surface is actually present and this cannot be achieved

directly using (14). To address this problem, we use the

Bayesian object detection algorithm proposed in [43]. This

method uses the Poisson likelihood model in (4) and assigns

prior distributions f (r), f (b) and f (d), to the reflectivity r

of the target, the background level b and the target depth,

respectively. The detection is finally seen as a binary hypoth-

esis test where the background, and the target reflectivity and

depth are marginalized. More precisely, the algorithm decides,

a posteriori, whether r = 0 (no surface) or r > 0 (surface

present). The output of the algorithm is π , the posterior

probability of target presence, which can then be thresholded

to derive a detection map (the interested reader is invited to

consult [33], [43] for additional details about the detection

method). Note that the algorithm also incorporates the prior

probability of target presence π0 (through a spike-and-slab
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prior model f (r)). This point will be further discussed in

Section III-B, together with the choice of the other prior

distributions used for object detection.

After the pixel-wise detection procedure, it is possible (if

needed) to estimate the average background level and the target

reflectivity (if a target is detected), for instance using (4).

To keep the computational overhead low, we only report a fast

method here, but more complex schemes, as in [6], [11], [24]

could be used. If no target is detected, the background level is

estimated by dividing the photon count K by T . If an object

is detected, we use as depth point estimate the mean of the

pseudo-posterior distribution in (14), and the target reflectivity

is estimated together with the background by MLE using (4).

III. APPLICATION TO ONLINE RECONSTRUCTION

In this section, we consider a set of N sequential temporal

periods during which a ToA histogram is recorded for each of

the P pixels. We denote by yn,p the set of photon ToAs and

dp,n the depth of the object in the pixel p and frame n.

A. Approximation Using Assumed Density Filtering

As mentioned in the introduction, our online estimation pro-

cedure consists of leveraging the temporal correlation between

successive frames by incorporating the posterior distribution

of the depth profile at time (n − 1) in the inference problem

at time n. As described in [30], estimating the posterior mean

and variance of dp,n presents a significant advantage beyond

simply providing summary statistics about the current range

profile. It allows the derivation of tractable adaptive estimation

procedures. A classical choice for modeling relatively slowly

evolving parameters is the Gaussian random walk (RW), i.e.,

ft (dp,n|dp,n−1) ∝ exp

{

− (dp,n − dp,n−1)
2

2σ 2
RW

}

, (16)

controlled by the variance σ 2
RW. This RW mostly allows

displacements smaller than 3σRW along the direction of the

observation (using the 3-sigma rule of thumb). Whilst this

approach is simple, it does not allow for rapid changes as

might occur when the imaging system or the scene moves

orthogonally to the direction of observation. To alleviate issues

associated with such changes while keeping the estimation

strategy tractable, we define as in [30], for each pixel, a local

neighborhood Vp of M neighbors (including the current pixel)

and define the following prior model

f (dp,n)

∝
∑

p′∈Vp

νp′

∫

ft (dp,n|dp′,n−1)qp′,n−1(dp′,n−1)ddp′,n−1,

(17)

where {qp,n−1(·)}p are Gaussian distributions. Basically, the

prior model of dp,n is constructed via a Gaussian mixture

model using the depth information in neighboring pixels at

the previous frame, convolved by a Gaussian RW. In [30],

{qp,n−1(·)}p was the set of Gaussian approximations of the

depth posterior distributions obtained at frame (n −1). A sim-

ilar approach is adopted here since the Gaussian approxima-

tions of the posterior distributions can be obtained as for

assumed density filtering (ADF) [44], [45] and expectation-

propagation [46], i.e., by minimizing the KL divergence

DKL

[

f̃ (dp,n−1| yp,n−1)||qp,n−1(dp,n−1)
]

(18)

w.r.t. qp,n−1(dp,n−1) which belongs to the family of Gaussian

distributions and where f̃ (dp,n−1| yp,n−1) is the pseudo-

posterior distribution described in Section II-C. This min-

imization reduces to matching the mean and variance of

f̃ (dp,n−1| yp,n−1) and qp,n−1(dp,n−1), hence the discussion

about the estimation of the moments of f̃ (dp,n−1| y p,n−1) in

Section II-C.

However, one of the main limitations of the spatio-temporal

model used in [30] is that it does not explicitly take into

account whether objects were actually present in the neighbor-

ing pixels in frame (n − 1) when building the prior model for

frame n. To address this problem, we incorporate the results of

the detection procedure detailed in Section II-E. If an object

is detected in pixel p′ and frame (n − 1), qp′,n−1(·) is set to

the Gaussian approximation of the pseudo-posterior (14) in

that pixel, as in [30]. If no object is detected in pixel p′ and

frame (n−1), qp′,n−1(·) is replaced by a Gaussian distribution

with mean (dmin + dmax)/2 and variance (dmax − dmin)
2/12,

where (dmin, dmax) are the expected lower and upper bound

of the scene depth. This choice of mean and variance leads

to a flat prior distribution mimicking the uniform distribution

defined on (dmin; dmax). Note that in practice, T is chosen

large enough so that for any depth in (dmin; dmax), the shape

of s0(y − 2d/c) remains the same. Increasing the variance of

the Gaussian distributions qp′,n−1(·) of empty pixels allows us

to better detect new objects appearing in the scene and random

depths. A similar strategy is adopted at the edges of the image

where pixels keep M neighbors, some of them being outside

the field of view and contributing to the mixture with weakly

informative Gaussian distributions.

The M weights of the mixture in (17) are set to

νp′ =

⎧

⎨

⎩

ν0 ∈ [0, 1], if p′ = p

(1 − ν0)

M − 1
otherwise,

(19)

where ν0 is a user-defined weight which controls the weight

assigned to the central pixel of each neighborhood.

B. Online Target Detection

As mentioned in Section II-E, the target detection algorithm

proposed in [43] requires, for each pixel of the frame n,

prior distributions for the background level, the target depth,

its reflectivity and a prior probability of target presence to

be refined. An exponential prior model is chosen for the

background, whose mean is given by the background estimate

obtained at that pixel in the previous frame, assuming that the

background varies slowly over time. Similarly, let {πp,n−1}p

be the probabilities of target presence estimated at frame

(n − 1). The prior probabilities of target presence {π0
p,n}p of
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Algorithm 1 R3DSP algorithm

the frame n are computed by nonlinear local averaging

π0
p,n = σ

⎛

⎝

∑

p′∈Vp

νp′σ−1
(

πp,n−1

)

⎞

⎠ , (20)

where σ(x) = (1 + exp(−x))−1 is the logistic function.

Nonlinear averaging is preferred here over simple averaging as

it promotes values closer to 0.5, and is hence less informative.

As in [43], the prior model for the reflectivity (assuming a

target is present) is a gamma distribution whose parameters are

set using the calibration measurements (which provide insight

about the expected signal photon counts when an object is

present). In contrast to the background prior, the depth prior

model used for the detection step is not set using a predictive

model such as (17). Instead, it is set in an empirical Bayes

fashion using the pseudo-posterior computed in (14).

The pseudo-code of the proposed method, referred to as

R3DSP (for Robust 3D reconstruction using Single-Photon

data) is presented in Algo. 1. While the pseudo-code includes

a loop of the P pixels for each frame, it is important to remark

that all the pixels of a frame can be processed independently

and in parallel fashion. Thus the resulting algorithm is scalable

and well adapted for GPU-based implementation. Note that

the proposed algorithm can also be applied in the presence

of faulty pixels for which no observations are available.

In that case, we simply set f̃ (dn,p| ynp) = f (dp,n) and

πp,n = 0.5,∀n.

IV. RESULTS

To demonstrate the benefits of the proposed algorithm,

we used a bistatic transceiver system incorporating a Princeton

Lightwave Kestrel camera that was capable of providing

picosecond resolution, time-tagged, single-photon data from

its 32 × 32 SPAD detector array, which captures 150,400

binary frames per second (see [23] for more details). The

transceiver system used a sub-nanosecond pulsed laser source

operating at a wavelength of 1550 nm to flood-illuminate the

scene of interest. We acquired a series of 3D videos using

T = 153 histogram bins (binning resolution of 3.75 cm)

and here, we report results obtained from two videos, both

measured in daylight conditions with significant ambient light

background.

In the first experiment, we integrated the binary acquisitions

into 500 lidar frames per second. At this frame rate, each

lidar frame is composed of about 300 binary frames, i.e.,

contains at most 300 photons (see [23] for additional details

about the experimental setup). We considered a dynamic

scene which consists of two people, standing approximately

1.5 metres apart, exchanging a ≈ 220 mm diameter ball at

a distance of 320 metres from the lidar system. Note that

in this configuration, the depth estimation performance is not

expected to be altered by the distance of the observed objects

within the range associated with the detector gate (4-5 meters

here). Approximately half of the pixels do not contain any

surface and a single peak is usually observed in the remaining

pixels (either one of the two pedestrians or the ball). In each

pixel and frame, we observe approximately 35 photons related

to dark counts or ambient illumination from solar background,

and the visible surfaces lead to 55 additional photons per pixel,

on average. For those pixels, the SBR is thus ≈ 1.6. The

IRF of each pixel was recorded during the system calibration.

Although they could have been approximated by Gaussian

IRFs, we used the actual IRFs during our analysis as they

are slightly skewed. The proposed algorithm has been applied

to a series of 3000 successive frames, representing a total

acquisition of 6 s. For this scenario, we set, M = 5 neighbors,

σRW =
√

3 bins, ν0 = 0.5 and β = 0.5. However, we did

not notice significant changes when using β ∈ [0.4, 0.7]. The

reconstructed point clouds, together with a standard video of

the scene recorded by a camera located next to the two people

are presented in the Video 1. In all the videos presented in this

work, the colormap of the point cloud represents the amplitude

(number of signal photons) of the returns in the lidar data.

We compared the performance of the proposed method

to that of two methods able to handle rapidly thousand of

frames. First, we consider the classical depth MLE estimator

BF assuming (2) applied independently to each pixel, and

followed by an intensity-based thresholding step (5% of the

IRF intensity) using the intensity estimated via MLE and

(3). This thresholding step allows us to remove estimated

surfaces which present too low an intensity. The second

method is the RT3D algorithm [23] recently proposed for

fast reconstruction of complex (multi-surface) scenes. While

RT3D aims at solving a more complex problem, that is,

the estimation of an unknown number of peaks per pixel,

it possesses a surface detection capability which is of interest

in our study. The parameters of RT3D have been tuned

via cross-validation by optimizing the visual quality of the

reconstruction. In particular, although the data consists only

of 32 × 32 pixels, RT3D is set so that it reconstructs point

clouds with 96 × 96 pixels in the transverse direction. Note

that we also applied the pre-trained implementation (provided

by the authors) of the deep-learning method proposed in [14].
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Fig. 4. Examples of 3D reconstruction using the proposed method ((a),(b)),
BF ((c),(d)) and RT3D (e),(f). The left-hand plots correspond to actual
measurements while the right-hand plots have been obtained from the pseudo-
synthetic data generated with additional background (b = 50). The colormap
represents the surface depth (axial direction).

The results obtained with this first dataset are similar to those

obtained by other competing methods. However, this method

performed worse than the other methods when considering

noisier measurements (discussed next). For this reason, we did

not include this method for comparison in this study. However,

these first results could potentially be improved by retraining

the original network in future work.

Fig. 4 (a), (c) and (e) depict an example of reconstruction

(Frame #1700) using R3DSP, BF and RT3D, respectively.

In this frame, the two pedestrians are in the field on view

and the ball is roughly at the midpoint between them. In this

scenario, the three methods provide similar results, as the

SBR and MSC are high enough to allow a clear identification

of the empty pixels and a satisfactory estimation of the

surface depth in the other pixels. Note that the surfaces appear

smoother using RT3D, partly because of the spatial smoothing

involved but also because the corresponding point cloud has

about 9 times more points than those of R3DSP and BF.

For completeness, the point clouds and background levels

estimated by the three methods for the whole sequence are

presented in Video 2. For visualization purposes, the video

is played at actual speed, with 50 frames per second (the

intermediate frames processed by R3DSP are not displayed).

This video also compares the estimated background levels,

which are consistent across the three methods and it presents

the estimated surface presence maps. The proposed method is

able to more efficiently detect the head of the pedestrian on

the left-hand side, which presents a low reflectivity due to the

wavelength used (1550 nm).

These results are used as reference to investigate more

challenging scenarios, with lower SBRs. More precisely,

we generated additional pseudo-synthetic datasets by artifi-

cially adding constant background levels to all the pixels of

each sequence. We created two sequences using background

levels of b = 20 and b = 50, leading to approximately 3060

and 7650 additional background photons per pixel and per

frame. The resulting SBRs are 1.8 × 10−2 and 7.2 × 10−3,

respectively. Examples of reconstructed point clouds in the

lowest SBR regime (b = 50) are depicted in Fig. 4 (b),

(d) and (f). When the SBR decreases, BF and RT3D, which

are based on intensity thresholding, generally present higher

false alarm rates than R3DSP which incorporates a Bayesian

test for object detection. If the thresholds of BF and RT3D

are increased, the corresponding probabilities of detection

decrease. Although R3DSP misses some surfaces (see Fig. 4

(a) and (b)), it is able to reconstruct the ball, using both the

tailored detection strategy and its ability to promote correlation

between successive frames via the spatio-temporal model.

For completeness, the sequences reconstructed by the three

methods for b = 20 and b = 50 are presented in Video 3 and

Video 4, respectively. These videos shows that although the

three methods provide similar background estimates, R3DSP

consistently yields better reconstructions (visually lower false

alarm rates and higher probabilities of detection). These results

confirm that in the presence of significant background levels

(low SBR) the proposed method is able to detect and track

dynamic surfaces more efficiently.

The second experiment was conducted under the same

observation conditions and we recorded the movements of a

pedestrian running back and forth at about 320 m from the

detector. For this scene, we integrated the binary acquisitions

into 1000 lidar frames per second. In each pixel and frame,

we observe approximately 18 photons related to dark counts

or ambient illumination from solar background, and the visible

surfaces lead to 27 additional photons per pixel, on average.

The proposed algorithm has been applied to a series of 6000

successive frames, representing a total acquisition of 6 s.

As before, we set β = 0.5, M = 5 neighbors, σRW =
√

3

bins and ν0 = 0.5. The reconstructed point clouds, together

with a standard video of the scene are presented in the Video 5.

Fig. 5 depicts the temporal profile of the depth estimated at

a central pixel where the pedestrian is always visible. This

figure shows the mean and credible interval (±6 standard

deviation interval for visualization purposes) of the depth

posterior distribution. As expected, the depth uncertainty is

larger at the beginning of the sequence due to the limit amount

of information available about the object range. After about

300 frames (300 ms), the uncertainty becomes more stable

and the algorithm is able to successfully track the position of
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Fig. 5. Temporal evolution of the estimated depth in pixel (16,16) of the
second experiment (running pedestrian). The red curve represents the mean of
the depth posterior distribution obtained for each frame and the blue region
represents the ±6 standard deviation credible interval.

Fig. 6. Depth (left) and reflectivity (right) profiles used to simulate the
dynamic scene.

the surface. Note that such depth uncertainty measures can be

used for instance to quantify uncertainties associated with the

instantaneous velocity or moving objects.

Although the resolution of the 32×32 Princeton Lightwave

Kestrel camera used in this study limits the resolution of the

reconstructed point cloud, the proposed method can be applied

to larger detector arrays without significant computational

degradation since most computational steps can be performed

at the pixel level, using only local information. Nonetheless,

coarse depth maps, as obtained here, can be used in diverse

applications involving object detection or recognition [47],

[48]. Higher-resolution depth images can also be obtained by

resorting to deep learning approaches such as in [14], [49],

[50], where associated high resolution color maps are used as

guidance to improve the details of the resulting fine depth map.

A last experiment was performed using synthetic data to

demonstrate that the proposed method can be applied with

larger SPAD arrays. The ground truth profiles used to simulate

the synthetic data consists of 200 × 200 pixels depth and

reflectivity profiles obtained from real single-photon lidar data

acquired at 532nm in [51], with a target (a figurine) located at

a distance of about 1.8 m from the imaging system. A dynamic

scene of 312 temporal frames was created from these profiles,

such that the figurine enters in the field of view from the left

with a horizontal shift of 1 pixel per frame (for the first 171

frames). Once the figurine reaches the center of the image, a 45

pixel-radius disk appears on the right hand-side of the image

and is shifted to the left until it reaches the center of the image.

Each pixel of the disk has a depth corresponding to 570 bins

and a reflectivity of 0.8. Histograms of 1500 temporal bins (bin

width of 2ps) were generated from (4) using a Gaussian IRF

with a FWHM of 31 bins (same as that measured in [51]),

including a spatially constant background level, such that

M SC = 35 signal photons were recorded on average per pixel

within each frame, with SB R ≈ 1.5. The proposed method has

been applied using M = 5, σRW =
√

3 bins, ν0 = 0.5 and

β = 0.4, even though using β ∈ [0.4, 0.6] did not change

significantly the results. For visual comparison, a log-matched

filtering depth estimation was also performed. Estimation of

the background level was then conduced by averaging over the

temporal bins outside the estimated peak (using the 3-sigma

rule of thumb). Those estimates were finally plugged in (4)

to estimate the reflectivity profile by MLE. The ground truth

depth and reflectivity profiles, together with the estimated

depth and reflectivity using both log-matched filtering and

the proposed online approach are presented in the Video 6.

This video illustrates how the proposed spatio-temporal model

regularizes the depth estimation process, while allowing new

objects to enter the field of view.

V. CONCLUSION

In this work, we presented, to the best of our knowledge,

a first algorithm for sequential reconstruction of dynamic

3D scenes from SPLs data, using temporal correlation. This

method primarily focuses on the estimation of the surface

depth using a model that does not involve the target reflectivity

nor the background level. The resulting depth estimation

process is particularly efficient, as is reduces to computing,

pixel-wise, the cross-correlation (either discrete or continuous)

between the measured photon ToAs and a modified IRF,

which represents a fixed and predictable computational cost.

Moreover, if the system IRF is Gaussian, the update rules are

greatly simplified as the mean and variances of the pseudo-

posterior distributions can be obtained in closed-form. Thanks

to the proposed spatio-temporal model, most of the steps of

the algorithm can be performed independently for each pixel,

which is attractive for parallel/distributed implementation.

In this work, we focused of the theoretical development of

the method but did not fully optimize its implementation, e.g.,

on GPUs, mainly because the current implementation of the

detection method [33] is not yet optimized. This is left for

future work. We also derived the β-divergence for MSL data

and the method proposed here could also be extended for

online reconstruction of colored point clouds, provided that

an efficient detection strategy (adapted to MSL data) is used.

APPENDIX

In this appendix, we derive the expression of the

β-divergence for the estimation of the depth d in a single

pixel and frame, assuming that multispectral single-photon

lidar data (with L wavelengths) are recorded simultaneously.

We denote by yℓ the time of arrival of a photon at the ℓth

wavelength. Using the classical MSL systems, separate and
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Fig. 7. Top: IRFs from [38] used to simulate MSL synthetic data. Bottom:
curves of satisfactory detection (pd = 85%, with η = 28) as a function of
(SBR,MSC) using the real IRF. This figure compares only (pseudo-)MLEs
adapted to MSL data.

independent detectors are used such that the detection events

in the L channels are mutually independent, conditioned on

the configuration of the scene. Thus, for any set of L random

variables (y1, . . . , yL) associated with each of the L bands,

the ideal model in (1) can be extended as

f0(y1, . . . , yL |d) =
L

∏

ℓ=1

fℓ(yℓ|d) =
L

∏

ℓ=1

sℓ

(

yℓ − 2d

c

)

, (21)

where sℓ(·) is the impulse response of the ℓth band [52]. For

multivariate continuous distributions the β-divergence has the

same expression as in (6) and it can be easily shown in a

similar fashion to (7) that, under the same mild conditions as

in Section II,

Dβ( f̂ (y1, . . . , yL)|| f0(y1, . . . , yL |d))

= Const. − β + 1

β

L
∏

ℓ=1

1

Kℓ

∑

k

fℓ(yℓ,k|d)β , (22)

where f̂ (y1, . . . , yL) is the product of the empirical marginal

distributions of the ToAs in the L bands, i.e., f̂ (y1, . . . , yL) =
∏L

ℓ=1 f̂ (yℓ) and f̂ (yℓ) = 1

Kℓ

∑Kℓ

k=1 δ(yℓ − yℓ,k), with {yℓ,k}k

the ToAs of the Kℓ photons detected at the ℓth wavelength.

Note that in contrast to classical maximum likelihood esti-

mation which would introduce a sum (of the log-likelihood

terms) over the L bands, in (22) we obtain a product over the

L bands and sums over the detection events.

To demonstrate the benefits of the proposed robust method

for MSL-based depth imaging, we generated MSL data using

the L = 4 IRFs depicted in Fig. 7 (top), using the same SBR

and same MSC for all the bands. In contrast to the results

presented in Fig. 2, for simplicity we only consider estimators

using only the observations, without regularization or addi-

tional prior information, i.e., pseudo-MLEs. More precisely,

we compared the minimum divergence estimator derived from

(22) to the BF MLE (assuming no background) for MSL

data and the Oracle estimator assuming the reflectivity and

background in each band is known. The limit of the regions

of successful depth estimation (pd > 85% with η = 28)

are depicted in Fig. 7 (bottom). As in the single-wavelength

case, increasing β allows satisfactory depth estimation at lower

SBRs than using BF and using β = 0.7 here leads to results

similar to those of the Oracle, without requiring knowledge

or estimation of the reflectivity and background parameters.

Note also that, as in the single-band case, too large values of

β (see β = 0.7) lead to poor results in the low MSC and high

SBR regime.
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