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Abstract

In this paper, we describe a method to detect syllabic nuclei in con-
tinuous speech. It employs two basic and robust acoustic features,
periodicity and energy, to detect syllable landmarks. This method
is evaluated on TIMIT, noise additive TIMIT and NTIMIT datasets
with typical total error rates of around 30% in all the datasets, ex-
cept for extremely adverse 0dB signal-noise-ratio environments,
while HMM-based systems degrade rigorously. Based on the land-
marks, a vowel classifier is further constructed and achieves the
same performance as HMM-based systems.
Index Terms: syllable detection, robustness, vowel classification.

1. Introduction
Motivation: We consider the problem of detecting syllabic nuclei
directly from the speech signal in absence of any higher level (i.e.
word level or syntactic level) linguistic cues. We are motivated
by three considerations. First, researchers in language acquisition
have considered the problem of how children might segment the
phonological stream into word boundaries and learn the words of
their native language. It appears that the statistics of transitions be-
tween syllabic units are employed by infants as young as 8 months
[1]. If one wishes to have a computational account of the mecha-
nisms by which this is achieved, one will need to describe the first
step of extracting syllabic units from the signal. Our paper presents
results in that direction. Second, in phonology, the syllable has
had a long tradition of inquiry associated with it. Notions such
as sonority hierarchies have been developed to describe the pat-
terning of syllabic nuclei in a phonological stream. Quantities like
stress, tone, and prosody live at the syllabic tier of the phonologi-
cal representation. Our work may be regarded as an investigation
of acoustic correlates of syllabic contours to tie the phonological
notions of the syllable to acoustic and phonetic properties of the
speech signal. Finally, in speech perception and recognition, the
syllable has long been regarded as the perceptually most salient
and robust unit of the acoustic stream [2]. From such a point of
view, it seems natural to consider a hierarchical approach to speech
recognition that first detects syllabic nuclei and proceeds with a
coarse to fine analysis of the signal around these points for fur-
ther segmentation, recognition, and learning. Indeed, approaches
to speech recognition that are motivated by ideas in perception,
phonetics, and phonology, have made attempts in this direction,
like feature-based landmark detection [3], and our work is a con-
tribution to this tradition. It is hoped that further work along this
direction will lead to a phonetically motivated speech recognition
system that will provide a viable alternative to the current tradition
using HMMs and generic front-ends.

Prior Work in This Tradition: In fact, before statistical mod-

els dominated speech recognition research, the acoustics of sylla-
bles was widely analyzed and used into automatic detection. Wein-
stein used predominance of low frequency energy between 100Hz
and 900Hz [4]. Kasuya and Wakita even employed a complicated
combination of energy, back-to-total cavity volume ratio, front-to-
back cavity volume ration and high-to-low frequency energy ra-
tio to segment speech into vowel and non-vowel units [5]. These
methods use features extracted from sound spectrogram, requiring
to transfer the speech waveform in a function of amplitude and
time into the signal spectrum represented in frequency and time.

The two important points of comparison for this paper are (i)
Mermelstein’s algorithm [6] which used convex hull algorithm on
energy between 500Hz and 4kHz to segment speech into syllabic
units; (ii) Howitt’s work [7], incorporating ANNs into an energy-
based acoustic vowel detector. Clearly, only energy is not suffi-
cient enough to make reliable detection.

Our Central Result: Our central contribution is an algorithm
for detecting syllabic nuclei from continuous speech. After care-
fully analyzing the acoustics of syllabic nuclei and other speech
phonemes, our approach to syllable detection tries to use two reli-
able acoustic cues, periodicity and relevant energy. Using a mod-
ified version of a convex hull algorithm first introduced in this
context by Mermelstein, we use a two step procedure to locate
syllabic nuclei. The algorithm requires very simple computation.
We do a detailed study of the performance of this algorithm with
particular attention to how performance degrades with changes in
speaker and channel characteristics including noise. We find that
our algorithm is competitive with state-of-the-art HMM based ap-
proaches for this task in clean speech, is far more robust, requires
less training data and computational resources, and is phonetically
interpretable. In conjunction with other work in feature detection,
we believe this may eventually lead to an overall speech recogni-
tion system. Noting that the vowels which form syllabic nuclei
have formant transitions from beginning of the segmental duration
to its end, we observe that the estimated vowel landmark is a point
of relative stability in the vowel where its formant values may be
closer to the target formant values for that vowel.

2. Syllable Detection Method
2.1. Periodicity

Due to continuous changes of vocal cords and tract, the speech
signal, even for sound of vowels and sonorants, is actually quasi-
periodic. Moreover, some vowels, especially short ones, are also
affected by context phonemes, which makes them display aperi-
odic property. But generally, we can list the phoneme groups in
order of periodicity from the most periodic to the least as vow-
els/sonorants, liquids/glides, nasals, whispers, fricatives/affricates,



and stops. This characteristic gives us a clue to separate syllabic
nuclei from consonants. To evaluate periodicity, we use a modified
autocorrelation function of time series.

Let x1, ..., xn be observations of a time series,Xt. We can
estimate the autocorrelation function ofXt using sample autocor-
relation function, ifXt is a stationary time series, which is usually
the case for speech signal. The sample autocovariance function is

γ̂(h) =
1

n

n−|h|
X

t=1

(xt+|h| − x̄)(xt − x̄),−n < h < n, (1)

wherex̄ is the sample mean ofx1, ..., xn.
Since the expected mean of speech signal is usually 0. Equa-

tion 1 can be rewritten as

γ̂(h) =
1

n

n−h
X

t=1

xt+hxt, 0 ≤ h ≤ n − 1, (2)

whereγ̂(0) is actually the total energy of the speech signal.
In order to compare values of phonemes with different pitch

periods across an utterance, we normalized the autocorrelation
function over the number of samples used for computation, as

P (h) =
γ̂(h)/(n − h)

γ̂(0)/n
, 0 ≤ h ≤ n − 1. (3)

The periodicity of a speech frame is then defined as the largest
value among the peaks of the normalized autocorrelation function.
Because the samples of sound signal are not independent, espe-
cially for adjacent samples, there will be fake peaks in the first
few calculated values. And since the number of samples used to
normalize autocorrelation toP (h) is very small for largeh, the
resultantP (h) will appear randomly at the end. In practice, only
the peaks in the middle stable portion are considered for the pe-
riodicity value of a frame. In our implementations, only sample
shifts from 40 to 240 are considered. It is actually pitch period
from 2.5ms to 15ms.

The left top plot of Figure 1 shows the waveform of phoneme
/eh/ in a frame of 25ms spoken by a female speaker from TIMIT
data, and the left bottom shows the normalized autocorrelation.
The periodicity can easily be found with value around1.0. The
right two are for phoneme /z/ spoken by the same speaker. The
periodicity is around only 0.25, after cutting off the ends.

Analysis of some utterances in TIMIT training data shows that
about 99% of syllabic nuclei have periodicity more than 0.5, and
about 80% are even over 0.9, with average around 0.92, while other
non-syllable consonants, like stops and fricatives, average at 0.45.

2.2. Relevant Energy

Energy of a speech frame can be represented aslogγ̂(0), where
γ̂(0) is calculated as in Equation 2. Because the amplitudes of
sound can vary substantially from one utterance to another, the
energy of each frame is normalized against the strongest frame
energy in the utterance. In this way, the strongest frame in an
utterance will have an relevant energy value of 0dB and others will
have values below it.

For each phoneme, we select the frame with the largest energy
to represent it and find that syllabic nuclei, vowels and sonorants,
are averagely 15dB above other consonant groups. It can also be
shown that more than 99% of syllabic centers have relevant energy
over -50dB.
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Figure 1:Waveform and periodicity of /eh/ and /z/

Figure 2:Example of convex hull algorithm

2.3. Landmark Detection

After collecting periodicity and relevant energy for each frame in
an utterance, the landmarks of the syllabic nuclei are detected by
two steps, described below.

Periodicity SegmentationA modified convex hull algorithm
is used to segment an utterance into many segments. The basic
algorithm first finds the maximal point of a series of data, and then
constructs a convex hull, which is monotonically nondecreasing
from the start of the segment to the peak point, and is monotoni-
cally non-increasing thereafter. Thus, at any time point, the value
of the convex hull is at least as large as the value of the underline
data. The differences at all time points between the convex hull
and the data are calculated and the maximum of them is compared
with a threshold value. If it is deeper than the threshold, this point
serves as a boundary and the segment is divided into two subseg-
ments. The construction and division process is recursively carried
out onto the newly generated subsegments, until no differences are
larger than the threshold value. For example, as in Figure 2, the
convex hull is constructed as the dashed line with maximal point
at D. The largest distance at E is compared with a threshold. If
it is larger, the segment is divided into subsegment A-E and E-G.
For segment E-G, the re-constructed convex hull will be the same
as the underline segment, and then it cannot be further divided.
As for segment A-E, the largest dip at C will be compared to the
threshold to determine if C is a valid boundary.



0 500 1000 1500 2000 2500 3000 3500
−2000

0

2000

4000

h#
  

hh
  

iy
  

v
 

ao
  

n
 

ow
  

z
 

r
 

ow
  

pcl
   

p
 

s
 

pau
   

dh
  
ix
  

bcl
   

b
 

ow
  

tcl
   

s
 

kcl
   

k
 

ah
  

m
 

ah
  

n
 

s
 

tcl
   
t
 

ah
  

kcl
   

k
 

h#
  

Time (ms)

A
m

pl
itu

de

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5
P
 

P
 

P
 

P
 

P
 

P
 

P
 

P
 

P
 

Time (ms)

P
er

io
di

ci
ty

0 500 1000 1500 2000 2500 3000 3500
50

100

150

200
L L L L L L L L L

Time (ms)

E
ne

rg
y 

(d
B

)

Figure 3: Syllable detection example. The sentence is si2016,
”Heave on those ropes; the boat’s come unstuck.”

We apply the basic algorithm on periodicity to obtain all the
segments. The values at the boundaries of each segment are fur-
ther tested against a periodicity threshold and then each segment
shrinks to center to form a periodic region and leave the two ends
as aperiodic regions. An utterance is, thus, separated into periodic
and aperiodic segments.

In order to remove stop closures and glottal stops, which are
also highly periodic, we add another energy threshold test on each
frame in the periodic segments.

Landmark Picking After obtaining periodicity segmentation,
the basic convex hull algorithm is used on relevant energy to sep-
arate each periodic segment into several smaller sonorant regions.
The energy peak of each region is located and marked as a syllabic
center.

An example of the whole process is shown in Figure 3.The top
graph is the amplitude plot against time from its waveform, with
the phoneme script on the above. The middle is the periodicity
with the resultant segmentation by the modified convex-hull algo-
rithm. The segments with label ”P” are the final periodic segments
after shrinking from the convex hull segments. And the bottom
figure is the syllable landmark output from the detector. The land-
marks are located at the energy peaks of each periodic segments.
Without periodicity segmentation, there would be false landmarks
indicated by asterisk, which might be output by the unmodified
convex hull algorithm.

3. Performance Testing
Based on analysis of several utterances in TIMIT training dataset,
we use a typical set of parameters in our baseline syllable landmark
detector, shown in Table 1.

Because TIMIT does not provide syllable information, we
consider both vowels and sonorants (/el/, /em/, /en/, /eng) as syl-
labic nuclei. There are a total of 1344 utterances and 17190 syl-
labic nuclei in TIMIT test dataset, excluding SA1 and SA2 utter-
ances. Howitt’s detector is tested only on the vowels of 375 ut-
terances in TIMIT test dataset. The performance, compared with
other models, is shown in Table 2. The HMM-based Sphinx sys-
tems are developed by CMU. The referred Sphinx2 model is a

Table 1:Parameter setting for the baseline detector

Parameter Value

frame size 400 samples (25ms)
frame shift 160 samples (10ms)
energy threshold 50dB below the maximum
periodicity peak-to-dip threshold 0.7
energy peak-to-dip threshold 4.5dB

semi-continuous model based on 5-state Bakis HMM topology, us-
ing 6000 context-dependent tied states for all the triphones of the
40 base phones. The Sphinx3 model is a continuous model with
8 Gaussians per state, based on 3-state HMMs with no skips and
containing 6000 senones. No language models are involved.

Table 2:Performance of detection

Accuracy Del. Error Ins. Error Total Error

Baseline 81.6 18.4 10.9 29.3
Sphinx 2 84.5 15.5 22.3 37.8
Sphinx 3 89.1 10.9 25.7 36.6
Howitt 75.5 24.5 13.8 38.3

A landmark detection of the baseline detector is counted cor-
rect, if it is located within a syllabic segment, provided by TIMIT
phoneme boundary information. Because the outputs of Sphinx
systems are phoneme segments, we transfer them into landmarks
by putting a landmark at the middle of each syllabic segment, and
then apply the same testing method. Both the deletion and inser-
tion error rates are calculated against the number of syllables in the
testing data. The total error rate is the sum of the deletion and in-
sertion error rates. Clearly, the overall performance of our baseline
detector is comparable to the complicated Sphinx systems, with
even less total error rate. It also outperforms Howitt’s detector us-
ing ANNs in both accuracy and error rates.

4. Robustness
In order to test how robust our detector and other systems are, two
datasets are used, NTIMIT and TIMIT with additive noise.

4.1. NTIMIT and White Noise

There are two major differences between TIMIT and NTIMIT
data, (i) more noise in NTIMIT speech with 25dB SNR while
TIMIT has about 40dB SNR, (ii) greatly reduced spectral energy
above 3.5 kHz in NTIMIT, due to telephone channel limitation.
Among the released NTIMIT data, 8 speech files are incomplete,
so the test data contains 1339 utterances with 17117 syllables.

In order to test degradation to additive noises, two kinds of
noise are added to the TIMIT speech wave forms, global white
noise and local white noise.

Global noise is added by sampling from a zero mean random
distribution. The variance of the distribution is set depending upon
the level of global signal-to-noise ratio (SNR) we wish to obtain.
We add 30dB, 20dB, 10dB and even 0 dB SNR global noise to the
TIMIT speech.

Local white noise is added in way of Schroeder noise. The
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Figure 4:Degradation of total error rates

clean speech signalx(n) is corrupted into

y(n) = x(n)[1 + εη(n)], (4)

whereη(n) takes on values +1 and -1 with equal probability at
eachn, and any twoη(n) are independent. Therefore, the noise
will have flat power spectrum. Furthermore, the signal-to-noise
ratio at each timen (local SNR) is given by20log(1/ε). In this
model, the total additive local noiseζ(n) = εx(n)η(n) scales as
a function of signal energy at each point in time.

4.2. Degradation Test

We test our baseline detector and the two Sphinx models on the
NTIMIT and noise-added TIMIT test datasets. Our detector uses
the same parameter setting as Table 1. The Sphinx models are
trained on TIMIT training data and not re-trained or adapted to
NTIMIT and noise. Figure 4 is the degradation of total error rates.
From the result, our detector is more stable and outperforms the
HMM based systems in all environments, except for 0dB SNR
local noise. The Sphinx systems even degrades right after small
noise is added or the situation changes, like in 30dB noise and
NTIMIT environments.

5. Application to Vowel Classification
Speech signal is a continuous sequence of individual sounds and
is often in a transitory state, the dynamics of which seems to be
well represented by HMMs. However, because the direction of the
movement of the articulators usually approximates the target con-
figuration of phonemes, we believe that there are still some time
points describing the phonemes approximately well, especially for
some long phonemes, like vowels. Then the signals around these
time points can be used as reliable sources to classify phonemes.
The landmarks detected in the previous sections can be such kind
of reliable points.

Actually, we analyze vowel positions statistically and find that
the syllable landmarks can be used as good approximation to the
middle frames of vowels, which have much less variation than the
starting and ending frames. Shown in Table 3 are speech varia-
tions at energy peak points of vowels and across the whole vow-
els. The statistical data are the second formants of vowel /ae/ spo-
ken by eight male speakers, and vowel /iy/ spoken by eight female
speakers. We construct statistical hypothesis tests and reject in ei-
ther case the assumption that the variations are equal at peaks and
across the phonemes.

Table 3:Variations of second formants of /ae/ and /iy/

#(all) mean var #(peak) mean var

/ae/ 447 1648.49 215.31 61 1612.28 157.36
/iy/ 649 2348.32 333.30 140 2299.73 294.75

Using the data at the landmarks extracted from the detector
described in previous sections, we can build our vowel classifier
based on Support Vector Machines. Considering the dynamics of
speech signals, we use more than one frames of the vowel features
at the landmarks to train our classifiers. Different groups of vowel
features are tried and we obtain similar results. One of the feature
groups discussed in this section consists of the energy ratios of 15
mel scale bands under 4000Hz over the total from the adjacent 3
frames. And the other one is the same cepstral feature used by the
Sphinx systems. The classification results are shown in Table 4,
without diphthongs. The comparable performance implies that the
syllable landmarks are indeed reliable for classification.

Table 4:Performance of vowel classification

mel cepstral Sphinx 2 Sphinx 3

Accuracy 48.0% 48.5% 46.1% 50.9%

6. Conclusions
We have developed a syllable detector using basic features of pe-
riodicity and relevant energy. These two features are relatively ro-
bust across speakers and utterances. Their stability and reliability
are demonstrated in the robustness tests and vowel classification.
Clearly, thorough analysis of signal characteristics and careful se-
lection of distinctive features can overcome some problems com-
ing from statistical models and improve speech recognition.
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