
Robust Acoustic Source Localization of Emergency Signals from Micro
Air Vehicles

Meysam Basiri1,2, Felix Schill 1, Pedro U.Lima2 and Dario Floreano1

Abstract— In search and rescue missions, Micro Air Vehicles
(MAV’s) can assist rescuers to faster locate victims inside a large
search area and to coordinate their efforts. Acoustic signals play
an important role in outdoor rescue operations. Emergency
whistles, as found on most aircraft life vests, are commonly
carried by people engaging in outdoor activities, and are also
used by rescue teams, as they allow to signal reliably over
long distances and far beyond visibility. For a MAV involved in
such missions, the ability to locate the source of a distress sound
signal, such as an emergency whistle blown by a person in need
of help, is therefore significantly important and would allow the
localization of victims and rescuers during night time, through
foliage and in adverse conditions such as dust, fog and smoke.
In this paper we present a sound source localization system for
a MAV to locate narrowband sound sources on the ground, such
as the sound of a whistle or personal alarm siren. We propose a
method based on a particle filter to combine information from
the cross correlation between signals of four spatially separated
microphones mounted on the MAV, the dynamics of the aerial
platform, and the doppler shift in frequency of the sound due to
the motion of the MAV. Furthermore, we evaluate our proposed
method in a real world experiment where a flying micro air
vehicle is used to locate and track the position of a narrowband
sound source on the ground.

I. INTRODUCTION

The main objective of a search and rescue mission is to
quickly locate and extract victims from the disaster situation.
A search effort in rough outdoor terrain can be very time
consuming and physically challenging, and keeping track
of the positions of multiple rescue teams in a large area
without communication infrastructure can be an additional
problem. Autonomous Micro Air Vehicles (MAVs) can assist
rescuers to faster locate victims in a large search area,
and help coordinate rescue efforts by reporting the location
of rescue teams to the mission coordinator [1]. They can
directly reach potential target areas by flying over obstacles
and inaccessible terrains, and hence achieve a faster area
coverage than ground units.

Sound is one of the most important cues for locating
people in a disaster situation. Sound waves travel in all
directions and can be detected at long distances from the
sound source, and beyond line of sight. During night time
or in fog, dust, smoke, dense forests or otherwise cluttered
environments, acoustic signals are far more reliable than
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visual cues. This is the main motivation behind the use of
safety whistles in most survival kits and disaster preparedness
supplies offered today. Safety whistles are an inexpensive and
effective method for emitting a distress signal in emergency
situations, and are also commonly used for basic signalling
when noise or distance makes voice communication difficult.
They are often used by people engaging in outdoor activities,
such as hikers, mountaineers, skiers, boaters and scuba
divers, and are commonly provided with airplane life vests.
These whistles enable the user to generate a very loud and
clear narrow-band sound (usually a single frequency between
2-5 KHz), which can be perceived distinctly from long ranges
and in noisy environments, without making the signaller
hoarse and exhausted. There is usually little environmental
noise in the multi-kilohertz range, which enhances detectabil-
ity. However, a disadvantage of high-frequency, narrow-band
sounds is the difficulty for human listeners to correctly locate
the direction of the source [2].

The aim of this work is to develop an audio based
localization system for MAVs to locate and track narrowband
sources on the ground. Such a system can also provide
a simple way of interaction between human operators and
MAVs. For example, a rescue team could easily signal its
position to the mission coordinator by using specific whistle
signals, or could command robots to land in a desired spot.

Hearing has always been one of the key senses among
humans and animals. Despite this, audition in robotics has
not received great attention compared to vision, and most
studies on this focus on speech recognition and localization
of talkers for home, office, and humanoid robots [3] [4]. In
most works, a technique inspired by animal hearing called
Inter-aural Time Difference (ITD) (also known as Time
Difference of Arrival TDOA) is used for localizing sound
sources. This method measures the time delay caused by
the finite speed of sound between the signals received by
two microphones. While the complex hearing capabilities
of animals achieve good performance with only one pair
of acoustic sensors, technical systems often use arrays of
microphones for assisting robots in locating broadband sound
sources in the environment [5]. Design of new acoustic
sensors that could possibly be used on MAVs have been
investigated in some recent works [6] [7].

The TDOA is generally estimated by using cross-
correlation of the signals to find the best match. A problem
faced with this approach is that it requires the sound source
to be a broadband source. This is because of the repetitive
nature of narrowband sounds, which introduces an ambiguity
in the time delay estimation, i.e. coherence testing among
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the signals from different microphones no longer provides a
unique time delay for every microphone-pair. This problem
is particularly pronounced for high frequencies. Reducing
the distance between the microphones reduces ambiguities,
but also reduces resolution. Our strategy to overcome this
problem is to use this ambiguous information along with
other sources of information, such as the dynamic behaviour
of the robot and, if the source frequency is known, the
Doppler shift in the sound frequency caused by the MAV’s
motion, in order to obtain a more reliable estimate. A particle
filtering technique is employed, also known as sequential
Monte Carlo method [8]. Particle filtering is considered
a powerful tool for handling localization, navigation and
tracking problems [9]. Few works show the effectiveness
of particle filtering for tracking wide-band sound sources
inside reverberant environments [10],[11]. This paper focuses
on the tracking of narrowband and single-frequency sound
sources, proposes a novel method to incorporate two types
of acoustic information (TDOA and Doppler shift) and
vehicle dynamics in a particle filter framework, and presents
experimental results.

This paper is organized as follows: Section II describes the
proposed method for localizing narrowband sound sources
and explains the different parts of the localization system
in detail. In Section III results of real experiments with the
proposed method is provided, where a flying MAV is used
to locate and track the location of a sound source.

II. PROPOSED METHOD

This section explains our method for allowing a MAV
to localize and track a target on the ground that emits a
narrowband sound. Figure 1 presents the schematic diagram
of the localization system consisting of three main units. The
first unit is the “TDOA Localization” unit which is responsi-
ble for measuring probable directions of the target using the
estimated time difference among the signals of an on-board
microphone array. The second unit is the “Doppler Speed
Estimation” unit which uses the measured sound frequency
and the Doppler shift to obtain a measure of the relative
speed between the target and the robot itself. The third unit is
the particle filter tracker which uses the information obtained
by the previous units along with the information about the
position and motion of the robot itself, throughout time, to
estimate and track the position of the target while eliminating
false estimates. A more detailed explanation of each unit is
presented in the following sections.

A. TDOA Localization

Our approach for locating the direction of a target is based
on the Time Delay of Arrival (TDOA) estimation technique.
In this method the time delays between signals of spatially
separated microphones are found using coherence measures
(This is described later in section II-A.1). These time delays
are then used along with knowledge of the microphone
array’s geometry to calculate the direction to a sound source.
Figure 2 illustrates a simple sound field consisting of two
microphones ((i),(j)) and a sound source S. Here, two

microphones that are dm meters apart experience sound
waves emitted from a sound source S. Considering the far
field assumption (ds >> dm), it is possible to state that:

cos θ =
cτij
dm

(1)

where τij is the time difference of arrival between the two
microphones, c is the speed of sound and θ is the angle of
incidence between the sound wave-front and the microphone
pair’s axis. Also, from the cosine law it is possible to derive:

cos θ =
−→x ij .
−→u

dm
(2)

where −→u is a unit vector pointing towards the sound source.
By combining equations (1) and (2) we get

−→x ij .
−→u = cτij (3)

In three dimensional space and by considering a body-
fixed coordinate system that is attached to the MAV’s frame,
the vectors −→u and −→x ij are defined as

−→u = (ux, uy, uz)
−→x ij = (mix −mjx,miy −mjy,miz −mjz)

= (mijx,mijy,mijz) (4)

where (mix,miy,miz) are the coordinates of microphone i.
From (3) and (4) a linear system of N equations can be
obtained when N different microphone-pairs are used:

A× u = b (5)

A =


m12x m12y m12z

m13x m13y m13z

...
...

...
mijx mijy mijz


1

2

...
N

u =

 ux
uy
uz

 b =


cτ12
cτ13

...
cτij


The system of equations (5) can be used to compute a

unique solution u if more than three microphone-pairs exist
which are not all in the same plane. A value for u that best
satisfies the system of equations (5) can be estimated using
the linear least square method [12]

uls = (ATA)−1AT b (6)

to minimize the sum of the squared errors

εr =
∑

(Auls − b)2 (7)

Doppler Speed 
Estimation 

TDOA  
Localization 

Particle 
 Filtering 

Microphone Array 

MAV's Behaviour 

Target's Location 

Fig. 1. Schematic diagram of the proposed localization system illustrating
main parts of the system

4738



1) Estimation of TDOA: As explained previously, for a
pair of microphones inside a sound field, a time delay τd
exists between their signals. This time delay is dependent
on the angle θ between the sound wave-front and the
microphone pair’s axis and lies within the range

−dm
c
< τd <

dm
c

(8)

where c is the speed of sound. Cross correlation is a
commonly used technique for measuring the coherence and
obtaining the time delay τd between two signals. Cross
correlation of two microphone signals each having a length
of N samples can be computed by

Rij (τ) =

N−1∑
k=0

pi [n] pj [n− τ ]

where pi [n] is the signal perceived by microphone i and
τ is the correlation lag in samples in the range expressed
by equation (8). The correlation value Rij (τ) reaches a
maximum value at τ = τd.

The shape of the cross correlation Rij is dependent on
the statistical properties of the sound source itself. If the
sound source is an ideal white noise then Rij is equal to
an impulse function transposed by τd. However, if the sound
source is a band limited white noise, Rij no longer has an
impulse shaped peak but instead has a more broadened peak.
The actual shape of the correlation Rij can be described
mathematically by [13]

Rij (τ) = Pa
sin(πB(τ − τd))

πB(τ − τd)
cos(2πf0(τ − τd)) (9)

where B is the bandwidth, f0 is the centre frequency, and
Pa is the signal power. As the bandwidth approaches zero,
the correlation Rij becomes a periodic sine wave with peaks
of the same amplitude and period of 1/f0 and hence makes
the identification of the peak corresponding to the correct
time delay ambiguous. Figure 3 shows cross-correlations in
a simple sound field case explained in figure 2, for three
different sound sources. It can be seen that the narrowband
sounds from a whistle and a piezo alarm show multiple
peaks, introducing ambiguity in the direction estimation.

Fig. 2. Illustration of a sound field consisting of two microphones (i),(j)
and a sound source S. The microphones are placed on a MAV and dm
meters apart from one another. Vector u is a unit vector in the body-fixed
coordinate system (x, y, z) pointing towards the sound source S.

One method to tackle the time delay ambiguity problem
for narrow-band sound sources is to decrease the distance
between the microphones in order to avoid multiple cross
correlation peaks. To only have a single cross-correlation
peak, the microphone pair’s inter-distance must satisfy

dm <
c

2f0
(10)

However, the angular resolution of a microphone array for
a given sampling frequency decreases for smaller distances
between the microphones. We therefore propose a method
which considers all the peaks above a certain threshold in
the cross correlation of every microphone pair, and hence
obtains a set of possible time delays for every pair. Corre-
sponding time delays among different microphone pairs are
then identified, from which probable directions of the sound
source is obtained. This information is later fused with the
Doppler speed estimate and the robot’s behaviour in order
to remove ambiguities and locate the sound source.

To identify the corresponding time delays among different
microphone pairs we use equations (6) and (7) to compute
the source direction uls and error εr for all possible time
delay combinations. Those values of uls that have the lowest
errors can be considered as a potential direction to the
sound source. Hence a set of possible source directions are
identified:

{uk, k = 1 : M} (11)

where M is equal to the number of corresponding peaks
among microphone pairs.

B. Relative Speed Estimation

The acoustic Doppler shift in frequency is defined as the
change in frequency due to the relative motion between a
sound source and an observer. The relationship between the
frequency f0 of the sound source and the observed frequency
f is defined by the equation

f = f0
c± vo
c∓ vs

(12)

where vo and vs are the speeds of the observer and the sound
source respectively, assuming that they are either directly
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Fig. 3. Cross-correlations for three different cases of sound source. The
power spectral density of every sound source is shown in graphs(a-c) and
their corresponding cross correlation is shown below each graph (d-f). Three
sound sources are: (a) air blower (b) emergency whistle (c) piezo alarm
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approaching or receding from each other. In the problem
proposed in this paper, the aim is to locate a stationary
narrowband sound source of known frequency fs that is
located on the ground from a moving MAV. Equation (12)
can be used to obtain an estimate of the relative speed
between the MAV and the stationary sound source:

vr = c(
f

f0
− 1) (13)

f is measured by searching for the maximum peak in the
power spectral density of the sound measurements inside the
range f0 − fm < f < f0 + fm, where fm is the maximum
possible shift in frequency. fm can be obtained from the
absolute speed vR of the MAV

fm =
vR
c
f0 (14)

C. Particle-Filtering Localization and Tracking

The previous two sections described methods of providing
an instantaneous, noisy and ambiguous information about
a possible narrowband sound source in the environment. It
is now required to estimate more reliably the position of
this sound source by fusing all the available information
together. Also information about the behaviour of the MAV
in time, along with all measurements available up to the
current time, could be employed to obtain a more accurate
estimate. For this reason, we will use the particle filtering
technique to recursively estimate the probability density of
the target location. Using this method, all of the hypotheses
about the target’s position are represented as a set of particles
with individual weights.

At time instant t, the direction to the sound source is
modelled using a set of N particles of direction vectors ui
and weight wi, where ui = (uxi, uyi, uzi) is a unit vector
in the body-fixed coordinate system that starts at the origin
and points towards a direction. ui can also be described in
body-fixed spherical coordinate system (r, 6 φ, 6 θ) by:

ui = (1, φi, θi) i = 1, 2, ..N (15)

where φi is the azimuth defined in the range [−π, π] and
θi is the elevation defined in the range [−π/2, π/2]. A two
dimensional state vector is specified for every particle:

Si(t) = [φi(t) θi(t)] (16)

The algorithm starts by forming an initial set of particles
{Si(0), i = 1 : N}. Particles either could be generated
uniformly over the entire state space, or only over a desired
part of the state space if some prior knowledge about the
possible location of the target is available. In the proposed
problem the initial state space is reduced to all vectors
pointing towards the ground.

1) Prediction: In the prediction step, a set of new particles
S̃i(t) is predicted by propagating Si(t − 1) according to a
probabilistic motion model. This is achieved by transforming
the vectors ui(t−1) to ũi(t) using the information gathered
from MAV’s on-board sensors indicating the change in the
state of the MAV. In this work, we measure the change in

roll and pitch of the MAV using on-board gyroscopes and
the airspeed and altitude using an absolute and a differential
pressure sensor. As no compass is present on the MAV,
the heading information is obtained from an on-board GPS
sensor. We use a simple model for the prediction step which
assumes that the robot has only forward motion (i.e. along
the x axis on the body-fixed coordinate system), and the
target is located on a flat ground (i.e. at zero height).

The prediction procedure starts by estimating a target
distance di for every particle based on the MAV’s current
height and orientation:

di =
h

cos 6 (−→u i(t− 1),
−→
h )

(17)

where 6 (−→u i(t− 1),
−→
h ) is the angle between vectors −→u i and

the height vector
−→
h . From (15) and (17), it is possible to

construct a vector Ti that extends the unit vector −→u i until it
reaches the ground.

−→
T i(t− 1) = (di, φi, θi) (18)

Furthermore, this vector is updated by taking into account the
translation and rotations of the body-fixed coordinate system
due to the speed −→v and the change in the yaw (∆λ), pitch
(∆β) and roll (∆α) angles of the MAV.
−→
T i(t) = R(∆λ,∆β,∆α)× (

−→
T i(t− 1)−−→v ∆t) (19)

where ∆t is the time interval between the updates and R
is a rotation matrix representing the rotations of the MAV.
Finally a vector ũi is randomly selected from all possible
direction vectors −→p that satisfy the equation

6 (
−→
Ti ,
−→p ) = N(0, σA) (20)

where N(0, σA) is a random number generated with a normal
distribution of mean zero and standard deviation σA. The
value of σA is chosen in relation with the accuracy of the
model that is used.

2) Update: As previously explained, a set of M direction
measurements from the TDOA localization unit (11) and one
relative speed measurement vr from the Doppler Estimation
unit (13) is obtained at every time-step. In the update step, the
likelihood of obtaining these measurements is investigated
for every particle and particles are weighted based on this
measure. For this investigation, we propose the likelihood
function:

wi = LDi ×
M∑
k=1

LTik (21)

where

LDi = N(εDi : 0, σD) LTik = N(εTik : 0, σT )

N(x : m,σ) stands for a normal distribution with mean m
and standard deviation σ evaluated at x. εTik is the angle
between ui and the kth TDOA measurement and εDi is
the error between the computed relative speed ṽri and the
measured relative speed value vr.

εTik = 6 (−→u k,
−→̃
u i) εDi = |vr − ṽri| (22)
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Fig. 4. Picture of the MAV platform [14] used for experimenting the
proposed algorithm. Four microphones and an on-board digital sound
recorder is used for recording sounds during flight.

where the computed relative speed ṽri is simply calculated
using the MAV’s velocity

−→
V R and the vector

−→̃
u i from

ṽri =
∥∥∥−→V R

∥∥∥ cos 6 (
−→
V R,

−→̃
u i) (23)

The values of σT and σD in (21) reflect the confidence
of Doppler-speed and TDOA measurements respectively and
can be found empirically.

3) Target Direction Estimation: The direction to the target
can be estimated at each time step from the probability
density function represented by the particle set. For this
a weighted mean of all particles’ positions could be used.
However, to avoid inaccurate estimations for situations with
multi-modal distributions, a weighted mean of particles
located in a local neighbourhood of the particle with the
highest weight is used instead:

S̄T =

K∑
i=1

wiSi : ∀ |Si − Smax| < ξ (24)

III. EXPERIMENTS AND RESULTS

To test and verify the proposed algorithm, multiple real
experiments were performed with the MAV platform shown
in figure 4 for locating a stationary target on the ground that
emits a narrowband sound. A microphone array consisting
of four microphones is mounted on the MAV along with a
digital sound recorder for recording the microphone signals.
The microphones are positioned in a way to form a regular
tetrahedron of edge length 10 cm. The MAV is equipped
with an autopilot that allows it to fly fully autonomously
to predefined waypoints. The orientation, altitude, air-speed
and global positioning information of the MAV are measured
using on-board sensors and are transmitted to a ground
station. The MAV was controlled to fly within the visual
range of a safety pilot while occasionally reducing or even
turning off its engine to increase the detection range by

Fig. 5. (a)The safety whistle used in the experiment (commonly available
in outdoor shops). It features two chambers, and emits two closely spaced,
superimposed frequencies between 2kHz and 2.1 kHz. (b) A hand-held piezo
alarm used in this work that emits a single frequency of 3.8 kHz.

Fig. 6. Result of an experiment where a MAV is used to locate a human
target on the ground who is occasionally blowing into a safety whistle.

increasing the signal to noise ratio. This reduction in the
engine power is achieved automatically whenever the MAV
is descending.

Two different sound sources were used for the exper-
iments: a commonly available duo-tone safety whistle as
shown in figure 5(a), and a 3.8kHz hand-held piezo alarm
shown in figure 5(b). The sounds were triggered by a human
experimenter in a known location. The whistle was blown in
intervals of approximately 1 to 2 seconds.

Figure 6 shows the result of an experiment where the
safety whistle is used as the target sound source. This
figure illustrates the relative direction estimates of the flying
MAV and the target position estimation error in meters
during a time interval of the flight. These estimates are also
compared against the measurements computed from absolute
GPS positions and MAV orientation measurements. Here,
the particle filtering algorithm is initialized after the MAV’s
motor input drops below a predefined threshold (N=100).
As soon as the first whistle is observed, particles converge
toward the direction of the target. Furthermore, when there
are no observations available or the MAV’s motor input is
above the predefined threshold, the particle filtering update
step is no longer performed and hence only the probabilistic
motion model of the MAV is responsible for the tracking.
This results in the gradual increase in the spreading of the
particles until the next observation is available. It can be
seen that in this experiment, and after the last set of whistle
sound observations, the target position is tracked correctly
for several seconds but then suddenly the error starts to
increase. This is because at this point the MAV start to
perform a sharp 180 degrees turn to return to the home
way-point. Note that although the microphone pair’s inter
distance and the frequency of the target sound does not
satisfy equation (10), and hence 2 peaks could appear in the
cross correlations, there are no ambiguities in the final TDOA
observations. This is because the current geometry of the
microphone array ensures that for this target frequency not
all pairs experience this ambiguity simultaneously. Therefore
in the proposed method, in the step were corresponding
time delays among different pairs are identified, incorrect
peaks are automatically eliminated and a single direction
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Fig. 7. Result of an experiment where a MAV is used to locate the position
of a human target on the ground that is holding a piezo alarm (N=100).

measurement is obtained. Hence, in this experiment, as there
are no ambiguities present in the TDOA measurement, the
doppler based relative speed estimation step and knowledge
of the target frequency is no longer necessary. The left plot
in figure 8 illustrates this by providing a comparison between
using and not using the doppler speed estimation in the
filtering process (first and second error bar from the left).

To further test the performance of the system in situations
where ambiguities are still present in the final TDOA obser-
vations, a set of experiments was performed in which a piezo
alarm of frequency 3.8 kHz was used as the target source.
Figure 7 shows the result of an experiment that illustrates
the correct direction estimation despite the high ambiguity
existing in the TDOA measurements. The raw azimuth
estimates from TDOA alone are shown as small red dots;
ambiguities in the form of 5-6 possible angles are clearly
visible. The particle-filtered estimate quickly converges to the
correct estimate. Furthermore, the target position is shown
to be tracked correctly long after observations are no longer
available. However, figure 8 shows that the knowledge of
the target frequency and the doppler speed estimation is
necessary to obtain a correct estimate when using the piezo
alarm. A detection range beyond 150 meters was achieved
with both the whistle and the alarm.

To move towards an embedded real time implementation
of the proposed solution, and since the complexity of this
method is highly dependent on the number of particles,
further evaluations were performed to evaluate the effect
of this parameter on the localization performance. Figure 8
shows a relatively small trade-off between the computational
complexity and accuracy of the proposed algorithm. It can
be observed that it is feasible to use as little as 20 particles
with acceptable results, and therefore to minimize greatly the
computational complexity of the proposed solution.

IV. CONCLUSION

This paper presents a solution to the problem of localizing
narrowband sound sources on the ground from a micro air
vehicle. The solution provided in this paper requires an on-
board microphone array to measure probable directions of the
sound source based on TDOA measurements, and on-board
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Fig. 8. Box plots of average error in direction estimation for 20 runs and
on 15 seconds time interval during flight time, showing the effect of particle
numbers and Doppler-speed estimations on the mean error. σ = x indicates
that doppler speed estimations are not used in the update step.

sensors to obtain information about the state of the MAV.
In case of ambiguities in the TDOA measurements due to
the repetitive nature of narrow band sounds, knowledge of
the vehicle dynamics, and furthermore the sound frequency
and the Doppler shift of this frequency is used for resolving
these ambiguities. The particle filtering technique used in this
paper was shown to be well-suited for fusing these multiple
sensors in order to achieve robust estimation of the position
of the sound source.
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