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ABSTRACT

This paper focuses on the active flow control of a computational fluid dynamics simulation over a range of Reynolds numbers using deep
reinforcement learning (DRL). More precisely, the proximal policy optimization (PPO) method is used to control the mass flow rate of four
synthetic jets symmetrically located on the upper and lower sides of a cylinder immersed in a two-dimensional flow domain. The learning
environment supports four flow configurations with Reynolds numbers 100, 200, 300, and 400, respectively. A new smoothing interpolation
function is proposed to help the PPO algorithm learn to set continuous actions, which is of great importance to effectively suppress problem-
atic jumps in lift and allow a better convergence for the training process. It is shown that the DRL controller is able to significantly reduce the
lift and drag fluctuations and actively reduce the drag by ∼5.7%, 21.6%, 32.7%, and 38.7%, at Re = 100, 200, 300, and 400, respectively. More
importantly, it can also effectively reduce drag for any previously unseen value of the Reynolds number between 60 and 400. This highlights
the generalization ability of deep neural networks and is an important milestone toward the development of practical applications of DRL to
active flow control.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006492., s

I. INTRODUCTION

Actively controlling a flow to change its characteristics is attrac-
tive for many applications in the field of fluid mechanics and
could bring large industrial benefits.1 Since the pioneering work
of Prandtl about the use of active flow control (AFC) for delay-
ing boundary layer separation,2 AFC has witnessed a fast growth
and has become an increasingly important technology for the pur-
suit of industrial and sustainable solutions.3 Prospective applications
of AFC to problems of industrial and environmental importance
include, to name a few, reducing the aerodynamic drag on air-
crafts,4,5 manipulating the vortex in the wake of bluff bodies,6–10 and

optimizing the design and performance of wind turbines11–13 and gas
turbines.14

Nevertheless, finding efficient strategies for performing AFC
remains a challenge.1,15 This difficulty is deeply rooted in the nature
of the Navier–Stokes equations and their underlying high non-
linearity, as well as in the high dimensionality of possible con-
trol parameter spaces. Additionally, considerable challenges exist
for applying AFC to engineering situations, such as disturbances
inherent to the physical environment and imperfections in the
manufacturing or installing of the actuators, which impose hard
requirements on the ability of control algorithms to adapt robustly
to external conditions. This makes the design of control strategies
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a complex endeavor. Therefore, the main issue of AFC is currently
the lack of robust, efficient algorithms that can leverage the physical
devices available for performing effective control.

In practice, AFC can be open-loop (no feedbackmechanism) or
closed-loop (when a feedback mechanism is present, i.e., some mea-
surements of the flow are provided to the AFC system to decide the
next actuation).16 Compared with the open-loop control, the closed-
loop control possesses more potential to take full advantage of active
devices to alter the flow. At present, many implementations of AFC
are based on mathematical models of the flow system. For example,
Flinois and Colonius.17 developed an adjoint-based optimal control
framework to help stabilize the vortex shedding efficiently. Leclercq
et al.18 proposed a feedback-loop strategy using iteratively linearized
models to suppress oscillations of resonating flows. Bergmann
et al.19 deduced an optimal control approach for the flow past a
circular cylinder using proper orthogonal decomposition reduced-
ordermodels. Brackston et al.20 used a stochasticmodeling approach
to design a feedback controller and validated it in experiments,
effectively suppressing the asymmetric large-scale structure behind a
bluff body wake with active flaps. These model-based control strate-
gies are usually based on either harmonic or constant forcing,21,22

making it, however, challenging for real-world AFC where com-
plex non-linear systems are present in combination with stochastic
disturbances.23

By contrast, model-free approaches, where the control strategy
is found through a data-driven and learning-based approach, are
quite suitable for complex, high-dimensional, nonlinear systems.15,21

Such techniques mainly include genetic algorithms (GAs) and arti-
ficial neural networks (ANNs). While GAs have been extensively
used for AFC,23–26 ANNs are receiving growing attention recently
due to the fast development of artificial intelligence/machine learn-
ing that has taken place in recent years. Furthermore, ANNs have
been found so far to surpass GAs in terms of the complexity of the
tasks learned and their learning speed.27,28 Among other methods
within the field of machine learning, ANNs used together with rein-
forcement learning algorithms have attracted great attention.29,30

The resulting deep reinforcement learning (DRL) paradigm has been
successfully deployed to resolve several high-profile, complex prob-
lems, such as playing a wide range of Atari game without hard-
coding strategies,31 generating realistic dialogs,32 or controlling the
dynamics of complex robots.33 Compared with data-driven and
supervised learning approaches, which have also found some appli-
cations in fluid mechanics within particle image velocimetry (PIV)
measurement,34–36 reduced-order modeling,37,38 or predictions of
flow features,39–41 DRL allows us to find a solution through trial-and-
error, even when no solution is known a priori. One can observe that
challenging systems successfully controlled by DRL have remark-
ably similar properties of nonlinearity and high-dimension, simi-
lar to the features of flow phenomena that make AFC challenging.
Consequently, DRL is seen as a promising avenue for performing
AFC.15

Therefore, in recent years, DRL has became a new tool to dis-
cover AFC strategies,15 and it has been shown to outperform pre-
vious techniques in several cases.42 In addition, increases in the
computational power available for numerical simulations make it
possible to study increasingly complex systems using DRL and sim-
ulations. Such applications include optimizing the motion for indi-
vidual43 or collective fishes,44,45 training a glider to autonomously

navigate atmospheric thermal current,46 and controlling the adap-
tive behavior of microswimmers.47 Although the computational
costs of the simulations needed to train the DRL algorithms still
limit their application, they already have helped shed light on several
complex problems.

The present work is an extension of the results initially pre-
sented by Rabault et al.,48,49 but with four synthetic jets that are
located symmetrically on a cylinder immersed in a two-dimensional
domain. Moreover, the ability of DRL to design robust active control
strategies for the flow over a range of conditions is further inves-
tigated. The proximal policy optimization (PPO) agent together
with a two-layer fully connected neural network is used to con-
trol the mass flow rates of these four jets to reduce the magni-
tude and oscillation of the drag. In addition, a new interpolation
equation is developed to make the control values change smoothly
with time, so that problematical lift oscillations, which are caused
by the interpolation function proposed in previous works,48,49 are
almost completely eliminated. In addition, the robustness and fea-
sibility of the obtained control strategy, which shows the best per-
formance in different flow conditions, are discussed. The paper is
organized as follows. First, a brief introduction to the numerical
method used for performing the simulations and the general the-
ory underlying the DRL algorithm used are provided in Sec. II. The
training using the DRL algorithm over a range of Reynolds numbers
is then detailed in Sec. III, together with the results which under-
line the robustness and generalization ability of the control strat-
egy obtained. Finally, a brief summary of the contribution and its
significance for the use of DRL within AFC are demonstrated in
Sec. IV.

II. PROBLEM SETUP AND METHODOLOGY

A. Problem description

The configuration of the simulation is adapted from the clas-
sical benchmark computations carried out by Schäfer et al.50 (also
known as the Turek benchmarks), in which a cylinder of diame-
ter D is immersed in a two-dimensional domain with a size 22D
× 4.1D, as depicted in Fig. 1. The center of the cylinder is located
at a transversal distance of 0.05D from the horizontal centerline of
the flow domain. This geometric asymmetry helps trigger the vor-
tex shedding if the Reynolds number is greater than the critical
value.

For performing AFC, four jets, for which the mass flow rates
are controlled by the ANN, are symmetrically located on the upper
and lower sides of the cylinder. The angular positions of these four
jets are 75○ (corresponding to θ0, as shown in Fig. 2), 105○, 255○,
and 285○, respectively. The jets are chosen as synthetic jets, i.e., the
sum of the mass flow rates of all jets is enforced to be zero, and the
jet directions are set to be perpendicular to the cylinder wall. The
injection velocity can be positive or negative, corresponding to blow-
ing or suction, respectively. With such configurations, there could
be an extra injected momentum that could act as the propulsion, as
discussed in Appendix B. However, the propulsion is small in any
case, thanks to the net mass flow rate being kept equal to zero, and
it amounts for no more than 5% of the momentum intercepting the
cylinder once a pseudo-periodic regime with active control has been
achieved. Therefore, this small propulsion effect will be neglected in
the following discussion.
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FIG. 1. Geometrical description of the configuration used for simulating the flow past a circular cylinder immersed in a two-dimensional channel, adapted from the work of

Schäfer et al.50 The center of the cylinder and the synthetic jets are marked by a red dot and blue arcs, respectively. The cylinder is slightly off the horizontal centerline of the
channel (by 0.05D). This geometric asymmetry helps trigger the vortex shedding.

B. Numerical method

In the present study, the flow is assumed to be viscous and
incompressible. The governing equations are the two-dimensional,
time-dependent Navier–Stokes equations and the continuity equa-
tion, which can be expressed in a non-dimensional form as follows:

∂u

∂t
+ u ⋅ (∇u) = −∇p + 1

Re
Δu, (1)

∇ ⋅ u = 0, (2)

where u is the non-dimensional velocity, t is the non-dimensional
time, and p is the non-dimensional pressure. The characteristic
length, velocity, density, and time for non-dimensionalizing the
problem are D, U, ρ, and D/U, respectively, where U is the bulk
velocity, which will be shown later, and ρ is the density of the fluid.
The Reynolds number is defined as Re = UD/ν, where ν is the
kinematic viscosity of the fluid.

FIG. 2. Flow domain (not at scale) and boundary conditions for the simulation. The
jet velocity profiles, determined by the output of ANNs, are prescribed (red arcs)
by Γj (j = 1, 2, 3, 4). Γwall means no-slip boundary conditions implemented for solid
walls. Γin is the inflow part, while Γout represents the outflow. ω is the width of the
jets.

Figure 2 shows a schematic of the boundary conditions (for
illustration purpose, the geometrical domain is out of scale). The
inflow velocity profile in the streamwise direction (Γi) is specified
as follows (cf. 2D-2 test case reported by Schäfer et al.50):

uinlet(y) = −4Um(y − 2.1D)(y + 2D)/H2, (3)

where H = 4.1D is the width (along the Y-axis, as depicted in Fig. 1)
of the domain and Um is the horizontal velocity component at the
midpoint of the inlet, i.e., the maximum of the inflow velocity. As a
consequence, the bulk velocity can be calculated as follows:

U =
1

H ∫
2.1D

−2D
uinlet(y)dy = 2

3
Um. (4)

No-slip boundary conditions (Γwall), i.e., the velocity of fluid
is zero, are applied on the top and bottom walls and on the solid
walls of the cylinder. The boundary condition corresponding to an
outflow boundary (Γout) is imposed based on the assumption that
the derivative of the velocity along the X-axis is zero at the outlet,
which implies that the flow is fully developed or does not change
significantly. More strictly, it is set as

− pn +
1

Re
(∇u ⋅ n) = 0, (5)

where n is the unit vector normal to the outlet.
To avoid velocity discontinuity between the boundary of the

jets and the no-slip surfaces of the cylinder, the radial velocity
profiles (Γj) of the four synthetic jets are prescribed as follows:

ujet(θ,Qi) = π

ωD
Qi cos( π

ω
(θ − θ0)), (6)

where Qi(i = 1, 2, 3, 4) is the mass flow rate of the four jets centered
at θ0 = 75○, 105○, 255○, and 285○, respectively. ω = 10○ is the width
of each jet.

For solving Eqs. (1) and (2) numerically, the incremental pres-
sure correction scheme (IPCS) method51 is used with explicit lin-
earization of the nonlinear convective term by using the known
velocity u

n at the time step t = nδt, where δt is the numerical time
step and n is the number of the time steps considered. This method
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is applied as a two-step fractional step method. First, an auxiliary
velocity û is calculated by

1

δt
(û − un) = −un ⋅ (∇un) −∇pn + 1

Re
Δ
û + u

n

2
, (7)

and then the pressure pn+1 at t = (n + 1)δt is obtained by solving a
Poisson equation,

Δ(pn+1 − pn) = 1

δt
∇ ⋅ û. (8)

This second step is usually referred to as the projection step.
Finally, the velocity un+1 at t = (n + 1)δt is obtained as follows:

1

δt
(un+1 − û) = −∇(pn+1 − pn). (9)

The computational domain is discretized by an unstructured
mesh (triangular cells), and it is much refined around the surface
of the cylinder (as shown in Fig. 3) so that the influence of synthetic
jets on the flow simulation can be fully considered. The IPCSmethod
is implemented using the finite element method within the FEniCS
framework.52 More precisely, the linear and quadratic basis func-
tions of the continuous Galerkin family of elements are utilized to
discretize the pressure and velocity fields, respectively. The result-
ing system of equations is solved using lower-upper (LU) decom-
position, a sparse direct solver from the UMFPACK library.53 The
numerical solution is obtained at each time step, and then the drag
FD and lift FL are integrated over the whole wall (including the jet
surfaces) of the cylinder by

FD = ∫ (σ ⋅ nc) ⋅ exdS (10)

and
FL = ∫ (σ ⋅ nc) ⋅ eydS, (11)

where σ is the Cauchy stress tensor, nc is the unit vector normal to
the outer cylinder surface, and ex = (1, 0) and ey = (0, 1).

In order to study the mesh convergence and validate the
numerical method, the quantities of interest are calculated from sim-
ulating the flow at Re = 100 and compared with the benchmark
data.50 The drag FD and lift FL are normalized as follows:

CD =
2FD

ρU
2
D

(12)

and

CL =
2FL

ρU
2
D
. (13)

The Strouhal number (St), which is used to describe the char-
acteristic frequency of oscillating flow phenomena, is defined as
follows:

St = fs ⋅D/U, (14)

where fs is the shedding frequency computed from the periodic
evolution of the lift coefficient CL.

The simulation results using meshes of three different resolu-
tions are listed in Table I, together with comparison to the bounds
suggested by Schäfer et al.50 The Cmax

D and Cmax
L correspond to the

maximum of the drag coefficient CD and lift coefficient CL, respec-
tively. As can be seen, the resolution of the main mesh, which is used
in the present work, is fine enough for the simulation to agree well
with the benchmark data. The discrepancies are less than 0.04% in
all listed quantities when compared with the fine mesh. Although
the maximum of CL with the main mesh is slightly larger than the
suggested upper bound by ∼2.2%, the discrepancy is small. More-
over, the maximum of CD and St are strictly within the suggested
interval, which is of great importance as reducing drag is the main

FIG. 3. Numerical discretization of the full
(a) and partial (b) computational domain.
The mesh is much refined around the
cylinder to fully consider the influence of
actuations on the flow simulation.
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TABLE I. Mesh convergence and flow parameters for the 2D flow around a circular cylinder at Re = 100, in a configuration

corresponding to the benchmark.50

Case Mesh resolution Cmax
D Cmax

L St

Coarse 9374 3.2416 1.0758 0.3025
Present Main 25 865 3.2299 1.0323 0.3020

Fine 174 520 3.2311 1.0324 0.3020
Schäfer et al.50 3.2200–3.2400 0.9900–1.0100 0.2950–0.3050

focus. Hence, the mainmesh depicted in Fig. 3 is deemed sufficiently
refined and is used thereafter.

C. DRL control algorithm

Advances in machine learning have promised a renaissance
in understanding intrinsic features of many complex systems and
gaining unprecedented attention not only in computer science but
also in many other disciplines, such as fluid mechanics,54–56 par-
tial differential equations,57,58 or design optimization.59,60 Reinforce-
ment learning is one of the main branches of machine learning
and recently attracted a lot of interest following Google DeepMind,
defeating top human professionals at the game of Go.61 Unlike
other machine learning methods such as supervised learning, which
consists in learning to map an input to its corresponding output
based on labeled examples provided by a knowledgeable external
supervisor, or unsupervised learning, which is typically interested
in finding transformations and clustering properties hidden in data,
reinforcement learning is concerned with how to interact with an
environment so as to maximize a numerical reward signal.

A simplified overview of the DRL framework used in the
present study is schematically depicted in Fig. 4. The framework can
be divided into two main parts: the environment and the learning

agent. In the present work, the former is the direct numerical simula-
tion (DNS) for the flow past a circular cylinder at low Reynolds num-
bers, as previously described. The latter corresponds to a concrete
deep reinforcement learning algorithm, proximal policy optimiza-
tion, which is described in detail later in this section. As illustrated
in Fig. 4, the learning agent interacts with the environment through
three channels: the state of the environment, the action chosen by
the agent to influence the environment, and the reward signal that
defines the goal of the reinforcement learning problem. Specifically,
the state is a partial observation of the flow field. More concretely,
the local value of the flow field sampled at 236 probes located around
the cylinder and in its wake (black points in Fig. 5) acts as the input
based on which the agent can infer the different flow features. These
probes do not influence the flow field since the extraction of local
physical quantities of flow variables is carried out after the numer-
ical simulation ends at each time step. The ANN used by the agent
to parameterize the decision policy distribution is a two-layer fully
connected network with 512 neurons in each layer. The resulting
action value provided by the agent is then connected to themass flow
rate applied to each jet. The reward function is the time-averaged
drag of a training action penalized by the absolute magnitude of the
time-averaged lift, which can be expressed as follows:

RT = ∣FD∣T − β∣FL∣T , (15)

FIG. 4. Illustration of the DRL framework utilized in the present work for performing AFC. The environment, i.e., a numerical simulation of the flow past a cylinder, is coupled
in a closed-loop fashion with the learning agent. Iteratively, the mass flow rate of the jets [Qi (i = 1, 2, 3, 4)] is controlled by the agent according to the observed flow state.
In response, the simulation produces the updated flow field as the next state, and a reward signal is used to guide the control strategy toward controlling the flow so as to
reduce the drag. Through such coupled interaction, the agent eventually learns to perform effective AFC of the simulated flow.
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FIG. 5. Unsteady non-dimensional vorticity wake behind the cylinder after flow initialization without active control. The location of the probes is indicated by the black dots.
The location of the control jets is indicated by the red dots. This illustrates the configuration used to perform AFC for flow control past the circular cylinder.

where |⋅|T indicates the average over an action time step T = 100δt
(see later) and β is a parameter set to 0.2 in the present work. The
lift penalization is used to avoid a “cheating” strategy in which the
jets could blow consistently in the same direction with maximum
strength after a given point in time. More details on the motivation
for the penalization term are provided in the work of Rabault and
Kuhnle.49 In general, a learning agent is able to use the state of the
environment it controls to take actions so as to optimize the cumu-
lative value of the reward function, which corresponds to the lowest
drag.

The reinforcement learning algorithm used for training the
ANN, known as proximal policy optimization (PPO), is one of the
state-of-the-art reinforcement learning approaches and has been
widely applied to control tasks.48,62 Compared with other DRL algo-
rithms, PPO is simpler to implement and tune while obtaining com-
parably good performance. As the PPO algorithm has already been
used in a variety of fluid mechanics works, the reader interested
in more details on the PPO algorithm itself is invited to consult
the previous work on the topic.48 The PPO method is episode-
based, which means that the interactions between the agent and
the environment are broken into a number of training interaction
sequences.63 The initial states for the training episodes at each Re
are first obtained by performing the simulation without active con-
trol until a fully developed unsteady wake, i.e., the Kármán vortex
street, is observed. The corresponding solution is stored and used as
a starting point for subsequent learning episodes. For the environ-
ment with four flow configurations, the initial state is selected ran-
domly from the initialized fields corresponding to Re 100, 200, 300,
and 400.

One possible discussion could be whether 236 probes are
enough for the ANN to have detailed information about the flow fea-
tures and perform good or even optimal control of the system. More
generally, assessing the efficiency of the decision made by partial
observability of the system is a well-known difficulty in reinforce-
ment learning and remains an active and increasingly important
research challenge.64 Based on the previous work on the topic48 and
our experience following preliminary tests during the present study,
236 probes are found to be enough for the ANN to perform ade-
quate training and to attain satisfactory control performance. Much
fewer probes (less than 10) could also help the agent to learn a valid
strategy, but it will impair the control effects,48 i.e., lesser drag reduc-
tion will be obtained compared to the results using more probes.
With the 236 probes used in the present study, the agent is able
to gain extensive information about the flow configuration around
the cylinder and its far-wake, which is important for taking optimal
actions. These probes are purely passive and simply report the local

properties of the flow to the PPO algorithm, without influencing the
flow.

In order to use the PPO algorithm on the present problem, two
techniques are implemented for structuring the interactions between
the agent and the flow environment. First, during the simulation,
the action provided by the PPO agent is updated only 200 times per
episode and is kept constant for a duration of 100 numerical simu-
lation time steps [this defines the length of one action time step, i.e.,
the T in Eq. (15)], corresponding to ∼3.3% of the vortex shedding
period. This limitation is added following the suggestion of Rabault
and Kuhnle,49 and the necessity for such tuning of the action fre-
quency update has also been observed by Braylan et al.65 As a conse-
quence, in the following, the difference will be distinguished between
the numerical time step and the period at which the action update is
applied. Second, the instantaneous mass flow rates obtained from
the actions are made continuous at the time scale of the numerical
simulation dt in order to avoid invalid physical jumps on pressure
or velocity distribution around the cylinder wall. Thus, the control
value effectively applied changes smoothly with time.

It should be emphasized that a balance needs to be found to
avoid a too long update interval, which makes it impossible for the
learning agent to respond to the system fast enough, or a too short
update interval, which means that the time over which the action
is applied is too short to observe a measurable effect on the sys-
tem, therefore making learning impossible during the first stage of
the training.66 Furthermore, a constraint, ∣Q∗i = Qi/Qref ∣ ≤ 0.05, is
imposed for preventing non-physically large actuations, where Qi is
the mass flow rate of the i-th jet and Qref is the reference mass flow
rate intercepting the cylinder. This allows us to avoid divergence of
the numerical simulation.

III. RESULTS AND DISCUSSION

A. Active control for flow at higher Reynolds number

Previous works48,49 have shown that ANNs trained by DRL are
capable of finding a good control strategy for controlling the flow
obtained in the present configuration at Re = 100. However, it is
known that the Reynolds number has a strong influence on the com-
plexity of such flows, irrespective of the chaoticity of the cylinder
wake, and, ultimately, laminar-to-turbulent transition of the flow
past a circular cylinder. For the present flow configuration, the wake
becomes more irregular at larger Re.

On the other hand, Protas and Wesfreid67 have proposed that
two parts contribute to the mean drag coefficient CD observed in

such flows: one is the drag Cbase
D of the steady and symmetric flow,
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and the other is the drag C0
D resulting from the effect of vortex

shedding,

CD = C
base
D + C

0
D. (16)

In other words, the averaged drag consists of contributions of
steady and unsteady parts, respectively. According to the argument
of Bergmann et al.,19 only the second part (due to oscillatory flow)
can be altered by AFC. Therefore, this provides an estimate of the
optimal AFC drag reduction attainable.

Since it has been demonstrated that the contribution of C0
D

increases with Re,19 it is natural to investigate the control perfor-
mance of ANNs trained through DRL for flow for increasing Re.
Consequently, two individual ANNs are trained to obtain control
strategies for flow with Re = 200 and 400, respectively. Here, the
control configurations same as those of previous works48 are used,
i.e., two jets located at the top and bottom extremities of the cylin-
der. The drag coefficients when control is applied by the ANNs after
training are shown in Figs. 6 and 7, with the results of baseline
flow (i.e., without control) being shown as a reference. The drag

FIG. 6. Active control for flow at Re = 200. (a) Time-resolved value of the drag coefficient CD with (controlled curve) and without (baseline curve) active flow control. (b)
Time-resolved value of the normalized mass flow rate of one jet. It can be seen that the PPO agent found a good control strategy to attain a drag reduction of ∼20.4%. Two
successive phases can be observed with control: in the first, relatively large actuations are performed to greatly reduce the drag, followed by a pseudo-periodic regime in
which only small control actuations are needed.

FIG. 7. Active control for flow at Re = 400. (a) Time-resolved value of the drag coefficient CD with (controlled curve) and without (baseline curve) active flow control. (b)
Time-resolved value of the normalized mass flow rate of one jet. Two successive phases can be distinguished. Similar to the flow with control at Re = 100 (cf. the work of

Rabault et al.48) and 200, a clear reduction of a drag of ∼33.1% is obtained in the first phase. However, in contrast to the Re of 100 and 200, no large decrease of actuations
is observed in the second phase. This is due to the inherent instability of the flow at larger Reynolds numbers and illustrates the ability of the PPO algorithm to control systems
with pseudo-chaotic properties.
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reduction is calculated as (|CD|base − |CD|control)/|CD|base, where
|CD|base and |CD|control are the mean value for drag coefficients CD

in the case without and with active control, respectively. A drag
reduction of ∼20.4% is observed at Re = 200, and the final control
result is satisfactory, though small oscillations still exist. By contrast,
at Re = 400, although a reduction of ∼33.1% for the averaged drag
was achieved, the nonlinear essence of the transitional flow makes
it hard for the DRL agent to find a fully stabilized control strat-
egy and to completely suppress oscillations in the drag coefficient.
However, the amplitude of the drag oscillations, as well as their fre-
quency, is still decreased, implying that the DRL agent indeed learns
some strategy that allows effective control. Similar to what has been
observed for the same configuration at Re = 100,48 the active flow
control consists of two successive phases. In the first phase (non-
dimensional time ranging from 0 to ∼10), a clear drag reduction is
achieved by performing relatively large actuations. The flow is then
modified into a pseudo-periodic regimewhere smaller actuations are
used at Re = 200. For the flow at Re = 400, however, in the sec-
ond phase, there is less attenuation of the actuations, resulting in
big oscillations of drag coefficients even with control. Therefore, it
appears that the flow in transitional regimes is quite unstable, which
easily leads to a collapse of the modified flow configuration and,
in turn, calls for large actuations to regain control of the system.
This illustrates the ability of the PPO algorithm to perform con-
trol of pseudo-chaotic systems such as obtained from the simulation
of flows at moderate to high Reynolds numbers, in good agreement
with previously published results.48,49

B. Effect of smoothing interpolation functions

As explained in Sec. II C, it is of great importance to use suit-
able methods to interpolate the intrinsically time-discretized output
of the ANN to continuous systems. This is still a topic of ongoing

research with no clear optimal solution.63 The present work chooses
to directly interpolate between action updates to generate the con-
trol value at each simulation time step. This is simple to implement
while maintaining a good performance for policy training and action
selection. The interpolation must follow some principles such as
smoothness and continuity to avoid numerical instability caused by
non-physical phenomenon such as pressure jump in the fluid flow.

The interpolation can be performed in several fashions by con-
sidering the different relationships among action updates. Rabault
and Kuhnle49 proposed an exponential decay law based on the con-
trol value from the previous action. More precisely, they use the
following equation with α = 0.1 to calculate a new control value:

ci+1 = ci + α(aj − ci), (17)

where ci is the control value at the previous numerical time step,
ci+1 is the new control, and aj is the action updated by the ANN.
Note that the subscript i means the i-th numerical time step, which
is connected to the time step dt of the simulation. By contrast, the
subscript j indicates the j-th action update interval, which corre-
sponds to the number of the action update during an episode, and
takes place at a period T = 100δ.

The strategy obtained using Eq. (17) is able to stabilize the vor-
tex alley and to reduce drag by ∼8% at Re = 100. The exponential
decay law performs well for the convergence of the control values;
however, there are distinct problematic jumps in lift, indicating that
the flow state with control is still not perfectly stable. This is visible in
Fig. 8. Some other schemes for interpolation also show similar prob-
lems. For example, one can consider a more previous control value
for performing an update or use a nonlinear interpolation, which
can be implemented, respectively, as follows:

ci+1 = ci + α(aj − ci) + α(aj−1 − ci−1), (18)

FIG. 8. Comparison of the time-resolved value of lift coefficients CL at Re = 100 with active control trained using Eq. (17) (used by Rabault et al.48 with α = 0.1), Eq. (18),
Eq. (19), and Eq. (20) (used in the present work), respectively. The linear smooth law, i.e., Eq. (20), shows the best performance as jumps in lift are almost completely
suppressed.
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ci+1 = ci + α(aj − ci) + α(aj − ci)2. (19)

After extensive trial-and-error, it is finally found that linear
interpolation between two actions [corresponding to Eq. (20), see
under] shows a comparable performance to exponential decay law
while effectively eliminating the oscillations of the lift coefficient.
Figure 8 shows a comparison of the control effects with the differ-
ent smoothing laws discussed above. Obviously, Eq. (20) shows the
best control performance. The corresponding interpolation law is
defined as follows:

ci = aj−1 +
aj − aj−1

Ne
, (20)

where Ne is the number of numerical time steps between two con-
secutive updates of actions and n = 1, 2, . . .,Ne is the current control
step.

C. Training a model over a range of Reynolds numbers

To validate the versatility of an artificial neural network trained
by deep reinforcement learning to control a flow across different
Reynolds numbers, a learning environment supporting four flow
configurations with Re varying within the discrete set 100, 200, 300,
and 400 is used to train a single ANN. Therefore, the aim here is
to train one ANN to perform effective control over a range of flow
parameters, in a robust fashion. In this case, four jets are located
on the upper and lower sides of the cylinder, as described in Fig. 2.
Due to the learning process being treated on an episode base, each
flow simulation is first run without active control until a fully devel-
oped unsteady wake, i.e., the Kármán vortex street, is observed,
and the corresponding state is dumped and selected randomly as
an initial start state for subsequent learning episodes. Here, the
multi-environment approach proposed by Rabault and Kuhnle49 is
adapted, and the probability for every flow state to be selected as the

initial state of an episode is equal. Since every environment is inde-
pendent of the others, that is, episodes do not influence each other
due to the use of distinct initialization fields at distinct Reynolds
numbers,63 the agent has to remember features for different flow
configurations, so that the knowledge learned by the ANN for one
flow will not be altered by training on others.

The time series for the drag coefficients obtained using the
global control strategy after 800 episodes when Re = 100, 200, 300,
400 is compared with baseline flow (without active flow control), as
shown in Fig. 9. Compared with the results presented by Rabault
et al.48 where the control strategy is discovered through training
in an environment consisting of one single flow configuration (Re
= 100), the global control strategy becomes slightly less effective
at Re = 100, but the overall control strategy is significantly more
robust since the obtained ANN is able to adapt the actuation to per-
form near-optimal control (see later in the text) at all Res within the
range 60–400. A drag reduction of ∼5.7%, 21.6%, 32.7%, and 38.7%
is obtained when Re = 100, 200, 300, and 400, respectively. Similar to
the results presented in Figs. 6 and 7, the process of active flow con-
trol is composed of two phases. The main difference is that it takes a
longer time (up to a non-dimensional time of ∼20) for attaining the
typical value of the drag reduction (i.e., the first phase of the con-
trol strategy takes a longer time to complete). In addition, slightly
larger fluctuations can be observed during this phase, especially for
higher Re.

One interesting result of this experiment is that the active con-
trol strategy trained over a range of Reynolds numbers shows com-
paratively good performance compared with the results shown in
Fig. 7. While the average reduction of drag is close, the oscillations
in drag are greatly suppressed with the global control strategy. This
may be due to two factors. First, only two synthetic jets with angu-
lar coordinates 90○ and 270○ are used for the results in Fig. 7, while
the global control strategy is allowed to control four jets, therefore

FIG. 9. Illustration of the control performance of the global agent (controlled curves) for flows corresponding to Re = 100, 200, 300, and 400 compared with the case without
control (baseline). (a) Time series of the drag coefficients CD. (b) The average of the drag coefficients CD. The drag is reduced by ∼5.7%, 21.6%, 32.7%, and 38.7% when
Re = 100, 200, 300, and 400, respectively. Similarly to what can be observed in Figs. 6 and 7, the active flow control consists of two successive stages. However, in
comparison, the first stage of control takes a longer time (up to a non-dimensional time of ∼20) compared with the case when the controlled strategy is tuned to a single Re
value.
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allowing a more fine-grained control. Second, the training of the
global control strategy is performed over a range of Reynolds num-
bers, therefore presenting more variability during training. For fur-
ther exploration of this question, several independent training runs
are launched using same control configurations as described in
Fig. 5, i.e., four jets, for the flow with Re = 400 (the learning envi-
ronment is then composed of one flow configuration, i.e., no global
strategy is used). In this case, the drag coefficients with control show
no big difference with what is presented in Fig. 7 (the average of
drag with control is similar and still exhibits large oscillations). Such
results prove the robustness and good performance of the ANN
obtained with global training and point to the utility of training the
ANN over a range of conditions. On the other hand, it also indicates
that for muchmore complex systems, an efficient way to obtain good
control strategies may be to embed a number of similar but slightly
different systems inside the learning environment. This is in good
agreement with the commonly accepted concept of transfer learning
(TL), the core idea of which is that knowledge gained from one task
can help the learning performance in a similar but slightly different
task and improve the overall performance.68

As expected, the control strategy is more effective at reducing
drag for largerRe, due to the relative increase of the controllable con-
tribution of the drag previously discussed, i.e., C0

D is relatively bigger
at higher Re. To further analyze the results, the fast Fourier trans-
formation (FFT) is applied for investigating the frequency of drag
and lift time series with and without active control (60 000 numerical
time steps are used for calculating the FFT). For making the results
more easily visible, the drag and lift coefficients are subtracted by
their average value before FFT analysis is applied so that the purely
oscillatory properties of the coefficients in question are revealed. As
visible in Fig. 10, there is an obvious reduction on the amplitude of
drag fluctuations. Moreover, the characteristic frequency of the flow
system actively controlled by the ANN is alsomodified. These results
are similar to what were described by Rabault et al.48

To study the effect of the control on the flow field in more
detail, a visual comparison of the flow undergoing control against
themean pressure and vorticity of the uncontrolled flow is presented
in Fig. 11. As can be observed, the area of separated wake increases
when the active control is applied. Moreover, the vortex shedding
from the cylinder has been substantially enlarged and expanded by
the synthetic jets, which causes the observed reduced fluctuations.
The resulting flow approaches the state featuring symmetric charac-
teristic as will be discussed next. As a consequence, the pressure drop
in the wake of the cylinder becomes lower, causing the reduction of
drag.

In order to evaluate the efficiency of the control strategy
obtained by the PPO agent, the average values of the drag coefficient
with active control are further compared with the drag coefficient
values obtained in the case where there is no vortex shedding. Such
a flow state still exists in supercritical regime, but it is too unsta-
ble to be observed in experiments.67 However, it is easy to obtain in
numerical simulation by using a symmetric boundary condition at
the equatorial plane of the flow domain, similar to what is performed
in Ref. 48. As can be seen in Fig. 12, with the Reynolds number
increasing, the drag obtained at the steady-state decreases (symmet-
ric flow curve). Relatively, the contribution from the unsteady part
to the drag becomes increasingly significant. It is promising to see
that the drag with active flow control is even smaller than the drag
obtained without vortex shedding if Re ≥ 200, indicating that the
control strategy is close to the theoretical optimum.19

It is worth emphasizing that only four values of the Reynolds
numbers, i.e., Re = 100, 200, 300, and 400 (highlighted by red dots in
Fig. 12) were used during the training process, while the control is
successful for any Re within that range (all markers on the figure cor-
respond to individual simulations where the PPO agent trained on
only the four reference Re values was used). In addition, the strat-
egy is still effective for active control even beyond the scope of Re
used for training, for instance, at Re = 80. This, again, highlights the

FIG. 10. FFT analysis of drag coefficients CD (a) and lift coefficients CL (b) subtracted by their mean values. The baseline curve corresponds to the flow without control, while
the controlled curves mean that the flow is controlled by the ANN. The control effects are clearly visible: the amplitudes corresponding to fluctuations of both drag and lift are
greatly reduced, and the characteristic frequencies of the flow fields are modified.
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FIG. 11. Comparison of mean pressure (left) and vorticity (right) without (top part of each double panel) and with (bottom part of each double panel) active con-
trol. The Reynolds numbers for the four rows of double panels from top to bottom are 100 [(a) and (b)], 200 [(c) and (d)], 300 [(e) and (f)], and 400 [(g) and

(h)], respectively. The color bar is common to both parts of each double panel. When the active control is applied, the area of separated wake increases and the

vortex shedding from the cylinder is substantially enlarged. The former flow morphology is associated with the reduction of drag and lift, while the later is con-

nected to the lower oscillations in these two forces. For blunt bodies acting in the flow regime considered, the largest contribution to the drag coefficient is due

to the pressure fall in the wake, and it is clearly visible at all Res that the control strategy found allows us to mitigate this pressure drop immediately behind the

cylinder.
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FIG. 12. Average of the drag coefficient for flow with and without control at dif-
ferent Reynolds numbers, and corresponding drag coefficient using a symmetric
boundary condition at the equatorial plane of flow domain. The shaded areas indi-
cate the range of oscillation in each respective case when the flow appears to be
pseudo-periodic with active flow control. The general active flow control strategy
is discovered through training at four Reynolds numbers (highlighted by red dots):
100, 200, 300, and 400. The insets with velocity magnitude as contour represent
the structure of the corresponding flow state at a given Re. It is remarkable that
control can be successfully applied at any Re between 60 and 400. In addition, the
values of the drag coefficient CD obtained with control compared with the symmet-
ric case suggest that the global control strategy is close to being optimal on the

range of Reynolds numbers considered.19

generalization ability of the ANN and is of great importance for
practical applications.

IV. CONCLUSIONS

In this study, the framework initially presented in the work of
Rabault et al.48,49 is extended by demonstrating the robustness and
generalization ability of the PPO algorithm for machine-learning-
based AFC. This state-of-the-art DRL method can allow ANNs to
discover global active control strategies for flows over a range of
Reynolds numbers. An alternative smoothing law performing linear
interpolation between two successive actions is proposed to make
the control values, i.e., the mass flow rates of the synthetic jets,
change smoothly with time. With this method, the lift coefficient
is made continuous to avoid non-physical jumps potentially occur-
ring at action updates. The learning environment used for training
supports four flow configurations with Reynolds numbers 100, 200,
300, and 400, respectively. After training, the ANN is able to actively
control the flow and to reduce the drag by ∼5.7%, 21.6%, 32.7%, and
38.7%, when Re = 100, 200, 300, and 400, respectively. More impor-
tantly, the ANN can also effectively reduce drag for any previously
unseen Re in the range from 60 to 400. By observing the flow field
through its mean pressure and vorticity, one can observe that the size
of the separated wake and the vortex shedding area behind the cylin-
der is enlarged, resulting in a reduction in the pressure drop behind

the cylinder and the oscillation frequency induced by the vortices.
It should be emphasized that only four values of Re were used dur-
ing the training process, while the control is successful for any Re
in the range 60–400, which highlights the generalization ability of
the ANN and is of great importance for practical applications. The
averaged drag with control is further compared with the drag value
when using a symmetric boundary condition at the equatorial plane
of the flow domain. It is promising that the drag of the controlled
flow is even smaller than this symmetric baseline value if Re ≥ 200,
suggesting that the control strategy is close to the theoretical opti-
mum.19 Moreover, the results indicate that, in order to obtain better
control performance for more complex systems, such as the flow at
higher Re in the present case, embedding within the environment
a number of systems with relatively simple but similar properties
seems to be an efficient strategy. This is similar to the idea of transfer
learning.

It should be noted that due to exploration noise and ran-
domness involved in the training process, the strategy discovered
through ANNs together with the PPO method may show a slightly
different control performance in different training runs. However,
the qualitative strategies found are relatively similar from one run to
another.

Despite the relative simplicity of the selected problem, the expe-
rience and insights gained from this work are of great importance
for progressing toward the application of DRL to more practical
engineering problems in fluid mechanics. Although the computa-
tional cost remains a challenge to the wide application of DRL
within fluid mechanics, this challenge can be progressively solved
owing to the rapid advancement of high-performance computing
architectures. Therefore, it is anticipated that significantly more
complex problems, such as instabilities in boundary layers,69,70 can
be tackled using methodologies based on the present work, pos-
sibly in combination with other results and technical improve-
ments such as the encoding of physical invariance of the system
to control within the ANN architecture,71,72 or the identification
of reduced-order, hidden features of these systems.73,74 In order to
support the further development of DRL applications in the fluid
mechanics community, all codes used are released as an open source
(see Appendix A).
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APPENDIX A: OPEN SOURCE CODE

The source code of this project together with all needed pack-
ages will released at https://github.com/thw1021/Cylinder2DFlow-
ControlGeneral upon publication in the peer-reviewed journal. The
computational fluid dynamics (CFD) solver is built on the open
source finite element package FEniCS.52 The DRL agent is based
on the open source framework Tensorforce.75 The present work is
based on the multi-environment approach proposed by Rabault and
Kuhnle,49 and the reader can also refer to the open source code at
https://github.com/jerabaul29/Cylinder2DFlowControlDRLParallel.

APPENDIX B: EVALUATION OF MOMENTUM INJECTED
INTO THE FLOW FIELD USING FOUR JETS

When using four jets as schematically presented in Fig. 2,
some extra momentum may be injected into the flow field. In this
appendix, a mathematical formulation is derived to evaluate the
injected momentum.

The momentum injected into the flow field per unit time by the
i-th (i = 1, 2, 3, 4) jet in the horizontal direction can be evaluated as
follows:

M
i
x = ∫

θi0+ω/2

θi0−ω/2
ρujet(θ;Qi)ujet(θ;Qi) cos θ ⋅ D

2
dθ

=
π4

ω2(4π2 − ω2) ⋅
2ρsinω

2

D
⋅Q

2
i cos θ

i
0, (B1)

where θi0 is the position of the i-th (i = 1, 2, 3, 4) jet.
Consequently, the total momentum injected by the four jets in

the horizontal direction is

Mx =

4

∑
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∑
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FIG. 13. Time series of normalized momentum horizontally injected into the flow
field by the four control jets at Re = 100, 200, 300, and 400.

In the following, the injected momentum in the horizontal
direction is normalized as follows:

M
∗

=Mx/Mref , (B3)

whereMref = ∫ D/2
−D/2

ρuinlet(y)uinlet(y)dy is the reference momentum

intercepting the cylinder.
The time-resolved value of the normalized momentum added

by the four jets when applying the active flow control strategy to
typical flow environments is shown in Fig. 13. Obviously, more
momentum will be injected for flow at a higher Reynolds number.
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