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Abstract—The performance degradation in traditional adaptive
beamformers can be attributed to the imprecise knowledge of the array
steering vector and inaccurate estimation of the covariance matrix.
The inaccurate estimation of the covariance matrix is due to the limited
data samples and presence of desired signal components in the training
data. The mismatch between the actual and presumed steering vectors
can be mainly due to the error in the look direction estimate. In this
paper, we propose a novel algorithm to estimate the look direction and
to reconstruct the covariance matrix so that near optimal performance
without the effect of saturation can be achieved as the input SNR
increases. Numerical results also show that all existing beamforming
algorithms suffer from saturation effect as the input SNR increases.

1. INTRODUCTION

One of the most important challenges in adaptive beamforming design
is to maintain its performance even in the presence of uncertainty due
to the mismatch between the actual and the presumed steering vectors
(SV). In traditional beamforming techniques, substantial degradation
in performance can be observed due to this mismatch. The mismatch
can be due to imprecise knowledge of one or any combination of look-
direction, array geometry and array elements’ gain-phase response.
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The errors other than the look-direction error can be overcome with
reliable calibration technique.

During the past decade, several approaches, such as imposing
multiple gain constraints in different directions in the vicinity of the
presumed SV [1], diagonal loading [2], placing derivative constraints on
the presumed SV [3] and eigenspace-based approaches [4], have been
proposed to improve the robustness of adaptive beamformer design.
The diagonal loading [2] has the advantage of being invariant to the
type of mismatches but the choice of the loading factor is not obvious.
The authors in [5–7] proposed robust capon beamformer (RCB) based
on the idea that allows the presumed SV to be within a sphere
whose radius determines the uncertainty level. These approaches
efficiently calculate the loading factor. Other variable-loading based
robust beamformers are also proposed in [8, 9]. Motivated by a
similar idea, the authors in [10, 11] introduced different optimization
formulation and proposed solutions that are based on semi-definite
programming. Recently, iterative-based approaches are considered for
adaptive robust beamforming problem. Hassaniean et al. [12] proposed
a new optimization formulation to find the SV error that is solved
iteratively using sequential quadratic programming (SQP). Later, Gu
et. al. proposed to pre-estimate the covariance matrix prior to solving
the optimization [13] where the pre-estimated covariance matrix has
the diagonal loading form. In [14], the authors propose a robust
adaptive beamforming based on the eigenstructure method to cancel
the desired signal in a linearly constrained beamformer with imperfect
arrays. The authors in [15] proposed an iterative RCB (IRCB)
with adaptive uncertainty level, where in each iteration the estimated
steering vector is updated based on the re-adjusted uncertainty level.

Theoretically, optimal beamformers’ weight is a function of the
interference-plus-noise covariance matrix. However, generally the
beamformers’ weight is formulated as a function of the covariance
matrix estimate. Therefore, inaccurate estimation of the covariance
matrix can also result in the performance degradation of the adaptive
beamformer. The inaccurate estimation of the covariance matrix is
mainly due to the limited data samples and the presence of the desired
signal components in the training data.

In this paper, we aim to develop a new robust adaptive
beamforming method that achieves near-optimal performance by
addressing both the SV mismatch due to look-direction error as well
as the inaccurate covariance matrix estimation problems. The essence
of the idea is in finding the directions associated with the nulls of the
standard capon beamformer’s (SCB) beampattern. These directions
are a good estimate of the interference directions and because of the
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signal self-nulling phenomenon, one of these directions is the good
estimate of the look-direction. Therefore, the performance degradation
due to the SV mismatch can be recovered by correcting the look-
direction while the degradation due to the inaccurate covariance matrix
can be recovered by replacing the matrix with a newly constructed
matrix based on the nulls’ directions associated with the interferences.
Since the direction of the signal-of-interest (SOI) is nearer to the
presumed look-direction, it is possible to distinguish the null’s direction
associated to the SOI from the interferences. Although numerous
capon beamforming algorithms have been proposed [1–15], all these
algorithms suffer from the problem of saturation in the output SINR
as the input SNR increases.

2. BACKGROUND

Consider K narrowband sources impinging on an L-element uniform
linear array (ULA) (L > K). The array observation is given by

x(t) = As(t) + n(t) (1)

where A = [a(θs),a(θ1), · · · ,a(θK−1)] comprises of all the impinging
signal SVs, s(t) is a K-dimension vector containing the SOI and
interferences and n(t) is the noise components. The beamformer’s
output tries to recover the SOI and is expressed as y(t) = wHx(t).

To have an optimal beamformer, its weight vector w has to
be designed such that the interference-plus-noise output power is
minimized while that of the desired signal is unchanged. This
design criteria can be formulated mathematically as the following
optimization to solve for the weight

min
w

wHRinw subject to wHa(θs) = 1 (2)

where w is the complex vector of beamformer weights, a is the desired
signal SV, θs is the direction-of-arrival (DOA) of the desired signal
and Rin is the interference-plus-noise covariance matrix. Note that
the superscript (·)H denotes the Hermitian operations. The solution
to this optimization will yield an optimum SINR output

SINRopt = σ2
sa(θs)R−1

in aH(θs) (3)

where σ2
s is the desired signal’s power. In practice, the optimum SINR

cannot be achieved because Rin is unavailable. It is then replaced with
the estimate of the array covariance matrix

R̂ =
1
N

N∑

n=1

x(n)xH(n) (4)
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where N is the number of snapshots and x(n) is the complex vector of
array observations using M sensors.

The degradation due to replacing Rin with R̂ becomes significant
as σ2

s increases. This can be shown from the analytical SINR expression
derived by alienating the finite sample effect (N ≈ ∞)

SINR = σ2
sa(θs){Rs + Rin}−1aH(θs)

= SINRopt − σ2
sa(θs)

[
R−1

in RsR−1
in

1 + σ2
sa(θs)R−1

in aH(θs)

]
aH(θs) (5)

Using the Sherman-Morrison formula

{Rs + Rin}−1 =
{
Rin + σ2

sa(θs)aH(θs)
}−1

= R−1
in − R−1

in RsR−1
in

1 + σ2
sa(θs)R−1

in aH(θs)
(6)

From the expression in (5), it is clear that the degradation is
unavoidable due to the presence of desired signal in the covariance
matrix and the signal power σ2 acts as a scaling factor that determines
the amount of degradation suffered by the beamformer.

When there is a mismatch between the actual and the presumed
SV due to the look-direction error, the beamformer’s weight designed
from solving (2) will fail to keep the desired signal unchanged. This
is because the constraint is set inaccurately, thus resulting in signal
self-nulling. Instead of maintaining the unity response of wHa(θs), the
solution to the optimization problem forms the null at θs and maintains
the response at θ̄s, the original DOA. This is the self-nulling effect that
causes the break-down in adaptive beamformer design.

Much of the effort in the design of robust adaptive beamforming
has been focused on addressing this problem while ignoring the
inaccurate covariance matrix estimation issue. In the next Section, we
describe our approach to design a new robust adaptive beamforming
method that addresses both these issues in order to achieve near-
optimal performance.

3. PROPOSED METHOD

The main idea is to remove the SOI from the covariance matrix
estimate R̂, which suffers from the finite sample effect. Any attempt
to remove the SOI from R̂ using eigen-decomposition or otherwise can
only achieve partial removal of the SOI component, since the steering
vectors are non-orthogonal and imprecise. Therefore to ensure that
the SOI is completely removed from the covariance matrix, we propose
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to re-construct a new covariance matrix denoted as Rc with all the
interfering signals except the SOI.

Recall that Rin is formulated from the interferences’ SVs weighted
by its power

Rin =
K−1∑

k=1

σ2
ka(θk)aH(θk) (7)

Hence, we need to estimate the SVs as well as the interferences’ power
σ2

k.
When the array gain/phase and geometry are perfectly calibrated,

the array response function is given by B(θ) = wHa(θ). Without
a loss of generality, we first discuss for the case where the array is
strictly an uniform linear array (ULA) with half-wavelength inter-
element spacing. In this case, the array SV expression is simplified
to a(θ) = [1, ejπ sin(θ), · · · , ej(L−1)π sin(θ)]T and B(θ) is now expressed
as sum of (L− 1) weighted exponential terms

B(θ) =
L−1∑

l=0

w∗l e
jπl sin(θ) (8)

where the superscript ∗ denotes the conjugate operation.
The DOAs of the SOI and interferences can be estimated as the

beampattern of standard capon beamformer (SCB) is expected to form
the nulls at both the interferences and SOI directions.

Based on the estimated interfernce’s DOAs a new covariance
matrix Rc can be re-constructed. Therefore, the proposed beamformer
can be formulated as the following optimization problem

min
w

wHRcw subject to wH ā(θ̂s) = 1 (9)

It is similar to the expression in (2) except that Rin and a(θs) are
replaced with Rc and θ̂s, respectively. θ̂s is a presumed SV defined as
a function of SOI’s estimated DOA.

We assume that the steering vector, a(θs) corresponding to the
SOI is known only approximately and the presumed angle, θs is
bounded, θL < θs < θU , where θL and θU are the lower and upper
bounds respectively. In our formulation, we also require the knowledge
of the presumed array geometry for the generation of the beampattern.
We start off with the SCB solution given as

wSCB =
R̂−1a(θs)

aH(θs)R̂−1a(θs)
. (10)

Based on this solution, we generate the beam pattern using

B(θ) = wH
SCBa(θ) for − 90 deg ≤ θ ≤ 90 deg . (11)
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By setting a suitable scanning resolution ε, we search for nulls outside
the SOI region. The location of the nulls outside the SOI region would
correspond to the interferers or grating nulls. We represent the set
of all the angles corresponding to these nulls as I = {θ1, θ2, . . . , θk},
where the maximum number of nulls found is k < K. This is done
heuristically and can be written as,

I = {I : I = θ |{θ < θL} ∪ {θ > θU}, B(θ − ε) > B(θ) < B(θ + ε)}
(12)

where ε is the scanning resolution used. The angles in I can then be
used to generate the steering vectors of all the interferer signals. We
generate a new covariance matrix,

R̄ = γmax

k∑

i=1

a(θi)aH(θi) (13)

where k < K − 1 and γmax is the largest eigenvalue of R̂. The reason
for doing this is that it is difficult to assign the eigenvalues to the
right steering vectors and whenever errors occur in the assignment,
the performance deteriorates sharply. We find that by assigning the
energy of the largest eigenvalue to all the interferences simply nulls
all of the interferences equally regardless of their true energy. The
rank of R̂ is not full when the number of interferences is less than the
number of antennas. This is resolved by simply adding an identity
matrix weighted by the smallest eigenvalue of R̂

R̃ = γ2
minI (14)

Therefore the final reconstructed covariance matrix is simply

Rc = R̄ + R̃ (15)

The reconstructed covariance matrix Rc does not contain the SOI and
as such the SCB formulation applied to this matrix gives a weight
vector that gives better results. The new weight vector, wrec is

wrec =
Rc

−1a(θs)
aH(θs)Rc

−1a(θs)
. (16)

4. SIMULATION RESULTS

Consider 10-element ULA with half-wavelength spacing receiving three
i.i.d signals (SOI and two interferences of equal power (20 dB)), which
are arbitrary and well separated from one another. A white Gaussian
distributed random variable (0 dB) is considered as the additive noise.
Also, R̂ calculated from 100 snapshots is used to implement all the
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beamformers discussed here. The simulations are carried out on a
personal computer with Intel, Core i5 CPU, 3.25 GHz, 4 GB RAM. We
carried out two different sets of simulations to show the robustness
of the proposed approach compared to the existing beam forming
techniques.

First, we only consider the mismatch due to the look-direction.
Second,to show the robustness of the proposed algorithm, along with
look direction error, we introduce array geometry error which is
modeled as uniform random variable according to U(−0.15λ, 0.15λ),
where λ is the signal wavelength. For both the cases, we evaluate
the SINR performance of the proposed approach calculated from 100
Monte Carlo realizations and compare with the existing approaches
as well as the theoretically optimal SINR. The algorithm is run for
different SNR inputs ranging from −30 dB to +30 dB.

Figures 1 and 2 show the output SINR as a function of input
SNR, while Table 1 details the output SINR obtained for the proposed
approach for cases 1 & 2. Table 1 lists the mean, standard deviation,
best and worst output SINR obtained from the 100 Monte Carlo
realizations for each case.

From the results in Table 1, it can be observed that the best
results of the proposed algorithm is approximately equal to the optimal
values across all the simulated input SNR. From Fig. 1 and Fig. 2, as
the input SNR increases the difference in performance of the proposed
algorithm and the existing robust beam forming algorithms can be
clearly observed. With the increase in the input SNR, saturation can
be observed in the performance of SCB, RCB, iterative robust capon

Table 1. SNR vs SINR.

SNR [dB]

SINR [dB]

Look Direction Error Only Look Direction & 15% Geometry Error

Mean ST D Best Worst Mean ST D Best Worst

−30 −21. 0150 0.5355 −20.3101 −23.0707 −23.8917 1.8497 −20. 9435 −29. 6051

−25 −16. 0368 0.5495 −15.3101 −18.1252 −18.9198 1.8579 −15. 9200 −24. 6336

−20 −11. 0961 0.5926 −10.3162 −13.3190 −13.9845 1.8709 −10. 8681 −19. 7217
−15 −6. 2937 0.7437 −5. 3706 −8. 9879 −9.1927 1.9551 −5. 8558 −14. 9950

−10 −1. 8672 1.2047 −0. 4687 −6. 0816 −4.7724 2.2230 −0. 9704 −11. 0030
−5 1.3534 2.1756 4.3753 −3. 4040 −1. 6023 2.7912 3.0135 −8. 7213

0 6. 6894 1.2561 9.2436 3.4130 3.9769 2.2677 8.1945 −2. 1245
5 13.8021 0.5573 14.5695 12.1945 13.1632 0.8178 14.3740 10.5613

10 18.8207 0.5436 19.5731 17.2003 18.1750 0.8687 19.4377 14.3065

15 23.8324 0.5398 24.5047 22.1892 23.2052 0.7976 24.4381 20.7942
20 28.8310 0.5370 29.5030 27.1901 28.2080 0.7831 29.4390 25.8203

25 33.8305 0.5366 34.5055 32.1903 33.2039 0.7817 34.4402 30.8536
30 38.8290 0.5351 39.4848 37.1906 38.2063 0.7776 39.4410 35.8515
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Figure 1. SINR (Median) vs
SNR for look direction error only.
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Figure 2. SINR (Median) vs
SNR for look direction & 15%
geometry error.
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Figure 3. Beampattern comparison of the best results of RCB, IRCB
and the proposed beamformer for look direction & 15% geometry error.

beamformer (IRCB) [15] and eigenstructure (ES) method, while the
proposed algorithm could achieve near optimal performance. From
Figs. 1 & 2, it can be observed that the performance of the proposed
algorithm is consistent even when a considerable amount of geometry
error is introduced. Among the existing robust beamformers, the
performance of RCB, IRCB and ES is almost similar and better than
SCB. SCB, RCB, IRCB and ES all saturate as the input SNR increases.

The time taken per one realization by each of the algorithms, SCB,
RCB, IRCB, ES and proposed, are 2.04 ∗ 10−2, 2.16 ∗ 10−2, 3.02 ∗ 10−2,
1.32 ∗ 10−2 and 2.33 ∗ 10−2 seconds respectively.

Figure 3 shows the beampattern plot comparison of the proposed
approach against the RCB and the IRCB approaches. These are
obtained from one of the realization in the simulation at 10 dB SNR.
The proposed approach provides deeper null in the directions of
interferences as well as lower side lobe level.
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5. CONCLUSION

In this paper, we proposed a new robust adaptive beamforming mehtod
that achieves near optimal performance by addressing both the SV
mismatch due to look-direction error and the inaccurate covariance
matrix estimation problems. We evaluated the performance of the
proposed algorithm over a range of different input SNR values and
compared with some of the existing adaptive beamforming techniques.
From the simulation results we observed that the proposed algorithm
is able to obtain near optimal performance and does not exhibit any
saturation even when the input SNR is increased unlike the existing
beamforming techniques.
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