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Robust Adaptive Beamforming Based on Interference
Covariance Matrix Reconstruction and Steering Vector

Estimation

Yujie Gu and Amir Leshem

Abstract—Adaptive beamformers are sensitive to model mismatch, espe-
cially when the desired signal is present in training snapshots or when the
training is done using data samples. In contrast to previous works, this cor-
respondence attempts to reconstruct the interference-plus-noise covariance
matrix instead of searching for the optimal diagonal loading factor for the
sample covariance matrix. The estimator is based on the Capon spectral
estimator integrated over a region separated from the desired signal di-
rection. This is shown to be more robust than using the sample covariance
matrix. Subsequently, the mismatch in the steering vector of the desired
signal is estimated by maximizing the beamformer output power under a
constraint that prevents the corrected steering vector from getting close to
the interference steering vectors. The proposed adaptive beamforming al-
gorithm does not impose a norm constraint. Therefore, it can be used even
in applications where gain perturbations affect the steering vector. Simu-
lation results demonstrate that the performance of the proposed adaptive
beamformer is almost always close to the optimal value across a wide range
of signal to noise and signal to interference ratios.

Index Terms—Covariance matrix reconstruction, robust adaptive beam-
forming, steering vector estimation.

I. INTRODUCTION

Adaptive beamforming is a ubiquitous task in array signal processing
and has been widely used in radar, sonar, radio astronomy, wire-
less communications, microphone array speech processing, medical
imaging, and other areas (see, for example, [1], [2], and the references
therein). However, the adaptive beamformer is also well-known to
be sensitive to model mismatch, especially when the desired signal
is present in the training data. Whenever a model mismatch exists,
the conventional adaptive beamformer will suffer severe performance
degradation. Therefore, robust adaptive beamforming has been an
intensive research topic, and various robust adaptive beamforming
techniques have been proposed in the past decades; see, e.g., [1] and [2].

In general, these robust techniques can be classified into two cate-
gories based on the fundamental Capon beamformer [3]. The first cat-
egory covers techniques used solely to process the sample covariance
matrix, because the exact interference-plus-noise covariance matrix is
usually unavailable in practical applications. The most popular one in
this category is the so-called diagonal loading technique [4], where a
scaled identity matrix is added to the sample covariance matrix. How-
ever, choosing the optimal diagonal loading factor in different scenarios
is a difficult task. Recently, the shrinkage estimate approach [5] can
automatically compute the diagonal loading levels without specifying
any user parameters. Unfortunately, this only produces an estimate of
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the theoretical received signal covariance matrix instead of the required
interference-plus-noise covariance matrix. The second category of ap-
proaches simply processes the presumed steering vector of the signal,
since the exact knowledge of the steering vector is not easy to obtain.
In this category, the worst-case performance optimization-based adap-
tive beamforming technique [2], [6]–[8] makes explicit use of an uncer-
tainty set of the signal steering vector. In practice, neither the mismatch
vector nor its norm bound is known. A more recent approach in this cat-
egory is to estimate the actual steering vector in an iterative way [9].

When the array manifold is fully known there is no difference
between using the received signal covariance matrix also known
sample matrix inversion (SMI) or minimum power distortionless
response (MPDR) and using the interference-plus-noise covariance
matrix known as minimum variance distortionless response (MVDR)
[1]. However, when the array manifold is not completely known it is
better to use the MVDR technique [1], [10]. In contrast, most of the
robust techniques developed in recent years use generalizations of the
MPDR technique. Recently, efforts to separate the effect of the inter-
ferers has been done by Khabbazibasmenj et al. [19] and by Mallipeddi
et al. [20]. In both papers, the interference-plus-noise covariance ma-
trix is replaced by a matrix of the form �� � ��

�����������. In [19],
this is only used as part of a semidefinite optimization for correcting
the desired signal steering vector. This leads to degraded performance
at high signal to noise ratio. In [20], the integral is replaced by a
discrete sum over interferences DOAs determined by minimizing
the Capon spectral estimator. The fact that no power estimate of the
interferes is included in the construction of the covariance matrix, will
harm the method in high dynamic range applications, such as radio
astronomical imaging of diffuse sources.

In this correspondence, we develop a new robust adaptive beam-
forming algorithm based on interference-plus-noise covariance matrix
reconstruction and steering vector estimation. As mentioned above the
MVDR beamformers are much more robust to array manifold errors
than the MPDR beamformers [1], [10]. For this reason, we propose
to reconstruct the interference-plus-noise covariance matrix using the
spatial spectrum distribution instead of searching for the optimal di-
agonal loading factor for the sample covariance matrix. In addition,
the presumed steering vector of the signal is subsequently corrected
to maximize the beamformer output power under the constraint that
the corrected steering vector does not converge to any interference.
By combining them together, we obtain the interference-plus-noise co-
variance matrix reconstruction plus steering vector estimation-based
adaptive beamformer. We also do not require a norm constraint on the
steering vector. Hence, the proposed adaptive beamformer can be ap-
plied to many more scenarios than previous techniques. Numerical ex-
amples show that the performance of the proposed beamforming algo-
rithm is almost always close to optimal performance both at low and
high SNR outperforming previously proposed robust beamformers. By
combining the interference-plus-noise covariance matrix reconstruc-
tion with improved estimate of the desired signal steering vector we
overcome the problem of desired signal self-cancelation at high SNR
while maintaining the good performance at low SNR. This leads to
improved performance over current approaches over a wide range of
signal-to-interference-plus-noise ratios.

II. THE SIGNAL MODEL

Assume that an array of � sensors receives signals from multiple
narrowband sources. The array observation vector ���� � �

� at time
� can be modeled as

���� � ����� � ����� � ����� (1)
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where �����, �����, and ����� are the statistically independent com-
ponents of the desired signal, interference, and noise, respectively. The
desired signal can be written as ����� � �����, where ���� is the
signal waveform and � � �� is the steering vector associated with the
desired signal.

The adaptive beamformer output is given by

���� � �
�
���� (2)

where � � ���� � � � � �� �� � �� is the beamformer weight vector
and ���� and ���� denote the transpose and Hermitian transpose,
respectively. The optimal beamformer weight vector � can be ob-
tained by maximizing the output signal-to-interference-plus-noise
ratio (SINR)

SINR �
��� ��

�
��
�

�������
(3)

where ��� is the signal power, ���� � �������� � ������������ �
������

�� � ���� is the interference-plus-noise covariance matrix,
and ���� is the statistical expectation. The problem of maximizing (3)
is mathematically equivalent to the MVDR beamforming problem

��	
�

�
�
����� subject to �

�
� � 
� (4)

and the solution is the MVDR beamformer, also referred to as the
Capon beamformer,

���� �
�
��
����

���
��
����

� (5)

which is a function of two factors ���� and �.
Since ���� is unavailable even in signal-free applications,

it is usually replaced by the sample covariance matrix �� �
�

�

�

���
��������� with � snapshots, and the corresponding

adaptive beamformer ��	
 �
�� �

� �� �
is called the sample ma-

trix inversion (SMI) beamformer. Whenever the desired signal is
present in the training samples, the SMI beamformer is in essence
the MPDR beamformer [1] instead of the MVDR beamformer (4).
As � increases, �� converges to the theoretical covariance matrix
� � �����

� � ����, and the corresponding SINR will approx-
imate the optimal value as � � � under stationary and ergodic
assumptions. However, when the sample size � is small, there is a
large gap between �� and �. This gap is known to dramatically affect
the performance, especially when the signal is present in the training
samples [4], [11]. Furthermore, using �� is much more sensitive to
steering vector errors [1], [10].

III. THE PROPOSED ALGORITHM

In this section, a new adaptive beamforming algorithm is proposed.
The basic idea is to reconstruct the interference-plus-noise covariance
matrix first, and then estimate the steering vector of the desired signal.
Therefore, the section is divided into two parts. First, we discuss the
problem of reconstructing the interference-plus-noise covariance ma-
trix. Then, we discuss the problem of estimating the signal steering
vector.

A. Interference-Plus-Noise Covariance Matrix Reconstruction

Previous works on robust adaptive beamforming focused on finding
the optimal diagonal loading factor for the sample covariance matrix
��, which inevitably resulted in performance degradation at high SNRs.
This degradation is caused by the fact that the signal is always present
in any kind of diagonal loading technique, and its effect becomes more

and more pronounced with increases in SNR. This explains the per-
formance degradation of adaptive beamformers at high SNRs. There-
fore, we will reconstruct the interference-plus-noise covariance matrix
���� directly instead of searching for an optimal diagonal loading
factor.

Recall that ���� � 	


��
��
 ��	
��

��	
� � ����, where 
 is the
number of interferers, ��
 is the power of the interference impinging
from direction 	
 and ��	
� is the corresponding steering vector, ���
is the noise power, and � is the identity matrix. Generally, the number
of interferers, as well as their actual steering vectors and powers, are
usually unknown. Moreover, the noise power is also unknown. Hence,
in order to reconstruct the interference-plus-noise covariance matrix
����, we need to know the spatial spectrum distribution over all pos-
sible directions. In this correspondence, we use the Capon spatial spec-
trum estimator

�� �	� �



���	� ������	�
(6)

which is easy to obtain by substituting the Capon beamformer (5) back
into the objective function of (4) with ��. Aside from the Capon spa-
tial spectrum estimator (6), there are other candidate spatial spectrum
estimators [12]. Using the Capon spatial spectrum (6), the interfer-
ence-plus-noise covariance matrix ���� can be reconstructed as

����� �


�

�� �	���	����	��	

�


�

��	����	�

���	� ������	�
�	 (7)

where ��	� is the steering vector associated with a hypothetical direc-
tion 	 based on the known array structure (note that for the specific di-
rection of the desired signal 	� 
� � ��	��), and 
� is the complement
sector of �. That is to say, � 	 
� covers the whole spatial domain,
and �
 
� is empty. Here, � is an angular sector in which the desired
signal is located. The desired signal DOA 	� can be estimated, for ex-
ample, using low-resolution direction finding methods, and the width
of � is determined by the resolution of the array and the propagation
environment. The main requirement is that the signal’s direction is in
� while the interferers are not. Hence, ����� collects all information
on interference and noise in the out-of-sector 
�. Consequently, the ef-
fect of the desired signal is removed from the reconstructed covariance
matrix, as long as the desired signal’s direction is located inside �.

Before continuing, we would like to point out that, in the case of look
direction mismatch, the estimate of the interference covariance matrix
will be accurate, as long as the choice of � separates the interference
from the desired signal. Similarly, in the case of local incoherent scat-
tering effects, we expect the estimate to be very good. In the case of
random steering vector errors, the effect of the random errors will be
averaged over the various directions of the interference, therefore pro-
viding reasonable estimates of the interference-plus-noise covariance
matrix. These observations provide at list an insight into the ad hoc es-
timate (7).

Using ����� (7) in lieu of �� in the SMI beamformer yields the in-
terference-plus-noise covariance matrix reconstruction-based adaptive
beamformer

���� �
����
���
�


�� ����
���
�

(8)

with the presumed steering vector 
� � ��	��.
The computational complexity of the proposed algorithm is

��
���, where � is the number of sampling points in 
� during the
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TABLE I
RECONSTRUCTION-PLUS-ESTIMATION-BASED ADAPTIVE BEAMFORMING ALGORITHM

reconstruction of covariance matrix ����� (7). Typically, � � � . The
computational complexity of the simplest SMI beamformer is�����
mainly because of the matrix inversion operation [2]. Note, however,
that if the spatial estimate in the whole region is desired, the SMI
beamformer has complexity ������ as well, assuming � � � .
Therefore, the simplified version of our beamformer, obtained by (8),
has complexity slightly larger than the SMI but significantly more
robust performance.

In practice, the presumed steering vector �� is usually different than
the actual steering vector �. Therefore, in the following subsection, we
will estimate the actual steering vector of the signal using the recon-
structed covariance matrix ����� (7). This provides additional beam-
forming gain at the expense of increased computational complexity.

B. Desired Signal Steering Vector Estimation

The actual steering vector is difficult to obtain in practical applica-
tions by simply using the nominal DOA of the signal because of the
complex propagation environment. Hence, here we will correct the pre-
sumed steering vector to maximize the beamformer output power.

Substituting the Capon beamformer (5) with the reconstructed co-
variance matrix ����� (7) back into the objective function of (4), the
beamformer output power is

�� ��� �
�

�� ����
����

(9)

which now is a function of the steering vector � not just the nominal
DOA � as in Section III-A. The steering vector � can be estimated by
maximizing �� ��� or, equivalently, by minimizing the denominator of
�� ���. In order to exclude the trivial solution � � �, the presumed
steering vector �� should be utilized, which can be obtained from the
nominal DOA of the signal with the known array structure. Specifi-
cally, the optimization problem of estimating � can be transformed to
estimate the mismatch vector � as

��	
�

���
 ��� ����������
 ��

subject to ���
 ��� ��������
 �� � ��� ������� (10)

where the inequality constraint is a single constraint expression of
�������� 
 �������� � ������������� for all � � �� with a weight

coefficient ���� � �� ���, which can be used to prevent the corrected
steering vector ��
� from converging to any interference located in ��.
Here, the choice of ���� is based on the fact that the interference with
higher power should be more suppressed. Furthermore, the resulting
constraint matrix is just the reconstructed covariance matrix. If ����
is chosen to be independent of �, e.g., ���� � �� � � � ��, then the
inequality constraint becomes ��� 
 ���� ����� 
 ��� � ��� ����
with the constraint matrix �� � ��

����������� [9]. Basically, this
constraint boils down to the requirement that the weighted average
angle between the corrected steering vector and the vectors in the
interference region will not increase relative to the average angle
between the nominal steering vector and the same vectors.

As we pointed out in [15], in some works on robust adaptive beam-
forming, the steering vector is assumed to have a fixed norm

�
� , i.e.,

��� � �
� . Although it does relax the requirement that the received

signals from different sensors should have the same gain as the clas-
sical assumption in array signal processing, this norm constraint is still
restrictive because in practical applications, e.g., in wireless communi-
cations, the gain perturbations of different sensors cannot be regarded
as small as previously, and the norm constraint no longer holds. Hence,
unlike [9], [13], this norm constraint will not be used in our formula-
tion (10).

The mismatch vector � can be further decomposed into two compo-
nents. One denoted by �� is orthogonal to ��, and the other denoted by
�� is parallel to ��. �� does not affect the beamforming quality because
it is a scaled copy of �� and any scaling of the steering vector does not
impact the SINR. Therefore, the optimization problem (10) can be fur-
ther simplified to search for the orthogonal component �� by solving
the following problem:

��	
�

���
 ���
� ����������
 ���

subject to ����� � 
�

���
 ���
� ��������
 ��� � ��� ������� (11)

where the equality constraint is introduced to maintain the orthogo-
nality between �� and ��. Because ����� 	 
 is a positive-definite
matrix, the optimization problem (11) is a feasible quadratically con-
strained quadratic programming (QCQP) problem and can be easily
solved using convex optimization software, such as CVX [14].

Except the two constraints in (11), we do not need any other con-
straint. Hence, the additional eigendecomposition of the covariance
matrix in [9], [13], [15] is effectively avoided in our approach. Con-
sidering that the objective of the beamformer design is to maximize
SINR (3), the presumed steering vector �� is corrected as

�� � ��
 �� (12)

as soon as the problem (11) is solved. Here, we emphasize once again
that the normalization operation �����

�
� � is unnecessary, because we

do not know a priori the norm of the actual steering vector and more im-
portantly, this normalization operation does not affect the beamformer
output SINR at all. Hence, we can eliminate the iteration operation in
[9] and [13].

Up to now, both the reconstructed interference-plus-noise covari-
ance matrix ����� (7) and the corrected steering vector �� (12) have
been obtained. Substituting them back into the Capon beamformer (5)
together, the adaptive beamformer based on covariance matrix recon-
struction plus steering vector estimation can be computed as

��	
���
 �
����
�����

��� ����
�����

� (13)

The reconstruction-plus-estimation-based adaptive beamforming al-
gorithm is summarized in Table I. The computational complexity in
this case is dominated by the solution of the QCQP problem, which is
	������. This makes the two step algorithm equivalent to other robust
beamforming algorithms.
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Fig. 1. First example. (a) Output SINR versus input SNR; (b) deviations from optimal SINR versus SNR; (c) output SINR versus number of snapshots.

IV. SIMULATION

In our simulations, a uniform linear array (ULA) with � � ��
omnidirectional sensors spaced a half wavelength apart is used. The
additive noise is modeled as a complex circularly symmetric Gaussian
zero-mean spatially and temporally white process. Two interfering
sources are assumed to have DOAs �50� and �20�, respectively.
The interference-to-noise ratio (INR) in each sensor is equal to 30 dB.
The desired signal is assumed to be a plane-wave from the presumed
direction �� � 5�. When comparing the performance of the adaptive
beamforming algorithms in terms of the number of samples, the
SNR in each sensor is set to be fixed at 20 dB. In the performance
comparison of mean output SINR versus the input SNR, the number of
snapshots is fixed to be � � ��. For each scenario, 200 Monte-Carlo
runs are performed.

The proposed beamformers (8) and (13) are compared to the
eigenspace-based beamformer [16], the worst-case-based beamformer
[6], the sequential quadratic programming (SQP)-based beamformer
[9], the shrinkage estimation-based beamformer [5], and the iterative
adaptive approach (IAA) beamformer [17]. In the SQP-based beam-
former and the proposed beamformers, the possible angular sector of
the desired signal is set to be � � �0�� 10�� and the corresponding
out-of-sector is �� � ��90�� 0�	 � 
10�� 90��. The value � � ���
and six dominant eigenvectors of the matrix � �

�
�
�	��
�	��

are used in the SQP-based beamformer, and the value � � ��� �
is used for the worst-case-based beamformer. The eigenspace-based
beamformer is assumed to know the number of interference sources.
The optimal SINR (3) is also shown in all figures, which is calculated
from the exact interference-plus-noise covariance matrix and the
actual desired signal steering vector. CVX software [14] was used to
solve these convex optimization problems. It should be emphasized
that in all simulations, the actual steering vector � was not normalized
so that ��� � � was not always satisfied.

A. Example 1: Random Signal and Interference Look
Direction Mismatch

In the first example, a scenario with random look direction mismatch
is considered. The random DOA mismatch of both the desired signal
and the interferers are uniformly distributed in ��4�� 4��. That is to
say, the DOA of the signal is uniformly distributed in �1�� 9��, and the
DOAs of two interferences are uniformly distributed in ��54���46��
and ��24���16��, respectively. Here, the random DOAs of the signal
and the interferences change from run to run but remain fixed from
snapshot to snapshot. Fig. 1(a) compares the output SINR of the afore-
mentioned methods versus the SNR. Because the performance differ-
ence is not straightforward especially at low SNRs, their deviations
from the optimal SINR are compared in Fig. 1(b). In Fig. 1(c), the

output SINRs for the tested methods are illustrated against the number
of snapshots � . It can be seen from these figures that the performances
of the proposed beamformers are always close to the optimal SINR in a
large range from �30 to 50 dB. Furthermore, the proposed algorithms
enjoy much faster convergence rates than others. The signal power is
100 times the interference power in the case of SNR � 50 dB, which
can be used to illustrate the situation when the signal-to-interference
ratio (SIR) approaches �.

B. Example 2: Signal Spatial Signature Mismatch due to Incoherent
Local Scattering

A distributed or incoherent scattered source arises mainly from the
multipath scattering effects caused by the presence of local scatterers,
which is also commonplace in radar, sonar, radio astronomy and wire-
less communications applications. In this example, we assume inco-
herent local scattering of the signal. The signal is assumed to have a
time-varying spatial signature that is different for each data snapshot
and is modeled as

�
		 � 
�
		���

�

���


�
		�
��	 (14)

where 
�
		 and 
�
		� � � �, 2, 3, 4 are independently and identically
distributed (i.i.d.) zero-mean complex Gaussian random variables inde-
pendently drawn from a random generator� 
�� �	. The DOAs ��� � �
1, 2, 3, 4 are independently normally distributed in � 
��� 4�	 in each
simulation run. It should be pointed out that the beamformers are im-
plemented in a block adaptive manner, which means that �� changes
from run to run while remains fixed from snapshot to snapshot. At the
same time, the random variables 
�
		 and 
�
		 change not only from
run to run but also from snapshot to snapshot. This corresponds to the
case of incoherent local scattering [18]. In this scenario, the norm of
the desired signal steering vector ��� keeps changing from snapshot
to snapshot. Due to the fact that the signal covariance matrix �� is no
longer a rank-one matrix in this scenario, the output SINR should be
rewritten as [11]

SINR �
�
�
���

�������
(15)

instead of (3). The SINR (15) is maximized by [11]

���	 � � �
��
����� (16)

where ���	 stands for the principal eigenvector of a matrix. It can be
seen from Fig. 2 that although there are some performance degradations
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Fig. 2. Second example. (a) Output SINR versus input SNR; (b) deviations from optimal SINR versus SNR; (c) output SINR versus number of snapshots.

with the increase in SNR compared to the optimal value, the proposed
beamforming algorithms still outperform the other methods tested.

The simulation results clearly demonstrate that the proposed beam-
formers outperform all other existing beamformers, and achieve per-
formance that is consistently close to the optimal SINR for all values
of SNR from �30 to 50 dB, which illustrates its high dynamic range.
Specifically,

SINR������� � �������� (17)

In the first example, the actual steering vector satisfies the norm con-
straint and hence, the array output SINRs are approximately 10 dB
higher than the SNR. By contrast, in the second example, the norm of
the actual steering vector is magnified due to the effect of incoherent
local scattering and the output SINRs of all tested beamformers are
subsequently scaled up.

V. CONCLUSION

In this correspondence, we proposed an effective adaptive beam-
forming algorithm, which is robust not only to covariance matrix uncer-
tainty but also to steering vector mismatch. With the knowledge of the
presumed DOA of the desired signal, the interference-plus-noise co-
variance matrix can be reconstructed based on the spatial spectrum dis-
tribution, which provides a quasi signal-free environment. Based on the
reconstructed covariance matrix, the presumed steering vector of the
signal is corrected to maximize the array output power. In contrast to
other algorithms, the proposed adaptive beamforming algorithm does
not need the norm constraint of the steering vector, which thus widely
extends its applicability. The simulation results demonstrate that the
performance of proposed adaptive beamformer is almost always close
to optimal in a very large range of SNR.
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