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Abstract—Adaptive beamforming, which uses a weight vector to
maximize the signal-to-interference-plus-noise ratio (SINR), is often
sensitive to estimation error and uncertainty in the parameters, such
as direction of arrival (DOA), steering vector and covariance matrix.
Robust beamforming attempts to mitigate this sensitivity and diagonal
loading in sample covariance matrix can improve the robustness. In
this paper, beamformer based on particle filter (PF) is proposed to
improve the robustness by optimizing the diagonal loading factor in
sample covariance matrix. In the proposed approach, the level of
diagonal loading is regarded as a group of particles and optimized
using PF. In order to compute the post probability of particles beyond
the knowledge of noise, a simplified cost function is derived first. Then,
a statistical approach is developed to decide the level of diagonal
loading. Finally, simulations with several frequently encountered types
of estimation error are conducted. Results show a better performance
of the proposed beamformer than other typical beamformers using
diagonal loading. In particular, the prominent advantage of the
proposed approach is that it can perform well even noise and error
in the steering vector are unknown.
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1. INTRODUCTION

Compared with the traditional data-independent beamformers, the
adaptive beamformers can have much better interference rejection
capability [1–3] and some can improve the resolution of the direction of
arrival (DOA) [6]. In the past decades, adaptive beamforming is always
regarded as a hot topic by researchers. It has been widely used in radar,
sonar, radio astronomy, wireless communications, microphone array
speech processing, medical imaging and other areas [4, 5, 23]. It is well
known that adaptive beamformers can suffer significant performance
degradation when the environment, sources, or sensor array is violated
and this may cause a mismatch between the assumed and actual signal
steering vectors. A lot of algorithms have been proposed to improve
the robustness of adaptive beamforming [6–9]. However, these methods
mostly focus on optimizing the direction of arrival (DOA) or signal
steering vector only.

In practice, the sample covariance is estimated with error, and so
it is uncertain. Especially, the deadly disadvantage of sample matrix
inversion (SMI) is that it is generally ill-conditioned and leads to
significant degradation of performance. Therefore, some methods are
developed to further improve the performance of the SMI technique.
The use of diagonal loading has usually been regarded as the natural
complement to the SMI technique. In this paper, we focus on
improving the robustness of adaptive beamforming by optimizing the
level of diagonal loading.

In the past decades, many works have been done on diagonal
loading optimization. The first presented use of diagonal loading
can date back to the work of Capon [10]. Two years later, Riley
gave in [11] the first indiction that diagonal loading was useful in
order to improve the conditioning of the augmented matrix, thereby
facilitating its numerical inversion. Later, in the context of the
regularization of ill-posed problems, diagonal techniques are more
extensively analyzed [12]. Obviously, diagonal loading has been the
most popular method to alleviate the losses of using finite sample size
estimate of the true covariance matrix [13]. However, the decision of
the loading level is still a difficult problem. To solve this problem,
some ideas can be seen in literatures [13–18]. In [14], the author
pointed out the loading level should be chosen to be higher than the
noise level but much lower than the smallest interference eigenvalue.
However, the problem is that the level of noise and interference is
usually unknown. Calson [13] suggests to fix the value at the level 10 dB
above the white noise power. It is clear that getting the accurate white
noise level is still not easy. Another normal method is to fix the value
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at 10 times of the minimum eigenvalue of the sample matrix. These
methods are indeed effective in many practical cases. However, while
the desired signal is present in training snapshots, the performance
will decrease severely. The method by computing the eigenvalues
of the sample matrix to estimate the loading factor is given in [15].
This method can combat the finite sample size effect, but the main
drawback is that it must estimate the dimension of the interference
subspace at first. Recently, some methods based on iteration [16, 17]
are developed to loading factor optimization. These two methods use
the linearization of weights by Taylor series at the vicinity where the
loading factor value is zero. They are effective in some situations and
better than fixed loading methods. However, the linearization prevents
the convergence of these methods and it is very important for iterative
methods. Specially, the variance of noise must be used at the step
of initialization in [16]. It means that the noise need be estimated at
first. In [14], the relationship between beamformer based on worst-
case optimization and loading factor based SMI (LSMI) beamformer
is discussed. The result illustrates that the worst case optimization
based beamformer belongs to the class of diagonal loading techniques
as LSMI beamformer. However, the shortcoming of this beamformer
is that the optimized performance is based on the norm of the steering
vector distortion which must be bounded at first.

In this paper, we focus on using the statistical theory to loading
factor optimization and propose an approach based on particle filter
(PF). To the best of our knowledge, using PF to decide the level of
diagonal loading of sample covariance matrix is new. In the proposed
approach, the value of diagonal loading is regarded as a discrete
random variables with a prior probability. The aim of this approach
is the maximization of empirical Rayleigh quotient. And we have
derived a simplified cost function to compute the posterior probability
of these particles. Simulations also manifest that it can perform better
than typical diagonal loading methods. In addition, the meaningful
advantage of the proposed approach is that the level and type of noise
can not be concerned.

The paper is organized as follows. Section 2 contains background
material. The SMI beamformer based on particle filter is developed
in Section 3. Performance examples are presented in Section 4.
Conclusion is given in Section 5.

2. BACKGROUND

We use the standard narrowband beamforming model in which a set
of P narrowband plane wave signals with known center frequency,
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impinge on an array of N sensors, where P < N . Assume one is the
desired signal from the direction θs and the remaining are interference
from the directions θp (p = 1, 2, . . . , P−1), the N×1 vector of received
signals is given by

x(k) = s(k) + i(k) + n(k) = s(k)a(θs) +
P−1∑

p=1

a(θp)ip(k) + n(k) (1)

where k is the time index, s(k), i(k), and n(k) are the desired signal,
interference and noise, respectively. s(k) is the signal waveform and
ip(k) is the waveform of the pth interference. Here, a is the steering
vector of wave. The source and noise waveforms are assumed to
be sample functions of zero-mean random processes, and successive
snapshots of both the source and noise are assumed to be statistically
independent.

When s(k) is uncorrelated with the noise and interference, the
received covariance matrix can be written as

Rx = E
{
x(k)x(k)H

}
= σ2

sa(θs)a(θs)H + Ri+n (2)

where σ2
s is the desired signal power

σ2
s = E

{|s(k)|2} (3)

and Ri+n is the interference plus noise covariance matrix, and (·)H

stands for the Hermitian transpose.
The narrowband beamformer is a linear filter consisting of N

complex weights. The output of the beamformer y(k) is an estimate
of the desired signal and has the form as

y(k) = ŝ(k) = wHx(k) (4)

The weight vector can be found from the maximum of the signal-
to-interference-plus-noise ratio (SINR) and it is equivalent to [18]

min
w

wHRi+nw s.t. (a(θs))Hw = 1 (5)

The optimal weight vector of (5) has the form as [22]

w = ξR−1
i+na(θs) (6)

where ξ is a scale factor. When ξ = σ2
s , the weights correspond to

spatial Winer filter, and when ξ = (a(θs)H)R−1
i+na(θs), the minimum

variance distortionless response (MVDR) weights are obtained. When
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Ri+n, σ2
s and a(θs) are known exactly, the optimal weights can be

obtained. The weight vector here also maximizes the output SINR.
Yet, the second-order statistics Ri+n and σ2

s are usually unknown
and fluctuating, and the beamformer weights are computed adaptively
using estimation based on data collected at the sensors. There
are many methods to improve the numerical stability, the rate and
performance of convergence [19, 21]. Block-adaptive method such as
SMI is a typical method which collects a block data, estimates and
inverts the sample covariance matrix, then updates the beamformer
weights each time a new block of data is received. The weights are
updated every K samples using the K sample covariance matrix as

R̂K =
1
K

K∑

k=1

x(k)x(k)H (7)

where R̂K is the maximum likelihood estimate of Rx. Accordingly,
the weight vector of SMI beamformer becomes

ŵSMI =
R̂−1

K a(θs)

a(θs)HR̂−1
K a(θs)

(8)

One of the most popular approaches is called LSMI. The
beamformer will perform better while the value of diagonal loading
factor is incorporated in sample covariance matrix estimate [16]. This
kind of sample matrix can be denoted as

R̂DL = R̂K + δI (9)

where δ is the value of diagonal loading factor and I is the identity
matrix.

The LSMI weight vector can be reformed as [16]

ŵDL =
(
R̂K + δI

)−1
a(θs) (10)

Another popular approach to robust adaptive beamforming is
the worst case optimization based beamformer [18]. This approach
assumes that the norm of the steering vector distortion ∆ can be
bounded by known constant ε > 0. That is

‖∆‖ < ε (11)

Then, the actual signal steering vector belongs to the set

Γ(ε) , {c|c = a + e, ‖e‖ ≤ ε} (12)
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Finally, the worst case optimization based SINR analysis problem
of finding a optimum weight vector can be written as

min
w

wHR̂Kw, s.t.
∣∣wHa− 1

∣∣2 = ε2wHw (13)

The solution of (13) can be found by minimizing the function

J(w, λ1) = wHR̂Kw + λ1

(
ε2wHw− ∣∣wHa− 1

∣∣2
)

(14)

where λ1 is a Lagrange multiplier. Taking the gradient of (14), the
weight vector of worst case optimization based beamformer can be
denoted as [18]

w =
λ1

λ1aH
(
R̂K + λ1ε2I

)−1
a − 1

(
R̂K + λ1ε

2I
)−1

a (15)

which shows this robust beamformer belongs to the class of diagonal
loading techniques. For simplicity, we call it worst case beamformer
in brief. At the same time, from (15), we can know that the weight
vector is sensitive to the value ε. It means that the performance of
this beamformer will degrade if ε is not known exactly. However, ε is
not only difficult to be known exactly, but also variable in the whole
process. It means that it will affect the performance of this beamformer
if there is an error in ε.

Given the structure of SMI with diagonal loading, the optimum
value of loading factor can be stated as

δopt = arg max(γout) (16)

where γout denotes the output SINR.

3. SMI BEAMFORMER BASED ON PARTICLE FILTER

3.1. Simplified Cost Function

To solve the problem of (16), we can write the output SINR (γ̂out) as

γ̂out =

∣∣wHa (θs)
∣∣2

wHR̂Kw
(17)

Thus, the problem of finding a weight vector that maximizes
output SINR can be written as

min
w

wHR̂Kw, s.t.
∣∣wHa(θs)

∣∣2 = 1 (18)
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Because (wHa(θs))2 is not less than one, optimization prob-
lem (18) can be reformed as

min
w

wHR̂Kw, s.t. ln
(
wHa (θs)

)2
= 0 (19)

Then, the cost function J(w) of this problem can be written as

J(w) = wHR̂Kw + λln
(
wHa (θs)

)2
(20)

where λ is the Lagrange multiplier. To obtain the minimum value of
the cost function, take the gradient of J(w) equal to 0. That is to say

∂J(w)
∂w

= 0 (21)

The expression for λ becomes

λ =
wHR̂Kw

2 ln (wHa(θs))
(22)

Substituting (22) into (20), the minimized cost function can be denoted
as

J(w) = wHR̂Kw

[
1 +

1
2

ln
(
wHa(θs)

)]
(23)

According to Equation (10), w is the function of δ. Therefore, the
cost function can be written as the function of δ, which is

Ĵ(δ) = wH(δ)R̂Kw(δ)
[
1 +

1
2

ln
(
wH(δ)a (θs)

)]
(24)

where Ĵ(δ) denotes the estimation of the cost function while loading
level is δ.

In our approach, this simplified cost function will be used to
reconstitute the measurement equation.

3.2. Proposed Beamformer

In the proposed approach, we regard the value of diagonal loading
factor as a discrete random variable which have L particles. Then, the
approximate post probability of these particles can be obtained by the
measurement equation that will be discussed next.

PF is the state-of-art solution to nonlinear and non-Gaussion
problems [20]. In our approach, the state vector δk is estimated on
the sequence of all available measurements, which are Jk = {Ji, i =
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1, 2, . . . , k} up to the time k. It has been shown that the performance of
PF is much better than that of the extended Kalman Filter (EKF) [21].
To use PF based adaptive beamforming method, the state equation
should be formulated first.

δk+1 = δk + νk (25)

where δk denotes the value of loading factor and νk denotes the system
noise at time k. The initial density of the state vector can be denoted
as p(δ0) = p(δ0|Ĵ0). Thus, the received data can be denoted as

xk+1 = wH(δk)a(θs) + nk (26)

where nk is the measurement noise at time k. According to (10), w(δk)
can be written as

w (δk) =
(
R̂K + δkI

)−1
a(θs) (27)

and
y(k) = wH(δk)a(θs) (28)

Obviously, equations including (26), (27) and (28) can be regarded
as a group of measurement equation. Because the level and type of
noise are usually unknown, computing the post probability of δk is
very difficult. In the proposed approach, a new measurement equation
is reconstituted using the simplified cost function Ĵ(δ). That is

Ĵk = Jk + εk (29)

Here, Ĵk can be estimated from (24); Jk is the true value of cost
function according to δk; and εk is the measurement noise.

It is reasonable to assume the post probability of particles
approximate normal distribution (N(µ, σ2)) if the number of particles
is large enough. Thus, the probability distribution of particles can be
estimated from the simplified cost function.

There are four steps to finish a PF process after the state
equation (25) and the measurement equation (29) have been built.
They are initialization, prediction, update and resampling.

Firstly, in the initialization procedure, we set the particles δi
0 = 0,

(i = 0, 1, . . . , L). System noise ν0 meets a Gaussian distribution with
mean = 1 and deviation = 1. To improve the efficiency and particle
diversities, we set νk to a Gaussian distribution N

(
µ, σ2

ν

)
. In our

simulation, we set µ = 0 and σ2
ν = 0.1δ̂2

k−1. In order to simplify
the computation, the initial density of the state vector is all set to
p(δi

0) = 1
L .
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Then, the predition step is conducted after initialization. At time
k + 1, new particles are generated by passing the resampled particles
at time k through the system model as (25).

Next, the steps to update weights once in the proposed
beamformer at time k can be concluded as follows.

For i = 1, . . . , L

(1) R̂−1
DL(i) =

(
(1/K)

∑k

j=k−K
xjx

H
j + δi

kI

)−1

(2) wi
k =

(
R̂DL(i)

)−1
a(θs)

(3) Ĵ i
k =

(
wi

k

)H
R̂Kwi

k

[
1 +

1
2

ln
(
wi

k

)H
a(θs)

]

(4) µk = min
(
Ĵ i

k

)
, σ2

k = (1/L)
∑L

i=1

(
Ĵ i

k − µk

)2

(5) p′
(
δi
k|Ĵk

)
=

1√
2πσ

exp


−

(
Ĵ i

k − µk

)2

2σ2
k




(6) c =
∑L

i=1
p′

(
δi
k|Ĵk

)

(7) p
(
δi
k|Ĵk

)
=

1
c

(
p′

(
δi
k|Ĵk

))

Resampling is another critical step in the proposed beamformer.
Via resampling, which multiplies the particles with high weights and
discards the particles with low weights, more particles are distributed
in domains of higher posterior probability. Therefore, the estimation
will be improved. The resampling method we adopted is the same as
Generic Particle Filter in [20].

With the knowledge of the weights that characterize the posterior
density of the particles, we use the maximum a posteriori (MAP) to
compute an optimal state value δ̂. The estimated value is

δ̂ = arg max
δi
k

(pi
k) (30)

Consequently, the weight vector of the proposed beamformer ŵPF

can be written as

ŵPF =
(
Rx + δ̂I

)−1
a(θs) (31)
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4. NUMERICAL EXAMPLES

In this section, five beamformers are compared in terms of mean
output SINR, diagonal loading level or beampattern. They include the
optimum beamformer with known covariance matrix Rx (OPTIMAL),
the proposed PF-based beamformer (31), worst case optimization
based beamformer proposed in [18], typical SMI beamformer with no
diagonal loading (8) and the extensively used beamformer with the
loading level δ = 10σ2

n, ten times to the power of noise (10). Here,
consider a uniform linear array with N = 10 omnidirectional sensors,
in which the spacing between the elements is half of the wavelength
of the incident wave. In all examples, assume the direction of desired
signal is always 3◦, the incident angles of two interfering sources are 30◦
and 50◦, respectively. And the ratio of interference and noise (INR)
in a single sensor is equal to 25 dB. To the proposed beamformer, the
number of particles is L = 300 from Fig. 1 to Fig. 6. The initial
prior probability p(δi

0), (i = 1, 2, . . . , L) is all 1/L. All simulations are
conducted while the signal is always present in the training data. The
results in all simulations are averaged with 200 Monte-Carlo trials.

4.1. Known Signal Steering Vector

In this subsection, the performance of beamformers vs. the signal-to-
noise ratio (SNR) when there is no error in signal steering vector is
discussed. The results are drawn on Fig. 1 and Fig. 2. The bound of
norm ε for worst case optimization based beamformer is set to 0.

Figure 1 compares the performance of beamformers in terms of the
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Figure 1. Output SINR vs. SNR with known signal steering vector.
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Figure 2. Output SINR vs. K with known signal steering vector.

mean output SINR versus SNR at the number of snapshots K = 50.
This figure tells us that the proposed PF-based beamformer is almost
no different in performance with LSMI beamformer and worst case
optimization based beamformer when signal steering vector is known
perfectly. The performance of SMI beamformer is the worst because
there is no diagonal loading. It illustrates that diagonal loading is
important for adaptive beamforming.

Figure 2 shows the output SINR versus the number of snapshots
(K) at SNR = 0. It can be observed that the proposed beamformer
performs better than the worst case optimization based beamformer
at low K. It reflects that the proposed beamformer is more robust.
Additionally, the improvement space of beamformers except SMI
beamformer is little while K is more than 40. Therefore, K = 50
is selected in the following simulations.

4.2. Error in Direction of Desired Signal

In this subsection, a case with error ∆θs = 2◦ in the direction of desired
signal is considered. Here, we assume that the presumed DOA is 5◦
and the actual DOA is 3◦. The norm bound of signal steering vector
ε in worst case beamformer is set to 3. Simulation results are shown
from Fig. 3 to Fig. 5.

Figure 3 shows the performance comparison versus SNR. This
figure clearly demonstrates that the proposed beamformer enjoys
the best performance among four approaches. And that of SMI
beamformer is the worst. The output SINR of beamformers except
SMI beamformer is improved while SNR increases. Especially, using
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Figure 3. Output SINR vs. SNR with error in the direction of desired
signal.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−40

−35

−30

−25

−20

−15

�−10

−5

0

5

sin(θ)

B
ea

m
pa

tte
rn

 (
dB

)

 

 

LSMI BEAMFORMER
PF�BASED BEAMFORMER
WORST CASE BEAMFORMER

Figure 4. Beampatterns of beamformers at SNR = 5dB.

the proposed beamformer leads to an improvement by more than 2.1 dB
over LSMI beamformer and by 0.8 dB over the worst case beamformer
at the point SNR = 5 dB. It can explain that not only diagonal loading
benefits to the performance of beamformers, but also the performance
is varying with the value of diagonal loading. In addition, the better
performance of the proposed beamformer is due to a better loading
level derived by PF compared with other beamformers.

Figure 4 shows the performance comparison among three
beamformers from the viewpoint of beampattern. This simulation
is condcuted at SNR = 5dB. The variable sin(θ) on horizontal
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coordinates is the sine value of direction θ. Dash dotted line denotes
the direction of interference and solid line denotes the DOA. From
Fig. 3, we have known the output SINR of the proposed beamformer is
better than the worst case based beamformer at SNR = 5dB. However,
the gain of proposed beamformer at the desired direction is slightly
lower than that of worst case beamformer. It is not beneficial to the
performance. We can make a detail observation near the 50◦ direction;
the zero subsidence of PF-beamformer at that direction is deeper than
that of worst case based beamformer. It can explain its relatively
better performance over worst case beamformer drawn on Fig. 3 at
this SNR.

In Fig. 5, the loading values of beamformers vs. SNR are listed.
Here, the value in longitudinal axis is normalized by the noise variance
σ2

n. Contrast to Fig. 1, we can also conclude that optimizing
the diagonal loading level can improve the robustness of adaptive
beamforming. In addition, the optimized value of diagonal loading
is related to the noise level. At low SNR, the loading level of PF based
beamformer is small and it is large at high level. It changes with the
varying of noise level. Hence, the PF based have better performance
than others.
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Figure 5. Normalized loading factor vs. SNR.

4.3. Error in Signal Steering Vector Due to Local Scattering

In this subsection, we assume that the desired signal arrives with four
paths because of local scattering. One is the direct path with the signal
s0(k) and the steering vector a. Thus, the model of signal steering
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vector in this subsection can be formulated as

â(k) = s0(k)a +
3∑

m=1

sm(k)b(θm) (32)

where sm(k), (m = 1, 2, 3) are i.i.d zero-mean complex Guassian
random variables, b(θm) are the signal steering vector of path with
DOA θm. DOAs θm are drawn from a random generator with mean
= 3◦ and deviation = 2◦. The bound of norm for worst case based
beamformer is set to ε = 3. It is a relatively bad environment because
the signal steering vector will change at every sample time. Simulation
results are shown in Fig. 6.

−20 −15 −10 −5 0 5
−10

−5

0

5

10

15

20

SNR (dB)

O
U

T
P

U
T

 S
IN

R
 (

dB
)

 

 
OPTIMAL SINR
SMI BEAMFORMER
LSMI BEAMFORMER
PF�BASED BEAMFORMER
WC�BASED BEAMFORMER

Figure 6. Output SINR vs. SNR with local scattering.

Compared to Fig. 3, we can find that the output SINR of
worst case based beamformer has small changes. It means that this
beamformer is very stable and not related to the kind of error only
if the norm of error does not exceed its bound. Its shortcoming
is performance loss because this beamformer always optimizes its
performance with the worst case defined by error bound, even if it is
not so bad. Therefore, the loading level of worst case is decided based
on the worst case denoted by error bound. On the contrary, the loading
level of proposed beamformer is decided by the actual situation. It can
explain why the proposed beamformer performs better than the worst
case based beamformer. In addition, the LSMI beamformer performs
worse than worst case based beamformer and PF-based beamformer in
Fig. 3. It illustrates that LSMI beamformer is not very robust in this
case. Additionally, the proposed beamformer performs best from both
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of the two figures. It is clear that using PF in adaptive beamforming
is effective to improve the robustness.

4.4. The Relationship between Performance and Particle
Number

To PF-based beamformer, the particle number is related to the
performance of beamformer. Generally, the estimation will be more
accurate if higher particle number is used. To study the performance
under the condition of different particle numbers, we conducted
simulations with particle numbers L = 50, L = 250 and L = 1250.
The results are shown in Fig. 7. The conclusion can be made that
the performance is improved while the particle number is increased.
However, the improvement is slight after the particle number exceeds
250. In addition, higher particle number is needed at high SNR because
there is low noise variance.
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Figure 7. Output SINR of PF-based beamformer vs. SNR with
different number of particles.

4.5. Approximated Cramer-Rao Bound and Complexity
Analysis

In this subsection, we consider the Cramer-Rao Bound (CRB) of
loading level in terms of fundamental noise properties. Using standard
notations we consider independent noise sources, Qk = E

{
νkν

T
k

}
and

Rk = E
{
εkε

T
k

}
. Here, νk and εk are the system and measurement

noises according to state equation (25) and measurement equation (29).
Because the optimal loading level is unknown, the optimization

of diagonal loading level can not be directly equivalent to the tracking
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problem. We must have a base in order to compute the root mean
square error (RMSE) of our approach. In our simulation, we regard
the loading level δ computed by PF-based beamformer as the base
when the received matrix R and the noise variance are known. Hence,
we call this CRB approximated CRB (ACRB). Thus, the ACRB can
be formulated as [24]

Pk+1 =
(
P−1

k + E
{
ϕ (δk) R−1

k ϕT (δk)
})−1

+ Qk (33)

where (·)T stands for the transpose operation and ϕ (δk) = Ĵk−Ĵk−1

δ̂k−δ̂k−1
.
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Figure 8. Performance of RMSE vs. sample number at SNR = 5.

Identical Monte Carlo simulations are performed in Fig. 8 using
the number of particles 50, 250, 1250. Fig. 8 shows the resulting
Monte Carlo RMSE. The figure also shows the ACRB for the proposed
approach. The RMSE naturally decreases with increasing particle
number, although not monotonically. For the particle number is which
is 250 or higher, the average error after convergence almost equal.
A large number of particles converge fast because a large number of
particles give a more correct description of filter density.

The main shortcoming of the proposed approach is relatively more
complex than other approaches mentioned in paper. A comparison
of the computation times is shown in Table 1. The simulations are
implemented on a 550-MHz AMD Athlon processor using MATLAB
7.1. Same as expected, the computation time for the proposed
beamformer is much higher than worst case based beamformer and
LSMI beamformer. However, these times are obtained on a serial
computer and much reduction in computation times can be expected
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for the proposed beamformer when implemented in parallel. In
addition, the computation time will be reduced greatly if we adopt
DSP or FPGA to implement the approach [25]. It means that it is
possible to use our approach in the real time system.

Table 1. Comparison of the computation times between beamformers.

Beamformer

PF-Based

Beamformer

(L = 50)

PF-Based

Beamformer

(L = 250)

PF-Based

Beamformer

(L = 1250)

LSMI

Beamformer

Worst Case

Beamformer

Computation

Time(second)
5.3 8.2 27 < 1 < 1

5. CONCLUSIONS

Beamformer based on PF is developed to improve the robustness in
adaptive beamforming by optimizing the level of diagonal loading
factor. In order to perform PF efficiently, a simplified cost function
is derived. Simulation results indicate that the proposed beamformer
outperforms the typical worst case optimization based and LSMI
beamformers. In particular, the main advantage of the proposed
beamformer over typical methods is that it can perform well with
unknown noise or error in signal steering vector. The disadvantage
of this approach is relatively complex computation. However, it can
be solved by adopting the higher speed microchip in implementation
and it is valuable in many cases.
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