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ABSTRACT

Recently, robust minimum variance (MV) beamforming wh-

ich optimizes the worst-case performance has been proposed

in [1], [2]. The worst-case approach, however, might be

overly conservative in practical applications. In this paper,

we propose a more flexible approach that formulates the ro-

bust adaptive beamforming problem as a probability-const-

rained optimization problem with homogeneous quadratic

cost function. Unlike the general probability-constrained

problem which can be nonconvex and NP-hard, our prob-

lem can be reformulated as a convex nonlinear program-

ming (NLP) problem, and efficiently solved using interior-

point methods. Simulation results show an improved ro-

bustness of the proposed beamformer as compared to the

existing state-of-the-art robust adaptive beamforming tech-

niques.

1. INTRODUCTION

In practical applications of adaptive beamforming, the ro-

bustness against a mismatch between the presumed and ac-

tual signal steering vectors is one of the most critical issues

[1]-[4]. Robust adaptive MV beamforming algorithms pro-

posed in [1] and [2] explicitly model the unknown mismatch

between the presumed and actual steering vectors and ob-

tain the beamformer weight vector by optimizing the per-

formance for the worst-case mismatch. However, this ap-

proach may be overly conservative in practical applications,

especially taking into account that the worst-case mismatch

may actually occur very seldom.

In this paper, we use a less conservative robust approach,

which guarantees the robustness against the signal steering

vector mismatch with a certain selected probability. The

proposed approach is quite universal and can be applied to

other related problems as well [5]-[6]. It is based on the

probability-constrained optimization that is also sometimes

called chance programming [7]. The corresponding proba-

bility-constrained optimization problem is convex under the

assumption that the steering vector mismatch is Gaussian,

and it can be solved by applying nonlinear programming

(NLP) techniques which use the well established interior-

point methods. Simulation results compare the performance

of the proposed beamformer to that of the worst-case based

beamformer of [1] and several other popular adaptive beam-

formers under the standard choice of the robustness param-

eters.

2. PROBLEM FORMULATION

The output of a narrowband beamformer is given by

y(k) = wHx(k)

where k is the sample index, x(k) = [x1(k), . . . , xM (k)]T

is the complex vector of array observations, w = [w1, . . . ,

wM ]T is the complex vector of beamformer weights, M is

the number of array sensors, and (·)T and (·)H denote the

transpose and Hermitian transpose, respectively. The obser-

vation vector is given by

x(k) = s(k)a + i(k) + n(k) (1)

where s(k) is the desired signal waveform, a is the signal

steering vector, and i(k) and n(k) are the interference and

noise components, respectively. The optimal weight vector

can be obtained by means of maximization of the signal-to-

interference-plus-noise ratio (SINR)

SINR =
σ2

s
|wHa|2

wHRi+nw
(2)

where Ri+n is the M × M interference-plus-noise covari-

ance matrix and σ2

s
is the signal variance. In practical ap-

plications, the exact knowledge of Ri+n is unavailable be-

cause of the presence of the signal component and/or finite

observation time. Hence, the sample covariance matrix

R̂ =
1

K

K∑

k=1

x(k)x(k)H (3)

is usually used instead of Ri+n, where K is the training

sample size. Then, the sample version of the problem of

maximizing SINR can be written as

min
w

wHR̂w subject to wHa = 1. (4)
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The solution of this problem is referred to as the sample

matrix inversion (SMI) based minimum variance distortion-

less response (MVDR) beamformer whose weight vector is

given by [8]

wSMI = αR̂
−1

a (5)

where α = 1/aHR̂
−1

a.

An essential shortcoming of the MVDR beamformer (5)

is that it is not robust against a mismatch between the pre-

sumed and actual signal steering vectors a and ã, respec-

tively. In [1] and [2], the actual (mismatched) steering vec-

tor ã has been explicitly modelled as

ã = a + δ 6= a

where δ denotes an unknown complex vector which de-

scribes the effect of steering vector distortions (the so-called

mismatch vector). In this case, equation (2) should be rewrit-

ten as [1]

SINR =
σ2

s
|wH ã|2

wHRi+nw

and the problem (4) should also be reformulated taking into

account the mismatch vector δ.

It has been assumed in [1] and [2] that δ is an unknown

deterministic vector that is bounded in its norm by some

known positive constant

‖δ‖ ≤ ε

where ‖ · ‖ denotes Euclidian norm of vector. Then, the

actual signal steering vector belongs to the uncertainty set

A(ε) , {ã | ã = a + δ, ‖δ‖ ≤ ε}

and the design of robust adaptive beamforming boils down

to solving the MVDR problem for the worst-case steering

vector. It is easy to verify that such worst-case vector ã lies

on the boundary of the set A(ε) [1]. A beamformer similar

to [1] and [2] has been derived in [9] from a covariance

fitting (rather than the maximum SINR) perspective. Note

that the worst-case approach studied in [1], [2], and [9] may

be overly conservative, since the worst-case mismatch may

actually occur quite seldom in practice.

3. ROBUST ADAPTIVE BEAMFORMING VIA

PROBABILITY-CONSTRAINED OPTIMIZATION

In this work, we assume that the mismatch vector δ is an un-

known random vector with known probability density func-

tion. Then, the robust formulation of adaptive beamformer

based on the probability-constrained optimization can be

written as

min
w

wHR̂w subject to Pr{|wH ã| ≥ 1} ≥ p (6)

where p is a certain probability value which can be selected

according to the quality of service (QoS) requirements, and

Pr{·} stands for the probability operator.

The problem (6) becomes mathematically tractable if

we additionally assume a specific analytic form for the prob-

ability operator Pr{·} and make some approximations. He-

reafter, we assume that δ is drawn from a complex circu-

larly symmetric Gaussian distribution with zero mean and

covariance matrix Cδ [10], i.e.

δ ∼ CN (0M ,Cδ). (7)

The covariance matrix Cδ captures the second-order statis-

tics of the uncertainties in the steering vector. In some appli-

cations, Cδ can be assumed to be a diagonal matrix of the

form σ2

δ
IM , where σ2

δ
denotes the variance [10]. However,

in a number of applications Cδ is not a diagonal matrix.

For example, the wavefront can be distorted by its propa-

gation through an inhomogeneous medium, and this may

lead to independent-increment wavefront phase distortions

[11]. In the latter case, the entries of mismatch vector be-

come correlated and Cδ is not diagonal. Another example

is signal propagation through a Ricean channel, where the

covariance matrix of the mismatch vector may depend on

the spatial distribution of the scatterers [12].

Using (7), it is easy to show that the random variable

wH(a + δ) has the following distribution

wH(a + δ) ∼ CN (wHa, ‖C
1/2

δ
w‖2).

Hence, the random variable |wH(a + δ)| has Ricean dis-

tribution. We will approximate the constraint in (6) by the

following constraints

Pr{|Re{wH ã}| ≥ β} ≥ p

Pr{|Im{wH ã}| ≥ β} ≥ p (8)

where β can be found by solving the equation

1 = |wH ã|2 = Re{wH ã}2 + Im{wH ã}2 = 2β2

that is, β = 1/
√

2.

Using the aforementioned approximation of the constraint

in (6), the optimization problem (6) can be rewritten as

min
w

wHR̂w

subject to Pr{|Re{wH ã}| ≥ 1/
√

2} ≥ p (9)

Pr{|Im{wH ã}| ≥ 1/
√

2} ≥ p

where

Re{wH ã} ∼ N
(
Re{wHa}, ‖C

1/2

δ
w‖2/2

)
(10)

Im{wH ã} ∼ N
(
Im{wHa}, ‖C

1/2

δ
w‖2/2

)
. (11)
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4. CONVEXITY

Let us first establish the convexity of problem (9). Towards

this end, the following lemma will be needed.

LEMMA 1: Let vectors v1, . . . ,vn have a joint real Gaus-

sian distribution and

E{(vi − E{vi})(vl − E{vl})
T } = rilB, ∀ i, l

where ril are some constants; i, l = 1, . . . , n; and the matrix

B describes a common covariance structure of the given

vectors. Then the set

K(p) =
{
x
∣∣Pr{vT

1
x ≥ η1 ∧ . . . ∧ vT

n
x ≥ ηn} ≥ p

}

is convex for p ≥ 0.5. Here E{·} stands for expectation

operator, ∧ denotes the set intersection operation, 0 < p ≤
1, and ηi are some constants.

PROOF: See [7, p. 312] �

Now we can prove the convexity of the optimization

problem (9).

THEOREM 1: If (7) is valid and p ∈ [0.5, 1) then the

optimization problem (9) is convex.

PROOF: The objective function of (9) is a quadratic

form, where R̂ is a positive definite matrix. Thus, it is con-

vex.

The probability constraints of (9) share the same struc-

ture. Then, it is enough to prove that one of them is convex.

Let us rewrite the first constraint of (9) as

Pr{Re{wH ã} ≥ 1/
√

2 ∧ −Re{wH ã} ≥ 1/
√

2} ≥ p.

(12)

To be consistent with the notations used in Lemma 1, let us

denote

v := [Re{ã}T , Im{ã}T ]T

x := [Re{w}T , Im{w}T ]T

η := 1/
√

2 .

Then, the constraint (12) can be equivalently written as

Pr{vT x ≥ η ∧ −vT x ≥ η} ≥ p.

Since the vectors v and −v have joint Gaussian distribution

with the common covariance matrix

B := −
1

2

[
Cδ 0

0 Cδ

]

we can see that Lemma 1 can be applied. Thus, the convex-

ity of the first constraint of (9) is proved if p ∈ [0.5, 1). The

convexity of the second constraint can be proved similarly.

Summarizing, the objective function of the problem (9)

is convex and the constraints are convex provided that p ∈
[0.5, 1). This completes the proof of the theorem. �

It follows from Theorem 1 that the problem (9) has only

one global minimum if (7) is valid and p ∈ [0.5, 1). To find

this minimum, we need to convert (9) into its deterministic

equivalent form.

5. IMPLEMENTATION

We can rewrite the left hand side of the first probability con-

straint of the problem (9) as

Pr{|Re{wH ã}| ≥ 1/
√

2}

=1 − Pr{|Re{wH ã}| ≤ 1/
√

2}. (13)

Using (10) and the standard error function for Gaussian dis-

tribution

erf(x) =
2
√

π

∫
x

0

e−t
2

dt

we can further write

Pr{|Re{wH ã}| ≤ 1/
√

2} = Pr{Re{wH ã} ≤ 1/
√

2}

− Pr{Re{wH ã} ≤ −1/
√

2}

=
1

2

[
erf

(√
1/2 − Re{wHa}

‖C
1/2

δ
w‖

)

− erf

(
−
√

1/2 − Re{wHa}

‖C
1/2

δ
w‖

)]
. (14)

Using (13) and (14), the first constraint of the problem (9)

can be written in the following equivalent deterministic form

erf

(
−
√

1/2 − Re{wHa}

‖C
1/2

δ
w‖

)

−erf

(√
1/2 − Re{wHa}

‖C
1/2

δ
w‖

)
≥ 2(p − 1). (15)

The same steps can be applied to rewrite the second con-

straint of the problem (9) into its equivalent deterministic

form.

To guarantee the robustness against errors in the sam-

ple estimate of the covariance matrix (3) that is also used

in (9), it is meaningful to apply an additional non-adaptive

diagonal loading with the factor γ, i.e., to use R̂ + γI in-

stead of R̂, where I is identity matrix. The rationale for

such additional non-adaptive diagonal loading could be ex-

plained as follows. According to (1), the data vectors x(k),
k = 1, . . . ,K contain errors because of the mismatch of the

steering vector a. Hence, the mismatched sample covari-

ance matrix can be written as

R̃ =
1

K

K∑

k=1

(x(k) + e(k))(x(k) + e(k))H

where e(k) is a random vector. Taking an expectation of R̃

with respect to random vectors e(k) only, we obtain

E{R̃} = E

{
1

K

K∑

k=1

(x(k) + e(k))(x(k) + e(k))H

}

= R̂ +
1

K

K∑

k=1

E{e(k)e(k)H} = R̂ + γI (16)
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Fig. 1. Output SINR versus SNR. K = 100, INR = 40 dB.

where e(k) is assumed to have zero mean and covariance

γI . Note that (16) corresponds to the conventional fixed

diagonal loading of R̂ with the loading factor γ.

Using (9) and taking into account (15) and (16), we ob-

tain the following optimization problem

min
w

wH(R̂ + γI)w

subject to erf

(
−
√

1/2 − Re{wHa}

‖C
1/2

δ
w‖

)

−erf

(√
1/2 − Re{wHa}

‖C
1/2

δ
w‖

)
≥ 2(p− 1) (17)

erf

(
−
√

1/2 − Im{wHa}

‖C
1/2

δ
w‖

)

−erf

(√
1/2 − Im{wHa}

‖C
1/2

δ
w‖

)
≥ 2(p− 1).

The problem (17) is the so-called NLP problem. It can

be efficiently solved using sequential quadratic program-

ming (SQP) technique. The latter technique is an itera-

tive approach in which each search direction is the solu-

tion of a particular quadratic programming (QP) subprob-

lem [13]. The computational complexity of solving QP sub-

problem using, for example, the primal-dual potential re-

duction method is O(M4.5) [14]. Note that the SQP al-

gorithm has been implemented in MATLAB optimization

toolbox.

6. SIMULATIONS

We assume a uniform linear array with M = 10 omnidi-

rectional sensors spaced half a wavelength apart, and two
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Fig. 2. Output SINR versus SNR. K = 100, INR = 20 dB.

interfering sources with plane wavefronts and the directions

of arrival 30◦ and 50◦, respectively. 100 Monte-Carlo runs

are used to obtain each point in our simulations.

We consider the scenario with Ricean propagation me-

dium where the mismatch vector δ can be modelled as [1],

[12]

δ =
σδ√
L

L∑

l=1

ejψla(θ0 + θl).

Here, σ2

δ
characterizes the total mismatch power, L is the

number of nonline-of-sight (NLOS) components due to scat-

tering, ψl is the phase shift parameter of lth NLOS com-

ponent, θ0 is the nominal direction-of-arrival (DOA) of a

signal of interest, and θl is the angular shift of lth NLOS

component with respect to the nominal DOA. In our simu-

lations, the parameters θl are independently drawn in each

simulation run from a uniform random generator with the

mean θ0 = 3◦ and standard deviation σθ = 5◦. The pa-

rameters ψl are independently and uniformly drawn from

[0, 2π) in each run.

Four methods are compared: the proposed robust beam-

former (17), the robust beamformer of [1], the SMI-MVDR

beamformer of (5), and the Loaded SMI (LSMI) beamfor-

mer with fixed diagonal loading factor. As recommended

in [1], ε = 3 is chosen for the worst-case robust beam-

former of [1] assuming that the nominal steering vector is

normalized so that aHa = M . For the LSMI and the pro-

posed beamformers, the fixed diagonal loading parameter

γ = 15 is chosen. In the proposed beamformer, the pa-

rameter p = 0.95 is taken. The covariance matrix Cδ is

calculated as follows [12]

Cδ = σ2

δ

∫
p(θ)a(θ)aH(θ) dθ
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Fig. 3. Output SINR versus the SNR: K = 100, INR =
5 dB.

where p(θ) is the probability density function of θ. Since

p(θ) is assumed to be uniform, the (k, l)th element of the

covariance matrix Cδ can be calculated by numerical inte-

gration of the following integral

[Cδ]k,l =
σ2

δ

2
√

3σθ

∫
θ0+

√

3σθ

θ0−
√

3σθ

exp{j2π
d

λ
(k − l) sin θ} dθ

where d is a distance between two neighboring sensors, and

λ is the wavelength. Moreover, L = 10 is taken and the

Ricean factor κ = 1/σ2

δ
= 10 is chosen, where the variance

of the LOS components is normalized to one.

The output SINRs versus SNR for the methods tested

are shown in the Figs. 1, 2 and 3 in the cases when the

interference-to-noise ratio (INR) in a single sensor is equal

to 40 dB, 20 dB, and 5 dB, respectively. In all figures, K =
100. We can see that in the first two figures, the proposed

beamformer has the best performance among all the tech-

niques tested. These improvements are especially remark-

able at high SNRs. However, the robust worst-case based

adaptive beamformer of [1] performs better for INR = 5 dB.

Interestingly, the performance of the proposed beamformer

does not depend significantly on the INR conditions, while

the performance of the beamformer of [1] shows such a de-

pendence.

Fig. 4 displays output SINR versus the sample size for

INR = 40 dB and SNR = 15 dB. We can see from this

figure that the proposed beamformer shows the best perfor-

mance for sufficiently large sample size.

In summary, the proposed probability-constrained opti-

mization based beamformer performs better than the algo-

rithm of [1] in most of our simulation examples. These per-

formance improvements can be explained by the fact that
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Fig. 4. Output SINR versus K. INR = 40 dB, SNR =
15 dB.

the proposed robust beamformer is less conservative than

the worst-case approach of [1].

7. CONCLUSIONS

A new robust adaptive beamformer has been derived via

probability-constrained optimization. To obtain the beam-

forming algorithm, we have converted the original proba-

bility-constrained optimization problem into an equivalent

deterministic problem. To enable such a conversion, it has

been assumed that the mismatch vector has Gaussian distri-

bution. Based on this assumption, the original probability-

constrained optimization problem has been reduced to the

NLP problem that can be solved using SQP method. Simu-

lation results have validated an excellent performance of the

proposed technique as compared to several state-of-the-art

robust beamforming algorithms.

8. REFERENCES

[1] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Ro-

bust adaptive beamforming using worst-case perfor-

mance optimization: A solution to the signal mismatch

problem,” IEEE Trans. Signal Processing, vol. 51,

pp. 313-324, Feb. 2003.

[2] R. G. Lorenz and S. P. Boyd, ”Robust minimum vari-

ance beamforming,” IEEE Trans. Signal Processing,

vol. 53, pp. 1684-1696, May 2005.

[3] H. Cox, R. M. Zeskind, and M. H. Owen, “Robust adap-

tive beamforming,” IEEE Trans. Acoust., Speech, and

Signal Processing, vol. 35, pp. 1365-1376, Oct. 1987.



939

[4] A. B. Gershman, “Robust adaptive beamforming in

sensor arrays,” AEU – Int. Journal Electron. Comm.,

vol. 53, pp. 305-314, Dec. 1999.

[5] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “A ro-

bust linear receiver for multi-access space-time block

coded MIMO systems based on probability-constrained

optimization,” Proc. VTC’04 – Spring, Milan, Italy,

May 2004, vol. 1, pp. 118-122.

[6] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Robust

linear receiver design for multi-access space-time block

coded MIMO systems using stochastic optimization,”

Proc. IEEE Workshop on Statistical Signal Processing,

Bordeaux, France, July 2005.
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