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ABSTRACT

Recently, robust minimum variance (MV) beamforming wh-
ich optimizes the worst-case performance has been proposed
in [1], [2]. The worst-case approach, however, might be
overly conservative in practical applications. In this paper,
we propose a more flexible approach that formulates the ro-
bust adaptive beamforming problem as a probability-const-
rained optimization problem with homogeneous quadratic
cost function. Unlike the general probability-constrained
problem which can be nonconvex and NP-hard, our prob-
lem can be reformulated as a convex nonlinear program-
ming (NLP) problem, and efficiently solved using interior-
point methods. Simulation results show an improved ro-
bustness of the proposed beamformer as compared to the
existing state-of-the-art robust adaptive beamforming tech-
niques.

1. INTRODUCTION

In practical applications of adaptive beamforming, the ro-
bustness against a mismatch between the presumed and ac-
tual signal steering vectors is one of the most critical issues
[1]-[4]. Robust adaptive MV beamforming algorithms pro-
posed in [1] and [2] explicitly model the unknown mismatch
between the presumed and actual steering vectors and ob-
tain the beamformer weight vector by optimizing the per-
formance for the worst-case mismatch. However, this ap-
proach may be overly conservative in practical applications,
especially taking into account that the worst-case mismatch
may actually occur very seldom.

In this paper, we use a less conservative robust approach,
which guarantees the robustness against the signal steering
vector mismatch with a certain selected probability. The
proposed approach is quite universal and can be applied to
other related problems as well [5]-[6]. It is based on the
probability-constrained optimization that is also sometimes
called chance programming [7]. The corresponding proba-
bility-constrained optimization problem is convex under the
assumption that the steering vector mismatch is Gaussian,
and it can be solved by applying nonlinear programming
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(NLP) techniques which use the well established interior-
point methods. Simulation results compare the performance
of the proposed beamformer to that of the worst-case based
beamformer of [1] and several other popular adaptive beam-
formers under the standard choice of the robustness param-
eters.

2. PROBLEM FORMULATION

The output of a narrowband beamformer is given by
y(k) = w' (k)

where k is the sample index, = (k) = [z1(k), ..., za(k)]T
is the complex vector of array observations, w = [wq, ...,
was)T is the complex vector of beamformer weights, M is
the number of array sensors, and (-)7 and (-)¥ denote the
transpose and Hermitian transpose, respectively. The obser-
vation vector is given by

x(k) = s(k)a +i(k) + n(k) (1)

where s(k) is the desired signal waveform, a is the signal
steering vector, and i(k) and n(k) are the interference and
noise components, respectively. The optimal weight vector
can be obtained by means of maximization of the signal-to-
interference-plus-noise ratio (SINR)

o2 |lwal?

SINR = (@)

wl Ry, w
where R, is the M x M interference-plus-noise covari-
ance matrix and o2 is the signal variance. In practical ap-
plications, the exact knowledge of R;, is unavailable be-
cause of the presence of the signal component and/or finite
observation time. Hence, the sample covariance matrix

1 K

R= % > a(k)z (k)" 3)
k=1
is usually used instead of R;,,, where K is the training
sample size. Then, the sample version of the problem of
maximizing SINR can be written as

min w” Rw
w

subject to wfa=1. )



The solution of this problem is referred to as the sample
matrix inversion (SMI) based minimum variance distortion-
less response (MVDR) beamformer whose weight vector is

given by [8]
WsMI = aR_la (5)

where a = 1/aHR_1a.

An essential shortcoming of the MVDR beamformer (5)
is that it is not robust against a mismatch between the pre-
sumed and actual signal steering vectors a and a, respec-
tively. In [1] and [2], the actual (mismatched) steering vec-
tor a has been explicitly modelled as

a=a+9d+#a

where d denotes an unknown complex vector which de-
scribes the effect of steering vector distortions (the so-called
mismatch vector). In this case, equation (2) should be rewrit-
ten as [1]
w Ri+nw
and the problem (4) should also be reformulated taking into
account the mismatch vector 9.

It has been assumed in [1] and [2] that § is an unknown
deterministic vector that is bounded in its norm by some
known positive constant

16l <e

where || - || denotes Euclidian norm of vector. Then, the
actual signal steering vector belongs to the uncertainty set

Ale) 2{ala=a+0, |d] <e}

and the design of robust adaptive beamforming boils down
to solving the MVDR problem for the worst-case steering
vector. It is easy to verify that such worst-case vector a lies
on the boundary of the set A(e) [1]. A beamformer similar
to [1] and [2] has been derived in [9] from a covariance
fitting (rather than the maximum SINR) perspective. Note
that the worst-case approach studied in [1], [2], and [9] may
be overly conservative, since the worst-case mismatch may
actually occur quite seldom in practice.

3. ROBUST ADAPTIVE BEAMFORMING VIA
PROBABILITY-CONSTRAINED OPTIMIZATION

In this work, we assume that the mismatch vector § is an un-
known random vector with known probability density func-
tion. Then, the robust formulation of adaptive beamformer
based on the probability-constrained optimization can be
written as

min w”? Rw subject to Pr{lw”a|>1}>p (6)

w
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where p is a certain probability value which can be selected
according to the quality of service (QoS) requirements, and
Pr{-} stands for the probability operator.

The problem (6) becomes mathematically tractable if
we additionally assume a specific analytic form for the prob-
ability operator Pr{-} and make some approximations. He-
reafter, we assume that & is drawn from a complex circu-
larly symmetric Gaussian distribution with zero mean and
covariance matrix C's [10], i.e.

0 ~CN(0y,Cs). )

The covariance matrix C's captures the second-order statis-
tics of the uncertainties in the steering vector. In some appli-
cations, C's can be assumed to be a diagonal matrix of the
form 031 57, where o} denotes the variance [10]. However,
in a number of applications C's is not a diagonal matrix.
For example, the wavefront can be distorted by its propa-
gation through an inhomogeneous medium, and this may
lead to independent-increment wavefront phase distortions
[11]. In the latter case, the entries of mismatch vector be-
come correlated and C's is not diagonal. Another example
is signal propagation through a Ricean channel, where the
covariance matrix of the mismatch vector may depend on
the spatial distribution of the scatterers [12].

Using (7), it is easy to show that the random variable
w™ (a + &) has the following distribution

w(a+ &) ~ CN(w'a, |Cy*w|?).

Hence, the random variable |w!!(a + )| has Ricean dis-
tribution. We will approximate the constraint in (6) by the
following constraints

Pr{\Re{deH > g}
Pr{|Im{wfa}| > g}

P
D (3

ARV

where [ can be found by solving the equation
1= |w"al? = Re{fwa}? + Im{wa}? = 23*

thatis, 8 = 1/v/2.
Using the aforementioned approximation of the constraint
in (6), the optimization problem (6) can be rewritten as

min w? Rw
w

subject to Pr{|[Re{w'a}| >1/v2} >p (9)
Pr{|Im{w®a}| > 1/v2} > p

where
Re{w"a} NN(Re{wHa}, |\c§/2w||2/2) (10)

Im{w"a} ~ ./\/(Im{wHa}, ||C}5/2wu2/2). (11)



4. CONVEXITY

Let us first establish the convexity of problem (9). Towards
this end, the following lemma will be needed.

LEMMA 1: Let vectors vy, . . ., v, have a joint real Gaus-
sian distribution and

E{(vi — E{vi})(vi — E{wi})"} =raB, Vi,

where r;; are some constants; ¢,/ = 1, ..., n; and the matrix
B describes a common covariance structure of the given
vectors. Then the set

K(p) = {w ’Pr{vlTw >m A A vfw >Nt > p}

is convex for p > 0.5. Here E{-} stands for expectation
operator, /A denotes the set intersection operation, 0 < p <
1, and 7; are some constants.

PROOF: See [7, p. 312] O

Now we can prove the convexity of the optimization
problem (9).

THEOREM 1: If (7) is valid and p € [0.5,1) then the
optimization problem (9) is convex.

PROOF: The objective function of (9) is a quadratic
form, where Risa positive definite matrix. Thus, it is con-
Vex.

The probability constraints of (9) share the same struc-
ture. Then, it is enough to prove that one of them is convex.
Let us rewrite the first constraint of (9) as

Pr{Re{w'a} > 1/v2 A —Re{wfa} >1/v2} > p.
(12)
To be consistent with the notations used in Lemma 1, let us
denote

v := [Re{a}”, Im{a}”]"
x = [Re{w}”, Im{w}”]"
n = 1/V2.

Then, the constraint (12) can be equivalently written as
Pr{vie>n A —vTz>n} >p.

Since the vectors v and —v have joint Gaussian distribution
with the common covariance matrix

. Cs O
pe 9G]

we can see that Lemma 1 can be applied. Thus, the convex-
ity of the first constraint of (9) is proved if p € [0.5,1). The
convexity of the second constraint can be proved similarly.

Summarizing, the objective function of the problem (9)
is convex and the constraints are convex provided that p €
[0.5,1). This completes the proof of the theorem. g

It follows from Theorem 1 that the problem (9) has only
one global minimum if (7) is valid and p € [0.5, 1). To find
this minimum, we need to convert (9) into its deterministic
equivalent form.
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5. IMPLEMENTATION
We can rewrite the left hand side of the first probability con-
straint of the problem (9) as
Pr{[Re{w" &}| > 1/v2}
=1-Pr{[Re{w”a}| <1/v2}. (13)

Using (10) and the standard error function for Gaussian dis-
tribution
—t?
dt
7
we can further write

Pr{|Re{w’a}| < 1/v2} = Pr{Re{w'a} < 1/v2}
— Pr{Re{wa} < —-1/V2}
_ [ <\/7 Re{w! a})
2 IC5 *w|
( V/1/2 — Re{w! a})}. (14)
IG5 %

Using (13) and (14), the first constraint of the problem (9)
can be written in the following equivalent deterministic form

< V1/2 - Re{w” a})

erf(z

|Cy*wl|

(F Re{w “}> > 2(p—1).(15)

1/2
5w

The same steps can be applied to rewrite the second con-
straint of the problem (9) into its equivalent deterministic
form.

To guarantee the robustness against errors in the sam-
ple estimate of the covariance matrix (3) that is also used
in (9), it is meaningful to apply an additional non-adaptive
diagonal loading with the factor v, i.e., to use R+ ~I in-
stead of R where I is identity matrix. The rationale for
such additional non-adaptive diagonal loading could be ex-
plained as follows. According to (1), the data vectors x(k),
k =1,..., K contain errors because of the mismatch of the
steering vector a. Hence, the mismatched sample covari-
ance matrix can be written as

R= > (k) + (k) (@ (k) + e(k)"
k=1

where e(k) is a random vector. Taking an expectation of R
with respect to random vectors e(k) only, we obtain

E{R} = E{ Z(m + e(k))(x(k )+e(k))H}

=R+ ZE{@ (k)Y =R+~I (16)
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Fig. 1. Output SINR versus SNR. K = 100, INR = 40 dB.

where e(k) is assumed to have zero mean and covariance
~vI. Note that (16) corresponds to the conventional fixed
diagonal loading of R with the loading factor .

Using (9) and taking into account (15) and (16), we ob-
tain the following optimization problem

min w (R +~I)w
w

—\/1/2 — H
subject to erf( /2~ Re{w a})

1/2
Iy *wl|

orf (ﬁ f/{f{wHa}> >2(p—1) (I17)
lC5/wl|
y (—m - Im{wHa}>
lC5 wl|
V12— Im{wHa})
—erf e >2(p—1).
( 1CY g

The problem (17) is the so-called NLP problem. It can
be efficiently solved using sequential quadratic program-
ming (SQP) technique. The latter technique is an itera-
tive approach in which each search direction is the solu-
tion of a particular quadratic programming (QP) subprob-
lem [13]. The computational complexity of solving QP sub-
problem using, for example, the primal-dual potential re-
duction method is O(M*5) [14]. Note that the SQP al-
gorithm has been implemented in MATLAB optimization
toolbox.

6. SIMULATIONS

We assume a uniform linear array with M/ = 10 omnidi-
rectional sensors spaced half a wavelength apart, and two
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Fig. 2. Output SINR versus SNR. K = 100, INR = 20 dB.

interfering sources with plane wavefronts and the directions
of arrival 30° and 50°, respectively. 100 Monte-Carlo runs
are used to obtain each point in our simulations.

We consider the scenario with Ricean propagation me-
dium where the mismatch vector § can be modelled as [1],
[12]

L
gs :
§=—2> ea(ly +0y).
\/flzle albo +0)

Here, U'g characterizes the total mismatch power, L is the
number of nonline-of-sight (NLOS) components due to scat-
tering, 1); is the phase shift parameter of /th NLOS com-
ponent, 6y is the nominal direction-of-arrival (DOA) of a
signal of interest, and 6; is the angular shift of ith NLOS
component with respect to the nominal DOA. In our simu-
lations, the parameters 6; are independently drawn in each
simulation run from a uniform random generator with the
mean 6y = 3° and standard deviation o9 = 5°. The pa-
rameters i, are independently and uniformly drawn from
[0, 27) in each run.

Four methods are compared: the proposed robust beam-
former (17), the robust beamformer of [1], the SMI-MVDR
beamformer of (5), and the Loaded SMI (LSMI) beamfor-
mer with fixed diagonal loading factor. As recommended
in [1], € = 3 is chosen for the worst-case robust beam-
former of [1] assuming that the nominal steering vector is
normalized so that a”’a = M. For the LSMI and the pro-
posed beamformers, the fixed diagonal loading parameter
v = 15 is chosen. In the proposed beamformer, the pa-
rameter p = 0.95 is taken. The covariance matrix C's is
calculated as follows [12]

Cs = o2 / p(0)a(0)a™ (0) do
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Fig. 3. Output SINR versus the SNR: K = 100, INR =
5 dB.

where p(f) is the probability density function of #. Since
p(0) is assumed to be uniform, the (k,!)th element of the
covariance matrix C's can be calculated by numerical inte-
gration of the following integral

0.(% 0o+v300 d
Cslii = / exp{j2r—(k —1)sin6} db
Colea= 5= [ “expljzn(h = )sino)

where d is a distance between two neighboring sensors, and
A is the wavelength. Moreover, L = 10 is taken and the
Ricean factor k = 1/ ag = 10 is chosen, where the variance
of the LOS components is normalized to one.

The output SINRs versus SNR for the methods tested
are shown in the Figs. 1, 2 and 3 in the cases when the
interference-to-noise ratio (INR) in a single sensor is equal
to 40 dB, 20 dB, and 5 dB, respectively. In all figures, K =
100. We can see that in the first two figures, the proposed
beamformer has the best performance among all the tech-
niques tested. These improvements are especially remark-
able at high SNRs. However, the robust worst-case based

adaptive beamformer of [1] performs better for INR = 5 dB.

Interestingly, the performance of the proposed beamformer
does not depend significantly on the INR conditions, while
the performance of the beamformer of [1] shows such a de-
pendence.

Fig. 4 displays output SINR versus the sample size for
INR = 40 dB and SNR = 15 dB. We can see from this
figure that the proposed beamformer shows the best perfor-
mance for sufficiently large sample size.

In summary, the proposed probability-constrained opti-
mization based beamformer performs better than the algo-
rithm of [1] in most of our simulation examples. These per-
formance improvements can be explained by the fact that
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Fig. 4. Output SINR versus K. INR = 40 dB, SNR =
15 dB.

the proposed robust beamformer is less conservative than
the worst-case approach of [1].

7. CONCLUSIONS

A new robust adaptive beamformer has been derived via
probability-constrained optimization. To obtain the beam-
forming algorithm, we have converted the original proba-
bility-constrained optimization problem into an equivalent
deterministic problem. To enable such a conversion, it has
been assumed that the mismatch vector has Gaussian distri-
bution. Based on this assumption, the original probability-
constrained optimization problem has been reduced to the
NLP problem that can be solved using SQP method. Simu-
lation results have validated an excellent performance of the
proposed technique as compared to several state-of-the-art
robust beamforming algorithms.
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