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problem also led to a very intuitive proof of the famous RH stability
criterion.

APPENDIX

PROOF OFLEMMA 2

DenoteMn = diag(1; K2; K2K3; . . . ; K2K3 . . .Kn). It is easy to
verify, using (1), that

MnAnM
�1

n
=

0 1

�K1K2 0 1

�K2K3 0 1

� � �

� � �

�Kn�2Kn�1 0 1

�Kn�1Kn �Kn

:

Reference [5, Th. 5] implies that the first column of the RH
array of the polynomialdet(sI � MnAnM

�1

n
) is: (1;Kn;

KnKn�1;KnKn�1Kn�2; . . . ; KnKn�1Kn�2 . . .K1). But,

det(sI �MnAnM
�1

n
)

= det(Mn(sI �An)M
�1

n
)

= det(Mn) det(sI � An) det(M
�1

n
)

= det(sI �An) = P
n(s)

and the proof is completed.
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Robust Adaptive Control of a Class of Nonlinear Systems
with Unknown Backlash-Like Hysteresis

Chun-Yi Su, Yury Stepanenko, Jaroslav Svoboda, and T. P. Leung

Abstract—This paper deals with adaptive control of a class of nonlinear
dynamic systems preceded by unknown backlash-like hysteresis nonlin-
earities, where the hysteresis is modeled by a differential equation. By
exploiting solution properties of the differential equation and combining
those properties with adaptive control techniques, a robust adaptive
control algorithm is developed without constructing a hysteresis inverse.
The new control law ensures global stability of the adaptive system and
achieves both stabilization and tracking to within a desired precision.
Simulations performed on a nonlinear system illustrate and clarify the
approach.

Index Terms—Adaptive control, cascade systems, hysteresis, nonlinear
systems, robust control.

I. INTRODUCTION

Hysteresis is a property of a wide range of physical systems and de-
vices, such as electro-magnetic fields, mechanical actuators, and elec-
tronic relay circuits. Control of a system is typically challenging in the
presence of hysteresis nonlinearities. They are nondifferentiable non-
linearities and severely limit system performance in such manners as
giving rise to undesirable inaccuracies or oscillations, which can even
lead to instability [14]. The development of control techniques to miti-
gate effects of unknown hystereses has been studied for decades and has
recently re-attracted significant attention [1], [2], [4], [10], [12]–[15].
Much of this renewed interest is a consequence of its importance in
present day applications. Interest in studying dynamic systems with
hysteresis is also motivated by their role as nonlinear systems with
hard nonlinearitiesfor which traditional control methods are insuffi-
cient and so requiring development of new approaches [4].

To address such a challenge, it is important to find a model describing
the nonlinear behavior and to utilize this model for controller design.
Various models have been proposed to describe the hysteresis [7], for
example, the Preisach model [8], Krasnosel’skii–Pokrovkii hysteron
[6], Ishlinskii hysteresis operator [6], and the Duhem hysteresis oper-
ator [7]. The most familiar and simple model perhaps is the one for a
backlash hysteresis described by two parallel lines connected via hor-
izontal line segments. This being said, it is important to mention that
modeling a general type of hysteresis is in itself still a research topic
and the reader may refer to [7] for a recent review.

Apart from the latter backlash hysteresis model, the above models
are very complicated and it is still unclear how to fuse them together
with the controller design. Focusing on backlash hysteresis, several
adaptive control schemes have recently been proposed (this includes
[14], [15], [1], and [12]) to deal with unknown backlash hysteresis. A
common feature of those schemes is that they rely on the construction
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of an inverse hysteresis to mitigate the effects of the hysteresis. These
results, especially [14] and [15], provide a theoretic framework which
can serve as a base for future research.

Inspired by the above research, this paper defines a dynamic hys-
teresis model to pattern a backlash-like hysteresis. Rather than con-
structing an inverse hysteresis nonlinearity to mitigate the effects of
the hysteresis, we propose a new approach for controller synthesis by
using the properties of the hysteresis model. A robust adaptive con-
troller is developed specifically for a class of nonlinear systems pre-
ceeded by an unknown backlash-like hysteresis. The new control law
ensures global stability of the adaptive system and achieves both stabi-
lization and strict tracking precision. Simulations performed on a non-
linear system illustrate and clarify the approach. We should mention
that the proposed method can be thought of as a preliminary step to the
fusion of complicated general hysteresis models with controller design.

II. PROBLEM STATEMENT

The controlled system consists of a nonlinear plant preceded by a
backlash-like hysteresis actuator, that is, the hysteresis is present as an
input of the nonlinear plant. It is a challenging task of major practical
interests to develop a control scheme for unknown backlash-like hys-
teresis. The development of such a control scheme will now be pursued.

A backlash-like hysteresis nonlinearity can be denoted as an operator

w(t) = P (v(t)) (1)

with v(t) as input andw(t) as output. The operatorP (v(t)) will be
discussed in detail in the forthcoming section. The nonlinear dynamic
system being preceded by the above hysteresis is described in the
canonical form

x(n)(t) +

r

i=1

aiYi x(t); _x(t); . . . ; x(n�1)(t) = bw(t) (2)

whereYi are known continuous, linear, or nonlinear functions. Param-
etersai and control gainb are unknown but constant. It is a common
assumption that the sign ofb is known. From this point onward, without
losing generality, we shall assumeb > 0. It should be noted that more
general classes of nonlinear systems can be transformed into this struc-
ture [5].

The control objective is to design a control law forv(t) in (1), to
force the plant state vector,x = [x; _x; . . . ; x(n�1)]T , to follow a spec-
ified desired trajectory,xd = [xd; _xd; . . . ; x

(n�1)
d ]T , i.e.,x ! xd as

t ! 1.

III. B ACKLASH-LIKE HYSTERESISMODEL AND ITS PROPERTIES

Traditionally, a backlash hysteresis nonlinearity can be described by

w(t) =P (v(t))

=

c(v(t)�B); if _v(t) > 0 andw(t) = c(v(t)�B)

c(v(t) +B); if _v(t) < 0 andw(t) = c(v(t) +B)

w(t
�

); otherwise
(3)

wherec > 0 is the slope of the lines andB > 0 is the backlash
distance. This model is itself discontinuous and may not be amenable
to controller design for the nonlinear systems (2).

Instead of using the above model, in this paper we define a con-
tinuous-time dynamic model to describe a class of backlash-like hys-
teresis, as given by

dw

dt
= �

dv

dt
(cv � w) +B1

dv

dt
(4)

where�, c, andB1 are constants, satisfyingc > B1.

Remark: Other dynamic models for hystereses exist in the literaure
[3]. Generally, modeling hysteresis noninearities is still a research topic
and the reader may refer to [7] for a recent review.

We shall now examine the solution properties of the dynamic model
(4) and explain the corresponding switching mechanism, which is cru-
cial for design of the controller. Equation (4) can be solved explicitly
for v piecewise monotone

w(t) = cv(t) + d(v) (5)

with

d(v) = [wo � cvo]e
��(v�v ) sgn _v

+ e��v sgn_v
v

v

[B1 � c]e��(sgn_v) d�

for _v constant andw(vo) = w0. Analyzing (5), we see that it is com-
posed of a line with the slopec, together with a termd(v). Ford(v),
it can be easily shown that ifw(v; vo; wo) is the solution of (5) with
initial values(vo; wo), then, if _v > 0 ( _v < 0) andv ! +1 (�1),
one has

lim
v!1

d(v) = lim
v!1

[w(v; vo; wo)� f(v)] = �
c�B1

�
(6)

lim
v!�1

d(v) = lim
v!�1

[w(v; vo; wo)� f(v)] =
c�B1

�
: (7)

It should be noted that the above convergence is exponential at the
rate of�. Solution (5) and properties (6) and (7) show thatw(t) eventu-
ally satisfies the first and second conditions of (3). Furthermore, setting
_v = 0 results in _w = 0 which satisfies the last condition of (3). This
implies that the dynamic equation (4) can be used to model a class of
backlash-like hystereses and is an approximation of backlash hysteresis
(3).

Let us use an example for specified initial data to show the switching
mechanism for the dynamic model (4) when_v changes direction. We
note that when_v > 0 onw(0) = 0 andv(0) = 0, (5) gives

w(t) = cv(t)�
c�B1

�
1� e��v(t)

for v(t) � 0 and _v > 0: (8)

Let vs be a positive value ofv and consider now a specimen such that
v is increasing along the initial curve (8) until a timets at whichv
reaches the levelvs. Suppose now that from the timets, the signalv is
decreased. In this case,w is given by

w(t) = cv(t) +
c�B1

�
1� 2e��v � e�2�v e�v(t)

for _v < 0 (9)

wherev < vs. Equations (8) and (9) indeed show thatw switches
exponentially from the linecv(t) � ((c � B1)=�) to cv(t) + ((c �
B1)=�) to generate backlash-like hysteresis curves.

To confirm the above analysis, the solutions of (4) can be obtained by
numerical integration withv as the independent variable. Fig. 1 shows
that model (4) indeed generates backlash-like hysteresis curves, which
confirms the above analysis. The details are described in the section of
simulation studies. It should be mentioned that the parameter� deter-
mines the rate at whichw(t) switches between�((c � B1)=�) and
((c�B1)=�). The larger the parameter� is, the faster the transition in
w(t) is going to be. However, the backlash distance is determined by
((c�B1)=�) and the parameter must satisfyc > B1. Therefore, the
parameter� cannot be chosen freely. A compromise should be made
in choosing a suitable parameter setf�; c;B1g to model the required
shape of backlash-like hysteresis. If the values of the backlash slope
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Fig. 1. Hysteresis curves given by (4) or (31) with� = 1, c = 3:1635, and
B = 0:345 for v(t) = k sin(2:3t) with k = 2.5, 3.5, 4.5, 5.5, and 6.5.

and distance are not known implicitly, then adaptations will be used to
estimate them. This topic will be clarified shortly.

IV. A DAPTIVE CONTROLLER DESIGN

From the solution structure (5) of the model (4) we see that the
signalw(t) is expressed as a linear function of input signalv(t) plus a
bounded term. In this case, the currently available robust adaptive con-
trol techniques can be utilized for the controller design. In this section,
we shall propose an adaptive controller for plants of the form described
by (2), preceded by the hysteresis described in (4). The proposed con-
troller will lead to global stability and yields tracking to within a desired
precision.

Using the solution expression (5), (2) becomes

x(n)(t) +

r

i=1

aiYi(x(t); _x(t); . . . ; x
(n�1)(t))

= bcv(t) + bd(v(t)) (10)

which results in a linear relation to the input signalv(t). It is very
important to note that (6) or (7) imply that there exists a uniform bound
� such that

kd(v)k � �: (11)

For the development of a control law, the following assumptions re-
garding the plant and hysteresis are made.

A1) There exist known constantsbmin and bmax such that the
control gainb in (2) satisfiesb 2 [bmin; bmax].

A2) There exist known constantscmin and cmax such that the
slopec in (3) satisfiesc 2 [cmin; cmax].

A3) Define�
�
= [(a1=bc); . . . ; (ar=bc)]

T 2 Rr , then

� 2 
�
�
= f�: �imin � �i � �imax; 8 i 2 f1; rgg

where�imin and�imax are some known real numbers.
A4) The bound� for the relationkd(v)k � � is known.

A5) The desired trajectory,xd = [xd; _xd; . . . ; x
(n�1)
d ]T is con-

tinuous and available. Furthermore,[xTd ; x
(n)
d ]T 2 
d �

Rn+1 with 
d a compact set.
Remark: Assumption A1) is common for the nonlinear system de-

scribed by (2) [11]. Assumption A2) assumes the slope range of a back-
lash hysteresis nonlinearity, which is reasonable. In Assumption A3),
a new parameter vector� has been defined for the convenience of fur-
ther development. Basically, Assumption A3) implies that the ranges
of the plant parameters,ai; i = 1 . . . r, are known in advance. This is a
reasonable assumption concerning the prior knowledge of the system.
Assumption A4) requires knowledge in regards to the upper bound of
the hysteresis loop, which is again quite reasonable and practical. As-
sumption A5) poses a restriction on the types of reference signals which
may be used.

In presenting the developed robust adaptive control law, the
following definitions are required:

~x = x� xd
~� = �̂ � � ~� = �̂� � (12)

where
~x represents the tracking error vector,
�̂ is an estimate of� as defined in Assumption A2), and
�̂ is an estimate of�, which is defined as�

�
= (bc)�1.

A filtered tracking error is defined as

s(t) =
d

dt
+ �

(n�1)

~x(t) with � > 0 (13)

which can be rewritten ass(t) = �T ~x(t) with �T = [�(n�1); (n �
1)�(n�2); . . . ; 1].

Remark: It has been shown in [11] that the definition (13) has the
following properties: i) the equations(t) = 0 defines a time-varying
hyperplane inRn on which the tracking error vector~x(t) decays ex-
ponentially to zero; ii) if~x(0) = 0 andjs(t)j � �, where� is a con-
stant, then~x(t) 2 
�

�
= f~x(t)j j~xij � 2i�1�i�n�; i = 1; . . . ; ng for

8 t � 0; and iii) if ~x(0) 6= 0 andjs(t)j � �, then~x(t) will converge to

� within a time-constant(n � 1)=�.

Rather than driving the adaptive law with the filtered errors(t), we
prefer to introduce a tuning error,s�, as follows:

s� = s� � sat
s

�
(14)

where� is an arbitrary positive constant andsat(�) is the saturation
function.

Remark: The tuning errors� disappears when the filtered errors
is less than�. This shall be the equivalent of creating an adaptation
deadband.

Given the plant and hysteresis models subject to the assumption de-
scribed above, the following control and adaptation laws are presented:

v(t) = � kds(t) + �̂ufd(t) + Y T (x)�̂ � k�sat
s

�
(15)

ufd(t) =x
(n)
d (t)� �T

v ~x(t) (16)
_̂
� =Proj �̂;�
Y (x)s� (17)

_̂
� =Proj �̂;��ufds� (18)

where Y
�
= [Y1; . . . ; Yr]

T
2 Rr ; �T

v = [0; �(n�1); (n �

1)�(n�2); . . . ; (n�1)�]; k� is a control gain, satisfyingk� � �=cmin,
whereby,� is defined in (11). In addition, the parameters
 and� are
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positive constants determining the rates of adaptations, andProj(�; �)
is a projection operator, which is formulated as follows:

fProj(�̂;�
Y s�)gi

=

0; if �̂i = �imax and
(Y s�)i < 0

�
(Y s�)i; if [�imin < �̂i < �imax]

or [�̂i = �imax and
(Y s�)i � 0]

or [�̂i = �imin and
(Y s�)i � 0]

0; if �̂i = �imin and
(Y s�)i > 0

(19)

Proj(�̂;��ufds�)

=

0; if �̂i = �max and�ufds� < 0

��ufds�; if [�min < �̂ < �max]

or [�̂ = �max and�ufds� � 0]

or [�̂ = �min and�ufds� � 0]

0; if �̂ = �min and�ufds� > 0:

(20)

Remarks:

1) In the above control law, two projection operators have been in-
troduced. It can be easily proved that the projection operator for
�̂ has the following properties: i)̂�(t) 2 
� if �̂(0) 2 
� ;
ii) kProj(p; y)k � kyk; and iii) �(p � p�)T�Proj(p; y) �
�(p�p�)T�y, where� is a positive definite symmetric matrix.
Note that those three properties are also valid for the projection
operator defined for̂�. The omission of these equations are in
the interest of space saving.

2) The projection operators require knowledge of the parameters
�imin and�imax. These represent the upper and lower bounds of
�i, respectively. Assumption A3) is fundental to this end. How-
ever, it should be noted that these parameters are only used to
specify the range of parameter changes for the projection oper-
ator. With regards to this paper, such a range is not restricted as
long as the estimated parameters are bounded (required for the
stability proof); hence, one can always choose suitable�imin and
�imax, although such a choice may be conservative.

3) The termk� sat(s=�) actually represents the compensation com-
ponent for the bounded functiond(v). It should be noted that
if � is chosen too small, such that the linear region of function
sat(s=�) is excessively “thin,” the controller runs the risk of ex-
citing high frequency dynamics. As� ! 0, the functionsat(s=�)
eventually becomes discontinuous. In such a case, the controller
becomes a typical variable structure control scheme [16], which
may lead to chattering phenomena. This suggests that a tradeoff
must be made between the value of� and the trajectory-following
requirements.

The stability of the closed-loop system described by (2), (4), and
(15)–(20) is established in the following theorem.

Theorem: For the plant in (2) with the hysteresis (4) at the input
subject to Assumptions A1)–A5), the robust adaptive controller speci-
fied by (15)–(20) ensures that if̂�(t0) 2 
� and�̂(t0) 2 
�, all the
closed-loop signals are bounded and the state vectorx(t) converges to

� = fx(t)k~xij � 2i�1�i�n�; i = 1; . . . ; ng for 8 t � t0.

Proof: Using the expression (10), the time derivative of the fil-
tered error (13) can be written as:

_s(t) = �ufd(t)�

r

i=1

aiYi(x(t)) + bcv(t) + bd(v): (21)

Using the control law (15)–(20), the above equation can be rewritten as

_s(t) =�ufd(t)�

r

i=1

aiYi(x(t))

+ bc �kds(t) + �̂ufd(t) + Y T (x)�̂ � k� sat
s

�
+ bd(v): (22)

To establish global boundedness, we define a Lyapunov function
candidate

V (t) =
1

2

1

bc
s2� +

1



�̂ � �

T

�̂ � � +
1

�
�̂� �

2

: (23)

Since the discontinuity atjsj = � is of the first kind and sinces� = 0
whenjsj � �, it follows that the derivative_V exists for alls, which is

_V (t) = 0 whenjsj � �: (24)

Whenjsj > �, using (22) and the facts� _s� = s� _s, one has

_V (t) =
1

bc
s� _s+

1



�̂ � �

T _̂
� +

1

�
�̂� �

_̂
�

=�kds�s+ s� �̂ufd(t) + Y T (x)�̂ � k� sat
s

�

+
1

bc
s� �ufd(t)�

r

i=1

aiYi(x(t)) + bd(v)

+
1



�̂ � �

T _̂
� +

1

�
�̂� �

_̂
�

=�kds�s+ s� �̂ufd(t) + Y T (x)�̂ � k� sat
s

�

+ s� ��ufd(t)� Y T � + d(v)=c

+
1



�̂ � �

T _̂
� +

1

�
�̂� �

_̂
�: (25)

The above equation can be simplified, by the choice ofs�, as

_V (t) ��kds
2
� + s� �̂ufd(t) + Y T (x)�̂ � k� sat

s

�

+ s� ��ufd(t)� Y T � + d(v)=c

+
1



�̂ � �

T _̂
� +

1

�
�̂� �

_̂
�: (26)

By using adaptive laws (17), (18), and the properties

1



(�̂ � �)T Proj(�̂;�
Y s�) � � (�̂ � �)TY s�

and
1

�
(�̂� �)Proj(�̂;��ufds�) � � (�̂� �)ufds�

one obtains

_V (t) ��kds
2
� + s� �̂ufd(t) + Y T (x)�̂ � k� sat

s

�

+ s� ��ufd(t)� Y T � + d(v)=c � �̂ � �
T

Y s�

� �̂� � ufds�

=�kds
2
� � k�s� sat

s

�
+

d(v)

c
s�: (27)
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Sincejs�j = s� sat(s=�) for jsj > �, the above becomes

_V (t) ��kds
2

� � k�js�j +
d(v)

c
s�

��kds
2

� � k�js�j+
�

cmin
js�j

��kds
2
� 8 jsj > �: (28)

Equations (24) and (28) imply thatV is a Lyapunov function which
leads to global boundedness ofs�, (�̂��), and(�̂��). From the defi-
nition of s�, s(t) is bounded. It is easily shown that if~x(0) is bounded,
then~x(t) is also bounded for allt, and sincexd(t) is bounded by de-
sign,x(t) must also be bounded. To complete the proof and establish
asymptotic convergence of the tracking error, it is necessary to show
thats� ! 0 ast ! 1. This is accomplished by applying Barbalat’s
lemma [9] to the continuous, nonnegative function

V1(t) =V (t)�
t

0

_V (�) + kds
2
�(�) d�

with
_V1(t) =�kds

2
�(t): (29)

It can easily be shown that every term in (22) is bounded, hence_s,
and _s� are bounded. This implies that_V1(t) is a uniformly continuous
function of time. SinceV1 is bounded below by 0, and_V1(t) � 0 for
all t, use of Barbalat’s lemma proves that_V1(t)! 0. Therefore, from
(29) it can be demonstrated thats�(t) ! 0 ast ! 1. The remark
following (13) indicates that~x(t) will converge to
�.

Remark: It is important to note that the backlash-like hysteresis
model described by (4) can be extended for the general hysteresis non-
linearities. However, the goal of this paper is to show the controller de-
sign strategy using a dynamic hysteresis model in a simple setting that
reveals its essential features. This is the motivation for simply using
backlash-like hysteresis model.

V. SIMULATION STUDIES

In this section, we illustrate the above methodology on a simple non-
linear system described as

_x = a
1� e�x(t)

1 + e�x(t)
+ bw(t) (30)

wherew(t) represents an output of hysteresis. The actual parameter
values areb = 1 anda = 1. Without control, i.e.,w(t) = 0, (30) is
unstable, because_x = (1� e�x(t)=1 + e�x(t)) > 0 for x > 0, and
_x = (1 � e�x(t)=1 + e�x(t)) < 0 for x < 0. The objective is to
control the system statex to follow a desired trajectoryxd, which will
be specified later.

The backlash-like hysteresis is described by

dw

dt
= �

dv

dt
[cv � w] +

dv

dt
B1 (31)

with parameters� = 1, c = 3:1635, andB1 = 0:345. Using input
signalv(t) = k sin(2:3t) with k = 2.5, 3.5, 4.5, 5.5, 6.5, the responses
of this dynamic equation with the initial conditionw(0) = 0 are shown
in Fig. 1. We should mention that when using a variety of values for
both initial valuesw(0) and frequencies, simulation studies show hys-
teresis shapes similar to those in Fig. 1. This confirms again that the dy-
namic model (31) can be used to describe the backlash-like hysteresis.
It also shows that the required shape of backlash hysteresis is depen-
dent solely on the selection of a suitable parameter setf�; c; B1g.

Fig. 2. Tracking error of the state with backlash hysteresis.

Fig. 3. Control signalv(t) acting as the input of backlash hysteresis.

In the simulations, the robust adaptive control law (15)–(20) was
used, takingkd = 10. Since the backlash distance is around 2.5, we
can choose the upper bound� in (11) as� = 4 and we also choose
cmin = 3, which results ink� = 4=3. In the adaptation laws, we
choose
 = 0:5 and� = 0:5 and the initial parameters� = 1:2=3 and
� = 0:8=3. The initial state is chosen asx(0) = 1:05 and sample time
is 0.005. In the simulation the initial value,v(0), is required, which is
selected asv(0) = 0.

Choosing the desired trajectoryxd(t) = 12:5 sin(2:3t), simulation
results are shown in Figs. 2–4. Fig. 2 shows the tracking error for the
desired trajectory and Fig. 3 shows the input control signalv(t). The
signalw(t) is shown in Fig. 4. We see from Fig. 2 that the proposed
robust controller clearly demonstrates excellent tracking performance.
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Fig. 4. Signalw(t) acting as the output of backlash hysteresis.

We should mention that it is desirable to compare the control perfor-
mance with and without considering the effects of hysteresis. Unfor-
tunately, this comparison is not possible in this case as the control law
(15)–(20) is designed for the entire cascade system.

VI. CONCLUSION

In this paper, a robust adaptive control architecture is proposed for
a class of continuous-time nonlinear dynamic systems preceded by a
backlash-like hysteresis, where the backlash-like hysteresis is mod-
eled by a dynamic equation. By showing the properties of the hys-
teresis model, a robust adaptive control scheme is developed without
constructing the hysteresis inverse. The new adaptive control law en-
sures global stability of the adaptive system and achieves both stabi-
lization and tracking with excellent precision. Simulations performed
on a simple nonlinear system illustrate and clarify the approach.
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Extremum Seeking for Limit Cycle Minimization

Hsin-Hsiung Wang and Miroslav Krstic´

Abstract—In many physical problems, equilibrium stabilization is not
possible and the controlled system is in a limit cycle. If the size of the limit
cycle depends on some of the control parameters, then a reasonable objec-
tive would be to tune this parameter to minimize the size of the limit cycle.
In this paper, we propose a method for achieving this. This method is an
extension of our earlier result [13] on extremum seeking for equilibria. We
illustrate the method with a Van der Pol oscillator example and present
analysis for it using averaging and singular perturbations.

Index Terms—Averaging, extremum seeking, limit cycles, singular per-
turbations.

I. INTRODUCTION

Limit cycles occur in numerous areas of application. In particular,
systems exist in which feedback control can only reduce the size of the
limit cycle, but cannot completely eliminate it. The inability to remove
the limit cycle and achieve equilibrium stabilization may be associated
with actuator constraints, like magnitude and rate saturation. In this
situation, the best control requirement is to enforce a stable, “smallest”
limit cycle.

The method of “extremum seeking” has traditionally been used for
searching for a minimum or a maximum of anequilibrium map. This
method was an intensely studied topic between the 1940’s and 1970’s
[2]–[5], [15], [19]–[21]. The most frequently cited references include
the works by Kazakevichet al. [6]–[10], the survey by Sternby [24],
and the book of Astrom and Wittenmark [1, Section 13.3]. Pioneering
work on stability analysis based on averaging in an example of an ex-
tremum-seeking system dates back to Meerkov [16]–[18]. The first sta-
bility analysis for a problem with ageneral nonlinear dynamical plant
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