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Robust Adaptive Control of Uncertain Nonlinear Systems
in the Presence of Input Saturation and

External Disturbance
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Abstract—In this technical note, we consider adaptive control of single
input uncertain nonlinear systems in the presence of input saturation
and unknown external disturbance. By using backstepping approaches,
two new robust adaptive control algorithms are developed by introducing
a well defined smooth function and using a Nussbaum function. The
Nussbaum function is introduced to compensate for the nonlinear term
arising from the input saturation. Unlike some existing control schemes
for systems with input saturation, the developed controllers do not require
assumptions on the uncertain parameters within a known compact set
and a priori knowledge on the bound of the external disturbance. Besides
showing global stability, transient performance is also established and can
be adjusted by tuning certain design parameters.

Index Terms—Adaptive control, backstepping, global stability, nonlinear
systems, saturation.

I. INTRODUCTION

In many practical dynamic systems, physical input saturation on
hardware dictates that the magnitude of the control signal is always
constrained. Saturation is a potential problem for actuators of control
systems. It often severely limits system performance, giving rise to un-
desirable inaccuracy or leading instability [1], [2]. The development of
adaptive control schemes for uncertain nonlinear systems with input
saturation has been a task of major practical interest as well as theoret-
ical significance.
However, the number of available results by taking saturation into

account in the design and analysis of adaptive controllers is still limited
due to the difficulty of the problem. Especially, the considered plants
should satisfy certain restrictive conditions. For linear systems with
input saturation, several schemes for adaptive control law design have
been proposed. In [3], [4], model reference adaptive control was pro-
posed for a linear plant in the presence of magnitude constraints on the
control input, where the plant poles lie entirely in the closed left-half
of the complex plane. In [5], stability was established for discrete time
adaptive pole placement systems with input rate saturation constraint,
where all the poles and zeros of the model are strictly inside the unit
circle. In [6], a discrete time direct adaptive control was proposed for
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linear systems subject to saturation constraints, where the adaptive con-
trol system is stable provided that the plant is minimum phase and is
only allowed to have one pole at � � � with all remaining poles stable.
Adaptive control of exponentially stable uncertain linear plants subject
to input saturation was provided in [7]. In [8], the problem of control-
ling non-minimum phase type-1 plants in the presence of saturation
constrains and disturbances was considered by using a saturated adap-
tive regulator based on a specific pole placement, where the plant has
only also one pole at � � � and the others are within the unit circle,
and uncertain parametersmust be inside a known compact set. In [9], an
adaptive controller is applied to linear systems in the presence of mag-
nitude saturation of the control input, where the adaptive controller is
shown to result in global stability if the plant is open loop stable and
minimum phase, and local stability otherwise. The problem for com-
pensating for saturation in controlling nonlinear systems is a topic of
great importance and has received increasing attention in adaptive con-
trol, such as using neural networks (NN) control [10]–[12], model pre-
dictive control (MPC) [13], [14], reference governors [15], anti-windup
technique [16] and dynamic inversion model reference control [17]. In
controller design with NN approaches [10], [11], it is required that all
system states are within a known compact set to handle approxima-
tion errors caused by NN approximation and the NN weights must be
bounded with known bounds. In [12], it is assumed that the controlled
plant should be locally stable, but only local stability of the overall
closed-loop system is ensured. The result in [13] implements a cer-
tainty equivalence nominal-model MPC feedback to stabilize a para-
metric uncertain system subject to an input constraint. An adaptive re-
ceding horizon controller is proposedwith assumption that the state and
the derivative of the state are accessible for measurement. In [14], an
adaptivemodel predictive control scheme is proposed dealingwith con-
strained nonlinear systems, where the nonlinear function is assumed to
be locally Lipschitz and the uncertain parameters lies within an ini-
tially known compact set. In [15], a direct adaptive nonlinear tracking
control framework for nonlinear uncertain systems with actuator am-
plitude and rate saturation constraints is developed, where the control
signal to a given reference (governor or supervisor) system is modified
to effectively robustify the error dynamics to the saturation constraints.
The governor accepts input commands and modifies their evolution so
that specified constraints on control variables are satisfied. In [16], an
anti-windup design is presented for single input adaptive control sys-
tems in strict feedback form with input saturation. A piecewise linear
approximation network is used to estimate the unknown parts where
the unknown parameters must be bounded with known bounds. In [17],
a dynamic inversion based adaptive control framework is developed
to a specific class of nonlinear systems in Brunovsky form, where the
unknown parameters are bounded with known bounds. The proposed
method, termed “positive �-modification” in [18], protects the control
law from actuator position saturation and ensures bounded tracking for
initial conditions within a domain of attraction. Backstepping approach
is a Lyapunov-based recursive design procedure. With this technique,
transient performance can be established and improved with explicit
tuning of design parameters. A great deal of attention has been paid to
tackle both linear and nonlinear systems with unknown parameters. A
number of results have been obtained as summarized in [19]. Some ro-
bustness issues have also been addressed, see for examples, [20], [21].
However, the effect of saturation nonlinearity has not been addressed
with this approach, especially in the absence of a priori knowledge of
system parameters. To solve such a problem, certain modifications of
standard backstepping controllers are required. A preliminary result for
a simple class of nonlinear systems with input saturation is reported in
[22] by using state feedback adaptive backstepping design.

0018-9286/$26.00 © 2011 IEEE
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In this technical note, we will address this problem for a class of non-
linear uncertain systems in the presence of an external disturbance, by
taking saturation into consideration in controller design. Note that satu-
ration is a nonsmooth function but the backstepping technique requires
all functions differentiable. To use the technique, a smooth function is
used to approximate the saturation with a bounded approximation error
and the plant is then augmented to design controllers. However, the
derivative of the approximate function makes the design and stability
analysis a challenge problem. To solve it, a Nussbaum function is used.
In this technical note, two control schemes are presented. The first is
a relatively simple scheme, which follows the standard backstepping
control design, in addition to using the �-modification in the adapta-
tion laws. The transient tracking error performance depends on an un-
known ’disturbance-like’ term, which is a combination of the external
disturbance and the approximation error of the saturation function. To
improve system performance, the second scheme is proposed to esti-
mate the bound of the ’disturbance-like’ term and compensate for it in
the controller design. With the second scheme, the transient tracking
error performance does not depend on the unknown ’disturbance-like’
term, but on the initial estimation error of its bound. However, this is
at the expense of increasing the complexity of the designed controller.
With the proposed schemes, system parameters are no longer assumed
to be in a known compact set. No a priori knowledge is required on the
disturbance bound. Besides showing global stability of the system, the
transient tracking error performances for both schemes are derived to
be explicit functions of design parameters and thus our schemes allow
designers to obtain the closed loop behavior by tuning design parame-
ters in an explicit way. The proposed schemes are not only applicable to
systems with input saturation, but also with other nonlinearities which
can be bounded by a bounded smooth nonlinear function. As an addi-
tional contribution, this also enlarges the nonlinear systems currently
studied by using backstepping approach.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

We consider a class of uncertain nonlinear systems given as follows:

������ �������� � ������������ � � �� � � � � �� �

������ � ���������� � 	
������ � ����� (1)

where ���� � 	������ � � � � �����

� � � are state variables and

���� � ����� is output, � � � is an unknown constant parameter
vector, ������ � 	������ � � � � �����


� , 	 is the unknown control gain,
�� � � , � � �� � � � � � are known nonlinear functions, ����� denotes an
external disturbance with unknown bound, � is the controller output
to be designed, 
������ denotes the plant input subject to saturation
type nonlinearity. The control objective is to make the system output
� track the desired trajectory �����.

������ is described by


������ � ��������� �
����������
� � ������ � 
�
����� ������ � 
�

(2)

where 
� is a known bound of 
���. Clearly, the relationship between
the applied control 
��� and the control input ���� has a sharp corner
when ������ � 
� . Thus backstepping technique cannot be directly
applied. In order to use this technique, the saturation is approximated
by a smooth function defined as

���� � 
� � ���
�


�
� 
�

���� � �����

���� � �����
� (3)

Then ��������� in (2) can be expressed as

������ � ���� � ����� � 
� � ���
�


�
� ����� (4)

Fig. 1. Saturation (Dot-line: smooth � �������� �; Solid-line: ������).

where ����� � ������ � ���� is a bounded function in time and its
bound can be obtained as

������� � �������� ����� � 
���� ������� � ��� (5)

Note that in the section � � ��� � 
� the bound ����� increases
from 0 to �� as ��� changes from 0 to 
� , and outside this range the
bound ����� decreases from �� to 0. Fig. 1 shows approximation of
the saturation function. The following assumptions are made.

Assumption 1: The plant is input-to-state stable (ISS).
Assumption 2: The desired trajectory ����� and its �th order deriva-

tives are known and bounded.
Assumption 3: The control gain 	 � �.
Remark 1: Assumption 1 is reasonable since a unstable plant cannot

be globally stabilized in the presence of input saturation. For example,
consider the following simple system:

�� � ��� 
������

where � �  is a state variable, and 
������ �  denotes the plant
input subject to saturation described by (2). If � � � and the initial
value ���� � 
��� , there does not exist any control that satisfies the
saturation constraint to stabilize the system.

III. DESIGN OF ADAPTIVE CONTROLLERS

To achieve the objective of tracking, we augment the plant to con-
sider the saturation approximation function and the resulting approxi-
mation error as follows:

������ �������� � ������������ � � �� � � � � �� �

������ � ���������� � 	���� � ���� (6)

�� � � �� � � (7)

where � is a positive constant and � is an auxiliary signal to be de-
signed in the backstepping approach, ���� � 	������ �����. The effect
of ���� is due to both external disturbances and 	����� and thus we
call it a “disturbance-like” term for simplicity of presentation. Clearly
all functions in (6) and (7) are smooth and the use of backstepping is
feasible.

Remark 2: To the best knowledge of authors, the augmented system
(6) and (7) does not belong to any class of systems studied by using
backstepping approach so far, as ��� is related to nonlinear function
���� instead of � directly. This results in a term ���������� �� instead of
only �� as in previous backstepping-based approaches in ���� ��� of
the backstepping design given later. To handle ��������, a Nussbaum
function is employed.

Remark 3: From (6) and (7), it can be noted that the proposed
schemes given later in this section are not limited for application to
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only saturation functions. They can also be applied to any smooth
or nonsmooth function ���� that can be approximated by a bounded
smooth function ���� with a bounded approximation error and
bounded derivative ��������. With this, the class of systems in (1) or
studied in existing literature using backstepping design is enlarged.

Remark 4: Note that system (6) involves the function ���� which
plays the same role as a ’control input’ in the current class of systems
studied with backstepping approaches. In our case, the control signal
to be designed is �, but it is hard to directly design it with the difficulty
explained in Remark 2. To overcome this difficulty, (7) is artificially in-
troduced to generate a stable control signal � by designing an auxiliary
control signal � in the last step � � � of the backstepping approach.
As summarized in Section III-A and Table I later, (7) is part of the con-
troller designed.
As in the usual tracking problem with backstepping approaches, the

following change of coordinate is made:

�� �	� � 
��

�� �	� � 

�����
� � �����  � �� � � � � � (8)

���� � ����� �� (9)

where ���� is the virtual control at the �� ���� to be determined.
Variable ���� is due to the new state variable �. In the following, two
control schemes are proposed.

A. Control Scheme I

We first present a simpler control design approach. To illustrate the
backstepping procedures, only the first and the last two steps are elab-
orated in details, especially on the methodology of handling ����.
• ���� � � �� � � � � � � ��: We choose virtual control law �� and
tuning function �� as
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where ��, �� , and �� are positive design parameters, and 	 � 	�

is the adaption gain matrix.
• ���� �: From (6) and (8) for  � �, we obtain
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where ���� � ���� � �� has been used. We design the virtual
control law �� as follows:
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where �� and � are positive constants and �� is an estimate of � �
���. The adaptive law is chosen as
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where ��, �� and �� are design parameters with �� and �� being
chosen as positive. From the above design and choice, the fol-
lowing useful property can be obtained:
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where �� � �� ��. We define a positive Lyapunov function �� as
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Then the derivative of �� is
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• ���� � � �: From (7) and (9), we obtain
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Note that � is varying, which makes the design and analysis diffi-
cult. To handle it, we use a Nussbaum function !�"�, similar to the
approach in [23]. The control law for � is designed as follows:
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where ���� is a positive constant, !�"� is a Nussbaum type function
defined as

!�"� � "� ����"�� 
" � � ������ (23)

where � is a positive real design parameter. The Nussbaum function
satisfies the two-sided properties
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where # � �� denotes both # � � and # � ��.
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The parameter update laws are designed as
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where �� is an estimate of �, �� and �� are design parameters with ��
being positive.
To analyze the designed system, we now consider a positive Lya-

punov function given by
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The derivative of � is given as
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where ��
� is a constant which denotes the bound of ���� and may
not be available. Notice that
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where ��
���� is the maximum eigenvalue of �. Therefore, from (29)
we obtain
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where �� � �����. By direct integrations of the differential in-
equality (36), we have
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Theorem 1: Consider the uncertain nonlinear system (1) satis-
fying Assumptions 1–3. With the application of controller (10)–(13),

(15)–(16), (22)–(23), and parameter update laws (17), (26) and (27),
the closed loop system is globally stable.

Proof: The boundedness of � can be established based on the
Nussbaum gain properties (24) via a contradiction argument. We first
define
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For notation convenience, ������ ��� � ��������������� �
������ ���, �� � �� . Using integral inequality �� � ������ �
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have
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For the Nussbaum function ���� � �� ����$��	�, we know that it
is positive for � � �� � �� � � �� and negative for � � �� �
�� � � �� with an integer �.
We can show that ���� is bounded on ��� �� � by seeking a contradic-

tion. Suppose that ���� is unbounded and two cases should be consid-
ered: 1) ���� has no upper bound and 2) ���� has no lower bound.

Case 1): ���� has no upper bound on ��� �� �. In this case, there must
exist a monotone increasing variable �� � ����� with �� � ������� %
�, �������� � �� , and �������� ��. Note that � % �. From (37),
we know that, for ���� ��� � ���� �� ��
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where ��� � ������ . By noting that���� � �,�� � ���� ��� �
�� � �� � � ��, we have
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where ��� � ��� ��. Using Hermite–Hadamard integral inequality and
noting that � � ���� % �, ��� � ��� � ��� � � � % � for
� � ���� ���, we have
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where 	� � 	����
�� � � � ����$����	� % �, and 	� �

	����
�� � � � % �. Thus, from (40) and (42)
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From (43), we know that ������ ��� � ������ � � �� 
 �� as
� 
 �. On the other hand, � ��� % � for all �. Thus we can always
find a subsequence that leads to a contradiction. So ���� has a upper
bound.



1676 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 7, JULY 2011

Case 2): � has no lower bound on ��� �� �. Define � � ��. Ac-
cordingly, � has no upper bound. Further noting that ���� is an even
function, (37) becomes

� ��� �� �
�

�

������� ����	�� �����
�

�� � �������� ������ � � � ��� �� �� (44)

Thus, there must exist a monotone increasing variable ��� � ������
with �� � �������  �, �������� � �� , and �������� � 	.
Following the same procedure as in Case 1, we can also construct a
subsequence that leads to a contradiction. Accordingly, we can claim
that � has a upper bound on ��� �� �. Since � � ��, we know that � has
a lower bound on ��� �� �.
The above argument is true for all ��  �. Therefore, � must be

bounded. And also �

�
��� ������ ��
� is bounded. So � ��� is bounded

from (37), which implies �� , � � �� 	 	 	 � �
�, ��,��, �	 are bounded. From
Assumption 1, the plant is ISS. Then there exists a class of 
 function
� for continuous input � satisfying

��
�����

������ � � 
 � ��
� ����

������ � � 
 �����

where� is a constant. Thus the global boundedness of ��� ��� 	 	 	 � ��
is established. Note that
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�����

��
�

�

�		
� 
 	�	
� �
� � � (46)

�����

��
� �

��

�		
� 
 	�	
� �
� �

��
�
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From (45)–(47) and (22), �� is bounded because of the boundedness
of ��, � � �� 	 	 	 � � 
 �, ��, ��, �	. This further implies that � in (22) is
bounded because � is bounded. Then � is bounded from (7).���
We now derive a bound for the vector ���� � ���� ��� 	 	 	 � �����

� .
First, the following definitions are made:

�� � ������������� � � ����� ��
�

�

�

�

�������
�� (48)

Integrating both sides of (29), we obtain

� � ����� ��
�

��

�� ���� � �� ��

�

 �� 


�

���

�

�


����
�



�

��

�

�

������ ��� ���
� � (49)

On the other hand, from (36), we have
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where we have used the fact that 	�� ����� � � and �� 	�� � !� �
 �.
Note that � " � "� ����� ��� � ����� �. By setting ����� � � in the

initial value of the Lyapunov function, and using (35), (49)–(50), and
the fact that  �!�� � �, a bound on the tracking error � " � "� ����� �
is established and stated in the following Theorem.

Theorem 2: The tracking error � " � "� ����� � satisfies
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�� (51)

Remark 5: Regarding the above bound, the following conclusions
can be drawn:
• Theorem 2 gives a quantification of the transient performance in
the sense of the norm defined in (48) for the tracking error. This
bound depends on the initial estimate errors �����, �	��� and �����.
The closer the initial estimates to the true values, the better the
transient performance.

• This bound can also be systematically reduced by increasing �,
��, ��, �� and decreasing �� , ��, ��.

• The last term of (51) shows that this bound depends on the ’dis-
turbance-like’ term 
���.

B. Control Scheme II

In order to improve tracking performance, we develop another
scheme to handle the term 
��� by estimating its bound. To do this, we
first define functions #������ and  ����� as follows:

#������ �

�
�� �

���� � $�
�

�� �� � ��� �
���� % $� (52)

 ����� �
� ���� � $�
� ���� % $�

(53)

where $��� � �� 	 	 	 � � 
 �� is a positive design parameter. It can be
shown that #������ is �� � � 
 ��th order differentiable. To compen-
sate for the effect of 
��� and also ensure the resultant functions dif-
ferentiable, we use ����� � $��

�����#������ to replace �� in the virtual
controls &� and ��, and use ������$��

����
 � to replace ��� in the Lya-
punov functions used in the design procedure. The resulting adaptive
controller with this scheme is summarized in Table I.

Theorem 3: Consider the uncertain nonlinear system (1) satisfying
Assumptions 1–3. With the application of controller (T.1)–(T.10) and
the parameter update laws (T.11)–(T.15), the following statements
hold:
• The resulting closed loop system is globally stable.
• The transient tracking error performance is given by
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(54)

with ����� � $�, � � �� 	 	 	 � � 
 �.
Proof: We define a positive Lyapunov function as
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TABLE I
ADAPTIVE BACKSTEPPING CONTROL—SCHEME II

Then from (T.1)–(T.15), the derivative of � is given as

�� �
�

��
������� �� ���

���

���

������� � ���
����������	 (56)

Fig. 2. Spring, mass and damper system.

Fig. 3. Tracking error and control signal without considering saturation.

By following similar argument to the proof of Scheme I, Theorem 3
can be proved.���
Note that the effect of 
��� has been eliminated in (54), so � �����

����� �� does not depend on 
���, but on the initial estimation error
����. In addition, from (54), the tracking error will converge to ��
asymptotically where �� can be pre-specified as an arbitrarily small
constant by designers. Comments similar to the first two points in Re-
mark 5 are also valid here.

IV. SIMULATION STUDIES

In this section, we illustrate the above methodologies on a second-
order system in Fig. 2

��� ���

��� � �
�

�
�� �

�

�
�� �

�

�
������ � 	
��� (57)

where � � ��, the external disturbance 	
��� � �	� 
������,�� and��
are the position and velocity,� is the mass of the object, � is the stiff-
ness constant of the spring and � is the damping. The input saturation
limit is �� . The true parameters are set as� � � ��, � � � � 
��,
� � ����, which are not needed to be known in our controller design.
The desired trajectory is given as �� � ��	 ��
����� � �	 ��� and
the initial conditions are ����� � �	� �, ����� � ���
. For compar-
isons, three controllers are applied to system (57) by using the normal
backstepping approach without considering saturation, Schemes I and
II, respectively. Simulation results on system tracking error and control
signal are presented in Figs. 3–5. Clearly significantly improved perfor-
mances are observed with the proposed schemes. These results verify
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Fig. 4. Tracking error and control signal with scheme I.

Fig. 5. Tracking error and control signal with scheme II.

the effectiveness of the proposed backstepping adaptive controllers in
handling input saturation.

V. CONCLUSION

In this technical note, we consider controlling a class of uncertain
nonlinear systems in the presence of input saturation and external
disturbances based on adaptive backstepping approaches. Two new
schemes are developed to design adaptive controllers to compensate
for the effects of the saturation nonlinearity and disturbances. The
controllers do not require the model parameters within known inter-
vals. Also no knowledge is assumed on the ’disturbance-like’ term.
Besides showing global stability, we also give an explicit bound on the
performance of the tracking error in terms of design parameters.
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