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Abstract

Functional data are increasingly encountered in scientific studies, and their high dimensionality
and complexity lead to many analytical challenges. Various methods for functional data analysis
have been developed, including functional response regression methods that involve regression of
a functional response on univariate/multivariate predictors with nonparametrically represented
functional coefficients. In existing methods, however, the functional regression can be sensitive to
outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new
Bayesian method, robust functional mixed models (R-FMM), for performing robust functional
regression within the general functional mixed model framework, which includes multiple
continuous or categorical predictors and random effect functions accommodating potential
between-function correlation induced by the experimental design. The underlying model involves
a hierarchical scale mixture model for the fixed effects, random effect and residual error functions.
These modeling assumptions across curves result in robust nonparametric estimators of the fixed
and random effect functions which down-weight outlying curves and regions of curves, and
produce statistics that can be used to flag global and local outliers. These assumptions also lead to
distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage
properties, with great flexibility for the data to determine the sparsity and the heaviness of the
tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and
random effect function estimates that appear in our simulations to be remarkably adaptive in their
ability to remove spurious features yet retain true features of the functions. We have developed
general code to implement this fully Bayesian method that is automatic, requiring the user to only
provide the functional data and design matrices. It is efficient enough to handle large data sets, and
yields posterior samples of all model parameters that can be used to perform desired Bayesian
estimation and inference. Although we present details for a specific implementation of the R-
FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet
transforms, the method can be applied more generally using other heavy-tailed distributions,
higher dimensional functions (e.g. images), and using other invertible transformations as
alternatives to wavelets.
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1. INTRODUCTION

An ever-growing number of technologies take automated measurements over fine grids of
time, space, or some other domain, and yield functional data, for which the ideal units are
curves and the observed data consist of curves sampled on fine grids. Examples include
EEG signals, proteomic mass spectra, array CGH copy number arrays, and quantitative
image data such as fMRI. These and other functional data have motivated the development
of new methodology for functional data analysis (FDA), some of which are reviewed by
Ramsay and Silverman (2005), Ferraty and Vieu (2006), and Ruppert, Wand and Carroll
(2009).

One class of methods involves functional response regression, an extension of linear
regression to functional data whereby a functional response is regressed on a set of
predictors, each with its own nonparametrically represented functional coefficient. Early
work focused on longitudinal data or functional data on a sparse grid, and involved
functional ANOVA with categorical predictors and iid curves (Staniswallis and Lee 1998;
Brumback and Rice 1998; Wang 1998; Wu and Zhang 2002; Guo 2002). Larger and more
complex functional data sets have increasingly been encountered, with multilevel designs,
correlated functions, and functional data sampled on a fine grid. Many of these methods do
not scale up to these settings, but recent work attempts to accommodate these complexities
and scales up to these larger data sets (Morris, et al. 2003; Morris and Carroll 2006; Morris,
et al. 2006; Baladandayuthapani, et al. 2008; Morris, et al. 2008; Di, et al. 2009; Zhou, et al.
2010; Staicu, Crainceanu and Carroll 2010; Morris, et al. 2010; Grevin, et al. 2010). The
models underlying many of these methods can be considered variations of a functional
mixed effects model (FMM), which adds random effect functions of non-specified
functional form to the functional response regression. Methods developed within this
general FMM framework have great utility, given their ability to accommodate multiple
continuous or categorical fixed effect predictors and random effect predictors to model
between-function correlation induced by various experimental designs.

In linear regression, it is well known that outlying values can strongly impact regression
coefficient estimators, artificially inflating their standard errors and sometimes leading to
bias (Huber 1981). In response, robust regression techniques have been developed that
effectively down-weight the influence of the outliers and as a result lead to much improved
regression coefficient estimators. For examples of such methods, see Huber (1981) and
Hampel, et al. (2005). Outliers are frequently encountered in functional data, as well,
including entire outlying curves (global outliers) as well as curves with local outlying
features, which can be localized in either the time or frequency domain (local outliers).
Analogously, these outliers can have a strong influence on the functional coefficients
estimated in functional response regression models. To our knowledge, there are currently
no methods in the existing statistical literature for performing robust functional response
regression. The limited work we have encountered in robust FDA includes robust estimation
of functional principal components (Locantore, et al. 1999; Huber 2002, Gervini 2008,
Gervini 2010) and functional predictors of scalar responses (Crambes, Delsol and Laksaci
2008).

In this paper, we introduce Bayesian methods for robust functional regression within the
FMM framework, which we refer to as robust functional mixed models (R-FMM).We
believe this is the first method in the statistical literature for robust functional response
regression, and has great practical utility given it is developed within the general FMM
framework, can be applied to functional and image data, is computationally efficient enough
to handle large data sets, can be fit in an automated fashion given just the functional
responses and design matrices, and yields posterior samples of all model parameters that can
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be used to perform a wide array of potential Bayesian estimation and inference. The novel
model we present involves hierarchical scale mixture distributions for the fixed effect,
random effect and residual error functions in the wavelet space. These modeling
assumptions across curves result in robust nonparametric estimators of the fixed and random
effect functions which down-weight outlying curves and regions of curves, and produce
statistics that can be used to flag global and local outliers. This hierarchical model also
induces distributions across wavelet coefficients that have connections with some of the best
sparsity distributions in current literature and yield desirable adaptive shrinkage properties,
which together with the down-weighting of outliers leads to fixed and random effect
function estimates that in our simulations demonstrate a remarkable ability to remove
spurious features yet retain true features of the functions. While we focus on 1D functions,
wavelet modeling, and using particular distributional assumptions in the hierarchical model,
the method can also be applied to higher dimensional functions, using basis functions and
transformations other than wavelets, and using other specific distributional assumptions.

The outline for the rest of the paper is as follows: Section 2 presents the method, first
introducing functional mixed models in Section 2.1, then outlining the robust model in
Section 2.2 and summarizing computational model fitting details in Section 2.3. In Section
2.4, we explain how to detect and examine global and local outliers using this method, and
then we briefly discuss how to adapt the method use other distributions, basis functions and
transformations other than wavelets, and to apply to higher dimensional functions in Section
2.5. In Section 3, we present results from a simulation study to evaluate the performance of
the method relative to an existing non-robust method for fitting FMM, and in Section 4, we
apply both robust and non-robust methods to real mass spectrometry proteomics data set.
Section 5 contains a discussion and some conclusions, and online supplementary materials
contain numerous derivations, computational details, and further results beyond what is
presented in the text of this paper.

2. METHODS

2.1 Background: Functional Mixed Models and Gaussian Basis Space Modeling

The functional mixed model (FMM) relates functional responses to a set of scalar predictors
through functional coefficients, with random effect functions included to account for
correlation between functions that may be induced by the experimental design. A general
FMM is given by:

(1)

where Y(t) = (Y1(t), …, Yn(t))T is a vector of functional responses defined on the same
interval  B(t) = (B1(t), …, Bp(t))T is a vector of fixed effect functions associated with an n
× p design matrix X, with Bj(t) representing the partial effect of covariate j on the function at
position t. The U(t) = (U1(t), …, Um(t))T is a vector of mean zero random effect functions
associated with an n × m design matrix Z, and E(t) = (E1(t), …, En(t))T is a vector of mean
zero residual error functions. A key flexibility of this model is the unspecified forms of its
functional quantities.

Before fitting the FMM, assumptions must be specified on the distributions and the structure
of the random effect and residual error covariances. Morris and Carroll (2006) describe a
Gaussian functional mixed model with separable between- and within-function covariance
matrices and a Bayesian, wavelet-based method for fitting it (G-WFMM). They assume the
random effects U(t) follow a mean-zero multivariate Gaussian process with an m × m
between-function covariance matrix P and a within-function covariance surface Q(t1, t2) ∈
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×  denoted by U(t) ~ (P, Q), implying that Cov{Ul(t1), Uk(t2)} = PlkQ(t1, t2). The
residual error is assumed to be E(t) ~ (R, S), independent of U(t). If the functional
responses Yi(t) are all measured on the same equally-spaced fine grid t of length T, the
discrete version of model (1) can be represented as

(2)

with Y, B, U, and E each having T columns, each corresponding to one of the positions on
the grid. The random effects and residual error matrices are mean-zero matrix normals
(Dawid 1981): U ~ P, Q), E ~ R, S), with Q and S as T × T matrices. A common
special case of this model involves conditionally independent random effect functions and
residuals, P = R = I.

Flexible structures are allowed on Q and S, as induced by the underlying wavelet-space
modeling approach. Some early overviews of statistical work using wavelets can be found in
Ogden (1997) and Vidakovic (1999). First, the discrete wavelet transform (DWT) is applied
to the rows of Y, represented here as D = YWT, with WT an orthonormal wavelet transform
matrix. This transform projects the observed functions into the wavelet space, inducing a
wavelet-space version of model (2),

(3)

where rows of D, B*, U*, and E* correspond to the DWT of the rows of Y, B, U, and E,
respectively, and the columns correspond to wavelet coefficients double-indexed by wavelet
scale j and location k rather than the location within the function. The induced distributional
assumptions are U* ~ N(P, Q*) and E* ~ N(R, S*), with Q* = WQWT and S* = WSWT.
The whitening property of the wavelet transform (e.g. Vidakovic 1999) tends to induce
decorrelation of the wavelet coefficients in the wavelet domain, so that one might make

reasonable independence assumptions , with the induced
data space covariance matrices Q = WTQ*W and S = WTS*W. By indexing these wavelet-
space variance components by both scale j and location k, this assumption is parsimonious
yet flexible enough to model many important types of nonstationarities in Q and S,
including different variances and different degrees of autocorrelation at different parts of the
curves (Morris and Carroll 2006).

A spike Gaussian-slab prior is assumed for the fixed effects in the wavelet space , the ath

component in the (j, k)th column of B*. That is, let

, where πaj and τaj are regularization
parameters that can be estimated using an empirical Bayes approach or given hyperpriors
themselves. When applied to wavelet coefficients, this type of prior induces a nonlinear
shrinkage or threshold-like effect which leads to adaptive regularization, or denoising in a
way that tends to preserve dominant local features of the corresponding function (Vidakovic
1999). An MCMC method is used to obtain posterior samples for the quantities in model (3),
which are then projected back to the data space using the inverse discrete wavelet transform
(IDWT) to perform Bayesian inference on the quantities of model (2). Morris, et al. (2010)
demonstrate how this method can be extended up to higher dimensional functional data like
images, and describe how this three-step approach can be used with basis functions and
transformations other than wavelets.
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2.2 Robust Wavelet-Based Functional Mixed Models (R-WFMM)

The nonparametric functional regression underlying the fixed and random effect function
estimation in the G-WFMM is subject to strong influence by outlying curves or regions of
curves, and in this way is not robust. These outliers can be constructive or destructive, i.e.
they can either induce spurious artifacts or can attenuate true features of the functional
effects. Here, we introduce a new hierarchical modeling framework for functional mixed
models that can achieve robustness to global and local outliers and improved adaptive
regularization of fixed and random effect functions, leading to a method we believe is the
first robust method for functional response regression. In this section, we will present this
method for 1D functions, using wavelet transforms, and assuming conditionally independent
random effect and residual functions (P = R = I in model (2)) and then later in Section 2.5,
we will discuss how the method can be adapted to handle higher dimensional functions like
images, general P and R, and using bases and transforms other than wavelets.

Given n observed curves Yi(t), i = 1 …, n, each sampled on equally-spaced grid t of size T,
we assume the observed functions and observations on the grid follow the general FMM
presented in (1) and (2), respectively. Rather than directly specifying distributional
assumptions for these models, we instead specify our distributional assumptions in the
wavelet space model (3), and then discuss the distributions these induce in the data space.
Like the G-WFMM, our robust method will use a three-step wavelet-based modeling
approach, first applying a specified DWT to each curve i to obtain the corresponding set of
wavelet coefficients dijk, with j = 1, …, J indexing the wavelet scale (frequency) and k = 1,
…, Kj the location. Second, we fit the robust wavelet-space version of the functional mixed
model specified below and third, we project our results back to the original data space using
the IDWT, obtaining inference on the fixed and random effect functions in model (2). The
key novelty in our robust method is the hierarchical modeling assumptions we make on the
wavelet coefficients for the residuals, random effect functions, and fixed effect functions,
which are completely different from those used in the G-WFMM, and possess the desired
robustness properties and improved adaptive regularization.

General Wavelet-Space Hierarchical Model for Robust FMM—Working with the
basic wavelet-space FMM (3), we denote the (j, k)th column as

. We
specify the following hierarchical model on these parameters:

(4)

(5)

(6)

where δ0 is a point mass at 0,  are mutually independent. The individual
scale parameters λijk, ϕljk, ψajk are mutually independent with specified mixing distributions

 indexed by population scale parameter vectors , which are also

mutually independent with prior distributions  indexed by specified
hyperparameter vectors ΘE, ΘU, and ΘB, respectively. Note that the G-WFMM is a special
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case of this model, with a degenerate distribution for g1(•), λijk ~ δsjk
, ϕljk ~ δqjk

 and ψajk =
δτaj

. This model is fit using a blocked Gibbs sampler, as summarized in Section 2.3.

Robustness Properties—Consider the hierarchical model for the residuals  with non-

degenerate . For each wavelet coefficient (j, k), each curve i has its own individual scale

parameter λijk, which is drawn from a mixture distribution  indexed by a population

scale parameter , which in turn is given a prior distribution . The individual scale
parameters λijk serve as wavelet-space outlier weights. A relatively large λijk (across i)
suggests curve i is an outlier with respect to a feature of the curve corresponding to the
wavelet basis function (j, k), and will result in a downweighting of observation dijk in

estimating the corresponding fixed and random effects , respectively. Similarly,
relatively large ϕljk (across l) indicate random effect unit l is an outlier for feature (j, k), and
will result in some downweighting of the dijk corresponding to random effect unit l, which
are those with Zil ≠ 0. This can be seen by the fact that

. The choice of mixing distribution g1 impacts the estimation of the individual scale
parameters, and thus the robustness properties of the method. If we marginalize the model
by integrating out the individual scale parameters, combining levels (4) and (5), we are left
with a heavy-tailed scale mixture distribution Normal ◦ g1 indexed by population scale
parameters νjk for each of E, U, and B. We call these population scale parameters because

they summarize the overall variability in the population, across i for , across l for ,

and across k for . These population scale parameters also play a crucial role in the
adaptive regularization of the fixed and random effect functions, as we elaborate below.

Normal-Exponential-Gamma Hierarchical Model for Robust FMM—While many
different choices can be considered for g1(•) and g2(•), for our calculations in this paper we

will assume  for each model component E, U, and B, and choose g2(•) to

be such that  are Gamma distributions, with their parameters determined using the
empirical Bayes approach outlined below in Section 2.3. We have found this particular
choice to be appealing for several reasons: (1) computations are tractable and efficient, (2)
the marginal distributions have good robustness properties, (3) similar models in single-
function wavelet regression have robustness properties, and (4) it has connections to various
sparsity priors known to be good choices for variable selection, which in the wavelet space
should lead to good adaptive regularization for the fixed and random effect functions.

Integrating over the individual scale parameters, this corresponds to double exponential
(DE) distributions for the residuals, random effects, and the slab part of the mixture for fixed
effects in the wavelet space. The heavier-than-normal exponential tails lead to
downweighting of outliers, as described above, and robustness properties. Supplementary
materials include a proposition (Proposition 1) and proof that describes some of this model’s
robustness properties in a mean+error special case of the FMM. The proposition shows that
as the norm of an outlying functional observation approaches infinity, the posterior
distribution of the mean function B(t) approaches to a posterior that either depends only on
the non-outlying observations, or depends on the non-outlying observations and a part of the
outlying observation with bounded norm.

Various researchers have pointed out that the DE distribution is a compelling choice for
wavelet-space modeling, since its spike at zero and heavier-than-normal tails match
typically encountered empirical characteristics of wavelet coefficients (e.g., Mallat 1989;
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Kokoszka, et al. 2006; Vidakovic and Ruggeri 2001). In single function wavelet regression,
the use of double-exponential likelihoods has been shown to lead to adaptive regularization
and efficient function estimation, even when the true noise distribution is Gaussian
(Vidakovic 1999; Clyde and George 2000; Vidakovic and Ruggeri 2001; Cutillo et al.
2008). Inspired by Clyde and George (2000), Pensky (2006) examined the theoretical
frequentist properties of various choices of likelihoods and priors in Bayesian wavelet
regression, and found the combination of double-exponential prior and double-exponential
likelihood to have outstanding properties. That combination leads to optimal functional
estimators for both spatially homogeneous and spatially heterogeneous functions when the
errors are normally distributed; it is robust to heavy-tailed distributions; and it is able to
flexibly represent functions in Besov spaces with the full range of potential smoothness.
While the FMM setting is more involved than single-function wavelet regression and our
model is not quite the same, these optimality results are still compelling and suggest models
involving DE distributions might be a good choice in this context. An interesting theoretical
exercise beyond the scope of this paper would be to evaluate similar properties for our
hierarchical model for estimation of fixed and random effect functions in the FMM
framework.

This choice also has connections with distributions commonly used in variable selection.
The concept of variable selection is relevant here since effective variable selection across the

wavelet coefficients for the random effects  and fixed effects  leads to effective
adaptive regularization of the random effect functions Ul(t) and fixed effect functions Ba(t).
The LASSO (Tibshirani 1996) is equivalent to the maximum a posteriori estimator assuming
a DE prior, and Bayesian modeling using this prior has also been studied (Park and Casella
2008). While our model behaves like a DE across i for the residuals and across l for the

random effects, the fact that the corresponding population scale parameters  are
indexed by wavelet coefficient (j, k) with their squares having Gamma hyperpriors implies
this model behaves like the Normal-Exponential-Gamma (NEG) distribution discussed by
Griffin and Brown (2005) across wavelet coefficients, which by mixing over different scale

parameters  actually has heavier-than-exponential tails. This distribution has better
variable selection properties than the LASSO (Griffin and Brown 2005; Carvalho, Polson
and Scott 2010), and according to the analysis of Ayers and Cordell (2006), is the best of a
range of estimators. This NEG type prior can have quasi Cauchy tail behavior (when
shape=0.5) or can have thinner tails (when shape > 0.5) (see Supplementary Material). In
our context, this should lead to better nonlinear shrinkage of the random effects’ wavelet
coefficients, and in turn improved adaptive regularization of the random effect functions.
There are connections between this prior and the adaptive LASSO (Zou 2006) involving
coefficient-specific scale parameters, which for our random effects are the corresponding

population scale parameters , that unlike the classic regression setting of Zou (2006) can
actually be well estimated from the data because of the replication over l.

A mixture of point mass at zero and DE prior is the so-called empirical Bayes prior of
Johnstone and Silverman (2004), which was shown to have outstanding variable selection
properties, equalling the Horseshoe prior in the simulation studies of Carvalho et al. (2010).

Our model for the fixed effect wavelet coefficients  is like this empirical Bayes prior
across k, but across a and j is like a mixture of point mass at zero and NEG prior. This
mixture has even more flexibility in modeling heavy tails in the slab and the spike at zero,
which provides extra adaptiveness in the variable selection across predictors a and scales j.
Various investigators have shown spike heavy-tailed slabs to have better variable selection
properties than spike-Gaussian slabs (Vidakovic and Ruggeri 2001; Johnstone and
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Silverman 2004; Johnstone and Silverman 2005; Nason 2008; Griffin and Brown 2010),
since they result in less attenuation of large regression coefficients.

Conditional on the fixed effects B* and population scale parameters for the random effects

 and residuals , this wavelet-space model with assumptions (4)–(6) induces a data-space
FMM (2) for which the random effect and residual error functions Ub(t) and Ei(t) on grid t
are mixtures of double-exponentials, with mixing proportions given by the elements of the

DWT matrix WT = {Wt(jk)} and component precision parameters given by ,
respectively. This distribution does not have a simple closed-form expression, but is heavier-
tailed than the Gaussian, imbuing it with robustness properties. The distribution is
multivariate, and since the weights mix over wavelet coefficients at different frequencies, it
is able to account for autocorrelation within the functions in the same manner as the
Gaussian model discussed by Morris and Carroll (2006). Since the population scale
parameters are double-indexed by both wavelet scale j and location k, it can accommodate
nonstationary covariance structures within the random effect and residual curves, e.g.
allowing different variances and degrees of smoothness, and thus various borrowing of
strength among nearby observations, across different regions of the curves.

2.3 Computational Details of R-WFMM

Here, we outline our computational methods to fit the R-WFMM. We take a fully Bayesian
approach, and use a block Gibbs sampler to sample from the joint posterior distribution of
the waveletspace FMM (3) with distributional assumptions given by (4)–(6). Here we will
briefly summarize the steps; the full details are provided in supplementary materials. For
notational convenience, Here we denote

.

Step 1 For each a, j, k, update the fixed effects from

, which is available in closed form as a
mixture of point mass at 0 and Gaussian, with γajk the indicator of the
Gaussian. Note the random effects are integrated out here, making this a block
sampler that mixes more efficiently than a full Gibbs.

Step 2 For each j, k, update random effects from , which are
MVN.

Step 3 For each i, l, a, j, k update the individual scale parameters from

, which are Inverse
Gaussians, except that when γajk = 0, ψajk is drawn from the exponential prior.

Step 4 For each a, j, k, update the population scale parameters from

, which are Gamma distributions.

Step 5 For each a, j, update the mixture parameter (πaj|γaj), which is a Beta.

These steps are repeated. After a burn-in period, we collect posterior samples from
parameters in the wavelet-space FMM (3), and the IDWT can be applied to the posterior
samples of B* and U* to obtain posterior samples of B and U in (2) to perform Bayesian
inference in the original data space FMM.

If the user is satisfied with default wavelet and the vague proper empirical Bayes
hyperpriors at the top hierarchical level, then this method can be run in an automated fashion
with no tuning parameters, and the user only required to provide Y, X, and Z. The code is
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efficient enough to apply to large data sets, and is readily parallelizable when multiple CPU
systems are available.

The default hyperparameters for the Gamma priors on , and Beta prior on πaj

are chosen using a vague empirical Bayes approach, with modes centered at a moment-
matched estimator of the corresponding parameters with the variance large, e.g. 1000. Since
the ν are scale parameters, Henderson’s Mixed Model equations (pages 275–286, Searle et
al. 1992) are used to get moment-based estimators, and the π are estimated as in Morris and
Carroll (2006). Our sensitivity analyses demonstrate our results were not at all sensitive to
the vagueness of these prior distributions over a reasonable range. Details of the vague
empirical Bayes method, sensitivity, and properties are provided in supplementary materials.

Here, we have chosen to use a fully Bayesian approach to fit our model. In principal, it is
possible to fit a similar model using penalized maximum likelihood methods with
appropriately chosen penalties and likelihoods, although it is not clear how to proceed on the
model fitting, inference, and asymptotics, which are daunting given the complexity of the
model and typical size of the data set. It would be interesting to investigate whether such a
model could be fit and yield estimation and inference in the frequentist realm, but beyond
the scope of this paper. As mentioned above, our Bayesian approach is computationally
efficient enough for large data sets, is parallelizable, and can be run automatically and
depends only upon vague prior distributions for which we offer automatic choices. Further,
our approach does not just yield estimates, but also a wide array of Bayesian inference for
all parameters in both the wavelet- and data-space models, and this inference appropriately
integrates over the uncertainty of all nuisance parameters in the model.

One type of Bayesian inference that is relevant and interesting here is false discovery rate
(FDR)-based pointwise functional inference described by Morris, et al. (2008) that takes
both statistical and practical significance into account. Given an effect size of practical
interest δ, for each covariate a one can easily compute the posterior probabilities that |Ba(t)|
> δ for each t, yielding probability discovery function pa,δ(t). The quantities 1 − pa,δ(t) can
be considered pointwise local FDRs for discovering curve regions of at least size δ. A
cutpoint on the pa,δ(t) can be determined to flag regions of t as significant based on a
specified global FDR α or formal utility considerations. Given this cutpoint, one can use the
posterior probabilities to compute false negative rate (FNR), sensitivity, specificity, and to
construct ROC curve summaries for detecting significant regions. Details are found in the
suppelementary materials.

2.4 Outlier Detection and Characterization Using R-FMM

After fitting the R-FMM, the posterior samples of the individual scale parameters λijk and
ϕbjk which can be used to construct global and local outlier diagnostics to identify and
characterize outlying curves and individuals. A scalar outlier score for an observed function
Yi(t) can be computed by λi‥ = Σj,k λijk. Note that if orthogonal wavelet transforms are used,
then this is equivalent to the trace of the covariance of Ei, row i of E in the data space
conditional on the scaling parameters, since

, and W is the orthogonal linear transformation matrix corresponding to the chosen DWT,
with D = YWT and WTW = I. A relatively large value of λi‥ indicates inflated scaling
parameters for observation i, thus signifying a possible outlying curve. Posterior samples for
these outlier scores can be computed from the MCMC output, and summarized by the
posterior mean λ̂i‥ and accompanying posterior credible intervals. If applied to the random
effects’ scaling parameters, ϕl‥ = ∑j,k ϕljk, these measures can be used to suggest which

Zhu et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



individuals may be outliers in their specified populations, i.e., have mean curves that
significantly deviate from those of the rest of the population. The posterior statistics and the
related inferential values can be combined with traditional box-plots or other testing
methods for outlier diagnosis.

For an outlying curve, it is also possible to construct functional summary statistics to
characterize which regions of the curve are unusual. An “outlier function” λi(t) can be
computed by applying the 2D IDWT to diag{(λijk)}j,k, and then taking the diagonal elements
of the resulting matrix. For the orthonormal wavelet-based FMM, this is equivalent to
estimating the diagonal elements of Si. By comparing λi(t) across i for each t, we can assess
which regions of curve i are unusual for their population, and may be responsible for it being
classified as an outlier. Similarly, we can compute and investigate the ϕb(t), for outlying
random effect functions. If one suspects outliers in the frequency domain, one can look at
the mean individual scale parameters across k, λij. and ϕlj. to flag individuals with outlying
activity at scale j.

2.5 Implementing R-FMM for Higher Dimensional Functions, Other Heavy-tailed
Distributions, and/or Other Isomorphic Transformations

Sections 2.2 and 2.3 provide modeling and computational details for a specific
implementation of the R-FMM assuming P = R = I, double-exponential distributions, 1D
functions, and using wavelet transformations. The R-FMM introduced in this paper can be
applied much more generally, in some cases with very little additional work, and in other
cases requiring some additional derivations and computational work. In this section, we
describe how to accommodate general between-function covariance matrices P and R, other
heavy-tailed distributions, higher dimensional functions (e.g. images), and transformations
other than wavelets.

The FMM of Morris and Carroll (2006) allows correlation between functions through
covariance matrices P and R as part of a separable structure, with Var{vec(U*)} = P⊗Q*

and Var{vec(E*)} = R ⊗ S*, where vec(•) is the column-stacking vectorizing operator and
⊗ is the kronecker operator. Section 2.2 effectively assumes P = R = I, but the approach can
be easily adapted to accommodate general P and R matrices. Given P and R, we can rescale

, after
which all of the specified steps proceed as described in Section 2.3, with an additional
Metropolis-Hastings step to update the (typically very few) covariance parameters in P and
R.

Although we focus on exponential-gamma mixtures here, other heavy-tailed distributions
could be used as well. Some distributions, such as Student’s t (Andrews and Mallows 1974)
and exponential power distributions (West 1987) can be written in ways that lead to
tractable Gibbs updating steps. In other cases, alternative modeling strategies can be used,
including Metropolis-Hastings steps to update the parameters in heavy-tailed distributions.
The observed information matrix can be used to automate the proposal variances of a
random walk Metropolis-Hastings, as in the variance component updates in Morris and
Carroll (2006).

The extension of the R-WFMM to higher dimensional functions such as images is
straightforward. For 2D images, the functional quantities of the FMM are indexed by two
indices, row t1 and column t2, and higher dimensional wavelet transforms are substituted for
the 1D DWT and IDWT used here. If a 2D DWT is used, there are 3 types of wavelet
coefficients at each resolution level j, row wavelets (c = 1), column wavelets (c = 2), and
diagonal wavelets (c = 3), resulting in wavelet coefficients that are triple-indexed by wavelet
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resolution level j, type c, and location k. For general r-dimensional data, the r – dimensional
DWT has 2r − 1 types of coefficients. This accommodates adaptive smoothing in all
dimensions, even when independence among wavelet coefficients is assumed. All modeling
and computational details presented in Sections 2.2 and 2.3 remain the same, except that the
population scale parameters for the residuals and random effects are triple-indexed by (j, c,

k), and the population scale and sparsity parameters for the fixed effects by (a, c, l), yielding
additional flexibility in the different functional dimensions. These changes require no
additional coding, as our current code already accommodates image data.

Wavelets are a compelling choice of basis representation for irregular functional data, and fit
very nicely with the double-exponential distributional assumptions used in the R-WFMM
presented in this paper. However, as described by Morris et al. (2010), the FMM can be fit
using the same 3-step approach underlying the WFMM but using other basis functions, or
more generally using some invertible transformation of the observed functions. Morris, et al.
(2010) use the term isomorphic transformation to describe one that preserves all of the
information in the original data, i.e., is invertible or lossless. More precisely, given row
vector y ∈ ℜ( , we say a transform f : ℜ(  → ℜ(  is isomorphic if there exists a reverse
transform f−1 such that f−1{f(y)} = y. The wavelet transform is isomorphic because
IDWT(DWT(y))= y, but isomorphic transformations can be constructed in other ways as
well, for example, by using other basis functions including Fourier bases, spline bases, and
certain empirically determined basis functions like functional principal components (Aston,
Chiou and Evans 2010), or even using nonlinear transformations. The same 3-step approach
underlying the WFMM can be used to fit the FMM based on other isomorphic transforms,
with some of the same computational benefits. That is, apply the transform to each observed
function, fit the transformed or basis-space FMM, and then use the reverse transformations
to map the estimates (or posterior samples) back to the FMM in the original data space for
inference.

In the same way, the R-FMM described here can be applied using isomorphic
transformations other than wavelets. Given a choice of transformation, if it is reasonable to
use spike-slab or heavy-tailed priors for regularization and to assume independence and the
specified heavy-tailed distributions in the transformed space, then the details herein can be
straightforwardly applied using our existing code, with the suitable transformations and
reverse-transformations substituted for the DWT and IDWT in the first and last steps of the
fitting. If other structure is necessary for reasonable modeling in the alternative transformed
space, then further work can be done to adapt the modeling to that setting, e.g., by modeling
appropriate correlation between coefficients or assuming other types of prior distributions
for penalization/regularization.

3. SIMULATION STUDIES

Simulation Setup

We designed a simulation study to compare the performances of R-WFMM and G-WFMM.
Since real functional data sets have distinct complex structure in the wavelet space, to make
our simulations realistic, we based our simulation upon a real data set: the organ-by-cell line
MALDI-MS data of Section 4. We fit the G-WFMM to these data, and then used the fitted

values of  as the basis for the true distributions from which the data were
simulated. To consider the relative performance of G-WFMM and R-WFMM with tails of
varying degrees, we considered 5 different random distributions for the random effects and
residual errors, with increasing heaviness of tails: Normal, DE, t3, t2, and t1 (Cauchy). We

simulated random effects  and residuals  from these distributions, making the scale

parameters approximately the same magnitude as , respectively, and then
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computed the simulated wavelet space data matrix D according to model (3), using the fixed
and random effect design matrices X and Z analogous to those in Section 4. We simulated a
total of 50 complete data sets, 10 for each tail type, and each data set consisted of 128
functions, 4 functions from each of 32 “animals”, with each function sampled on an equally
spaced grid of 512. Full details are in supplementary materials.

Evaluation Criteria

We used three measures to summarize the methods’ performance in estimating the fixed
effect functions Ba(t) and random effect functions Ub(t), the integrated mean squared error
(IMSE), the integrated posterior variability (IPVar), and the integrated total variability
(ITVar). The IMSE summarizes the variability of the posterior mean estimate about the
truth; for a functional parameter θ(t), with true value θ0(t) and posterior mean θ̂(t) it is
defined to be IMSE= ∫T {θ̂(t) − θ0(t)}2dt. The IPVar summarizes the posterior variability
about the posterior mean; given posterior samples θ(g)(t), g = 1, …, G, it is defined to be

. The ITVar summarizes the posterior variability about

the true mean; it is defined to be . Note that
ITVar=IMSE+IPVar.

For each summary measure, we computed relative efficiency (RE) as the ratio of G-WFMM
and R-WFMM, then computing the mean RE across all 10 repetitions, index a for Ba(t) and
index b for Ub(t), along with the corresponding 90% intervals. Results are presented in
Table 1 and a supplementary figure, with larger numbers indicating greater efficiency for the
R-WFMM.

Simulation Results

For all 3 measures, the R-WFMM performed increasingly better than the G-WFMM as the
tails got heavier, while the two methods performed similarly for Gaussian random effects
and residual errors. More specifically, for the fixed effect functions, we see that the average
improvement in IMSE of the R-WFMM over the G-WFMM is 27%, 49%, 2.81-fold (281%),
and 22.09-fold for the DE, t3, t2, and t1, respectively (see Table 1). For Gaussian data, on
average the R-WFMM was 13% less efficient than the G-WFMM. The R-WFMM
demonstrated a reduction in posterior variation, as measured by the IPVar, for all
distributions including the Gaussian, with average improvements of 11.2%, 50%, 63%, 2.54-
fold, and 14.31-fold for Gaussian, DE, t3, t2, and t1, respectively. When put together, as
measured by ITVar, the R-WFMM demonstrated average improvements of 36%, 52%, 2.61-
fold, and 14.18-fold for the heavier-tailed distributions, respectively, while for Gaussian data
the R-WFMM and G-WFMM were nearly identical, with estimated mean efficiency loss of
just 2% for the R-WFMM. Similar results were obtained for the random effect functions.
Thus, we see great improvement in the performance of R-WFMM over that of the G-
WFMM, both in terms of estimation (IMSE) and variability (IPVar) for heavier-tailed data.
The R-WFMM experienced a slight trade-off (≈ 13%) in estimation accuracy (IMSE) for
Gaussian data that was basically offset by a reduction (≈ 11%) in posterior variability
(IPVar).

To investigate the nature of this observed improvement, for each data set and distribution
simulated we plotted the posterior mean function for the G-WFMM and R-WFMM for each
fixed effect function along with the true fixed effect function from which it was simulated.
All plots are available as online supplementary materials, but here we present an example in
the top two panels (a and b) of Figure 1 involving estimation of the overall mean function

, where Ba(t) is the mean function for group a, from one of the Cauchy
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(t1) simulated data sets. The plot includes the true overall mean function in pink, the
posterior mean for the G-WFMM (a) and R-WFMM (b) in blue with grey bands for 95%
pointwise credible intervals, and non-regularized maximum likelihood estimators from the

Gaussian model  in green, obtained by applying the IDWT to the MLE estimates of

 using Henderson’s mixed model equations (pages 275–286, Searle, Casella and
McCulloch 1992). This is the “unshrunken” MLE with no regularization prior and can be

considered an unsmoothed non-robust functional estimate. Many of the regions of 
with large deviations from the true C0(t) correspond to regions with large outliers for some
of the observed functions or animals.

We see in this plot that the R-WFMM provided much better estimation and more adaptive
regularization than the G-WFMM, in the sense that the R-WFMM was able to better capture
the “true spikes” in C0(t) while smoothing out more of the “spurious wiggles”, and also
providing much tighter pointwise credible intervals. Looking at the simulations with various
tail heaviness, we see these results most dramatically for the heavier-tailed simulations (see
supplemental plots). Naturally, these effects are most apparent in regions of the curve where
the MLE deviates far from the truth (e.g., in intervals [30, 50] and [420, 490]), likely
suggesting evidence of some extreme local outliers. In these regions, the G-WFMM is
strongly affected by outliers, with relatively poor estimation and wide credible intervals,
while the R-WFMM does a much better job, with posterior mean estimates very close to the
truth and relatively small credible interval widths. It appears that the re-weighting of
observations inherent to the R-WFMM was able to successfully downweight the influence
of outliers on estimation, thus leading to improved estimates. The improved performance of
the R-WFMM may also be partially due to its use of modern sparsity distributions in the
wavelet space with excellent variable selection properties, leading to potential improvements
in the adaptive regularization of the functional estimates. These same effects can be seen on
analogous plots for the other fixed effect functions and other simulated data sets, which are
all available as supplementary web materials
(http://odin.mdacc.tmc.edu/~jmorris/papers.html).

We also see greatly improved estimation in the random effect functions Ul(t). The bottom
two panels (c and d) of Figure 1 plot the posterior means and posterior credible intervals for
G-WFMM and R-WFMM for U2(t) from one of the t1 simulations, again with the true
functions and “unregularized MLEs” for U2(t). We once again see that for regions
containing outliers, the G-WFMM has poor estimation and large credible intervals, while the
R-WFMM does very well. This is most clear in the regions [0, 50], [170, 250], and [350,
400], where the G-WFMM estimate is far from the true U2(t) with very large credible
intervals, and the R-WFMM is accurate with tight credible intervals. Notice how outliers
appear to induce spurious wiggles in the MLE estimates near 100 and near 200, while
attenuating a “true wiggle” near 350. Remarkably, the R-WFMM is able to automatically
recognize that the former wiggles are spurious, and regularize them out, yet recognize that
the latter wiggle is “real”, estimating it well with tight error bounds, in spite of the fact that
it is not even apparent in the MLE. This is an excellent illustration of the interplay among
robust estimation, adaptive regularization, and borrowing of strength between curves that we
see in robust functional regression. Analogous plots for all random effects from all
simulated data are available online at (http://odin.mdacc.tmc.edu/~jmorris/papers.html)

These results show the estimation benefits of R-WFMM. To evaluate the relative inferential
performance, we computed posterior samples for the organ, cell line, and organ-by-cell line
functional effects Ci(t), i = 1, 2, 3, defined in Section 4, for both the G-WFMM and R-
WFMM. We then computed posterior probabilities of 1.5-fold expression changes for all 3
functional effects, and estimated the corresponding thresholds ϕ10 to declare significance
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based on a global FDR of α = 0.10, as overviewed in Section 2.3 and detailed in
supplementary materials. Based on these determinations, we computed both the “realized”
and “empirical” FDR, FNR, Sens, and Spec, plus the AUC and AUC10 for the realized and
empirical ROC curves. The “realized” statistics are computed based on the true Ba(t),
whereas the “empirical” quantities are estimated from the model without knowledge of the
true Ba(t). Results are in a supplementary table.

Using the realized AUC to measure performance, we see that the R-WFMM considerably
outperformed the G-WFMM for all simulation settings with heavier-than-normal tails, with
the magnitude of the difference increasing with the heaviness of the tails. This suggests that
the R-WFMM would have better operating characteristics in its detection of significant
regions of the curves. This improvement is even more pronounced in the AUC-10, which
focuses on the region of the ROC curve with highest specificity, and can also been seen in
the individual FDR, FNR, Sens, and Spec statistics. These results were mirrored in the
estimated empirical statistics, which did not presume knowledge of the true Ba(t). Note that
the G-WFMM yielded slightly higher AUC and AUC-10 than the R-WFMM in the Gaussian
simulation. This indicates, as expected, that some inferential price was paid for robust
modeling when it was not needed, although the magnitude of this trade-off was not large
compared with the improvements seen in setting of heavy-tailed distributions.

Since our primary goal of this simulation study was to compare the R-WFMM and G-
WFMM, both of which involve wavelet-space modeling, we simulated the data using heavy
tails in the wavelet space. Under the suggestion of a reviewer, we also simulated some data
with heavy tails directly in the data space, as detailed in supplementary materials. We again
found the R-WFMM performed better than the G-WFMM, with the IMSE approximately 2-
fold better for t1 tails in the data space. This is roughly the same order of improvement we
saw for the t2 or t3 data in the wavelet space, which is not surprising given wavelet
coefficients involve weighted averages of observations in the data space, which may tend to
lighten the tails in the wavelet domain.

4. APPLICATION

In this section, we illustrate our new robust R-FMM method by applying it to a cancer
proteomics data set and comparing its performance with the G-WFMM. In this study, a
tumor from one of two cancer cell lines was implanted into either the brain or lungs of 16
nude mice. The cell lines were A375P, a human melanoma cancer cell line with low
metastatic potential, and PC3MM2, a highly metastatic human prostate cancer cell line. The
goal was to find blood serum proteins differentially expressed between organ implant sites,
implanted cell line types, or the organ-by-cell line interaction. This study was also
considered in Morris, et al. (2008).

To study the proteome, blood serum from each animal was run through a MALDI-TOF mass
spectrometer, which produces a proteomic spectrum y(t) that is a function with many peaks,
with a peak at location t corresponding to a protein/peptide in the sample with molecular
mass of t Daltons, with the spectral intensity y(t) giving a rough estimate of the
corresponding protein abundance. In this experiment, we obtained two spectra for each
mouse, one using a low laser intensity and once using a high laser intensity. Here we
consider the part of the spectrum between t = 2, 000 and t = 14, 000 Daltons, a range that
includes T = 7, 985 points per spectrum.

Model Setup

We used the same wavelet transform and FMM design matrices for both the G-WFMM and
R-WFMM. After background correction and normalization of the mass spectra (Morris et al.
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2005) followed by log2 transformation of the intensities, we applied a DWT to each
spectrum, using the Daubechies wavelet with 8 vanishing moments, periodic boundary
conditions, decomposed to J = 9 levels. We used the cell mean model for the factorial design
with an additional column for the laser intensity effect, so that X in model (1) is a 32 × 5
matrix. Columns one to four indicated the treatment groups: brain-A375P, brain-PC3MM2,
lung-A375P, lung-PC3MM2, respectively, while column five indicated whether the
observations were from high (coded as 1) or low (coded as −1) laser intensity. The random
effect design matrix Z was a 32 × 16 matrix of 0 and 1’s, with Zib = 1 indicating that
spectrum i came from the bth animal, accounting for correlation between spectra from the
same animal. From the posterior samples of the fixed effect functions, we computed linear

transformations of interest, including the overall mean , and three
contrast effects: the organ main effect C1(t) = 0.5(B1(t) + B2(t) − B3(t) − B4(t)), the cell-line
main effect C2(t) = 0.5(B1(t) − B2(t) + B3(t) − B4(t)), and the organ-by-cell line interaction
effect C3(t) = 0.5(B1(t) − B2(t) − B3(t) + B4(t)). Note that these linear combinations differ in
scale from what was used by Morris, et al. (2008), which did not have the 0.5 factors.

For the G-WFMM, we specified vague proper beta and inverse gamma hyperpriors for πaj,
τaj, qjk, and sjk, centered at the conditional maximum likelihood estimates determined as
described in Morris and Carroll (2006), with large variances. For the R-WFMM, we used the

vague proper Gamma priors for the population scale parameters  and sparsity
parameter πaj as described briefly in Section 2.3 and in more detail in supplementary
materials. For each method, after a burn-in of 3000, we obtained 2000 posterior samples.
Trace plots suggested good mixing. From these, we constructed posterior samples of the
organ, cell line, and organ-by-cell line contrast functions Ci(t), i = 1, …, 3, respectively, and
computed the posterior probabilities for each to be at least 1.5-fold different (> log2(1.5) in
magnitude). The threshold corresponding to FDR of α = 0.10 was computed as described in
Morris, et al. (2008), and the corresponding empirical FNR, Sens, Spec and ROC curve
summaries were computed as described in supplementary materials. Figure 2 and a
supplementary table summarize these results.

Results

The first two panels of Figure 2 contain for the R-WFMM the posterior mean for the overall
mean spectrum C0(t) and the cell line main effect function C2(t). The third panel contains
the corresponding posterior probability plots for a 1.5-fold difference, p2(t) = Prob{|C2(t)| >
log2(1.5)|D} for the G-WFMM (blue) and R-WFMM (red), along with their respective
thresholds determined by constraining the estimated global FDR≤ 0.10. In the first two
panels, the colors indicate which methods flagged that region as “significant” in terms of a
1.5-fold difference with a global FDR of α ≤ 0.10: blue=G-WFMM only, red=R-WFMM
only, green=both G-WFMM and R-WFMM, and black=neither. Equivalent plots for the
organ and organ-by-cell-line interaction effects are available as supplementary material.

In these analyses, the R-WFMM flagged many more regions as significant compared to the
G-WFMM. In Figure 2 summarizing the cell line effect function, 20 contiguous regions
were flagged by both methods and 10 were flagged by the R-WFMM but not the G-WFMM,
including [2815D, 2825D], [3255D, 3285D], [4460D, 4500D], [4610D, 4655D], [4890D,
4910D], [6300D, 6320D], [6705D, 6735D], [7510D, 7610D], [9485D, 9530D], and [9680D,
9770D]. There were no contiguous regions flagged by the G-WFMM for a cell line effect
that were not flagged by the R-WFMM. For the organ main effect 28 contiguous regions
were flagged by both methods, 10 were flagged by only R-WFMM, and 3 were flagged by
only G-WFMM (results shown in supplementary material). For the organ-by-cell-line
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interaction function, 13 regions were flagged by both methods, 8 were flagged only by R-
WFMM, and none were flagged by G-WFMM but not R-WFMM.

Based on the posterior samples for Ci(t), we also computed the empirical estimates of the
FNR, Sens and Spec for 1.5 fold change, while specifying the global FDR of α = 0.1. These
values are listed in a supplementary table, along with the mean width of the 95% credible
intervals averaged across (1 : T), the empirical ROC curves were also computed, and the
corresponding AUC and AUC-10. Compared to the performance of the G-WFMM, the R-
WFMM model resulted in higher estimated AUC and AUC-10 values, smaller FNR, higher
sensitivity, similar levels of specificity, and narrower 95% credible intervals.

Outlier Detection

We used the posterior samples of the scaling parameters to investigate possible outliers in
the data as described in Section 2.4. We computed the statistics λi‥ for each individual
spectrum, i = 1, …, 32, and ϕl‥ for each individual rat, l = 1, …, 16, and functional outlier
statistics {λi(t)} and {ϕl(t)} for all spectra and rats, to check whether regions of certain
curves were outliers. Overall and for each t, we computed pointwise medians and IQRs and
flagged regions of t that were above median + 1.5 IQR as potential outliers. We found
regions of certain spectra and from certain rats were local outliers. For example, spectrum
21 had unusually high levels of protein expression for proteins around 4000D and unusually
low levels of expression for several peaks around 5000D and 10,000D. Rat 4 had unusually
low levels of some proteins around 5000D, and unusually high levels for some protein
around 7000D. These results are readily apparent in the pointwise outlier plots (figure in
supplementary material), and serve as useful diagnostics to flag unusual curves or
individuals for further investigation.

5. CONCLUSIONS AND DISCUSSIONS

We have introduced a novel method, R-FMM, that can be used to perform robust functional
regression in the general functional mixed model framework. To our knowledge, this is the
first robust functional response regression method in the statistical literature. Our approach
involves modeling the functional data on the discrete grid in the wavelet space using a
hierarchical scale mixture model that leads to robust modeling and desirable sparsity
properties that translate to effective adaptive smoothing of fixed and random effect
functions. Our approach leads to tractable calculations and a method that can feasibly be
applied to various high-dimensional, complex functional data sets with our automated,
efficient software, yielding robust functional inference and providing statistics for outlier
detection and investigation. We presented modeling and computational details for a specific
implementation of the R-FMM involving double-exponential distributions, 1D functions,
and wavelet transforms that we call the R-WFMM, but the method can be applied more
generally using other heavy-tailed distributions, higher dimensional functions, and using
other invertible transformations as alternatives to wavelets.

Through simulation studies based on real mass spectrometry proteomic data, we
demonstrated that the R-WFMM yielded improved estimation and inference over the
Gaussian WFMM (G-WFMM) when the random effects and residual errors in the
transformed space were heavy-tailed, with the relative improvement increasing with the
heaviness of the tails. For both fixed and random effect functions, the R-WFMM
demonstrated robustness to outliers, increased precision, and improved adaptive
regularization, showing a remarkable ability to distinguish real local features from spurious
ones in the functional estimates. This improvement can be explained by the interplay among
the robustness properties from heavier-tailed likelihoods, the nonlinear shrinkage induced by
the heavier-tailed prior distributions, and the ability to borrow strength across curves to
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better determine which features in the data are characteristic of the signal and which may be
noise. These properties are induced by the specific carefully chosen hierarchical model
components of our method that lead to interesting distributional characteristics both across

and within the individual curves.

The hierarchical scale mixture distributions for the residuals and random effects in the
wavelet space induce heavier-than-normal tails in the distribution across individuals for
each wavelet coefficient. This leads to a weighted regression, whereby individuals with
outlying values for a given wavelet coefficient are down-weighted in their influence on the
regression parameter for that wavelet coefficient. Projected back to the data space, this
effectively down-weights corresponding functional features of individual curves and random
effect curves that are outliers relative to the rest of the data set. As vividly demonstrated in
Figure 1, this robustness can remove outlier-induced spurious features present in naive
estimates of the fixed or random effect functions, and can even uncover features truly
present in the fixed and random effect functions but obscured by outliers in naive functional
regression estimates.

The effective adaptive regularization is related to the model’s distributional assumptions
within curves, which is induced by the hierarchical model across wavelet coefficients, for
which separate scale parameters are allowed for each wavelet coefficient. In wavelet
regression, the key to adaptive regularization is effective variable selection in the wavelet
space, which is determined by two aspects of the method: the ability to set nonsignificant
coefficients to zero (sparsity) to remove the noise and the ability to estimate the significant
regression coefficients with minimal bias (low bias) to preserve the signal features. These
shadow the two components of the oracle property studied in the asymptotic variable
selection literature, (1) consistent variable selection (sparsity) and (2) optimal estimation
(low bias). In Bayesian wavelet regression (and variable selection in general), these two
properties depend on two characteristics of the prior distribution across wavelet coefficients:
(1) density behavior near zero, and (2) the heaviness of the tails. Effective priors are able to
place large amounts of density near zero while retaining heavy tails. The R-WFMM’s

distribution for the random effects in the wavelet space  across wavelet coefficients (j, k)
is like an NEG (Griffin and Brown 2005), known to be an outstanding sparsity prior. It can
be viewed as a scale mixture of double exponentials, with separate scale parameters for each
wavelet coefficient (j, k) that are estimable because of the replicate random effect functions.
This distribution has great flexibility in capturing high density near zero, leading to effective
variable selection and shrinkage of the noise coefficients, and yet heavy enough tails to
reduce the bias in estimating the large wavelet coefficients corresponding to the signal.
Similar effects are seen for the fixed effect functions’ spike double-exponential-slab prior
distribution, as well. Together with the down-weighting of outliers induced by the across-
curve structure, these properties between wavelet coefficients (i.e.within curves) help
explain the astoundingly adaptive properties we observed in our simulation results.

We found it remarkable in our simulations that our method appeared to be sufficiently
robust to provide outstanding performance even for data with Cauchy tails, able to down-
weight the extreme outliers and obtain accurate functional estimates with reasonably tight
pointwise error bounds. Further, the R-WFMM was reasonably competitive with the G-
WFMM when the data were truly Gaussian, with some loss in estimation accuracy (≈ 13%),
which was partially offset by a realized gain in precision (≈ 12%). One might expect a
greater loss of efficiency given the well-known result that the relative efficiency of the
median for estimating the location parameter of a normal distribution is 2/π ≈ 0.637, but as
described previously, there are other factors at play in our more complex robust FMM
framework that may counterbalance the loss of efficiency from misspecified likelihood.
There are already documented benefits of using double-exponential likelihoods for wavelet
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regression even when the true likelihood is Gaussian, and of using double-exponential slabs
in variable selection settings. The benefits of these modeling structures are even greater in
the multiple function FMM setting, in which we have replicate functions across which we
can borrow strength in estimating the parameters regulating the sparsity, regularization, and
tails. As a result, it seems reasonable to use the R-WFMM over the G-WFMM by default for
functional response regression, given that the R-WFMM can provide the security of
excellent robustness properties without trading off too much efficiency even if the data are
truly Gaussian.

R-FMM appears to be a promising method for robust functional response regression for the
analysis of functional and image data. However, there are some limitations and potential
improvements of the method. The independence assumptions across basis coefficients lead
to great computational advantages, but for some basis functions and data sets it may be
appropriate to consider more general assumptions. The choice of wavelets as a basis space
may not be best for all data sets. For example, wavelets have the weakness that individual
wavelet coefficients are typically not intuitive to interpret. For a given data set, careful
thought should be given to find the most suitable basis spaces or transforms to use. Principal
component methods are popular in the FDA literature, and can provide extremely efficient
basis representations for many functional data, especially when the functions are simple
enough to be well represented by a small number of eigenfunctions. For complex high-
dimensional functional data, however, eigenfunction-based analyses may not be ideal,
considering recent results suggesting strong inconsistency of eigenvector estimation in high
dimension, low sample size settings (Jung and Marron, 2009). As discussed in this paper,
our approach to robust FMM does not depend on the choice of wavelets for basis space
modeling; the approach could be applied using other bases or transforms, as well. The basis
itself need not necessarily be interpretable, but it is sufficient if it is a suitable building block
for modeling, since estimation, inference, and interpretation can be done in the original
functional or image data space. For a given basis, one would need to consider whether the
specific covariance and exponential-gamma assumptions used here make sense, and if not,
to adapt the model to have assumptions that make sense.

While our code is automated and efficient enough for large functional and image data sets,
for some enormous data sets (e.g. hundreds of GBs in size) the method could not be feasibly
applied as described, as memory limitations may prevent the entire data matrix Y from
loading into the computer at one time. Some specific calculations regarding computing time
and memory requirements for Bayesian FMMs can be found in Herrick and Morris (2006),
which provides some information about the feasibility and scalability of these methods to
very large data sets. The high degree of parallelizability of these methods help it to scale up
and run much quicker for very large data sets, and wavelet compression can be used to
reduce the memory requirements by a factor of 20–100 or more (Herrick and Morris 2006;
Morris, et al. 2011). However, the method as described will not immediately scale up to
extremely large data sets, e.g. fMRI data where the raw data is 100’s of GB in size. For
these data, the method would have to be adapted using multi-step approaches or
approximations like variational Bayes, but these are topics for future development.

Also, further theoretical studies are needed to study the robustness properties of this
hierarchical modeling framework and to explore exactly how we should study robustness in
functional data analysis. Under the suggestion of a reviewer, we have performed some
preliminary theoretical investigations of robustness, showing the influence of global and
local outliers asymptotically go to zero in our hierarchical model applied to a simple mean
+error functional model (see supplementary materials). Further investigations in the full
FMM setting would be interesting and insightful, but very involved and beyond the scope of
this paper.
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Figure 1. Illustrating adaptive estimation of fixed and random effect functions

The posterior mean (blue line) estimates for C0(t) and U2(t) for data simulated with Cauchy
(t1) random effects and residuals and 95% credible intervals (grey bands) for G-WFMM ((a)
and (c)) and R-WFMM ((b) and (d)) from one simulation run, along with true C0(t)/U2(t)
(pink) and corresponding unregularized maximum likelihood estimates (green).
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Figure 2. Regions flagged for 1.5-fold cell line effect by G-WFMM and R-WFMM

(a) The significant regions flagged on the grand mean function C0(t) (defined in Section 3),
plotted in the original scale. (b) The same regions flagged on the posterior mean cell line
effect function C2(t) with 95% posterior intervals, plotted in log2 scale. In both (a) and (b),
blue, red, and green indicate regions flagged by G-WFMM only, R-WFMM only, and by
both methods, respectively. (c) The corresponding posterior probability estimates and the
thresholds obtained using Bayesian FDR-based inference, with α = 0.10, with blue color for
G-WFMM and red color for R-WFMM.
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