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Abstract— This paper provides new results for a robust
adaptive tracking control of the attitude dynamics of a rigid
body. Both of the attitude dynamics and the proposed control
system are globally expressed on the special orthogonal group,
to avoid complexities and ambiguities associated with other
attitude representations such as Euler angles or quaternions.
By designing an adaptive law for the inertia matrix of a rigid
body, the proposed control system can asymptotically follow
an attitude command without the knowledge of the inertia
matrix, and it is extended to guarantee boundedness of tracking
errors in the presence of unstructured disturbances. These are
illustrated by numerical examples and experiments for the
attitude dynamics of a quadrotor UAV.

I. INTRODUCTION

The attitude control problem has been extensively studied
under various assumptions (see, for example, [1], [2], [3]).
One of the distinct features of the attitude dynamics is
that its configuration manifold is not linear: it evolves on a
nonlinear manifold, referred as the special orthogonal group,
SO(3). This yields important and unique properties that
cannot be observed from dynamic systems evolving on a
linear space. For example, it has been shown that there exists
no continuous feedback control system that asymptotically
stabilizes an attitude globally on SO(3) [4].

Geometric control is concerned with the development of
control systems for dynamic systems evolving on nonlinear
manifolds that cannot be globally identified with Euclidean
spaces [5], [6]. By characterizing geometric properties of
nonlinear manifolds intrinsically, geometric control tech-
niques completely avoids singularities and ambiguities that
are associated with local coordinates or improper characteri-
zations of a configuration manifold. This approach has been
applied to fully actuated rigid body dynamics on Lie groups
to achieve almost global asymptotic stability [6], [7], [8], [9].

In this paper, we develop a geometric adaptive controller
on SO(3) to track an attitude and angular velocity command
without the knowledge of the inertia matrix of a rigid
body. An estimate of the inertia matrix is updated online to
provide an asymptotic tracking property. It is also extended
to a robust adaptive attitude tracking control system. Stable
adaptive control schemes designed without consideration of
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uncertainties may become unstable in the presence of small
disturbances [10]. The presented robust adaptive scheme
guarantees the boundedness of the attitude tracking error
and the inertia matrix estimation error even if there exist
modeling errors or disturbances. Compared with a prior work
in [8], the proposed adaptive tracking control system has
simpler structures, and the proposed robust adaptive tracking
control system can be applied to a more general class of
unstructured or non-harmonic uncertainties.

II. ATTITUDE DYNAMICS OF A RIGID BODY

We consider the rotational attitude dynamics of a fully-
actuated rigid body. We define an inertial reference frame
and a body fixed frame whose origin is located at the mass
center of the rigid body. The configuration of the rigid body
is the orientation of the body fixed frame with respect to
the inertial frame, and it is represented by a rotation matrix
R ∈ SO(3), where the special orthogonal group SO(3) is
the group of 3× 3 orthogonal matrices with determinant of
one, i.e., SO(3) = {R ∈ R3×3 |RTR = I, detR = 1}.

The equations of motion are given by

JΩ̇ + Ω× JΩ = u+ ∆, (1)

Ṙ = RΩ̂, (2)

where J ∈ R3×3 is the inertia matrix in the body fixed frame,
and Ω ∈ R3 and u ∈ R3 are the angular velocity of the rigid
body and the control moment, represented with respect to the
body fixed frame, respectively. The vector ∆ ∈ R3 represents
unknown disturbances in the attitude dynamics.

The hat map ∧ : R3 → so(3) transforms a vector in R3

to a 3× 3 skew-symmetric matrix such that x̂y = x× y for
any x, y ∈ R3. The inverse of the hat map is denoted by the
vee map ∨ : so(3)→ R3. Throughout this paper, the 2-norm
of a matrix A is denoted by ‖A‖, and its Frobenius norm is
denoted by ‖A‖F =

√
tr[ATA]. We have ‖A‖ ≤ ‖A‖F ≤√

r‖A‖, where r is the rank of A.

III. GEOMETRIC TRACKING CONTROL ON SO(3)

We develop adaptive control systems to follow a given
smooth attitude command Rd(t) ∈ SO(3). The kinematics
equation for the attitude command can be written as

Ṙd = RdΩ̂d, (3)

where Ωd ∈ R3 is the desired angular velocity.
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A. Attitude Error Dynamics

We define an attitude error dynamics that represent the
errors in tracking the desired attitude trajectory. First, several
properties of the attitude error function studied in [6], [11]
are summarized, and we show few additional facts required
in this paper. Due to the page limit, the proofs are relegated
to [12].

Proposition 1: For a given tracking command (Rd,Ωd),
and the current attitude and angular velocity (R,Ω), we
define an attitude error function Ψ : SO(3)×SO(3)→ R, an
attitude error vector eR ∈ R3, and an angular velocity error
vector eΩ ∈ R3 as follows:

Ψ(R,Rd) =
1

2
tr
[
G(I −RTdR)

]
, (4)

eR(R,Rd) =
1

2
(GRTdR−RTRdG)∨, (5)

eΩ(R,Ω, Rd,Ω) = Ω−RTRdΩd, (6)

where the matrix G ∈ R3×3 is given by G = diag[g1, g2, g3]
for distinct, positive constants g1, g2, g3 ∈ R. Then, the
following statements hold:

(i) Ψ is locally positive definite about R = Rd.
(ii) the left-trivialized derivative of Ψ is given by

T∗ILR (DRΨ(R,Rd)) = eR. (7)

(iii) the critical points of Ψ, where eR = 0, are {Rd} ∪
{Rd exp(πŝ)} for s ∈ {e1, e2, e3}.

(iv) a lower bound of Ψ is given as follows:

b1‖eR(R,Rd)‖2 ≤ Ψ(R,Rd), (8)

where the constant b1 is given by b1 = h1

h2+h3
for

h1 = min{g1 + g2, g2 + g3, g3 + g1},
h2 = max{(g1 − g2)2, (g2 − g3)2, (g3 − g1)2},
h3 = max{(g1 + g2)2, (g2 + g3)2, (g3 + g1)2}.

(v) Let ψ be a positive constant that is strictly less than h1.
If Ψ(R,Rd) < ψ < h1, then an upper bound of Ψ is
given by

Ψ(R,Rd) ≤ b2‖eR(R,Rd)‖2, (9)

where the constant b2 is given by b2 = h1h4

h5(h1−ψ) for

h4 = max{g1 + g2, g2 + g3, g3 + g1}
h5 = min{(g1 + g2)2, (g2 + g3)2, (g3 + g1)2}.

Proof: See [12].
Proposition 2: The error dynamics for Ψ, eR, eΩ satisfies

d

dt
(RTdR) = RTdRêΩ (10)

d

dt
(Ψ(R,Rd)) = eR · eΩ, (11)

ėR = E(R,Rd)eΩ, (12)

ėΩ = J−1(−Ω× JΩ + u+ ∆)− αd, (13)

where the matrix E(R,Rd) ∈ R3×3, and the angular accel-
eration αd ∈ R3, that is caused by the attitude command,
and measured in the body fixed frame, are given by

E(R,Rd) =
1

2
(tr[RTRdG]I −RTRdG), (14)

αd = −Ω̂RTRdΩd +RTRdΩ̇d. (15)

Furthermore, the matrix E(R,Rd) is bounded by

‖E(R,Rd)‖ ≤
1√
2

tr[G] . (16)

Proof: See [12].

B. Adaptive Attitude Tracking

Attitude tracking control systems require the knowledge
of an inertia matrix when the given attitude command is not
fixed. But, it is difficult to measure the value of an inertia
matrix exactly. In general, there is an estimation error:

J̃ = J − J̄ , (17)

where the exact inertia matrix and its estimate are denoted by
the matrices J and J̄ ∈ R3×3, respectively. All of matrices,
J , J̄ , J̃ are symmetric.

Here, an adaptive tracking controller for the attitude
dynamics of a rigid body is presented to follow a given
attitude command without the knowledge of its inertia matrix
assuming that there is no disturbance, and that the bounds
of the inertia matrix are given.

Assumption 3: The minimum eigenvalue λm ∈ R, and the
maximum eigenvalue λM ∈ R of the true inertia matrix J
given at (1) are known.

Proposition 4: Assume that there is no disturbance in the
attitude dynamics, i.e. ∆ = 0 at (1), and Assumption 3 is
satisfied. For a given attitude command Rd(t), and positive
constants kR, kΩ, kJ ∈ R, we define a control input u ∈ R3,
and an update law for J̄ as follows:

u = −kReR − kΩeΩ + Ω× J̄Ω + J̄αd, (18)

˙̄J =
kJ
2

(−αdeTA − eAαTd + ΩΩT êA − êAΩΩT ), (19)

where eA ∈ R3 is an augmented error vector given by

eA = eΩ + ceR (20)

for a positive constant c satisfying

c < min

{√
2b1kRλm
λ2
M

,

√
2kΩ

λM tr[G]
,

4kRkΩ

k2
Ω + 1√

2
kRλM tr[G]

}
.

(21)

Then, the zero equilibrium of the tracking errors (eR, eΩ)
and the estimation error J̃ is stable, and those errors are
uniformly bounded. Furthermore, the tracking errors for the
attitude and the angular velocity asymptotically converge to
zero, i.e. eR, eΩ → 0 as t→∞.

Proof: Consider the following Lyapunov function:

V =
1

2
eΩ · JeΩ + kRΨ(R,Rd) + cJeΩ · eR +

1

2kJ
‖J̃‖2F .

(22)
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From (8), we obtain

zTW11z ≤ V (23)

where z = [‖eR‖; ‖eΩ‖; ‖J̃‖F ] ∈ R3, and the matrix W1 ∈
R3×3 are given by

W11 =

 b1kR 1
2cλM 0

1
2cλM

1
2λm 0

0 0 1
2kJ

 . (24)

Substituting (18) into (13) with ∆ = 0, we obtain

JėΩ = −kReR − kΩeΩ − J̃αd − Ω× J̃Ω. (25)

Using (11), (12), (25), the time-derivative of V is given by

V̇ = −kΩ‖eΩ‖2 − ckR‖eR‖2 + cJeΩ · EeΩ − ckΩeΩ · eR

− (eΩ + ceR) · (J̃αd + Ω× J̃Ω) +
1

kJ
tr
[
J̃ ˙̃J
]
.

From (20), and using the fact that x · y = tr[xyT ] = tr[yxT ]
for any x, y ∈ R3, and the scalar triple product identity, this
can be written as

V̇ = −kΩ‖eΩ‖2 − ckR‖eR‖2 + cJeΩ · EeΩ − ckΩeΩ · eR

+ tr

[
J̃

{
−αdeTA − Ω(eA × Ω)T +

1

kJ

˙̃J

}]
.

Since ˙̃J = − ˙̄J , we can substitute (19) into this. Using the
facts that tr[J̃A] = tr[J̃AT ] for any A ∈ R3×3, and (eA ×
Ω)T = (êAΩ)T = −ΩT êA, it reduces to

V̇ = −kΩ‖eΩ‖2 − ckR‖eR‖2 + cJeΩ · EeΩ − ckΩeΩ · eR.
(26)

From (16), it is bounded by

V̇ ≤ −(kΩ −
c√
2
λM tr[G])‖eΩ‖2 − ckR‖eR‖2

+ ckΩ‖eΩ‖‖eR‖ = −ζTW2ζ, (27)

where ζ = [‖eR‖; ‖eΩ‖] ∈ R2, and the matrix W2 ∈ R2×2

is given by

W2 =

[
ckR − ckΩ

2

− ckΩ

2 kΩ − c√
2
λM tr[G]

]
. (28)

The inequality (21) for the constant c guarantees that the
matrices W11,W2 are positive definite.

This implies that the Lyapunov function V(t) is bounded
from below and it is nonincreasing. Therefore, it has a limit,
limt→∞ V(t) = V∞, and eR, eΩ, J̄ ∈ L∞.1 From (12),
(25), we have ėR, ėΩ ∈ L∞. Furthermore eR, eΩ ∈ L2

since
∫∞

0
ζ(τ)TW2ζ(τ)dτ ≤ V(0) − V∞ < ∞. According

to Barbalat’s lemma (or Lemma 3.2.5 in [10]), we have
eR, eΩ → 0 as t→∞.

Remark 5: This proposition guarantees that the attitude
error vector eR asymptotically converges to zero. But, this
does not necessarily imply that R → Rd as t → ∞. Ac-
cording to Proposition 1, there exist three additional critical

1A function f : R → R belongs to the Lp space for p ∈ [1,∞), if the
following p-norm of the function exits, ‖f‖p =

{∫∞
0 |f(τ)|p dτ

}1/p.

points of Ψ, namely {Rd exp(πŝ)} for s ∈ {e1, e2, e3},
where eR = 0. This is due to the nonlinear structures of
SO(3), and these cannot be avoided for any continuous
attitude control systems [4].

But, we can show that those three additional equilibrium
points are unstable, by using linearization. It turned out that
these points are saddle equilibria, which have both of stable
manifolds and unstable manifolds [13]. The union of the
stable manifolds to these undesirable equilibria has a lower
dimension than the tangent bundle of the configuration space,
and we say that it has an almost-global stabilization property.

Remark 6: At Assumption 3, the minimum eigenvalue λm
and the maximum eigenvalue λM of the inertia matrix J are
required. But, in Proposition 4, they are only used to find
the coefficient c at (21). So, Assumption 3 can be relaxed as
requiring an upper bound of λm and a lower bound of λM ,
which are relatively simpler to estimate.

C. Robust Adaptive Attitude Tracking

The adaptive tracking control system developed in the
previous section is based on the assumption that there is
no disturbance in the attitude dynamics. But, it has been dis-
covered that adaptive control schemes may become unstable
in the presence of small disturbances [10]. Robust adaptive
control deals with redesigning or modifying adaptive control
schemes to make them robust with respect to unmodeled dy-
namics or bounded disturbances. In this section, we develop
a robust adaptive attitude tracking control system assuming
that the bound of disturbances are given.

Assumption 7: The disturbance term in the attitude dy-
namics at (1) is bounded by a known constant, i.e. ‖∆‖ ≤ δ
for a given positive constant δ.

Proposition 8: Suppose that Assumptions 3 and 7 hold.
For a given attitude command Rd(t), and positive constants
kR, kΩ, kJ , σ, ε ∈ R, we define a control input u ∈ R3, and
an update law for J̄ as follows:

u = −kReR − kΩeΩ + Ω× J̄Ω + J̄αd + v, (29)

v = − δ2eA
δ‖eA‖+ ε

, (30)

˙̄J =
kJ
2

(−αdeTA − eAαTd + ΩΩT êA − êAΩΩT − 2σJ̄),

(31)

where eA ∈ R3 is an augmented error vector given at (20)
for a positive constant c satisfying (21). Then, if σ and ε are
sufficiently small, the zero equilibrium of the tracking errors
(eR, eΩ) and the estimation error J̃ are uniformly bounded.

Proof: Consider the Lyapunov function V at (22). For
a positive constant ψ < h1, define D ⊂ SO(3) as

D = {R ∈ SO(3) |Ψ < ψ < h1}

From Proposition 1, V is bounded in D by

zTW11z ≤ V ≤ zTW12z, (32)
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where z = [‖eR‖; ‖eΩ‖; ‖J̃‖F ] ∈ R2, the matrix W11 ∈
R2×2 is given by (24), and the matrix W12 is given by

W12 =

 b2kR
1
2c2λM 0

1
2c2λM

1
2λM 0

0 0 1
2kJ

 .
The time-derivative of V along the presented control inputs

is written as

V̇ = −kΩ‖eΩ‖2 − ckR‖eR‖2 + cJeΩ · EeΩ − ckΩeΩ · eR
+ eA · (∆ + v) + σtr

[
J̃ J̄
]
. (33)

Compared with (26), this has three additional terms caused
by ∆, v and σ. From Assumption 7 and (30), the second last
term of (33) is bounded by

eA · (∆ + v) ≤ δ‖eA‖ −
δ2‖eA‖2

δ‖eA‖+ ε
=

δ‖eA‖
δ‖eA‖+ ε

ε ≤ ε.

(34)

The last term of (33) is bounded by

tr
[
J̃ J̄
]

= tr
[
J̃(J − J̃)

]
=

∑
1≤i,j≤3

(−J̃2
ij + Jij J̃ij)

≤
∑

1≤i,j≤3

(−1

2
J̃2
ij +

1

2
J2
ij) = −1

2
‖J̃‖2F +

1

2
‖J‖2F .

Using the relation between a Frobenius norm and a matrix
2-norm, we have ‖J‖F ≤

√
3‖J‖ =

√
3λM . Therefore,

tr
[
J̃ J̄
]
≤ −1

2
‖J̃‖2F +

3

2
λ2
M . (35)

Substituting (34), (35) into (33), we obtain

V̇ ≤ −zTW3z +
3

2
σλ2

M + ε (36)

where the matrix W3 ∈ R3×3 is given by

W3 =

 ckR − ckΩ

2 0

− ckΩ

2 kΩ − c√
2
λM tr[G] 0

0 0 1
2σ

 . (37)

The inequality (21) for the constant c guarantees that the
matrices W11,W12,W3 become positive definite. Then, we
have

V̇ ≤ − λmin(W2)

λmax(W12)
V +

3

2
σλ2

M + ε, (38)

where λmin(·) and λmax(·) represent the minimum eigen-
value and the maximum eigenvalue of a matrix, respectively.
This implies that V̇ < 0 when V > λmax(W12)

λmin(W3) ( 3
2σλ

2
M + ε) ,

d1.
Let a sublevel set of V be Lγ = {(R,Ω, J̄) ∈ SO(3) ×

R3 × R3×3} | V ≤ γ} for a constant γ > 0. If the following
inequality for γ is satisfied

γ <
ψ

b2
λmin(W11) , d2,

we can guarantee that Lγ ⊂ D×R3×R3×3, since it implies
that ‖z‖2 < ψ

b2
, which leads Ψ ≤ b2‖eR‖2 ≤ b2‖z‖2 < ψ.

Bψ/b2

D × R3 × R3×3

Ld2

Ld1

Fig. 1. Boundedness of the error: Outside of the shaded region, represented
by {λmin(W3)‖z‖2 ≥ ( 3

2
σλ2M + ε)}, we have V̇ ≤ 0 from (36). Inside

of the larger ball, Bψ/b2 = {‖z‖2 ≤ ψ/b2} ⊂ D×R3×R3×3, equations
(32) and (38) hold. The inequality (39) guarantees that the smallest sublevel
set Ld1

of V , covering the shaded area, lies inside of the largest sublevel
set Ld2

of V in Bψ/b2 , i.e. Ld1
⊂ Ld2

. Therefore, along any solution
starting in Ld2

, V decreases until the solution enters Ld1
, thereby yielding

uniform boundedness.

Then, from (38), a sublevel set Lγ is a positively invariant
set, when d1 < γ < d2, and it becomes smaller until γ = d1.
In order to guarantee the existence of such Lγ , the following
inequality should be satisfied

d1 =
λmax(W12)

λmin(W3)
(
3

2
σλ2

M + ε) <
ψ

b2
λmin(W11) = d2,

(39)

which can be achieved by choosing sufficiently small σ and
ε. Then, according to Theorem 5.1 in [14], for any initial
condition satisfying V(0) < d2, its solution exponentially
converges to the following set:

Ld1 ⊂
{
‖z‖2 ≤ λmax(W12)

λmin(W11)λmin(W2)

(
3

2
σλ2

M + ε

)}
.

Remark 9: The robust adaptive control system in Propo-
sition 8 is referred to as fixed σ-modification [10], where
robustness is achieved at the expense of replacing the asymp-
totic tracking property of Proposition 4 by boundedness.
This property can be improved by the following approaches:
(i) the leakage term −2σJ̄ at (31) can be replaced by
−2σ(J̄ − J?), where J∗ denotes the best possible prior
estimate of the inertia matrix. This shifts the tendency of
J̄ from zero to J?, thereby reducing the ultimate bound,
(ii) a switching σ-modification or ε1-modification can be
used to improve the convergence properties in the expense of
discontinuities, (iii) the constant ε at (30) can be replaced by
ε exp(−βt) for any β > 0 to reduce the ultimate bound. The
corresponding stability analyses are similar to the presented
case, and they are deferred to a future study.

IV. NUMERICAL EXAMPLES

Parameters of a rigid body model and control systems are
chosen as follows2:

J =

 1.059× 10−2 −5.156× 10−6 2.361× 10−5

−5.156× 10−6 1.059× 10−2 −1.026× 10−5

2.361× 10−5 −1.026× 10−5 1.005× 10−2

 ,
2All of variables are written in kilograms, meters, seconds, and radians.
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Fig. 2. Adaptive attitude tracking without disturbances

kR = 0.0424, kΩ = 0.0296, kJ = 0.1,

c = 1.0, σ = 0.01, ε = 0.002, δ = 0.2.

Initial conditions are given by

J̄(0) = 0.001I, R(0) = I, Ω(0) = 0.

The desired attitude command is described by using 3-2-
1 Euler angles [15], i.e. Rd(t) = Rd(φ(t), θ(t), ψ(t)), and
these angles are chosen as

φ(t) =
π

9
sin(πt), θ(t) =

π

9
cos(πt), ψ(t) = 0.

We consider three cases:
(i) Adaptive attitude tracking control system presented at

Proposition 4 without disturbances.
(ii) Adaptive attitude tracking control system presented at

Proposition 4 with the following disturbances:

∆ = 0.1
[
sin(2πt) cos(5πt) R11(t)

]
.

(iii) Robust adaptive attitude tracking control system pre-
sented at Proposition 8 with the above disturbance
model.

It has been shown that general-purpose numerical integra-
tors fail to preserve the structure of the special orthogonal
group SO(3), and they may yields unreliable computational
results for complex maneuvers of rigid bodies [16]. In this
paper, we use a geometric numerical integrators, referred
to as a Lie group variational integrator, to preserve the
underlying geometric structures of the attitude dynamics
accurately [17].

Simulation results are illustrated at Figures 2-4. When
there is no disturbance, the adaptive attitude tracking control
system presented at Proposition 4 follows the given attitude
command accurately at Fig. 2. But, these convergence prop-
erties are degraded in the presence of disturbances. At Fig.
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Fig. 3. Adaptive attitude tracking with disturbances
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Fig. 4. Robust adaptive attitude tracking with disturbances

3, the tracking errors do not converge to zero asymptotically,
and the estimate of the inertia matrix and control inputs fluc-
tuate. These are significantly improved by the robust adaptive
tracking controller discussed at Proposition 8. At Fig. 4,
the tracking errors for the attitude and the angular velocity
are close to zero, and the estimate of the inertia matrix
is bounded. These show that the proposed robust adaptive
approach is effective in following an attitude command in
the presence of disturbances.

V. EXPERIMENT ON A QUADROTOR UAV

A quadrotor unmanned aerial vehicle (UAV) is composed
of two pairs of counter-rotating rotors and propellers. Due
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Fig. 5. Attitude control experiment for a quadrotor UAV

to its simple mechanical structure, it has been envisaged for
various applications such as surveillance or mobile sensor
networks as well as for educational purposes.

We have developed a hardware system for a quadrotor
UAV. It is composed of the following parts:
• Gumstix Overo computer-in-module (OMAP 600MHz

processor), running a (non-realtime) Linux operating
system. It communicates to a ground station via WIFI.

• Microstrain 3DM-GX3 attitude sensor, connected to
Gumstix via UART.

• Phifun motor speed controller, connected to Gumstix
via I2C.

• Roxxy 2827-35 Brushless DC motors.
• MaxStream XBee RF module, which is used for an extra

safety switch.
To test the attitude dynamics only, it is attached to a spherical
joint. As the center of rotation is below the center of gravity,
there exists a destabilizing gravitational moment, and the
resulting attitude dynamics is similar to an inverted rigid
body pendulum.

We apply the robust adaptive attitude control system at
Proposition 8 to this quadrotor UAV. The control input at
(29) is augmented with an additional term to eliminate the
gravitational moment. The disturbances are mainly due to
the error in canceling the gravitational moment, the friction
in the spherical joint, as well as sensor noises and thrust
measurement errors.

The attitude tracking command and control input parame-
ters are identical to the numerical examples discussed in the
previous section, except the following variables:

kJ = 0.01, σ = 0.01, ε = 0.35.

The corresponding experimental results are illustrated at
Fig. 6. Overall, it exhibits a good attitude command tracking
performance, while the second component of the attitude
error vector eR, and the third component of the angular
velocity tracking error are relatively large. The estimates of
the inertia matrix are bounded.
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