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Abstract. The adaptive Metropolis (AM) algorithm of Haario, Saksman and
Tamminen [Bernoulli 7 (2001) 223-242] uses the estimated covariance of the
target distribution in the proposal distribution. This paper introduces a new
robust adaptive Metropolis algorithm estimating the shape of the target distri-
bution and simultaneously coercing the acceptance rate. The adaptation rule
is computationally simple adding no extra cost compared with the AM algo-
rithm. The adaptation strategy can be seen as a multidimensional extension of
the previously proposed method adapting the scale of the proposal distribution
in order to attain a given acceptance rate. The empirical results show promising
behaviour of the new algorithm in an example with Student target distribution
having no finite second moment, where the AM covariance estimate is unsta-
ble. In the examples with finite second moments, the performance of the new
approach seems to be competitive with the AM algorithm combined with scale
adaptation.

1. Introduction

Markov chain Monte Carlo (MCMC) is a general method to approximate inte-
grals of the form

I :=

∫

Rd

f(x)π(x)dx < ∞

where π is a probability density function, which can be evaluated point-wise up
to a normalising constant. Such an integral occurs frequently when computing
Bayesian posterior expectations [e.g., 12, 20, 22]. The MCMC method is based
on a Markov chain (Xn)n≥1 that is easy to simulate in practice, and for which the
ergodic averages In := n−1

∑n
k=1 f(Xk) converge to the integral I as the number

of samples n tends to infinity.
One of the most generally applicable MCMC method is the random walk Me-

tropolis (RWM) algorithm. Suppose q is a symmetric probability density sup-
ported on R

d (for example the standard Gaussian density) and let S ∈ R
d×d be a

non-singular matrix. Set X1 ≡ x1, where x1 ∈ R
d is a given starting point in the

support; π(x1) > 0. For n ≥ 2 apply recursively the following two steps:

(M1) simulate Yn = Xn−1 + SUn, where Un ∼ q is a independent random vector,
and
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(M2) with probability αn := α(Xn−1, Yn) := min{1, π(Yn)/π(Xn−1)} the proposal
is accepted, andXn = Yn; otherwise the proposal is rejected andXn = Xn−1.

This algorithm will produce a valid chain, that is, In → I almost surely as n → ∞
[e.g. 19, Theorem 1]. However, the efficiency of the method, that is, the speed of
the convergence In → I, is crucially affected by the choice of the shape matrix S.
Recently, there has been an increasing interest on adaptive MCMC algorithms

that try to learn some properties of the target distribution π on-the-fly, and use
this information to facilitate more efficient sampling [1, 2, 7, 13, 23, 24]; see also
the recent review by [3]. In the context of the RWM algorithm, this is typically
implemented by replacing the constant shape S in (M1) with a random matrix
Sn−1 that depends on the past (on the random variables Uk, Xk, and Yk for
1 ≤ k ≤ n− 1).
Different strategies have been proposed to compute the matrix Sn−1. The sem-

inal Adaptive Metropolis (AM) algorithm [13] uses Sn−1 = θLn−1 where Ln−1

is the Cholesky factor of the (possibly modified) empirical covariance matrix
Cn−1 = Cov(X1, . . . , Xn−1). Under certain assumptions, the empirical covariance
converges to the true covariance of the target distribution π [see, e.g., 1, 13, 26, 29].
The constant scaling parameter θ > 0 is a tuning parameter chosen by the user;
the value θ = 2.4/

√
d proposed in the original paper is widely used, as it is

asymptotically optimal under certain theoretical setting [11].

In fact, the theory behind the value θ = 2.4/
√
d connects the mean acceptance

rate to the efficiency of the Metropolis algorithm in more general settings. There-
fore, it is sensible to try to find such a scaling factor θ that yields a desired mean
acceptance rate; typically 23.4% in multidimensional settings [25]. The first al-
gorithms coercing the acceptance rate did not adapt the shape factor at all, but
only the scale of the proposal distribution. That is, Sn−1 = θn−1I, a multiple of a
constant matrix, where the factor θn−1 ∈ (0,∞) is adapted roughly by increasing
the value of the acceptance probability is too low, and vice versa [3, 6, 7, 24]. This
adaptive scaling Metropolis (ASM) algorithm has some nice properties, and it has
been shown that the algorithm is stable under quite a general setting [28]. It is,
however, a ‘one-dimensional’ scheme, in the sense that it is unable to adapt to the
shape of the target distribution like the AM algorithm. This can result in slow
mixing with certain target distributions π having a strong correlation structure.
The scale adaptation in the ASM approach has been proposed to be used within

the AM algorithm [3, 6]. This algorithm, which shall be referred here to as the
adaptive scaling within AM (ASWAM), combines the shape adaptation of AM and
the acceptance probability optimisation. Namely, Sn−1 = θn−1Ln−1, where θn−1 is
computed from the observed acceptance probabilities α2, . . . , αn−1 and Ln−1 is the
Cholesky factor of Cov(X1, . . . , Xn−1). This multi-criteria adaptation framework
provides a coerced acceptance probability, and at the same time captures the
covariance shape information of π. Empirical findings indicate this algorithm can
overcome some difficulties encountered with the AM method [3].
The present paper introduces a new algorithm alternative to the ASWAM ap-

proach. The aim is to seek a matrix factor S∗ that captures the shape of π and at
the same time allows to attain a given mean acceptance rate. Unlike the multi-
criteria adaptation in ASWAM, the new approach is based on a single matrix
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update formula that is computationally equivalent to the covariance factor up-
date in AM. The algorithm, called here the robust adaptive Metropolis (RAM),
differs from the ASWAM approach by avoiding the use of the empirical covari-
ance, which can be problematic in some settings, especially if π has no finite
second moment. The proposed approach is reminiscent, yet not equivalent, with
robust pseudo-covariance estimation, which has also been proposed to be used in
place of the AM approach [3].

The RAM algorithm is described in detail in the next section. Section 3 provides
analysis on the stable points of the adaptation rule, that is, where the sequence
of matrices Sn is supposed to converge. In Section 4, the validity of the algorithm
is verified under certain sufficient conditions. It is also shown that the adaptation
converges to a shape of an elliptically symmetric target distribution. The RAM
algorithm was empirically tested in some example settings and compared with
the AM and the ASWAM approaches. Section 5 summarises the encouraging
findings. The final section concludes with some discussion on the approach as
well as directions of further research.

2. Algorithm

In what follows, suppose that the proposal density q is spherically symmetric:
there exists a function q̂ : R → [0,∞) such that q(x) = q̂(‖x‖) for all x ∈ R

d.
Let s1 ∈ R

d×d be a lower-diagonal matrix with positive diagonal elements, and
suppose {ηn}n≥1 ⊂ (0, 1] is a step size sequence decaying to zero. Furthermore, let
x1 ∈ R

d be some point in the support of the target distribution, π(x1) > 0, and
let α∗ ∈ (0, 1) stand for the target mean acceptance probability of the algorithm.

The robust adaptive Metropolis process is defined recursively through

(R1) compute Yn := Xn−1 + Sn−1Un, where Un ∼ q is an independent random
vector,

(R2) with probability αn := min{1, π(Yn)/π(Xn−1)} the proposal is accepted, and
Xn := Yn; otherwise the proposal is rejected and Xn := Xn−1, and

(R3) compute the lower-diagonal matrix Sn with positive diagonal elements sat-
isfying the equation

(1) SnS
T
n = Sn−1

(

I + ηn(αn− α∗)
UnU

T
n

‖Un‖2
)

ST
n−1

where I ∈ R
d×d stands for the identity matrix.

The steps (R1) and (R2) implement one iteration of the RWM algorithm, but
with a random matrix Sn−1 in (R1). In the adaptation step (R3) the unique Sn

satisfying (1) always exists, since it is the Cholesky factor of the matrix in the
right hand side, which is verified below to be symmetric and positive definite.

Proposition 1. Suppose S ∈ R
d×d is a non-singular matrix, u ∈ R

d is a non-zero
vector and a ∈ (−1,∞) is a scalar. Then, the matrix M := S

(

I + a uuT

‖u‖2

)

ST is

symmetric and positive definite.
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Figure 1. Two examples of the RAM update (R3). The solid line
represents the contour ellipsoid defined by Sn−1S

T
n−1, and the vector

Sn−1Un/‖Un‖ is drawn as a dot. The contours defined by SnS
T
n are

dashed.

Proof. The symmetricity is obvious. Let x ∈ R
d \ {0}, denote ũ := u

‖u‖
and define

z := Sũ. We may write M = SST + azzT , whence

xTMx = ‖xTS‖2 + a(xT z)2 = ‖xTS‖2
(

1 + a
(xT z)2

‖xTS‖2
)

.

This already establishes the claim in the case a ≥ 0. Suppose then a ∈ (−1, 0).
Clearly (xT z)2 = ‖xTSũ‖2 ≤ ‖xTS‖2 and so xTMx ≥ ‖xTS‖2(1− |a|) > 0.

�

Let us then see what happens in the adaptation in intuitive terms. Observe first
that in (R1) the proposal Yn is formed by adding an increment Wn := Sn−1Un

to the previous point Xn−1. Since Un is distributed according to the spherically
symmetric q, the random variable Wn is distributed according to the elliptically
symmetric density qSn−1(w) := det(Sn−1)

−1q(S−1
n−1w) with the main axes defined

by the eigenvectors and the corresponding eigenvalues of the matrix Sn−1S
T
n−1.

To illustrate the behaviour of the RAM update (R3), Figure 1 shows two ex-
amples how the contours of the proposal change in the update. The example on
the left shows how the contour ellipsoid expands to the direction of SnUn when
ηn(αn − α∗) = 0.8 > 0. Similarly, the example on the right shows how the el-
lipsoid shrinks when ηn(αn − α∗) = −0.8 < 0. These examples reflect the basic
idea behind the approach. If the acceptance probability is smaller than desired,
αn < α∗ (or more than desired, αn > α∗) the proposal distribution is shrunk (or
expanded) with respect to the direction of the current proposal increment.
We can also see this behaviour from the update equation by considering the

radius of the contour ellipsoid defined by SnS
T
n with respect to different directions.

Let v ∈ R
d be a unit vector. As in the proof of Proposition 1, we may write

‖ST
n v‖2 = ‖ST

n−1v‖2 + ηn(αn − α∗)(Z
T
n v)

2

where Zn = SnUn/‖Un‖. If Zn and v are orthogonal, the latter term vanishes and
‖ST

n v‖ = ‖ST
n−1v‖. If they are parallel, that is, v = ±Zn/‖Zn‖, then the factor

(ZT
n v)

2 equals ‖ST
n−1v‖2, and so ‖ST

n v‖ =
√

1 + ηn(αn − α∗)‖ST
n−1v‖. Any other

choices of the unit vector v fall in between these two extremes.
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Remark 2. In dimension one, the value of Sn can be computed directly by

logSn = logSn−1 +
1

2
log

(

1 + ηn(αn − α∗)
)

.

When ηn is small, this is almost equivalent to the update

logSn = log Sn−1 +
ηn
2
(αn − α∗)

implying that the RAM algorithm will exhibit a similar behaviour with the ASM
algorithm as proposed by [6] and [3] and analysed by [28]. Therefore, it is justified
to consider RAM as a multidimensional generalisation of the ASM adaptation rule.

Remark 3. In practice, the matrix Sn in (R3) can be computed as a rank one
Cholesky update or downdate of Sn−1 when αn − α∗ > 0 and αn − α∗ < 0,
respectively [10]. Therefore, the algorithm is computationally efficient up to a
relatively high dimension. In fact, the full d-dimensional matrix multiplication
required when generating the proposal in (R1) has the same O(d2) complexity
as the Cholesky update or downdate, rendering the adaptation to only add a
constant factor to the complexity of the RWM algorithm.

Remark 4. While the step size sequence ηn can be chosen quite freely, in practice
it is often defined as ηn = n−γ with an exponent γ ∈ (1/2, 1]. The choice γ = 1,
which is employed in the original setting of the AM algorithm [13] is not advisable
for the RAM algorithm. For simplicity, consider a one-dimensional setting like in
Remark 2. Then, if ηn = n−1 the logarithm of Sn can increase or decrease only
at the speed ±∑n

k=1 ηk ≈ log(n). Therefore, Sn can grow or shrink only linearly
or at the speed 1/n, respectively. This renders the adaptation inefficient, if the
initial value s1 differs significantly from the the scale and shape of π.

3. Stable points

The RAM algorithm introduced in the previous section has, under suitable
conditions, a stable point, that is, a matrix S∗ ∈ R

d×d, where the adaptation
process Sn should converge as n increases. Before considering the convergence,
we shall study the stable points of the algorithm in certain settings.

One can write the update equation (1) in the following form

(2) SnS
T
n = Sn−1S

T
n−1 + ηnH(Sn−1, Xn−1, Un)

where

H(S, x, u) = S

(

min

{

1,
π(x+ Su)

π(x)

}

− α∗

)

uuT

‖u‖2S
T .

The recursion (2) implements a so called Robbins-Monro stochastic approximation
algorithm on (SnS

T
n )n≥1 [e.g. 8, 9, 18]. Such an algorithm seeks the root of the so

called mean field hπ defined as

hπ(S) := S

∫

Rd

∫

Rd

(

min

{

1,
π(x+ Su)

π(x)

}

− α∗

)

uuT

‖u‖2q(u)duπ(x)dxS
T .

We shall see that under some sufficient conditions, there exists a stable point, that
is, hπ(S) = 0.

First, we shall observe a fundamental property of the RAM algorithm; that it
is invariant under affine transformations.



6 MATTI VIHOLA

Theorem 5. Let π be a probability density and let (Xn, Sn)n≥1 be the RAM pro-
cess (R1)–(R3) targeting π and started from (x1, s1). Suppose A ∈ R

d×d is a
non-singular matrix, b ∈ R

d and define π̂(x) := | det(A)|−1π(A−1x − b). Let

(X̂n, Ŝn)n≥1 be the RAM process targeting π̂ and started from (Ax1 + b, As1).

Then, the processes (AXn+b, (ASn)(ASn)
T )n≥1 and (X̂n, ŜnŜ

T
n )n≥1 have identical

distributions.

Proof. Let Un ∼ q and Wn ∼ U(0, 1) be the independent sequences that drive the
RAM process (Xn, Sn)n≥1 targeting π; that is

Yn = Xn−1 + Sn−1Un(3)

Xn = Yn1{Wn≤αn} +Xn1{Wn>αn}.(4)

The proof proceeds by constructing an independent sequence Ûn ∼ q, so that the
RAM process (X̃n, S̃n)n≥1 targeting π̃ and driven by (Ũn)n≥1 and (Wn)n≥1 will

satisfy the claim path-wise: AXn = X̂n and ASn(ASn)
T = ŜnŜ

T
n for all n ≥ 1.

Write the QR decomposition (ASn)
T = QnRn where Qn is orthogonal and

where Ŝn := RT
n is lower-diagonal and chosen so that it has a positive diagonal.

We observe that ASn(ASn)
T = ŜnŜ

T
n and defining Ûn+1 := QT

nUn+1 we have also

ASnUn+1 = ŜnÛn+1. Since the distribution of Un+1 is spherically symmetric and
Un+1 is independent of Qn, the sequence (Ũn)n≥1 is i.i.d. with distribution q.

Now, we may verify inductively using (3) and (4) that X̂n = AXn can be
computed through

Ŷn = X̂n−1 + Ŝn−1Ûn

X̂n = Ŷn1{Wn≤α̂n} +Xn−11{Wn>α̂n}

where

α̂n = min

{

1,
π̂(Ŷn)

π̂(X̂n−1)

}

= min

{

1,
π(Yn)

π(Xn−1)

}

= αn. �

After Theorem 5, it is no surprise that the mean field of the algorithm satisfies
similar invariance properties.

Theorem 6. Suppose π is a probability density.

(i) Let π̂ be an affine transformation of π, that is, π̂(x) = | det(A)|−1π(A−1x−b)
for some non-singular matrix A ∈ R

d×d and b ∈ R
d. Then, Ahπ(S)A

T =
hπ̂(AS) for all S ∈ R

d×d.
(ii) For any orthogonal matrix Q ∈ R

d×d and for all S ∈ R
d×d, hπ(S) = hπ(SQ).

(iii) Suppose that S is a unique lower-diagonal matrix with positive diagonal satis-

fying hπ(S) = 0. Then, restricted to such matrices, the solution of hπ̂(Ŝ) = 0

is also unique, and of the form Ŝ = ASQ for some orthogonal Q ∈ R
d×d.

Proof. The claim (i) follows by a change of variable x = A−1z − b,

hπ(S) = S

∫

Rd

∫

Rd

(

min

{

1,
π(x+ Su)

π(x)

}

− α∗

)

π(x)dx
uuT

‖u‖2 q(u)duS
T

= S

∫

Rd

∫

Rd

(

min

{

1,
π̂(z + ASu)

π̂(z)

}

− α∗

)

π̂(z)dz
uuT

‖u‖2q(u)duS
T

= A−1hπ̂(AS)A
−T .
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The claim (ii) follows from similarly, by a change of variable u = Qv and due to
the spherical symmetry of q. The uniqueness up to rotations, that is, only the
matrices of the form Ŝ = ASQ satisfy hπ̂(Ŝ) = 0 follows directly as above. The
claim (iii) is completed by writing the QR-decomposition (AS)T = QR. and by
observing that the upper-triangular R can be chosen to have positive diagonal
elements. �

Theorem 6 verifies that the stable points of the algorithm are affinely invariant
like the covariance (or more generally robust pseudo-covariance) matrices [15].
Theorem 7 below verifies that in the case of a suitable elliptically symmetric target
distribution π, the stable points of the RAM algorithm in fact coincide with the
(pseudo-)covariance of π. This is an interesting connection, but in general the
fixed points of the RAM algorithm are not expected to coincide with the pseudo-
covariance.

Theorem 7. Assume α∗ ∈ (0, 1) and π is elliptically symmetric, that is, π(x) ≡
det(Σ)−1p(‖Σ−1x‖) for some p : [0,∞) → [0,∞) and for some symmetric and
positive definite Σ ∈ R

d×d. Then,

(i) there exists a lower-diagonal matrix with positive diagonal S∗ ∈ R
d×d such

that hπ(S∗) = 0 and such that S∗S
T
∗ is proportional to Σ2.

(ii) assuming the function p is non-increasing, the solution S∗ is additionally
unique.

Proof. In light of Theorem 6, it is sufficient to consider any spherically symmetric
π, that is, the case Σ is an identity matrix.

Let S be a lower-diagonal matrix with positive diagonal. Observe that since S
is non-singular, hπ(S) = 0 is equivalent to S−1hπ(S)S

−T = 0, that is

(5)

∫

Rd

∫

Rd

(

min

{

1,
π(x+ Su)

π(x)

}

− α∗

)

uuT

‖u‖2q(u)duπ(x)dx = 0.

Define the function

h̄(S) :=

∫

Rd

∫

Rd

(

min

{

1,
π(x+ Su)

π(x)

})

uuT

‖u‖2 q(u)duπ(x)dx.

It is easy to see by symmetry and taking traces that (5) is equivalent to h̄(S) =
α∗

d
I, where I ∈ R

d×d stands for the identity matrix.

We can write h̄(S) in a more convenient form by using the polar coordinate
representation u = rv, where v ∈ Sd := {v ∈ R

d : ‖v‖ = 1} is a unit vector in the
unit sphere, and r = ‖u‖ is the length of u. Then, by Fubini’s theorem

h̄(S) =

∫

Sd

[
∫ ∞

0

∫

Rd

min {π(x), π(x+ rSv)}dxq̂(r)dr
]

vvTµ(dv)

where µ stands for the uniform distribution on the unit sphere Sd and the proposal
is written as q(u) ∝ q̂(‖u‖).

By applying the representation of π by the radial function p one can write the
term above in brackets as

g(‖Sv‖) :=
∫ ∞

0

∫

Rd

min {p(‖x‖), p(‖x+ rSv‖)}dxq̂(r)dr,

since due to symmetry, the value of the integral depends only on the norm ‖Sv‖.
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For any θ ∈ R+, one can now write

h̄(θI) =

∫

Sd

g(θ)vvTµ(dv) =
g(θ)

d
I,

since trace
(

h̄(θI)
)

= g(θ) and by symmetry. Proposition 20 in Appendix A
shows that g : (0,∞) → (0,∞) is continuous, that limθ→∞ g(θ) = 0 and that
limθ→0+ g(θ) =

∫∞

0
q̂(r)dr = 1. Therefore, there exists a θ∗ > 0 such that g(θ∗) =

α∗ so that h̄(θ∗I) =
α∗

d
I, establishing (i).

For (ii), let us first show that g is in this case strictly decreasing, at least before
hitting zero. Observe that since p is non-increasing, one can write

g(θ) =

∫ ∞

0

(
∫

‖x‖>‖x+rθv‖

p(‖x‖)dx+

∫

‖x‖≤‖x+rθv‖

p(‖x+ rθv‖)dx
)

q̃(r)dr

=

∫ ∞

0

(

1−
∫

Arθv

π(x)dx

)

q̃(r)dr.

It is easy to see that the width of the strip Arθv := {‖x‖ ≤ ‖x+ rθv‖} ∩ {‖x‖ <
‖x − rθv‖} is increasing with respect to θ. Therefore, for any fixed r and v, the
term brv(θ) := 1 −

∫

Arθv
π(x)dx is strictly decreasing with respect to θ as long as

the support of π is not completely covered by Arθv, in which case brv(θ) = 0. This
implies that g(θ) is strictly decreasing with respect to θ, until possibly g(θ) = 0.
Therefore, there is a unique θ∗ > 0 for which g(θ∗) = α∗.
Let us assume that S ∈ R

d×d is a matrix satisfying h̄(S) = α∗

d
I. By symmetry,

we can assume S to be diagonal, with positive diagonal elements s1, . . . , sd > 0.
Let e1, . . . , ed stand for the standard basis vectors of Rd. The diagonal element
[h̄(S)]ii =

α∗

d
is equivalent to

∫

Sd

[g(‖Sv‖)− α∗] (v
Tei)

2µ(dv) = 0,

since
∫

Sd(v
Tei)

2µ(dv) = d−1. Denoting ḡ(‖Sv‖) := g(‖Sv‖)− α∗, this implies

(6)

∫

Sd

ḡ
(

(
∑d

i=1 s
2
i v

2
i

)1/2
)(

∑d
i=1 λiv

2
i

)

µ(dv) = 0

for any choice of the constants λi ∈ R. Particularly, choosing λi = 1 for i =
1, . . . , d implies that for any constant c ∈ R we have

(7)

∫

Sd

ḡ
(

(
∑d

i=1 s
2
i v

2
i

)1/2
)

cµ(dv) = 0.

Now, summing (6) and (7) with a specific choice of constants c = θ2∗ and λi = −s2i ,
we obtain

∫

Sd

ḡ
(

(
∑d

i=1 s
2
i v

2
i

)1/2
)(

θ2∗ −
∑d

i=1 s
2
i v

2
i

)

µ(dv) = 0.

But now, ḡ
(

(
∑d

i=1 s
2
i v

2
i )

1/2
)

≥ 0 exactly when
∑d

i=1 s
2
i v

2
i ≤ θ2∗, so the integrand

is always non-negative. Moreover, if any si 6= θ∗, then by continuity there is a
neighbourhood Ui ⊂ Sd of ei such that the integrand is strictly positive, implying
that the integral is strictly positive. This concludes the proof of the uniqueness
(ii). �
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The following theorem shows that when π is the joint density of d independent
and identically distributed random variables, the RAM algorithm has, as expected,
a stable point proportional to the identity matrix.

Theorem 8. Assume α∗ ∈ (0, 1) and π(x) =
∏d

i=1 p(xi) for some one-dimensional

density p. Then, there exists a θ > 0 such that ĥ(θI) = 0.

Proof. Let e1, . . . , ed stand for the coordinate vectors of Rd. Consider the functions

ai(θ) :=

∫

Sd

∫ ∞

0

(
∫

Rd

min {π(x), π(x+ rθu)}dx
)

q̂(r)dr(uTei)
2Hd−1(du).

Let P be a permutation matrix. It is easy to see that π(x+ rθu) = π
(

P (x+ rθu)
)

by the i.i.d. product form of π. Therefore, by the change of variable Px = z and
Pu = v, one obtains that

ai(θ) =

∫

Sd

∫ ∞

0

(
∫

Rd

min {π(z), π(z + rθv)}dx
)

× q̂(r)dr(vTP T ei)
2Hd−1(dv) = aj(θ)

by a suitable choice of P . Moreover, limθ→∞ ai(θ) = 0 and limθ→0+ ai(θ) = c :=
∫

Sd(u
Tei)

2Hd−1(du) and ai are continuous. Therefore, there exists a θ∗ > 0 such

that ai(θ∗) = a∗c, and so eTi h(θ∗I)ei = 0.
It remains to show that eih(θ∗I)ej = 0 for all i 6= j. But for this, it is enough

to show that the integrals of the form
∫

E∗

i,j

∫ ∞

0

(
∫

Rd

min {π(z), π(z + rθv)}dx
)

q̂(r)dr|(vTei)(vT ej)|Hd−1(dv)

have the same value for both E+
i,j := {v ∈ Sd : (vT ei)(v

T ej) > 0} and E−
i,j := {v ∈

Sd : (vT ei)(v
T ej) < 0}. But this is obtained due to the symmetry of the sets E+

i,j

and E−
i,j and the product form of π, since

∫

Rd

min {π(z), π(z + rθv)}dx =

∫

Rd

min
{

π
(

z − 1
2
rθv

)

, π
(

z + 1
2
rθv

)}

dx

so one can change the sign of any coordinate of v without affecting this integral.
This concludes the claim. �

Remark 9. Checking the existence and uniqueness in a more general setting it is
out of the scope of this paper. It is believed that there always exists at least one
solution S∗ ∈ R

d×d such that h(S∗) = 0. Notice, however, that the fixed point
may not be always unique; see an example of such a situation for one-dimensional
adaptation (the ASM algorithm) in [14, Section 4.4].

Remark 10. It is not very difficult to show that for any given target π and proposal
q, there exist some constants 0 < θ1 < θ2 < ∞ such that the matrices hπ(θ1I)
and hπ(θ2I) are positive definite and negative definite, respectively. This indicates
that, on average, Sn should shrink whenever it is ‘too big’ and expand whenever
it is ‘too small,’ so the algorithm should admit a stable behaviour. The empirical
results in Section 5 support the hypothesis of general stability.
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To be more precise, we can identify a Lyapunov function wπ for hπ in the case π
is elliptically symmetric with a non-increasing tail. This will allow us to establish
the convergence of the sequence (SnS

T
n )n≥1 in Theorem 18.

Theorem 11. Assume the conditions of Theorem 7 (ii) and denote R∗ := S∗S
T
∗ .

Define a function wπ : Rd×d → [0,∞) by

wπ(R) := trace(R−1
∗ R)− log

(

detR

detR∗

)

− d.

Then, for any non-singular S ∈ R
d×d it holds that

〈

∇wπ(SS
T ), hπ(S)

〉

≤ 0 with

equality only if SST = R∗.

Proof. Denote π̂(x) := det(R∗)
1/2π(R

1/2
∗ x), then by Theorem 6 (i) hπ(S) =

R
1/2
∗ hπ̂(R

−1/2
∗ S)R

1/2
∗ . Moreover, Theorem 7 (ii) together with Theorem 6 (iii) im-

ply that π̂ is spherically symmetric and S = I is the unique solution of hπ̂(S) = 0
(up to orthogonal transformations).
We can write

∇wπ

(

R1/2
∗ S(R1/2

∗ S)T
)

= R−1/2
∗ (I − (SST )−1)R−1/2

∗ = R−1/2
∗ ∇wπ̂(S)R

−1/2
∗ ,

so we obtain
〈

∇wπ

(

R1/2
∗ S(R1/2

∗ S)T
)

, hπ(R
1/2
∗ S

〉

= trace
[

∇wπ

(

R1/2
∗ S(R1/2

∗ S)T
)T

hπ(R
1/2
∗ )

]

=
〈

∇wπ̂(S), hπ̂(S)
〉

.

Therefore, it is sufficient to check that the claim holds for spherically symmetric
π̂ with R∗ = I.
Let S be non-singular and write the singular value decomposition S = US̄V T

where U and V are orthogonal and S̄ = diag(s̄1, . . . , s̄d) with positive diagonal
entries. By Theorem 6 (ii) we have hπ̂(S) = hπ̂(SV ) = hπ̂(US̄). We may write,
using the notation in Theorem 7,

trace
(

hπ̂(S)
)

= trace
(

UThπ̂(US̄)U
)

=

∫

Sd

ḡ
(

‖S̄w‖
)

[

∑d
i=1s̄

2
iw

2
i

]

µ(dw).

We have SST = US̄2UT , so we obtain similarly

trace
(

(SST )−1hπ̂(S)
)

= trace
(

S̄−1UThπ̂(SV )US̄−1
)

=

∫

Sd

ḡ
(

‖S̄w‖
)

µ(dw).

Putting everything together,

〈

∇wπ̂(SS
T ), hπ̂(S)

〉

=

∫

Sd

ḡ
(

(
∑d

i=1s̄
2
iw

2
i

)1/2
)(

∑d
i=1s̄

2
iw

2
i − 1

)

µ(dw).

As in the proof of Theorem 7, ḡ
(

(
∑d

i=1s̄
2
iw

2
i )

1/2
)

> 0 exactly when
∑d

i=1 s̄
2
iw

2
i < 1

and vice versa. The integral can equal zero only if all s̄i = 1. �

4. Validity

This section describes some sufficient conditions under which the RAM algo-
rithm is valid; that is, when the empirical averages converge to the integral

(8) In =
1

n

n
∑

k=1

f(Xk)
n→∞−−−→

∫

Rd

f(x)π(x)dx =: I
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almost surely.
Let us start by introducing assumptions on the forms of the proposal density q

and the target density π.

Assumption 12. The proposal density q is either a Gaussian or a Student dis-
tribution, that is,

q(z) ∝ e−
1
2
‖z‖2 or q(z) ∝ (1 + ‖z‖2)− d+p

2

for some constant p > 0.

Assumption 13. The target density π satisfies either of the following assump-
tions.

(i) The density π is bounded and supported on a bounded set: there exists a
constant m < ∞ such that π(x) = 0 for all ‖x‖ ≥ m.

(ii) The density π is positive everywhere in R
d and continuously differentiable.

The tails of π are super-exponentially decaying and have regular contours,
that is, respectively

lim
‖x‖→∞

x

‖x‖ · ∇ log π(x) = −∞ and

lim sup
‖x‖→∞

x

‖x‖ · ∇π(x)

‖∇π(x)‖ < 0.

Remark 14. Assumption 13 ensures the geometric ergodicity of the RWM algo-
rithm under fairly general settings; [16] discuss the limitations of (ii) and give
several examples.

Before stating the theorem, consider the following conditions on the adaptation
step size sequence (ηn)n≥1 and on the stability of the process (Sn)n≥1.

Assumption 15. The adaptation step sizes ηn ∈ [0, 1] are non-increasing and
satisfy

∑∞
n=1 k

−1ηn < ∞.

Assumption 16. There exist random variables 0 ≤ A ≤ B ≤ ∞ such that all

the eigenvalues λ
(i)
n of the random matrices SnS

T
n are almost surely bounded by

A ≤ λ
(i)
n ≤ B, for all n = 1, 2, . . . and all i = 1, . . . , d.

Theorem 17. Suppose Assumptions 12–16 hold and denote Ω0 := {A > 0, B <
∞}. Suppose also that the function f : Rd → R satisfies for some p ∈ [0, 1)

sup
x∈Rd:π(x)>0

|f(x)|π−p(x) < ∞.

Then, for almost every ω ∈ Ω0, the strong law of large numbers (8) holds.

The proof follows by existing results in the literature; the details are given in
Appendix B.

The convergence of the adaptation can also be established in case π is elliptically
symmetric.

Theorem 18. If the conditions of Theorem 7 (ii) and Theorem 17 hold and
additionally

∑

n γn = ∞, then SnS
T
n → S∗S

T
∗ for almost every ω ∈ Ω0.

The proof follows by Theorem 11 and results in the literature; see Appendix B.
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Remark 19. Assumptions 12–15 are common when verifying the ergodicity of an
adaptive MCMC algorithm. Assumption 16 on stability is natural but it can be
difficult to check with P(A > 0, B < ∞) = 1 in practice. The empirical evidence
supports this hypothesis under a very general setting; see also Remark 10 in
Section 3. Similar stability results have been established only for few adaptive
MCMC algorithms, including the AM and the ASM algorithms [26, 28, 29]. The
precise stability analysis is beyond the scope of this paper. Instead, the stability
can be enforced as described below.
Let 0 < a ≤ b < ∞ be some constants so that the eigenvalues of s1s

T
1 are within

[a, b]. Then, replace the step (R3) in the RAM algorithm with the following:

(R3’) compute the lower-diagonal matrix Ŝn with positive diagonal so that ŜnŜ
T
n

equals the right hand side of (1). If the eigenvalues of ŜnŜ
T
n are within

[a, b], then set Sn = Ŝn, otherwise set Sn = Sn−1.

While this modification ensures stability, it may change the stable points of the
algorithm and the conclusion of Theorem 18 may not hold. This could possibly
be avoided, for example, by considering an adaptive reprojections approach [1, 5],
but we do not pursue this here.

5. Experiments

The RAM algorithm was tested with three types of target distributions: heavy-
tailed Student, Gaussian and a mixture of Gaussians. The performance of RAM
was compared against the seminal adaptive Metropolis (AM) algorithm [13] and
an adaptive scaling within adaptive Metropolis (ASWAM) algorithms [3, 6]. Es-
pecially the comparison against ASWAM is of interest, since it attains a given
acceptance rate like the RAM algorithm.
There are several parameters that are fixed throughout the experiments. The

adaptation step size sequence was set to ηn = n−2/3 for the AM and the ASWAM
algorithms. For the RAM approach, the weight sequence was modified slightly
so that ηn = min{1, d · n−2/3}. The extra factor was added to compensate the
expected growth or shrinkage of the eigenvalues being of the order d−1; see the
proof of Theorem 7. The target mean acceptance rate was α∗ = 0.234. In all the

experiments, the Student proposal distribution of the form q(z) = (1 + ‖z‖2)− d+1
2

was used. Such a heavy-tailed proposal was employed in order to have good
convergence properties in case of heavy-tailed target densities [17].
All the tests were performed using the publicly available Grapham software

[27]; the latest version of the software includes an implementation of the RAM
algorithm.

5.1. Multivariate Student distribution. The first example is a bivariate Stu-
dent distribution with n = 1 degrees of freedom and the following location and
pseudo-covariance matrix

µ =

[

1
2

]

and Σ =

[

0.2 0.1
0.1 0.8

]

,

respectively. That is, the target density π(x) ∝ (1 + xTΣ−1x)−3/2. Clearly, π has
no second moments and thereby the empirical covariance estimate used by AM
and ASWAM is deemed to be unstable in this example.
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Figure 2. Bivariate Student example: logarithm of the first diag-
onal component of the matrix Sn (top) and the proportion of Xn in
the set A after 100,000 burn-in iterations (bottom).

Figure 2 shows the results for one hundred runs of the algorithms. The grey area
indicates the interval between the 10% and the 90% percentiles, and the black line
shows the median. The top row shows the logarithm of the first diagonal element
of the matrix Sn. The AM covariance grows without an upper bound as expected.
When the scale adaptation is added, the ASWAM approach manages to keep the
factor Sn = θnLn within certain bounds, but there is a considerable variation that
does not seem to vanish. This is due to the fact that Ln, the Cholesky factor of
Cov(X1, . . . , Xn), grows without an upper bound but at the same time the scaling
factor θn decays to keep the acceptance rate around the desired 23.4%. The RAM
algorithm seems to converge nicely to a limiting value.

Such undesided behaviour of the AM and the ASWAM algorithms may also
have an effect on the validity of their simulation. Indeed, let us consider the 90%
highest probability density (HPD) set of the target, that is, the set A := {x ∈
R

2 : (x − µ)TΣ−1(x − µ)T > 99}. Figure 2 (bottom) shows the percentage of
Xn outside the 90% HPD computed after a 100,000 sample burn-in period. The
AM algorithm tends to overestimate the ratio slightly, with more variation than
the ASWAM and the RAM approaches. The estimate produced by the ASWAM
algorithm has approximately the same variation as RAM, but there is a tendency
to underestimate the ratio. The RAM estimates are centred around the true value.

To check how the RAM algorithm copes with higher dimensions, let us follow
[24] and consider a matrix Σ = MMT , where M ∈ R

d×d is randomly generated
with i.i.d. standard Gaussian elements. Such a matrix Σ is used as the pseudo-

covariance of a Student distribution, so that π(x) ∝ (1+xTΣ−1x)−
d+1
2 . [21] showed

that in the case of Gaussian target and proposal distributions, one can measure

the ‘suboptimality’ by the factor b := d
(
∑d

i=1 λ
−2
i

)(
∑d

i=1 λ
−1
i

)−2
where λi are the

eigenvalues of the matrix (SnS
T
n )

1/2Σ−1/2. The factor equals one if the matrices are
proportional to each other, and is larger otherwise. While the factor may not have
the same interpretation in the present setting involving Student distributions, it
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Figure 3. Suboptimality factor b over one million iterations of the
RAM algorithm with a different dimensional Student target.

serves as a good measure of mismatch between SnS
T
n and Σ. Figure 3 shows the

factor b in increasing dimensions each based on 100 runs of the RAM algorithm.
The convergence of SnS

T
n → Σ is slower in higher dimensions, but the algorithm

seems to find a fairly good approximation already with a moderate number of
samples.

5.2. Gaussian distribution. The multivariate Gaussian target π(x) = N (0,Σ)
serves as a baseline comparison for the algorithms, as they should converge to the
same matrix factor1 SnS

T
n → θ∗Σ.

The algorithms were tested in different dimensions, for one thousand covariance
matrices randomly generated as described in Section 5.1. The algorithms were
always started in ‘steady state’ so that X1 ∼ N(0,Σ). The algorithms were run
half a million iterations: 100,000 burn-in and 400,000 to estimate the proportions
of the samples Xn in the 10%, 25%, 50%, 75% and 90% HPD of the distribution.
Table 1 shows the overall root mean square error. For dimension two, the results
are comparable. Surprisingly, when the dimension increases the RAM approach
provides more accurate results than the AM and the AMS algorithms.
One possible explanation is that in order to approximate the sample covariance,

the covariance adaptation in AM and ASWAM should be done using the weight
sequence ηn = n−1 as this corresponds almost exactly to the usual sample covari-
ance estimator. This setting was tried also; the results appear also in Table 1. It
seems that using such a sequence will indeed imply better results, when starting
from s1 ≡ I or s1 ≡ 10−4 · I. However, when the initial factor s1 = 104 · I was ‘too
large’, this approach failed. This is probably due to the fact that in this case the
eigenvalues of the covariance estimate can decay only slowly, at the speed n−1.
Another explanation for the unsatisfactory performance of the AM and

ASWAM approaches is that in the experiments the adaptation was started right
away, not after a burn-in phase run with a fixed proposal covariance as suggested
in the original work [13]. It is expected that the AM and the ASWAM algo-
rithms would perform better by a suitable fixed proposal burn-in and perhaps
with yet another step size sequences. In any case, this experiment demonstrates
one strength of the RAM adaptation mechanism, namely that it does not require
such a burn-in period.

1For the AM algorithm, the constant θ∗ is slightly different, but approximately equal in higher
dimensions.
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Table 1. Errors in Gaussian quantiles in different dimensions. The
step sizes ηn = n−1 were used for covariance estimation for AM�
and ASWAM�.

s1 ≡ I s1 ≡ 10
−4

· I s1 ≡ 10
4
· I

d 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

AM 0.21 0.33 1.25 6.83 33.87 0.20 0.33 1.26 6.79 35.73 0.21 0.33 1.24 6.83 32.49

ASWAM 0.22 0.32 1.23 6.67 33.78 0.21 0.34 1.25 6.67 35.77 0.21 0.33 1.23 6.63 32.11

AM
�

0.21 0.27 0.41 0.70 1.70 0.20 0.28 0.39 0.55 2.90 6.22 27.54 53.21 57.69 58.20

ASWAM
�

0.22 0.36 0.37 0.53 1.05 0.22 0.28 0.37 0.53 3.03 0.88 1.94 3.17 5.34 8.48

RAM 0.21 0.27 0.37 0.52 1.03 0.22 0.27 0.38 0.62 2.51 0.22 0.28 0.45 0.75 1.61

Table 2. Errors of the expectations of the first and the other co-
ordinates in the mixture example.

X(1) X(2), . . . , X(d)

d 2 4 8 16 32 2 4 8 16 32

AM 0.04 0.05 0.08 1.69 3.87 0.08 0.11 0.15 0.19 0.27

ASWAM 0.04 0.06 0.10 1.82 3.86 0.08 0.11 0.14 0.18 0.27

RAM 0.07 0.21 0.66 1.34 1.77 0.05 0.08 0.11 0.16 0.29

5.3. Mixture of separate Gaussians. The last example concerns a mixture
of two Gaussians distributions in R

d with mean vectors m1 := [4, 0, . . . , 0]T

and m2 := −m1 and with a common diagonal covariance matrix Σ :=
diag(1, 100, . . . , 100). In such a case, the mixing will be especially problematic
with respect to the first coordinate.

Table 2 shows the root mean square error of the expectation of the first coordi-
nate X(1) and the overall error for the rest X(2), . . . , X(d). The errors in the first
coordinate for the RAM are significantly higher than for the AM and the ASWAM
for dimensions 2, 4 and 8. The estimates from all the algorithms are already quite
unreliable in dimension 16. For the latter coordinates, the RAM approach seems
to provide better estimates. Observe also that when comparing ASWAM with
AM, the results are also worse in the first coordinate and better in the rest, like in
the RAM approach. This indicates that the true optimal acceptance rate is here
probably slightly less than the enforced 23.4%.

The example shows how the RAM approach finds the ‘local shape’ of the dis-
tribution. In fact, it is quite easy to see what happens if the means of the mixture
components would be made further and further apart: there would be a stable
point of the RAM algorithm that would approach the common covariance of the
mixture components. Such a behaviour of the RAM approach is certainly a weak-
ness in certain settings, as this example, but it can be also advantageous. Notice
also that even such a simple multimodal setting poses a challenge for the random
walk based approaches.

6. Discussion

A new robust adaptive Metropolis (RAM) algorithm was presented. The al-
gorithm attains a given acceptance probability, and at the same time finds an
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estimate of the shape of the target distribution. The algorithm can cope with tar-
gets having arbitrarily heavy tails unlike the AM and ASWAM algorithms based
on the covariance estimate. The RAM algorithm has some obvious limitations.
It is not suitable for strongly multi-modal targets, but this is the case for any
random walk based approach. For sufficiently regular targets, it seems to work
well and the experiments indicate that RAM is competitive with the AM and
ASWAM algorithms also in case of light-tailed targets having second moments.
There are several interesting directions of further research that were not cov-

ered in the present work. The RAM algorithm can be used also within Gibbs
sampling, that is, when updating a block of coordinate variables at a time in-
stead of the whole vector. This approach is often very useful especially when the
target distribution π consists of a product of conditional densities, which is often
the case with Bayesian hierarchical models. In such a setting, the computational
cost of evaluating the ratio π(y)/π(x) after updating one coordinate block can be
significantly less than the full evaluation of π(y). It would also be worth investi-
gating the effect of different adaptation step sizes, perhaps even adaptive ones as
suggested by [3].
Regarding theoretical questions, the existence and uniqueness of the fixed points

of the approach could be verified in a more general setting; the present work
only covers elliptically symmetric and product type target densities, which are
too restrictive in practice. The experiments indicate the overall stability of the
RAM algorithm; see also Remark 10. However, proving the stability of RAM
without prior bounds is directly related to the more general open question on the
stability of adaptive MCMC algorithms, or even more generally to the stability
of stochastic approximation. Having the stability and more general conditions on
the fixed points, one could also prove the convergence of Sn in a more general
setting.
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Appendix A. Regularity of directional mean acceptance

probability

Proposition 20. Let π and q be probability densities on R
d and on (0,∞), re-

spectively, and let v ∈ R
d be a unit vector. The function g : (0,∞) → (0,∞)

defined by

g(θ) :=

∫ ∞

0

∫

Rd

min {π(x), π(x+ rθv)}dxq(r)dr
is continuous, limθ→∞ g(θ) = 0 and limθ→0+ g(θ) = 1.

Proof. Suppose first that π is a continuous probability density on R
d. Then, write

g(θ) =

∫ ∞

0

∫

A

min

{

1,
π(x+ rθv)

π(x)

}

π(x)dxq(r)dr

where A := {x ∈ R
d : π(x) > 0} stands for the support of π. Let (θn)n≥1 ⊂ (0,∞)

be any sequence and define fθ(x, r) := min
{

1, π(x+rθv)
π(x)

}

. Clearly, whenever θn
converges to some θ, then fθn(x, r) → fθ(x, r) pointwise on A × (0,∞) by the
continuity of π. Since |fn(x, r)| ≤ 1, the dominated convergence theorem yields
that |g(θn)−g(θ)| → 0, establishing the continuity. For any sequence θn → 0+ one
clearly has fθn(x, r) → 1, and for any sequence θn → ∞ one obtains fθn(x, r) → 0,
establishing the claim.
Let us then proceed to the general case. Let ǫ > 0 be arbitrary. We shall show

that there exists a continuous probability density π̃ on R
d such that

∫

Rd

|π̃(x)− π(x)|dx < ǫ.

Having such π̃, one can bound the difference
∣

∣

∣

∣

g(θ)−
∫ ∞

0

∫

A

min

{

1,
π̂(x+ rθv)

π̂(x)

}

π̂(x)dxq(r)dr

∣

∣

∣

∣

≤
∫

Rd

|π(x)− π̃(x)|dx < ǫ

establishing the claim.
Let us finally verify that such a continuous probability density π̃ exists. Approx-

imate π first by smooth non-negative functions πn such that
∫

Rd |π(x)−πn(x)|dx →
0, and then normalise them to probability densities π̃n(x) := cnπn(x). Clearly,
the constants cn := (

∫

Rd πn(z)dz)
−1 → 1, and so

∫

Rd |π(x) − π̃n(x)|dx ≤
∫

Rd |π(x)− πn(x)|dx+ |1− cn| → 0. �



ROBUST ADAPTIVE METROPOLIS 19

Appendix B. Proofs of convergence

Theorem 17. Let 0 < a ≤ b < ∞ be arbitrary constants and denote by Sa,b ⊂
R

d×d the set of all lower triangular matrices with positive diagonal, such that the
eigenvalues of ssT are within [a, b]. Let Ps stand for the random walk Metropolis
kernel with a proposal density qs(z) := det(s)−1q(s−1z), that is, for any x ∈ R

d

and any Borel set A ⊂ R
d

Ps(x,A) := 1A(x)

(

1−
∫

Rd

min

{

1,
π(y)

π(x)

}

qs(y − x)dy

)

+

∫

A

min

{

1,
π(y)

π(x)

}

qs(y − x)dy.

We shall use the notation Psf(x) :=
∫

Rd f(y)Ps(x, dy) to denote the integration
of a function with respect to the kernel Ps.

Let us check that the following assumptions are satisfied.

(A1) For all possible s ∈ Sa,b, the kernels Ps have a unique invariant probability
distribution π for which

∫

Rd P (x,A)π(dx) = π(A) for any Borel set A ⊂ R
d.

(A2) There exist a Borel set C ⊂ R
d, a function V : Rd → [1,∞), constants

δ, λ ∈ (0, 1) and b < ∞, and a probability measure ν concentrated on C
such that

PsV (x) ≤ λV (x) + 1C(x)b and

Ps(x,A) ≥ 1C(x)δν(A)

for all possible x ∈ R
d, s ∈ Sa,b and all Borel sets A ⊂ R

d.
(A3) For all n ≥ 1 and any r ∈ (0, 1], there is a constant c′ = c′(r) ≥ 1 such that

for all s, s′ ∈ Sa,b,

sup
x∈Rd

|Psf(x)− Ps′f(x)|
V r(x)

≤ c′|s− s′| sup
x∈Rd

|f(x)|
V r(x)

.

(A4) There is a constant c < ∞ such that for all n ≥ 1, s ∈ Sa,b, x ∈ R
d and

u ∈ R
d the bound |H(s, x, u)| ≤ c holds.

The uniqueness of the invariant distribution (A1) follows by observing that the
kernels Ps are irreducible, aperiodic and reversible with respect to π [see, e.g.
19]. The simultaneous drift and minorisation condition (A2) and the continuity
condition was established by [1]. The continuity condition (A3) was established
by [1] for Gaussian proposal distributions and was extended to cover the Student
proposal in [28]. The bound (A4) is easy to verify.

Assumption 16 ensures that for any ǫ > 0 there exist constants 0 < aǫ ≤ bǫ < ∞
such that all the eigenvalues of SnS

T
n stay within the interval [aǫ, bǫ] at least with

probability P(Ω0) − ǫ. This is enough to ensure that the strong law of large
numbers holds by [1, Proposition 6]. For details, see also [26, Theorem 2] and [28,
Theorem 20]. �

Theorem 18. The proof follows by [4, Theorem 5] by using a similar technique as
in the proof of Theorem 17. Consider the Lyapunov function wπ(R) defined in
Theorem 11. It is straightforward to verify items 1–4 of [4, Condition 1] when
we take Θ to be the space of symmetric positive definite matrices and consider
SnS

T
n ∈ Θ. The compact sets are of the form K = {ssT : s ∈ Saǫ,bǫ} with aǫ, bǫ as
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in the proof of Theorem 17. Item 5 follows by invoking [26, Proposition 6] with
fθ
(

(x, u)
)

= H(θ, x, u). �
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