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ABSTRACT 

This paper proposed a robust adaptive neural network control for an XY table. The XY table composes of two AC servo 
drives controlled independently. The neural network with radial basis function is employed for velocity and position 
tracking control of AC servo drives to improve the system’s dynamic performance and precision. A robust adaptive 
term is applied to overcome the external disturbances. The stability and the convergence of the system are proved by 
Lyapunov theory. The proposed controller is implemented in a DSP-based motion board. The validity and robustness of 
the controller are verified through experimental results. 
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1. Introduction 

The XY tables have taken an important role in manufac- 
turing systems. Generally, the XY table is a ball-screw 
driven mechanism actuated by two AC servo drives. 
Such mechanism often exist many kinds of disturbances, 
nonlinear friction and uncertainties that limit the tracking 
performance of controlled system. In order to improve 
the performance of XY table, many works have been 
presented [1-3]. In [4], a combination of friction-model- 
based feed-forward and inverse-model-based disturbance 
observe is used to reduce the radial tracking error and 
quadrant glitches of linear-drive XY table. This tech- 
nique increases the system bandwidth, hence improves 
the overall tracking performance. However, robustness to 
variations of system parameters and uncertainties among 
each axis mechanism were not considered in the design 
of the compensation. 

In most manufacturing processes, XY table often util- 
izes two AC servo motors and couples their output shafts 
to mechanical translators such as gears or bears to per- 
form linear motions. Such mechanical systems have been 
extensively used in the industrial market due to low cost, 
high torque density, little torque ripple and power saving. 
Along with their intensive applications, many works 
have been conducted to enhance the performance of the 
motion control system [5-7]. In [8], the authors devel- 
oped an auto-disturbance rejection controller based on a 
nonlinear tracking-differentiator, an extended states ob- 
server and a nonlinear PD control to achieve high per- 

formance and large robustness motion control. Although 
this simple method can archive high precision of AC 
servo system under unknown parameters and large load 
disturbance, the stability of the whole system is not 
guaranteed. In [9], a back propagation neural network is 
used to identify the dynamic parameters of AC servo 
motor. Although the controller obtained excellent per- 
formance compared with traditional PID controller, the 
load torque disturbance and uncertainties were not con- 
sidered in the design. 

In this paper, we propose a robust adaptive neural net- 
work (RANN) scheme to overcome such described 
drawbacks. The main aim of our controller is to define an 
augment error related to the angular position error and 
angular velocity error. Then the controller is designed so 
that the augment error can converge toward zero asymp- 
totically. This process makes the angular velocity error 
and angular position error stable asymptotically. The 
controller is able to guarantee the convergence and sta- 
bility of the servo system despite the existence of model 
uncertainties and external disturbances. In this controller, 
a 2-layer neural network with radial basis function is 
used to approximate the nonlinear factors of the AC 
servo motor. A robust adaptive control scheme is applied 
to suppress the disturbances and guarantee the stability of 
the system. The proposed robust adaptive neural network 
controller is implemented in a motion controller based on 
the high performance digital signal processor (DSP) 
TMS320C6727. The high speed DSP allows the closed- 
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loop controller and reference trajectory generators to be 
implemented in the DSP, while the feedback position 
signals with digital filter and digital inputs/outputs are 
carried out in the FPGA to reduce the computational load 
of DSP. Afterward, the output current control is put for- 
ward to the analog amplifier to drive the motor. This 
hardware structure allows for designing a highly sampled, 
flexible and compact motion controller. 

This paper is organized as follows. Section 2 describes 
the development of robust adaptive neural network con- 
troller with the proof of asymptotic stability. Section 3 
presents experimental results, including the comparison 
of the traditional PID controller and the proposed con- 
troller. Section 4 draws the conclusions. 

2. Development of Robust Adaptive Neural 
Network Controller 

2.1. Model of Two-Axis XY Table 

The XY table used in this paper is composed of two AC 
servo drives controlled separately. Therefore, dynamic 
equation of a single-axis AC servo drive can be described 
in a rotating reference frame as following: 

dJ B                     (1) 

where   is angular velocity of the rotor, J is the mo- 
ment of inertia,  is the viscous coefficient. B   is the 
driving torque, d  can be considered as the unknown 
load torque disturbance on the rotating shaft. 

In the system design, it is assumed that the reference 
angular position is a continuous and differentiable signal. 
Therefore, the angular velocity and angular acceleration 
can be expressed as: 

                        (2) 

                        (3) 

where   is the angular position. 
The goal of our control scheme is to achieve asymp- 

totic tracking for a given continuous reference trajectory. 

2.2. Introduction of Feed-Forward Neural 
Network with Radial Basis Function 

Two-layer feed-forward neural network as shown in Fig- 
ure 1 can be presented in matrix form: 

 y W Vx                   (4) 

where  and ijW w    jkv   

111, Nx x  

3

T

1 2, , , Ny y  
, , ,  

V  are the weight vectors, 
T

, , x   is the input vector, 

y y

1, 

 is the output vector, and  

21 2 N   denotes the activation function 
vector. Constant 1 included in the vector 

 

Figure 1. Two-layer feed-forward neural network. 
 

wand i . 
The well-known universal approximation property of a 

neural network proposed by Hornik et al. [10] says that 
for a nonlinear function  f x , there exists a sufficiently 
large N2 number of neurons satisfying 

     f x W Vx x               (5) 

and makes the two-layer neural network functional ap- 
proximation error vector  x  arbitrarily small. 

We know that the main disadvantage of the multilayer 
neural network is highly nonlinear in parameter. Hence, 
we consider hereafter the neural network of fixed V, 
which makes the neural network linearly parameterized. 
Defining    x Vx  , we have 

     f x W x x  

, , ,   

             (6) 

where 
21 2 N

     is the generalized basis func- 
tion vector. In this paper, we use the radial basis function 
with Gaussian form as following: 



  22
exp , 1, ,

2
i

i
i

x o
x i N


 

  
 



io

i

      (7)  

where  is the center of the i-th radial basis function, 
and   is the width coefficient.  

2.3. Controller Design 

In this section, we introduce the design of proposed con- 
troller for AC motor based on the Lyapunov’s stability 
theorem. The strategy is to define an augment error and 
design a neural network with learning rules and a robust 
adaptive term to force the augment error to converge to 
zero asymptotically in spite of the presence of the system 
uncertainties and load torque disturbances. 

The controller scheme is shown in Figure 2. 
The angular position tracking error is denoted as: 

x  and   as 
a first term allows one to incorporate the thresholds dev

j                       (8)  
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Figure 2. Controller scheme. 
 

 is the desired angular position. where 
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d
Differentiating Equation (8) with respect to time to get 

the angular position tracking error: 

de   

de

                (9) 

The angular velocity tracking error is presented as fol- 
lowing: 

                   (10) 

In order to solve the position tracking problem with 
asymptotical stability, we define the augment error as 
below: 

s e e  

d dJ e

               (11) 

Differentiating Equation (11) and substituting it into 
dynamic Equation (1), we have the error dynamic equa- 
tion: 

Js J B                (12) 

The nonlinear function containing the dynamic para- 
meters of AC servo motor is defined as: 

  df x J B J e     

     

           (13) 

It is well-known that the neural network is capable of 
approximating any nonlinear function over compact in- 
put space [10]. The strategy is to construct a simple neu- 
ral network with radial basis function as presented in 
Section II.B to approximate the nonlinear function (4). 
Therefore, the output of neural network controller can be 
rewritten as: 

f x W x x  

ma

             (14) 

Assumption 1: There exist unknown positive constants 

x  and max  such that max   and max 

 ˆ
r pf x

. 
The torque control input is defined as: 

    

 ˆ

              (15) 

 f̂ x W x                  (16) 

s
ˆr s

 

1p k s

                  (17) 

                   (18)  

 f̂where x  is the estimate function of the nonlinear 
function  f x Ŵ,  is estimate weight vector of W , 

r  is the robust adaptive control input, p  is the stabi- 
lizing control term, and  is a constant denoted as the 
rate of error convergence. 

1k

r p dJs W

Substituting Equations (14) and (15) into Equation (12), 
we obtain the closed-loop error dynamics for augment 
error s: 

        

ˆW W W

         (19) 

where    is the estimate weight error. 
Consider the Lyapunov function: 

2 2

2 3

1 1 1

2 2 2
TV Js WW

k k
           (20) 

Differentiating Equation (20) with respect to time and 
substituting Equation (19) into the result, we can obtain: 

2
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3

1

1

T

r d

V W s W k s
k

s s s
k



   

 
   

 

   

  

 

2
ˆ TW k s

          (21) 

By choosing the weight update rule: 

                      (22) 

and combining with Assumption 1, we can infer the 
boundedness of Equation (21) as following: 

2
1

3

1
ˆV k s s s

k
         

max maxd

        (23) 

where   
ˆ

 
Since      then 
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2
1V k s

3

1
s

k
                (24) 

The adaptation rule is simply selected as: 

3ˆ k s 

2
1 0V k s  

                   (25) 

It can be seen that the adaptation law (25) suppresses 
the approximation estimation error and disturbance, al- 
lows the augment error to converge to zero asymptoti- 
cally: 

                (26) 

Because s e e    is dynamics stability,  

de     and e d     are asymptotically stable. 

3. Experimental Results 

The proposed motion control board as shown in Figure 3 
is developed based on high performance floating point 
DSP TMS320C6727 with the CPU clock rate of 350 
MHz. Moreover, the proposed controller includes multi- 
channels of 16-bit DAC, DIO, encoder interface, and PCI 
interface. The servo interface, including encoder module, 
DAC control module, and DIO are designed in the FPGA 
XC3S1000. The PCI interface is built in the FPGA to 
communicate with the host PC. The DSP communicates 
with the PCI interface through Wishbone Connection 
Matrix structure. The block diagram of the proposed con- 
trol board is shown in Figure 4. 
 

 

Figure 3. Developed DSP-based motion controller. 
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Figure 4. Block diagram of DSP controller. 

Code Composer Studio software is used to implement 
the algorithm in TMS320C6727. The overall algorithm is 
divided into two main parts: main module and runtime 
module. The main module defines and initializes the soft- 
ware variables, constants and specific registers. More- 
over, some look-up tables employed in the algorithm is 
also addressed in this parts. Initialized registers in the 
initialization module are Phase-Locked-Loop (PLL) reg- 
isters, timer registers, EDMA registers, EMIF registers, 
interrupt registers, and communication registers. The ini- 
tialization module is called once at the beginning of the 
program. Runtime module is generated in the form of 
functional modules. This modularity technique is pre- 
ferred to debug and maintain the code in an easy way. In 
motion control applications, the runtime module includ- 
ing overall control algorithms, trajectory generation, real- 
time updating of position and velocity variable, and digi- 
tal filters is carried out by each interrupt clock. 

The neural network structure using in the experiment 
has 3 inputs, 5 neurons in hidden layer, and 1 output 
layer. The initial weights and thresholds are set as 0.01. 
The weights vector is updated online by the learning rule 
proposed in Equation (16). 

From the proof of stability, it can be seen that the con- 
stant 1  determines the convergence speed of augment 
error s. However, the bigger  is, the higher torque is 
needed to drive the system. 2  determines the learning 
speed of the neural network. Therefore, high gain 2  
can avoid the system uncertainties. 3  decides the adap- 
tive speed of the robust term. Due to the characteristic of 
dynamics stability of augment error s, the constant λ 
should be chosen sufficiently small to guarantee the con- 
vergence of angular position error. In the simulation, the 
initial control gains and neural network structure are se- 
lected as: 

k

1k
k

k
k

100k1  , 2 5k , ,  3 100k  0.01 

 ,

. 
The overall experimental system setup shown in Fig- 

ure 5 consists of a DSP-based motion controller, an 
ELMO analog amplifier, a LG FMA-CN02 servo motor 
with 2000 pulses/revolution feedback encoder, a linear 
stage RoboStar with 10 mm lead screw, and a host com- 
puter. 

A circle path with center position c cx y  and radius 
R is designed as reference trajectory for the experiment, 
which can be presented by individual axes as following: 

cos t
t c

g
x x R

R
    
 

            (27) 

sin t
t c

g
y y R

R

    
 

15K  200K

            (28) 

The experimental results using conventional PID 
controller with the control gains P , I  , 
KD = 0.15 are shown in Figures 6-12. Figure 13 shows 
the circular interpolation tracking of XY table. Figures 7  
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Figure 5. The proposed XY table motion control system. 
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Figure 6. Position tracking response of circular interpo- 
lation using PID controller. 
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Figure 7. Position tracking response of X-axis using PID 
controller. 
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Figure 8. Position tracking error of X-axis using PID con- 
troller. 
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Figure 9. Control input of X-axis using PID controller. 
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Figure 10. Position tracking response of Y-axis using PID 
controller. 
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Figure 11. Position tracking error of Y-axis using PID con- 
troller. 
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Figure 12. Control input of Y-axis using PID controller. 
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Figure 13. Position tracking response of circular interpola- 
tion using RANN controller. 
 
and 10 are the trajectories of individual axis. Figures 9 
and 12 present the input torque command of the PID 
controller. The tracing error of X-axis and Y-axis in 
Figures 8 and 11 show that during the motion path, PID 
controller is not able to reduce the tracking error since it 
is a linear feedback control system. 

Figures 13-19 show the experimental results using 
proposed RANN controller. The convergence rate 1 , 
the neural network learning rate 2 , the adaptive speed 

3 , and the constant 

k
k

k   are selected as 120, 0.0005, 100, 
and 0.01 respectively. The initial weights and thresholds 
in neural network are set as 0.01. It is clear from the ex- 
perimental results that the tracking error is substantially 
reduced to nearly zero. The actual positions of the motors 
closely track the reference and tracking error converges 
to zero quickly. Moreover, the control input responses of 
X-axis and Y-axis shown in Figures 16 and 19 indicate 
the improvement of control effort of proposed controller, 
since it keeps the tracking error negligible during the 
motion path. On the contrary, the PID controller cannot 
produce sufficient torque command to keep tracking er- 
ror of motor arbitrary small. Table 1 shows the com- 
parison of the dynamic performance of the PID controller 
and RANN controller. It can be seen from the Table 1 
that the proposed controller has the standout performance 
over the traditional PID controller. 

From the experimental results, it is clear that by using 
the proposed controller, the convergence and stability of 
the servo system can be guaranteed despite the existence 
of model uncertainties and disturbances and the rotor 
angle follows its desired trajectory satisfactorily. 

4. Conclusions 

In this paper, a robust adaptive neural network controller 
has been successfully implemented for the X-Y table. 
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Figure 14. Position tracking response of X-axis using RANN 
controller. 
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Figure 15. Position tracking error of X-axis using RANN 
controller. 
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Figure 16. Control input of X-axis using RANN controller. 
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Figure 17. Position tracking response of Y-axis using RANN 
controller. 

 

0.06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-0.06

-0.04

-0.02

0

0.02

0.04

Position Tracking Error of Y-axis

t(ms)

ra
d

 

 

Position Tracking Error of Y-axis

 

Figure 18. Position tracking error of Y-axis using RANN 
controller. 
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Figure 19. Control input of Y-axis using RANN controller. 
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Table 1. Comparison of PID and RANN controller. 

Controller 
 

PID RANN 

Max error (rad) 0.0341 0.0133 

Mean error (rad) 0.0118 0.0017 

RMS error (rad) 0.0150 0.0024 

 
The proposed schemes are designed by a systematic ap- 
proach and implemented based on the high performance 
DSP TMS320C6727. Fast learning rule of the neural net- 
work and stable adaptive mechanism enable the con- 
trolller to overcome the nonlinear friction, uncertainties 
and disturbances of the mechanical system. 

The stability and the convergence of the system are 
proved by Lyapunov theory and the validity of the con- 
troller is verified through experimental results. 
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