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Abstract—Robust model fitting essentially requires the application of two estimators. The first is an estimator for the values of the model

parameters. The second is an estimator for the scale of the noise in the (inlier) data. Indeed, we propose two novel robust techniques: the

Two-Step Scale estimator (TSSE) and the Adaptive Scale Sample Consensus (ASSC) estimator. TSSE applies nonparametric density

estimation and density gradient estimation techniques, to robustly estimate the scale of the inliers. The ASSC estimator combines

RandomSample Consensus (RANSAC) and TSSE: using amodified objective function that depends upon both the number of inliers and

the corresponding scale. ASSC is very robust to discontinuous signals and data with multiple structures, being able to tolerate more than

80 percent outliers. The main advantage of ASSC over RANSAC is that prior knowledge about the scale of inliers is not needed. ASSC

can simultaneously estimate the parameters of a model and the scale of the inliers belonging to that model. Experiments on synthetic

data show that ASSC has better robustness to heavily corrupted data than Least Median Squares (LMedS), Residual Consensus

(RESC), and Adaptive Least Kth order Squares (ALKS). We also apply ASSC to two fundamental computer vision tasks: range image

segmentation and robust fundamental matrix estimation. Experiments show very promising results.

Index Terms—Robust model fitting, random sample consensus, least-median-of-squares, residual consensus, adaptive least kth

order squares, kernel density estimation, mean shift, range image segmentation, fundamental matrix estimation.
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1 INTRODUCTION

ROBUSTparametricmodel estimation techniqueshavebeen
usedwith increasing frequency inmany computer vision

tasks such as optical flow calculation [1], [22], [38], range
image segmentation [15], [19], [20], [36], [39], estimating the
fundamental matrix [33], [34], [40], and tracking [3]. A robust
estimation technique is a method that can estimate the
parameters of a model from inliers and resist the influence
of outliers.Roughly, outliers canbeclassified into twoclasses:
gross outliers and pseudo-outliers [30]. Pseudo-outliers
contain structural information, i.e., pseudo-outliers can be
outliers to one structure of interest but inliers to another
structure. Ideally, a robust estimation technique should be
able to tolerate both types of outliers. Multiple structures
occur inmost computervisionproblems.Estimating informa-
tion fromdatawithmultiple structures remains a challenging
task despite the search for highly robust estimators in recent
decades [4], [6], [20], [29], [36], [39].Thebreakdownpointofan
estimator may be roughly defined as the smallest percentage
of outlier contamination that can cause the estimator to
produce arbitrarily large values ([25, p. 9]).

Although the least squares (LS) method can achieve
optimal results under Gaussian distributed noise, only one
single outlier is sufficient to force the LS estimator to
produce an arbitrarily large value. Thus, robust estimators
have been proposed in the statistics literature [18], [23], [25],
[27] and in the computer vision literature [13], [17], [20],
[29], [36], [38], [39].

Traditional statistical estimators have breakdown points
that are no more than 50 percent. These robust estimators
assume that the inliers occupy the absolute majority of the
whole data, which is far from being satisfied for the real
tasks faced in computer vision [36]. It frequently happens
that outliers occupy the absolute majority of the data.
Although Rousseeuw and Leroy argue that 0.5 is the
theoretical maximum breakdown point [25], the proof
shows that they require the robust estimator has a unique
solution, (more technically, they require affine equivar-
iance) [39]. As Stewart noted [31], [29], a breakdown point
of 0.5 can and must be surpassed.

A number of recent estimators claim to have a tolerance
to more than 50 percent outliers. Included in this category
of estimators, although no formal proof of high breakdown
point exists, are the Hough transform [17] and the RANSAC
method [13]. However, they need a user to set certain
parameters that essentially relate to the level of noise
expected: a priori an estimate of the scale, which is not
available in most practical tasks. If the scale is wrongly
provided, these methods will fail.

RESC [39], MINPRAN [29], MUSE [21], ALKS [20], MSSE
[2], etc., all claim to be able to tolerate more than 50 percent
outliers. However, RESC needs the user to tune many
parameters in compressing a histogram. MINPRAN as-
sumes that the outliers are randomly distributed within a
certain range, which makes MINPRAN less effective in
extracting multiple structures. Another problem of MIN-
PRAN is its high computational cost. MUSE and ALKS are
limited in their ability to handle extreme outliers. MUSE
also needs a lookup table for the scale estimator correction.
Although MSSE can handle large percentages of outliers
and pseudo-outliers, it does not seem as successful in
tolerating extreme cases.

The main contributions of this paper can be summarized
as follows:
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. We investigate robust scale estimation and propose a
novel and effective robust scale estimator: Two-Step
Scale Estimator (TSSE), based on nonparametric
density estimation and density gradient estimation
techniques (mean shift).

. By employing TSSE in a RANSAC like procedure, we
propose a highly robust estimator: Adaptive Scale
Sample Consensus (ASSC) estimator. ASSC is an
important improvement over RANSAC because no
priori knowledge concerning the scale of inliers is
necessary (the scale estimation is data driven).
Empirically, ASSC can tolerate more than 80 percent
outliers.

. Experiments presented show that both TSSE and
ASSC are highly robust to heavily corrupted data
with multiple structures and discontinuities, and
that they outperform several competing methods.
These experiments also include real data from two
important tasks: range image segmentation and
fundamental matrix estimation.

This paper is organized as follows: In Section 2, we review
previous robust scale techniques. In Section 3, density
gradient estimation and the mean shift/mean shift valley
method are introduced, and a robust scale estimator: TSSE is
proposed. TSSE is experimentally compared with five other
robust scale estimators, using data with multiple structures,
in Section 4. The robust ASSC estimator is proposed in
Section 5 and experimental comparisons, using both 2D and
3D examples, are contained in Section 6. We apply ASSC to
range image segmentation in Section 7 and fundamental
matrix estimation in Section 8. We conclude in Section 9.

2 ROBUST SCALE ESTIMATORS

Differentiating outliers from inliers usually depends cru-
cially upon whether the scale of the inliers has been
correctly estimated. Some robust estimators, such as
RANSAC, Hough Transform, etc., put the onus on the
“user”—they simply require some user-set parameters that
are linked to the scale of inliers. Others, such as LMedS,
RESC, MDPE, etc., produce a robust estimate of scale (after
finding the parameters of a model) during a postprocessing
stage, which aims to differentiate inliers from outliers.
Recent work of Chen and Meer [4], [5] sidesteps scale
estimation per-se by deciding the inlier/outlier threshold
based upon the valleys either side of the mode of projected
residuals (projected on the direction normal to the hyper-
plane of best fit). This has some similarity to our approach
in that they also use Kernel-Density estimators and peak/
valley seeking on that kernel density estimate (peak by
mean shift, as we do; valley by a form of search as opposed
to our mean shift valley method). However, their method is
not a direct attempt to estimate scale nor is it as general as
the approach here (we are not restricted to finding linear/
hyperplane fits). Moreover, we do not have a (potentially)
costly search for the normal direction that maximizes the
concentration of mass about the mode of the kernel density
estimate as in Chen and Meer.

Given a scale estimate, s, the inliers are usually taken to
be those data points that satisfy the following condition:

jri=sj < T; ð1Þ

where ri is the residual of ith sample, and T is a threshold.
For example, if T is 2.5 (1.96), 98 percent (95 percent) of a
Gaussian distribution will be identified as inliers.

2.1 The Median and Median Absolute Deviation
(MAD) Scale Estimator

Among many robust scale estimators, the sample median is
popular. The sample median is bounded when the data
include more than 50 percent inliers. A robust median scale
estimator is then given by [25]:

M ¼ 1:4826 1þ
5

n� p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

medi r2i

q

; ð2Þ

where n is the number of sample points and p is the
dimension of the parameter space (e.g., two for a line, three
for a circle).

A variant, MAD, which recognizes that the data points
may not be centered, uses the median to center the data [24]:

MAD ¼ 1:4826medifjri �medjrjjg: ð3Þ

The median and MAD estimators have breakdown points of
50 percent. Moreover, both methods are biased for multiple-
mode cases even when the data contains less than 50 percent
outliers (see Section 4).

2.2 Adaptive Least Kth Squares (ALKS) Estimator

A generalization of median and MAD (which both use the
median statistic) is to use the kth order statistic in ALKS
[20]. This robust k scale estimate, assuming inliers have a
Gaussian distribution, is given by:

ŝsk ¼
d̂dk

��1½ð1þ k=nÞ=2�
; ð4Þ

where d̂dk is the half-width of the shortest window including
at least k residuals; ��1½�� is the argument of the normal
cumulative density function. The optimal value of the k is
claimed [20] to be that which corresponds to the minimum
of the variance of the normalized error "2k:

"2k ¼
1

k� p

X

k

i¼1

ri;k
ŝsk

� �2

¼
�̂�2
k

ŝs2k
: ð5Þ

This assumes that when k is increased so that the first
outlier is included, the increase of ŝsk is much less than that
of �̂�k.

2.3 Modified Selective Statistical Estimator (MSSE)

Bab-Hadiashar and Suter [2] also use the least kth order
(rather than median) residuals and have a heuristic way of
determining inliers that relies on finding the last “reliable”
unbiased scale estimate as residuals of larger and larger
value are included. That is, after finding a candidate fit to
the data, they try to recognize the first outlier, correspond-
ing to where the kth residual “jumps,” by looking for a
jump in the unbiased scale estimate formed by using the
first kth residuals in an ascending order:

�̂�2
k ¼

P

k

i¼1

r2i

k� p
: ð6Þ
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Essentially, the emphasis is shifted from using a good scale
estimate for defining the outliers, to finding the point of
breakdown in the unbiased scale estimate (thereby signal-
ing the inclusion of an outlier). This breakdown is signaled
by the first k that satisfies the following inequality:

�2
kþ1

�2
k

> 1þ
T 2 � 1

k� pþ 1
: ð7Þ

2.4 Residual Consensus (RESC) Method

In RESC [39], after finding a fit, one estimates the scale of
the inliers by directly calculating:

� ¼ �
1

Pv
i¼1 h

c
i � 1

X

v

i¼1

ðihc
i� �

�hhcÞ2
 !1=2

; ð8Þ

where �hhc is the mean of all residuals included in the
Compressed Histogram (CH), � is a correction factor for the
approximation introduced by rounding the residuals in a
bin of the histogram to i� (� is the bin size of the CH), and v
is the number of bins of the CH.

However, we find that the estimated scale is over-
estimated because, instead of summing up the squares of
the differences between all individual residuals and the
mean residual in the CH, (8) sums up the squares of the
differences between residuals in each bin of CH and the
mean residual in the CH.

To reduce this problem, we propose an alternative form:

� ¼
1

Pv
i¼1 h

c
i � 1

X

nc

i¼1

ðri � �hhcÞ2
 !1=2

; ð9Þ

where nc is the number of data points in the CH. We
compare our proposed improvement in experiments re-
ported later in this paper.

3 A ROBUST SCALE ESTIMATOR: TSSE

In this section, we propose a highly robust scale estimator
(TSSE), which is derived from kernel density estimation
techniques and the mean shift method. We review these
foundations first.

3.1 Density Gradient Estimation and
Mean Shift Method

When one has samples drawn from a distribution, there are
several nonparametric methods available for estimating
that density of those samples: the histogram method, the
naive method, the nearest neighbour method, and kernel
density estimation [28].

The multivariate kernel density estimator with kernel K
and window radius (bandwidth) h is defined as follows
([28, p. 76]):

f̂fðxÞ ¼
1

nhd

X

n

i¼1

K
x�Xi

h

� �

ð10Þ

for a set of n data points fXigi ¼ 1; . . . ; n in a d-dimensional
Euclidian space Rd and KðxÞ satisfying some conditions
([35, p. 95]). The Epanechnikov kernel ([28, p. 76]) is often
used as it yields the minimum mean integrated square error
(MISE):

KeðXÞ ¼
1
2
c�1
d ðdþ 2Þð1�XTXÞ if XTX < 1

0 otherwise;

�

ð11Þ

where cd is the volume of the unit d-dimensional sphere, e.g.,

c1 ¼ 2, c2 ¼ �, c3 ¼ 4�=3. (Note: there are other possible

criteria for optimality, suggesting alternative kernels—an

issue we will not explore here.)
To estimate the gradient of this density, we can take the

gradient of the kernel density estimate

r̂rfðxÞ � rf̂fðxÞ ¼
1

nhd

X

n

i¼1

rK
x�Xi

h

� �

: ð12Þ

According to (12), the density gradient estimate of the
Epanechnikov kernel can be written as

r̂rfðxÞ ¼
nx

nðhdcdÞ

dþ 2

h2

1

nx

X

Xi2ShðxÞ

½Xi � x�

0

@

1

A; ð13Þ

where the region ShðxÞ is a hypersphere of the radius h,

having the volume hdcd, centered at x, and containing nx

data points.
It is useful to define the mean shift vector MhðxÞ [14] as:

MhðxÞ �
1

nx

X

Xi2ShðxÞ

½Xi � x� ¼
1

nx

X

Xi2ShðxÞ

Xi � x: ð14Þ

Thus, (13) can be rewritten as:

MhðxÞ �
h2

dþ 2

r̂rfðxÞ

f̂fðxÞ
: ð15Þ

Fukunaga and Hostetler [14] observed that the mean shift

vector points toward the direction of the maximum increase

in the density, thereby suggesting a mean shift method for

locating the peak of a density distribution. This idea has

recently been extensively exploited in low level computer

vision tasks [7], [9], [10], [8].

3.2 Mean Shift Valley Algorithm

Sometimes it is very important to find the valleys of

distributions. Based upon the Gaussian kernel, a saddle-

point seeking method was published in [11]. Here, we

describe a more simple method, based upon the Epanech-

nikov kernel [37]. We define the mean shift valley vector to

point in the opposite direction to the peak:

MVhðxÞ ¼ �MhðxÞ ¼ x�
1

nx

X

Xi2ShðxÞ

Xi: ð16Þ

In practice, we find that the step-size given by the above

equation may lead to oscillation. Let fykgk¼1;2... be the

sequence of successive locations of the mean shift valley

procedure, then we take a modified step by:

ykþ1 ¼ yk þ p �MVhðykÞ; ð17Þ

where 0 < p � 1. To avoid oscillation, we adjust p so that

MVhðykÞ
T
MVhðykþ1Þ > 0.

Note: when there are no local valleys (e.g., unimode), the

mean shift valley method is divergent. This can be easily

detected and avoided by terminating when no data samples

fall within the window.
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3.3 Bandwidth Choice

One crucial issue in nonparametric density estimation and,
thereby, in the mean shift method, and in the mean shift
valley method, is how to choose the bandwidth h [10], [12],
[35]. Since we work in one-dimensional residual space, a
simple over-smoothed bandwidth selector is employed [32]:

ĥh ¼
243RðKÞ

35u2ðKÞ2n

" #1=5

S; ð18Þ

where RðKÞ ¼
R 1

�1
Kð�Þ2d� and u2ðKÞ ¼

R 1

�1
�2Kð�Þd�. S is

the sample standard deviation.
The median, the MAD, or the robust k scale estimator can

be used to yield an initial scale estimate. ĥh will provide an
upper bound on the AMISE (asymptotic mean integrated
squared error) optimal bandwidth ĥhAMISE . The median,
MAD, and robust scale estimator may be biased for data
with multimodes. This is because these estimators are
proposed assuming the whole data have a Gaussian
distribution. Because the bandwidth in (18) is proportional
to the estimated scale, the bandwidth can be set as c ĥh; ð0 <
c < 1Þ to avoid oversmoothing ([35], p. 62).

To illustrate, we generated the data in Fig. 1. Mode 1 has
600 data points (mean 0.0), mode 2 has 500 data points
(mean 4.0), and mode 3 has 600 data points (mean 8.0). We
set two initial points: P0 (-2.0) and P1(5.0) and, after
applying the mean shift method, we obtained the two local
peaks: P0’(0.01) and P1’(4.03). Similarly, we applied the
mean shift valley method to two selected two initial points:
V0 (0.5) and V1 (7.8). The valley V0’ was located at 2.13, and
V1’ was located at 6.00.

3.4 Two-Step Scale Estimator (TSSE)

Based upon the above mean-shift based procedures, we
propose a robust two-step method to estimate the scale of
the inliers.

1. Use mean shift, with initial center zero (in ordered
absolute residual space), to find the local peak, and
thenuse themean shift valley to find the valley next to
the peak. Note: modes other than the inliers will be
disregarded as they lie outside the obtained valley.

2. Estimate the scale of the fit by the median scale
estimator using the points within the band centered
at the local peak extending to the valley.

TSSE is very robust to outliers and can resist heavily
contaminated data with multiple structures. In the next

section, we will compare this method with five other
methods.

4 EXPERIMENTAL COMPARISONS OF

SCALE ESTIMATION

In this section, we investigate the behavior of several robust
scale estimators that are widely used in computer vision
community: showing some of the weaknesses of these scale
estimation techniques.

4.1 Experiments on Scale Estimation

Three experiments are included here (see Table 1). In
experiment 1, there was only one structure in the data, in
experiments 2 and 3, there were two structures in the data.
In the description, the ith structure has ni data points, all
corrupted by Gaussian noise with zero mean and standard
variance �i, and � outlier data points were randomly
distributed in the range of (0, 100). For the purposes of this
section (only), we assume we know the parameters of the model:
this is so we can concentrate on estimating the scale of the
residuals. In experiments 2 and 3, we assume we know the
parameters of the first structure (highlighted in bold) and it
is the parameters of that structure we use for the calculation
of the residuals. The second structure then provides
pseudo-outliers to the first structure.

We note that even when there are no outliers (experi-
ment 1) ALKS performs poorly. This is because the robust
estimate ŝsk is an underestimate of � for all values of k [17,
p. 202]) and because the criterion (5) estimates the optimal k
wrongly. ALKS classified only 10 percent of the data as
inliers. (Note: since the TSSE use the median of the inliers to
define the scale, it is no surprise that, when 100 percent of
the data are inliers, it produces the same estimate as the
median.)

From the obtained results, we can see that only the
proposed method gave a reasonably good result when the
number of outliers is extreme (experiment 3).

4.2 Error Plots

We also generated two signals for the error plots (similar to
the breakdown plots in [25]):

. Roof Signal—500 data points in total: x: (0-55),
y¼xþ30, n1, � ¼ 2; x:(55-100), y ¼ 140� x, n2 ¼ 50;
� ¼ 2. Where we first assigned 450 data point to n1

and the number of the uniform outliers � ¼ 0. Thus,
the data include 10 percent outliers. For each
successive run, we decrease n1, and at the same time,
we increase � so that the total number of data points
is 500. Finally, n1 ¼ 75 and � ¼ 375, i.e., the data
include 85 percent outliers. The results are averaged
over runs repeated 20 times at the same setting.

. One-Step Signal—1,000 data points in total: x:(0-55),
y ¼ 30, n1, � ¼ 2; x:(55-100), y ¼ 40, n2 ¼ 100; � ¼ 2.
First, we assign n1 900 data points and the number of
the uniform outliers � ¼ 0. Thus, the data include
10 percent outliers. Then, we decrease n1, and at the
same time, we increase � so that the number of the
whole data points is 1,000. Finally, n1 ¼ 150 and
� ¼ 750, i.e., the data include 85 percent outliers.

Fig. 2 shows that TSSE yielded the best results among the
six methods (it begins to break down only when outliers
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occupy more than 87 percent). The revised RESC method
begins to break down when the outliers occupy around
60 percent for Fig. 2a and 50 percent for Fig. 2b. MSSE gave
reasonable results when the percentage of outliers is less
than 75 percent for Fig. 2a and 70 percent for Fig. 2b, but it
broke down when the data include more outliers. ALKS
yielded less accurate results than TSSE, and less accurate
results than the revised RESC and MMSE when the outliers
are less than 60 percent. Although the breakdown points of
the median and the MAD scale estimators are as high as
50 percent, their results deviated from the true scale even
when outliers are less than 50 percent of the data. They are
biased more and more from the true scale with the increase
in the percentage of outliers. Comparing Fig. 2a with Fig. 2b,
we can see that the revised RESC, MSSE, and ALKS yielded
less accurate results for a small step in the signal when
compared to a roof signal, but the results of the proposed
TSSE are of similar accuracy for both types of signals.

We also investigated the performance of the robust k
scale estimator, for different choices of the “quantile” k,
again assuming the correct parameters of a model have
been found. Let:

SðqÞ ¼
d̂dq

��1½ð1þ qÞ=2�
; ð19Þ

where q is varied from 0 to 1. Note: S (0.5) is the median
scale estimator.

We generated a one-step signal containing 500 data points
in total: x:(0-55), y ¼ 30, n1, � ¼ 1; x:(55-100), y ¼ 40, n2 ¼ 50;

� ¼ 1. At the beginning, n1 ¼ 450 and � ¼ 0. Then, we
decreasen1, and at the same time,we increase�untiln1 ¼ 50,
and � ¼ 400, i.e., the data include 90 percent outliers.

As Fig. 3 shows, the accuracy of SðqÞ is increased with the
decrease of q. When the outliers are less than 50 percent of
the whole data, the difference for different values of q is
small. However, when the data includemore than 50 percent
outliers, the difference for various values of q is large.

4.3 Performance of TSSE

From the experiments in this section,we can see the proposed
TSSE is a very robust scale estimator, achieving better results
than the other five methods. However, we must acknowl-
edge that the accuracy of TSSE is related to the accuracy of
kernel density estimation. In particular, for very few data
points, the kernel density estimates will be less accurate. For
example, we repeat the experiment 1 (in Section 4.1) using
different numbers of the data points n1. For each n1, we
repeat the experiment 100 times. Thus, themean (mn) and the
stand variance (std) of the results can be obtained: n1¼300,
mn¼3:0459, std¼0:2128; n1¼200, mn¼3:0851, std¼0:2362;
n1 ¼ 100, mn ¼ 3:1843, std ¼ 0:3527; n1 ¼ 50, mn ¼ 3:2464,
std ¼ 0:6216. The achievement of ASSC decreases with the
reduction in the number of data points.We note that this also
happens to the other five methods.

In practice, one cannot directly estimate the scale: the
parameters of a model also need to be estimated. In the next
section, we will propose a new robust estimator—Adaptive
Scale Sample Consensus (ASSC) estimator, which can
estimate the parameters and the scale simultaneously.
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5 ROBUST ADAPTIVE SCALE SAMPLE CONSENSUS

ESTIMATOR

Fischler and Bolles [13] introduced RANdom Sample
Consensus (RANSAC). Like the common implementation
of Least Median of Squares fitting, RANSAC randomly
samples a p-subset (p is the dimension of parameter space)
to estimate the parameters � of the model. Also, like LMedS,
RANSAC continues to draw randomly sampled p-subsets
from the whole data until there is a high probability that at
least one p-subset is clean. A p-tuple is “clean” if it consists
of good observations without contamination by outliers. Let
" be the fraction of outliers contained in the whole set of
points. The probability P , of one clean subset in m such
subsets, can be expressed as follows ([25, p. 198]):

P ¼ 1� ð1� ð1� "ÞpÞm: ð20Þ

Thus, one can determinem for given values of ", p, and P by:

m ¼
logð1� P Þ

log½1� ð1�"Þp�
: ð21Þ

The criterion that RANSAC uses to select the best fit is:
Maximize the number of data points within a user-set error
bound:

�̂� ¼ argmax
�̂�

n�̂�; ð22Þ

where n�̂� is the number of points whose absolute residual is
within the error bound.

The error bound in RANSAC is crucial. Provided with a
correct error bound of inliers, the RANSAC method can
find a model even when the data contain a large percentage
of gross errors. However, when the error bound is wrongly
given, RANSAC will totally break down even when the
outliers occupy a small percentage of the whole data [36].
We use our scale estimator TSSE to automatically set the
error bound—yielding a new parametric fitting scheme
—ASSC, which includes both the number and the scale of
inliers in its objective function.

5.1 Adaptive Scale Sample Consensus Estimator
(ASSC) Algorithm

We assume that when a model is correctly found, two
criteria should be satisfied:

1. The number of data points (n�) near or on the model
should be as large as possible.

2. The residuals of the inliers should be as small as
possible. Correspondingly, the scale (S�) should be
as small as possible.

We define our objective function as:

�̂� ¼ argmax
�̂�

ðn�̂�=S�̂�Þ: ð23Þ

Of course, there are many potential variants on this
objective function but the above is a simple and natural
one. Note: when the estimate of the scale is fixed, (23) is
another form of RANSAC with the score n� scaled by 1=S
(i.e., a fixed constant for all p-subsets), yielding the same
results as RANSAC. ASSC is more reasonable because the
scale is estimated for each candidate fit, in addition to the
fact that it no longer requires a user defined error-bound.

The ASSC algorithm is as follows:

1. Randomly choose one p-subset from the data points,
estimate the model parameters using the p-subset,
and calculate the ordered absolute residuals of all
data points.

2. Choose the bandwidth by (18) and calculate an
initial scale by a robust k scale estimator (19) using
q ¼ 0:2.

3. Apply TSSE to the absolute sorted residuals to
estimate the scale of inliers. At the same time, the
probability density at the local peak f̂fðpeakÞ and
local valley f̂fðvalleyÞ are obtained by (10).

4. Validate the valley. Let f̂fðvalleyÞ=f̂fðpeakÞ ¼ � (where
0 � � < 1). Because the inliers are assumed to have a
Gaussian-like distribution, the valley is invalid when
� is too large (say, 0.8). If the valley is valid, go to
Step 5; otherwise, go to Step 1.

5. Calculate the score, i.e., the objective function of the
ASSC estimator.

6. Repeat Step 1 to Step 5 m times (m is set by (21)).
Finally, output the parameters and the scale S1 with
the highest score.

Because the robust k scale estimator is biased for data
with multiple structures, the final scale of inliers S2 can be
refined when the scale S1 obtained by TSSE is used. In
order to improve the statistical efficiency, a weighted least
square procedure ([25, p. 202]) is carried out after finding
the initial fit.

Instead of estimating the fit involving the absolute
majority in the data set, the ASSC estimator finds a fit
having a relative majority of the data points. This makes it
possible, in practice, for ASSC to obtain a high robustness
that can tolerate more than 50 percent outliers, as demon-
strated by the experiments in the next section.

6 EXPERIMENTS WITH DATA CONTAINING MULTIPLE

STRUCTURES

In this section, both 2D and 3D examples are given. The
results of the proposed method are also compared with
those of three other popular methods: LMedS, RESC, and
ALKS. All of these methods use the random sampling
scheme that is also at the heart of our method. Note: unlike
Section 4, we do not, of course, assume any knowledge of the
parameters of the models in the data. Nor are we aiming to find
any particular structure. Due to the random sampling used, the
methods will possibly return a different structure on different
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Fig. 3. Error plot of robust scale estimators based on different quantiles.



runs—however, they will generally find the largest structure most
often, if one dominates in size.

6.1 2D Examples

We generated four kinds of data (a line, three lines, a step,
and three steps), each with a total of 500 data points. The
signals were corrupted by Gaussian noise with zero mean
and standard variance �. Among the 500 data points, � data
points were randomly distributed in the range of (0, 100).
The ith structure has ni data points.

1. One line: x:( 0-100), y ¼ x, n1 ¼ 50; � ¼ 450; � ¼ 0:8.
2. Three lines: x:(25-75), y¼75, n1¼60; x:(25-75), y ¼ 60,

n2 ¼ 50; x ¼ 25, y:(20-75), n3 ¼ 40; � ¼ 350; � ¼ 1:0.
3. One step: x:(0-50), y ¼ 35, n1 ¼ 75; x:(50-100), y ¼ 25,

n2 ¼ 55; � ¼ 370; � ¼ 1:1.
4. Three steps: x:(0-25), y¼20, n1¼ 55; x:(25-50), y ¼ 40,

n2 ¼ 30; x:(50-75), y ¼ 60, n3 ¼ 30; x:(75-100), y ¼ 80,
n4 ¼ 30; � ¼ 355; � ¼ 1:0.

In Fig. 4, we can see that the proposed ASSC method
yields the best results among the four methods, correctly
fitting all four signals. Because LMedS has a 50 percent
breakdown point, it failed to fit all the four signals.
Although ALKS can tolerate more than 50 percent outliers,
it failed in all four cases with very high outlier content. RESC
gave better results than LMedS and ALKS. It succeeded in
two cases (one-line and three-line signals) even when the
data involved more than 88 percent outliers. However,
RESC failed to fit two signals (Figs. 4c and 4d). (Note: If the
number of steps in Fig. 4d increases greatly and each step
gets short enough, ASSC, like others, cannot distinguish a
series of very small steps from a single inclined line.)

It should be emphasized that both the bandwidth choice
and the scale estimation in the proposed method are data-
driven. No priori knowledge about the bandwidth and the
scale is necessary in the proposed method. This is a great
improvement over the traditional RANSAC method where
the user must set a priori scale-related error bound.

6.2 3D Examples

Two synthetic 3D signals were generated. Each contained
500 data points and three planar structures. Each plane
contains 100 points corrupted by Gaussian noise with
standard variance �; 200 points are randomly distributed in
a region including all three structures. A planar equation
can be written as Z ¼ AXþ BYþ C, and the residual of the
point at ðXi;Yi;ZiÞ is ri ¼ Zi �AXi � BYi � C. ðA;B;C;�Þ
are the parameters to estimate.

In contrast to the previous section, here we attempt to
find all structures in the data. In order to extract all planes,
1) we apply the robust estimators to the data set and
estimate the parameters and scale of a plane, 2) we extract
the inliers and remove them from the data set, and 3) we
repeat Steps 1 to 2 until all planes are extracted. The red
circles constitute the first plane extracted; the green stars the
second plane extracted; and the blue squares the third
extracted plane. The results are shown in Fig. 5, Table 2,
Fig. 6, and Table 3 (due to the limited of space, the results of
LMedS, which completely broke down for these 3D data,
are only given in Tables 2 and 3). Note, for RESC, we use the
revised form in (9) instead of (8) for scale estimate.

From Fig. 5 and Table 2, we can see that RESC and ALKS,
which claim to be robust to data with more than 50 percent
outliers, fit the first plane approximately correctly. However,
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Fig. 4. Comparing the performance of four methods: (a) fitting a line with a total of 90 percent outliers, (b) fitting three lines with a total of 88 percent

outliers, (c) fitting a step with a total of 85 percent outliers, (d) fitting three steps with a total of 89 percent outliers.



because the estimated scales for the first plane are quite
wrong, these two methods failed to fit the second and third
planes. LMedS, having a 50 percent breakdown point,
completely failed to fit data with such high contamination
(see Table 2). The proposed method yielded the best results:
successfully fitting all three planes and correctly estimating
the scales of the inliers to the three planes (the extracted three
planes by the proposed method are shown in Fig. 5b).

Similarly, in the second experiment (Fig. 6 and Table 3),
LMedS and ALKS completely broke down for the heavily
corrupted data with multiple structures. RESC, although it
correctly fitted the first plane, incorrectly estimated the
scale of the inliers to the plane. RESC wrongly fitted the
second and the third planes. Only the proposed method
correctly fitted all three planes (Fig. 6b) and estimated the
corresponding scale for each plane.

The proposed method is computationally efficient. We
perform the proposed method in MATLAB code with TSSE
implemented in Mex. When m is set to 500, the proposed

method takes about 1.5 seconds for the 2D examples and
about 2.5 seconds for the 3D examples using an AMD
800MHz personal computer.

6.3 The Error Plot of the Four Methods

In this section, we perform an experiment to draw the error
plot of each method (similar to the experiment reported in
[39]. However, the data that we use is more complicated
because it contains two types of outliers: clustered outliers
and randomly distributed outliers). We generate one plane
signal with Gaussian noise having unit standard variance.
The clustered outliers have 100 data points and are
distributed within a cube. The randomly distributed
outliers contain the plane signal and clustered outliers.
The number of inliers is decreased from 900 to 100. At the
same time, the number of randomly distributed outliers is
increased from 0 to 750 so that the total number of the data
points is kept 1,000. Thus, the outliers occupy from
10 percent to 90 percent.
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Fig. 5. First experiment for 3D multiple-structure data: (a) the 3D data; the results by (b) the proposed method, (c) by RESC, and (d) by ALKS.

TABLE 2
Result of the Estimates of the Parameters ðA;B;C;�Þ Provided by Each of the Robust Estimators Applied to the Data in Fig. 5



Examples for data with 20 percent and 70 percent outliers
are shown in Figs. 7a and 7b to illustrate the distributions of
the inliers and outliers. If an estimator is robust enough to
outliers, it can resist the influence of both clustered outliers
and randomly distributed outliers even when the outliers
occupy more than 50 percent of the data. We performed the
experiments 20 times, using different random sampling
seeds, for each data set involving different percentage of
outliers (10 to 90 percent). An averaged result is show in Figs.
7c, 7d, and 7e. From Figs. 7c, 7d, and 7e, we can see that our
method obtains the best result. Because the LMedS has only
50 percent breakdownpoint, it broke downwhen the outliers
approximately occupied more than 50 percent of the data.
ALKS broke down when the outliers reached 75 percent.
RESC began to break down when the outliers comprised
more than 83 percent of thewhole data. In contrast, the ASSC
estimator is themost robust to outliers. It began tobreakdown
at 89 percent outliers. In fact, when the inliers are about (or

less than) 10 percent of the data, the assumption that inliers
should occupy a relative majority of the data is violated.
Bridging between the inliers and the clustered outliers tends
to yield a higher score. Other robust estimators also suffer
from the same problem.

6.4 Influence of the Noise Level of Inliers on the
Results of Robust Fitting

Next, we will investigate the influence of the noise level of
the inliers.We use the signal shown in Fig. 7bwith 70 percent
outliers. However, we changed the standard variance of the
plane signal from 0.1 to 3, with an increment of 0.1.

Fig. 8 shows that LMedS broke down first. This is because
that LMedS cannot resist the influence of outliers when the
outliers occupy more than a half of the data points. ALKS,
RESC, and ASSC estimators all can tolerate more than
50 percent outliers. However, among these three robust
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Fig. 6. Second experiment for 3D multiple-structure data: (a) the 3D data; the results by (b) the proposed method, (c) by RESC, (d) and by ALKS.

TABLE 3
Result of the Estimates of the Parameters ðA;B;C;�Þ Provided by Each of the Robust Estimators Applied to the Data in Fig. 6



estimators, ALKS broke down first. It began to break down
when the noise level of inliers is increased to 1.7. RESC is
more robust than ALKS: It began to break down when the
noise level of inliers is increased to 2.3. The ASSC estimator
shows the best achievement. Even when the noise level is
increased to 3.0, the ASSC estimator did not break down yet.

6.5 Influence of the Relative Height of
Discontinuous Signals

Discontinuous signals (such as parallel lines/planes, step
lines/planes, etc.) often appear in computer vision tasks.
Work has been done to investigate the behaviour of robust
estimators for discontinuous signals, e.g., [21], [30], [31].
Discontinuous signals are hard to deal with, e.g., most
robust estimators break down and yield a “bridge” between
the two planes of one step signal. The relative height of the
discontinuity is a crucial factor. In this section, we will
investigate the influence of the discontinuity on the
performance of the four methods.

We generate two discontinuous signals: one containing
two parallel planes and one containing one-step planes. The
signals have unit variance. Randomly distributed outliers
covering the regions of the signals are added to the signals.
Among the total 1,000 data points, there are 20 percent
pseudo-outliers and 50 percent random outliers. The relative
height is increased from 1 to 20. Figs. 9a and 9b show
examples of the data distributions of the two signals with
relative height 10. The averaged results (over 20 repetitions)
obtained by the four robust estimators are shown in Figs. 9c,
9d, 9e, 9f, 9g, and 9h.

From Fig. 9, we can see the tendency to bridge becomes
stronger as the step decreases. LMedS shows the worst

results among the four robust estimators. For the remaining
three estimators (ASSC, ALKS, and RESC) from Figs. 9c, 9d,
9e, 9f, 9g, and 9h, we can see that:

. For the parallel plane signal, the results by ALKS are
affected most by the small step. RESC shows better
result than ALKS. However, ASSC shows the best
result.

. For the step signal, when the step height is small, all
of these three estimators are affected. When the step
height is increased, all of the three estimators show
robustness to the signal. However, ASSC achieves
the best results for small step height signals.

In next sections, we will apply the ASSC estimator to
“real world” computer vision tasks: range image segmenta-
tion and fundamental matrix estimation.

7 ASSC FOR RANGE IMAGE SEGMENTATION

Range image segmentation is a complicated task because
range images may contain many gross errors (such as
sensor noise, etc.), as well as containing multiple structures.
Many robust estimators have been employed to segment
range images (such as [19], [20], [21], [29], [36], [39]).

7.1 A Hierarchal Algorithm for Range Image
Segmentation

Our range image segmentation algorithm is based on the
proposed robust ASSC estimator. We employ a hierarchical
structure, similar to [36], in our algorithm. Although MDPE
in [36] has similar performance to ASSC, MDPE (using a fix
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Fig. 7. Error plot of the four methods: (a) example of the data with 20 percent outliers, (b) example of the data with 80 percent outliers, (c) the error in

the estimate of parameter A, (d) in parameter B, and (e) in parameter C.



bandwidth technique) only estimates the parameters of the

model. An auxiliary scale estimator is needed to provide an

estimate of the scale of inliers. ASSC (with a variable

bandwidth technique) can estimate the scale of inliers in the

process of estimating the parameters of a model. Moreover,

ASSC has a more simple objective function.
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Fig. 8. The influence of the noise level of the inliers on the results of the four methods: plots of the error in the parameters A (a), B (b), and C (c) for

different noise levels.

Fig. 9. The influence of the relative height of discontinuous signals on the results of the four methods: (a) two parallel planes; (b) one step signal; (c),

(d), and (e) the results for the two parallel planes; (f), (g), and (h) the results for the step signal.



We apply our algorithm to the ABW range images from
the USF database (available at http://marathon.csee.usf.
edu/seg-comp/SegComp.html). The range images were
generated by using an ABW structured light scanner and
all ABW range images have 512 x 512 pixels. Each pixel
value corresponds to a depth/range measurement (i.e., in
the “z” direction). Thus, the coordinate of the pixel in 3D can
be written as (x, y, z), where (x, y) is the image coordinate of
the pixel.

Shadow pixels may occur in an ABW range image. These
points will be excluded from processing. Thus, all pixels
either startwith the label “shadow”or theyareunlabeled.The
basic idea is as follows: From theunlabeledpixels,we find the
largest connected component (CCmax). In obtaining the
connected components, we do not connect adjacent pixels if
there is a “jump edge” between them (defined by a height
difference of more than Tjump—a threshold set in advance).
We thenuseASSC to findaplanewithinCCmax. The strategy
used to speed up the processing is to work on a subsampled
version of CCmax, formed by regular subsampling (taking
only those points in CCmax that lie on the sublattice spaced
by one in r pixels horizontally and one in r pixels vertically),
for fitting the plane parameters. This reduces the computa-
tion involved inASSC significantly since one has to deal with
significantly less residuals in each application of ASSC.

Note: In thefollowingdescription,wedistinguishcarefully
between “classify” and “label.” Classify is a temporary
distinction for the purpose of explanation. Labeling assigns
a final label to the pixels, and the set of labels defines the
segmentation by groups of pixels with a common label. The
steps are:

0. Set r = 8, and set the following thresholds: Tnoise =
5, Tcc = 80, Tinlier = 100, Tjump = 9, Tvalid = 10,
Tangle = 45degrees.

1. From the unclassified pixels find the maximum
connected component CCmax. If any of the connected
components are less than Tnoise in size, we label their
data points as “noise.” If the number of samples in
CCmax is less than Tcc, then go to Step 5. Subsample
CCmax to form S. Use ASSC to find the parameters
(including scale) of a surface from amongst the data S.
Using the parameter foundwe classify pixels in S into
“inlier” or “outlier” and if the number of “inliers” are
less than Tinlier then go to Step 5.

2. Using the parameters found in the previous step,
classify pixels in CCmax as either “inliers” or
“outliers.”

3. Classify the “inliers” as either “valid” or “invalid”
by the following: When the angle between the
normal of the inlier data point and the normal of
the estimated plane is less than Tangle, the data
point is “valid.” If the number of valid points is less
than Tvalid, go to Step 5.

4. The “valid” pixels define the region for the fitted
plane. Typically, this has holes in it (due to isolated
points with large noise). We fill those holes with a
general hole filling routine (from Matlab). The pixels
belonging to this filled surface are then labeled with
a unique label for that surface. Repeat from Step 1
until there are no valid connected components in
size (i.e., <Tcc) left to process.

5. Adjust the subsampling ratio: r = r/2 and terminate
when r < 1, else go to Step 1.

Finally, we eliminate any remaining isolated outliers and
the points labeled as “noise” in Step 1 by assigning them to
the majority of their eight connected neighbors.

7.2 Experiments on Range Image Segmentation

Due to the adoption of the robust ASSC estimator, the
proposed algorithm is very robust to noise. In this first
experiment, we added 26,214 random noise points to the
range images taken from theUSFABWrange image database
(test 7 and train 5).We directly segment the unprocessed raw
images. No separate noise filtering is performed.

As shown in Fig. 10, all of the main surfaces were
recovered by our method. Only a slight distortion appeared
on some boundaries of neighboring surfaces. This is because
of the sensor noise and the limited accuracy of the estimated
normal at each range point. In fact, the more accurate the
range data are, and the more accurate the estimated normals
at range points are, the less the distortion is.

We also compare our results with those of several state-
of-the-art approaches [16]: University of South Florida
(USF), Washington State University (WSU), and University
of Edinburgh (UE). (The parameters of these three ap-
proaches were trained using the ABW training range images
[16].) Figs. 11c, 11d, 11e, and 11f show the results obtained by
the four methods. The results by the four methods should be
compared with the ground truth (Fig. 11b).

From Fig. 11c, we can see that the USF results contained
many noisy points. In Fig. 11d, the WSU segmenter missed
one surface; it also over segmented one surface. Some
boundaries on the junction of the segmented patch by WSU
were relatively seriously distorted. UE shows relatively
better results than those of USF and WSU. However, some
estimated surfaces are still noisy (see Fig. 11e). Compared
with the other three methods, the proposed method
achieved the best results. All surfaces are recovered and
the segmented surfaces are relatively “clean.” The edges of
the segmented patches were reasonably good.

Adopting a hierarchical-sampling technique in the
proposed method greatly reduces its time cost. The
processing time of the method is affected to a relatively
large extent by the number of surfaces in the range images.
The processing time for a range image including simple
objects is faster than that for a range image including
complicated objects. Generally speaking, given m = 500, it
takes less than one minute (on an AMD800MHz personal
computer in C interfaced with the MATLAB language) for
segmenting a range image with simple surfaces and about
1-2 minutes for one including complicated surfaces. This
includes the time for computing normal information at each
range pixel (which takes about 12 seconds).

8 ASSC FOR FUNDAMENTAL MATRIX ESTIMATION

8.1 Fundamental Matrix Estimation

The fundamental matrix provides a constraint between
corresponding points in multiple views. Estimation of the
fundamental matrix is important for several problems:
matching, recovering of structure, motion segmentation,
etc. [34]. Robust estimators such as M-estimators, LMedS,
RANSAC, MSAC, and MLESAC have been applied to
estimate the fundamental matrix [33].
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Let fxig and fx0ig (for i ¼ 1; . . . ; n) be a set of matched

homogeneous image points viewed in image 1 and image 2,

respectively. We have the following constraints for the

fundamental matrix F :

x
0T
i Fxi ¼ 0 and det½F � ¼ 0: ð24Þ

We employ the 7-point algorithm ([33, p. 7]), to solve for

candidate fits using Simpson distance. For the ith corre-

spondence, residual ri using Simpson distance is:

ri ¼
ki

k2x þ k2y þ k2x0 þ k2y0
� �1=2

; ð25Þ

where

ki ¼f1x
0
ixi þ f2x

0
iyi þ f3x

0
i& þ f4y

0
ixi

þ f5y
0
iyi þ f6y

0
i& þ f7xi& þ f8yi& þ f9&

2:

8.2 The Experiments on Fundamental Matrix
Estimation

First, we generated 300 matches including 120 point pairs of

inliers with unit Gaussian variance and 160 point pairs of

random outliers. In practice, the scale of the inliers is not

available. Thus, the median scale estimator, as recom-

mended in [33], is used for RANSAC and MSAC to yield an

initial scale estimate. The number of random samples is set

to 10,000. The experiment was repeated 30 times and the

averaged values are shown in Table 4. From Table 4, we can

see that our method yields the best result.

Next, we draw the error plot of the four methods. Among
the total 300 correspondences, the percentage of outliers is
increased from 5 to 70 percent in increments of 5 percent.
The experiments were repeated 100 times for each percen-
tage of outliers. If a method is robust enough, it should resist
the influence of outliers and the correctly identified
percentages of inliers should be around 95 percent (T is
set 1.96 in (1)) and the standard variance of inliers should be
near to 1.0 regardless of the percentages of outliers actually
in the data. We set the number of random samples, m, to be
high enough to ensure a high probability of success.

From Fig. 12, we can see that MSAC, RANSAC, and
LMedS all break down when the data involve more than
50 percent outliers. The standard variance of inliers by
ASSC is the smallest when the percentage of outliers is
higher than 50 percent. Note: ASSC succeeds to find the
inliers and outliers even when the outliers occupied
70 percent of the whole data. Finally, we apply the
proposed method on real image frames: two frames of the
Corridor sequence (bt.003 and bt.006), which can be
obtained from http://www.robots.ox.ac.uk/~vgg/data/
(Figs. 13a and 13b). Fig. 13c shows the matches involving
500 point pairs in total. The inliers (201 correspondences)
obtained by the proposed method are shown in Fig. 13d.
The epipolar lines (we draw 30 of the epipolar lines) and the
epipole found using the estimated fundamental matrix by
ASSC are shown in Figs. 13e and 13f. We can see that the
proposed method achieves a good result. Because the
camera matrices of the two frames are available, we can
obtain the ground truth fundamental matrix and, thus,
evaluate the errors. From Table 5, we can see that ASSC
performs the best among the four methods.
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Fig. 10. Segmentation of ABW range images from the USF database. (a), (d) Range image with 26,214 random noise points. (b), (e) The ground

truth results for the corresponding range images without adding random noise. (c), (f) Segmentation result by the proposed algorithm.



9 CONCLUSION

We have shown that scale estimation for data, involving

multiple structures and high percentages of outliers, is as yet

a relatively unsolved problem. As a partial solution, we

introduced a robust two-step scale estimator (TSSE) and we

presented experiments showing its advantages over other

existing robust scale estimators. TSSE can be used to give an

initial scale estimate for robust estimators such as M-

estimators, etc. TSSE can also be used to provide an auxiliary

estimate of scale (after the parameters of a model have been

found) as a component of almost any robust fitting method.
We also proposed a very robust Adaptive Scale Sample

Consensus (ASSC) estimator which has an objective func-

tion that takes account of both the number of inliers and the

corresponding scale estimate for those inliers. ASSC is very

robust to multiple-structural data containing high percen-

tages of outliers (more than 80 percent outliers). The ASSC

estimator was compared to several popular robust estima-
tors and generally achieves better results.

Finally, we applied ASSC to range image segmentation
and to fundamental matrix estimation. However, the
applications of ASSC are not limited to these two fields.
The computational cost of the proposed ASSC method is
moderately low.

Although we have compared against several of the
“natural competitors” from the computer vision literature, it
is difficult to be comprehensive. For example, in [26], the
authors also proposed a method which can simultaneously
estimate the model parameters and the scale of the inliers. In
essence, themethodtries to find the fit thatproduces residuals
that are themostGaussiandistributed (orwhichhavea subset
that is most Gaussian distributed), and all data points are
considered. In contrast, only the data points, within the band
obtained by the mean shift and mean shift valley, are
considered in our objective function. Also, we do not assume
that the residuals for the best fit will be the best match to a
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Fig. 11. Comparison of the segmentation results for ABW range image (test 3). (a) Range image. (b) The result of ground truth. (c) The result by the

USF. (d) The result by the WSU. (e) The result by the UE. (f) The result by the proposed method.

TABLE 4
An Experimental Comparison for Data with 60 Percent Outliers



Gaussian distribution. In the latter stage of the preparation of
this paper,webecomeaware thatGotardo et al. [15] proposed
an improved robust estimator based on RANSAC and
MLESAC, and applied it to range image segmentation.
However, like RANSAC, this estimator also requires the user
to set the scale-related tolerance. In contrast, the proposed
ASSC method does not require any priori information about
the scale.Although[4] alsoemployskerneldensity estimation
technique, it uses the projection pursuit paradigm. Thus, for
higher dimensions, the computational complexity is greatly
increased. ASSC considers the density distribution of the

mode in 1D residual space, by which the dimension of the

space is reduced.
A more comprehensive set of comparisons would be a

useful piece of future work.
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