
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Robust Adversarial Objects against Deep Learning Models

Tzungyu Tsai,1 Kaichen Yang,2 Tsung-Yi Ho,1 Yier Jin2∗

1National Tsing Hua University, Hsinchu, Taiwan
2University of Florida, USA

s107062519@m107.nthu.edu.tw, bojanykc@ufl.edu, tyho@cs.nthu.edu.tw, yier.jin@ece.ufl.edu

Abstract

Previous work has shown that Deep Neural Networks
(DNNs), including those currently in use in many fields, are
extremely vulnerable to maliciously crafted inputs, known
as adversarial examples. Despite extensive and thorough re-
search of adversarial examples in many areas, adversarial
3D data, such as point clouds, remain comparatively unex-
plored. The study of adversarial 3D data is crucial consid-
ering its impact in real-life, high-stakes scenarios including
autonomous driving. In this paper, we propose a novel adver-
sarial attack against PointNet++, a deep neural network that
performs classification and segmentation tasks using features
learned directly from raw 3D points. In comparison to ex-
isting works, our attack generates not only adversarial point
clouds, but also robust adversarial objects that in turn gener-
ate adversarial point clouds when sampled both in simulation
and after construction in real world. We also demonstrate that
our objects can bypass existing defense mechanisms designed
especially against adversarial 3D data.

1 Introduction

Deep learning achieves great success in many areas such
as image classification, object detection, and voice recogni-
tion. Inspired by these achievements, many innovative neu-
ral network architectures are proposed to process 3D data,
particularly point cloud data. PointNet (Qi et al. 2017a) and
its variation, PointNet++ (Qi et al. 2017b), are popular net-
work models designed for classification and segmentation
on point data. In contrast to existing voxel-based or image-
based methods (Maturana and Scherer 2015; Qi et al. 2016)
which transform point data into regular 3D voxel grids or
render points to 2D images, PointNets make predictions
based on the features learned directly from raw 3D points,
thus utilizing more information for better accuracy.

Though deep learning is recognized as a promising way
in processing different tasks, recent works (Szegedy et al.
2013) have shown that deep learning models are vulnerable
to deliberately crafted inputs, known as adversarial exam-
ples. Adversarial examples are generated by adding small

∗Corresponding Author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Visualization of the 3D Printed Physical Adversar-
ial Objects Generated by Our Attack Algorithm.

but intentionally selected perturbations to the original in-
puts that lead the target models to specific incorrect outputs.
The phenomenon of adversarial examples was first found in
deep learning models designed for image classification tasks
(Szegedy et al. 2013). Since then adversarial examples have
been proven to exist in DNN models for various applications
such as object detection (Xie et al. 2017), intrusion detection
(Yang et al. 2018), and voice recognition (Yuan et al. 2018).

Despite the fact that deep learning models trained to ana-
lyze point cloud data are already deployed in safety-crucial
applications such as autonomous driving, the threat of poten-
tial adversarial attacks on these models is rarely discussed.
Though there are some recently proposed adversarial attack
algorithms (Xiang, Qi, and Li 2019; Liu, Yu, and Su 2019)
targeting the PointNets by adding or altering the points, they
fail to pass some trivial defense mechanisms (Zhou et al.
2018). These attack schemes also only concentrate on point
clouds; they fail to construct corresponding meaningful ob-
jects, not to mention manufacturing these objects physically.

In this work, we focus on adversarial attacks in white-
box scenario against PointNet++, a point cloud classification
network. To address the limitations of the previous attack
algorithms, we propose a novel attack method to generate
robust adversarial 3D objects that preserve their properties
after physically manufactured by 3D printers. Considering
the existing defensive methods designed specifically to de-
fend against 3D adversarial point clouds, we further show

954



that our attack can bypass these defense mechanisms with
high success rates.

To summarize, we make the following contributions in
this paper:

• We propose a novel attack approach to generate 3D adver-
sarial point clouds that can form objects with reasonable
shapes in different adversarial settings.

• In our experiments, we illustrate that our attack can by-
pass existing defenses against adversarial 3D point clouds
with high success rates.

• We demonstrate that our attack generates not only robust
adversarial points in the digital domain, but also creates
printable adversarial objects in physical world.

The source code of this paper is released at https://github.
com/jinyier/ai pointnet attack.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work. Our proposed method is intro-
duced in Section 3. Experiments are given in Section 4, and
Section 5 concludes this paper.

2 Related Work

Deep Learning on 3D Points. Point cloud data, as a popu-
lar data format that contains 3D coordinates information of
points sampled from the surface of physical or virtual ob-
jects, are widely applied in 3D vision areas such as indus-
trial modeling, surveying, and autonomous driving. Unlike
images with ordered pixels, point cloud data are unordered,
making analysis difficult via popular deep learning tech-
niques. The first practical deep learning model to process
point cloud data circumvents this issue by using a voxel-
based method (Maturana and Scherer 2015; Qi et al. 2016).
Since then, more methods based on deep neural networks
arise to decrease the computation cost and improve the abil-
ity to deal with sparsity. However, these methods can not di-
rectly process raw point cloud data, but rely on transforma-
tion techniques to convert the raw point cloud data into the
form that can be easily processed. Though easy to operate,
the performance of these schemes is limited by information
loss.

To address those issues, PointNet (Qi et al. 2017a) and
its subsequent work, PointNet++ (Qi et al. 2017b), apply
max-pooling and transformations to reduce the unordered
and dimensionally flexible input data to fixed-length global
feature vectors, and by doing so, enable end-to-end neural
network learning on raw point cloud data. They demonstrate
the robustness of the proposed PointNet by introducing the
concept of critical points and upper bounds. The point sets
laying between critical points and upper bounds yield the
same global features. Thus, PointNet is robust against miss-
ing points and random perturbations. Due to their end-to-
end learning architecture and high performance, PointNets
are widely adopted in different applications such as 3D ob-
ject detection (Qi et al. 2018; Shi, Wang, and Li 2019) as
backbone feature generation networks.
Adversarial Attacks and Defenses in Deep Learning. The
phenomenon of adversarial examples was first found by
Szegedy (Szegedy et al. 2013), who observed that adding

slight but intentionally generated perturbations to legal in-
puts can mislead deep learning models into making in-
correct decisions in 2D image classification. Since then,
more algorithms (Goodfellow, Shlens, and Szegedy 2014;
Papernot et al. 2016a; Carlini and Wagner 2017; Moosavi-
Dezfooli, Fawzi, and Frossard 2016) have been proposed
to launch increasingly efficient and effective adversarial at-
tacks in different domains.

As a result of this issue, several approaches have been
proposed to defend against adversarial examples. Adversar-
ial training (Tramèr et al. 2017) attempts to create a more
robust model during the initial training stage by augment-
ing the original training dataset with pre-crafted adversar-
ial examples. Defensive distillation (Papernot et al. 2016b)
re-trains the model, smoothing the potential adversarial gra-
dients which may be used to craft adversarial inputs. The
intuition of distillation is to extract the knowledge of orig-
inal training data and force the output vectors of the DNN
model converge at a large number. As the result adversary
will find it hard to distract the output of the DNN model from
the correct one. Guo (Guo et al. 2017) explores some pre-
processing methods to defend against potentially adversar-
ial inputs, such as compression and transformations. How-
ever, these defense mechanisms have each been proven to
be ineffective against certain methods of adversarial attacks
(Carlini and Wagner 2017).

Adversarial 3D Points. Despite the dangers of adversarial
examples being successfully demonstrated in many applica-
tions such as: 2D images (Szegedy et al. 2013), automatic
speech recognition (Yuan et al. 2018), natural language (Jia
and Liang 2017), and network flows (Yang et al. 2018), the
vulnerability of deep learning models applied to 3D point
data has remained comparatively unexplored. However, re-
cently, Xiang (Xiang, Qi, and Li 2019) proposed the first
practical method to generate 3D adversarial point clouds.
Since then, Liu (Liu, Yu, and Su 2019) expands this area by
proposing further attack methods and metrics. Cao (Cao et
al. 2019) studies adversarial 3D point clouds capturable by
LiDAR, which is commonly used in autonomous driving.

Though adversarial 3D point clouds for deep learning
models have been proven to exist, current techniques to gen-
erate them are still at a preliminary stage and thus attacks
can be easily detected, removed, or invalidated by simple
defense mechanisms such as random sampling and outlier
removal, as described by the corresponding defense mecha-
nisms in (Zhou et al. 2018). In addition, current works on
generating adversarial 3D data focus on altering original
point clouds but neglect the feasibility of reliably manufac-
turing these adversarial examples in real world. To the best
of our knowledge, we are the first to launch robust adversar-
ial attack for 3D machine learning models that can bypass
existing defense mechanisms and be used to construct real
adversarial objects.

3 Proposed Methodology

3.1 Point-wise Adversarial Perturbation

Our algorithm follows the adversarial attack proposed by
Carlini and Wagner (Carlini and Wagner 2017). We apply

955



their C&W attack with modifications, such as different con-
straints, for point cloud data and PointNet++ model. Recall
that x ∈ R

n×3 is the point cloud, and let δ ∈ R
n×3 be the

perturbation vectors, we formulate the adversarial attack as
an unconstrained optimization problem defined as:

argmin
δ

f(x+ δ) + c · ‖δ‖p

with f(x) = max {max
i �=y′

{Z(x)i} − Z(x)y′ , κ}
(1)

where y′ denotes the attack target, Z(·) is the output of log-
its layer, and κ is the parameter that controls the attack con-
fidence. The hyper-parameter denoted as c is used to bal-
ance the terms in the objective function. In practice, c can
be found effectively using binary search. The perturbation δ
can be understood as the vectors that describe the direction
and magnitude of shifted points.

Since our ultimate goal is to construct an adversarial ob-
ject from the original point cloud, we do not limit the num-
ber of points that can be altered. All points may be altered as
long as the constraints are satisfied and the adversarial point
cloud can form a reasonable and printable watertight mesh.

Our objective function can be formally defined as:

argmin
δ

f(x′) + α ·DC(x
′, x) + β ·DK(x′) (2)

where x′ = x+δ, and both α and β are user defined parame-
ters to balance the different constraints. DC(·, ·) and DK(·),
which represent Chamfer distance and kNN distance, will be
described in detail in the following sections.

3.2 Point Cloud Distance Metrics

In previous works, L2 or L∞ norm are usually applied to
calculate the distances (dis-similarity) between perturbed
examples and the original ones. However, considering point
cloud data, the L2 or L∞ norm may not be good choices
of distance metric. Different from images which are fixed
dimension grids, point clouds are represented as unordered
and unstructured sets, making Lp norm less suitable. In-
stead, we use Chamfer distance (Fan, Su, and Guibas 2017)
as an alternative to measure the distance of two point clouds,
from x′ to x, which is defined as:

DC(x
′, x) =

1

‖x′‖

∑

p′∈x′

(

min
p∈x

‖p′ − p‖
2
2

)

(3)

In short, it finds for each point p′ in x′ the closest point p in
x (measured by L2 norm) and averages all the distances.

3.3 Point Cloud Smoothing

Due to the surface reconstruction, the points shifted to rela-
tively far positions will become outliers, making them hard
to participate in surface reconstruction and are easily to be
removed by defense mechanisms. We propose two different
methods to deal with this problem:
K-Nearest Neighbor (kNN) Distance. We calculate the
kNN distance in order to limit the distances between adja-
cent points. First, let x = {p1, p2, ..., pn} be the perturbed

point cloud. For any point p ∈ x, we define its k-nearest
neighbors as the k points in x that have the smallest Eu-
clidean distance to p. Then, we optimize the following ob-
jective function:

DK(x) =
1

‖x‖

∑

p∈x

wp · dp

with dp =
1

k

⎛

⎝

∑

p′∈kNN(p,x)

‖p− p′‖
2
2

⎞

⎠

(4)

where wp = 1 if dp is larger than a user defined threshold,
or otherwise wp = 0. That is, we minimize dp to make sure
that every point p ∈ x will be located near its neighbors.
This approach is similar to the total variation that is applied
on 2D images. The threshold is defined as a multiple of the
standard deviation σ of all dp. This leads to smoother point
clouds that outperform the non-smoothed ones when con-
structing objects.
Perturbation Clipping and Projection. Considering real-
world conditions, only the point clouds sampled from the
“outer” surfaces of the objects are considered. For instance,
points sampled from seats or steering wheels inside a car
model are discarded, as they are located “inside” the object.
The main reason for this is for realism, sensors like LiDAR
or 3D scanners cannot obtain the points that are obstructed
by other obstacles.

To prevent points shifting into the interior of the object
and failing to participate in surface reconstruction, we clip
the perturbation vectors that shift the points inside the object
by utilizing the inner product of the perturbation vectors and
the corresponding normal vectors during the optimization.
Let δi be the perturbation vector of a point, and Ni be the
corresponding normal vector. If 〈Ni, δi〉 < 0, we either set
δi = [0, 0, 0] (i.e., reset the perturbation) or project δi onto
(Ni× δi)×Ni (i.e., only keep the magnitude that is vertical
to Ni), where 〈·, ·〉 and × are inner product and cross product
of vectors, respectively. This rule cannot perfectly handle all
situations since the shape of an object is not always regular.
However, it does help limit the perturbation vectors to our
preferred directions in general cases.

We also utilize the infinity norm L∞ to limit the magni-
tude of the perturbations. If the magnitude ‖δi‖2 is greater
than a given threshold ℓ∞, it will be scaled in order to satisfy
the constraint by:

δnewi =
δi

‖δi‖2
· ℓ∞ (5)

3.4 Random Sampling

Due to the unordered property of point cloud data, the Point-
Nets are designed and trained with specific network archi-
tectures and data augmentations to make sure that the mod-
els will not be easily misled by just using another subset of
points from the same object. Therefore, the PointNets are ex-
pected to be robust against randomized input data, increas-
ing their resilience against adversarial attacks. To deal with
this property, we randomly pick a subset of points in each
optimization step as the input to the model to simulate such

956



Table 1: Accuracy (%) of Our Trained PointNet++ Models
Evaluated Using the ModelNet40 Dataset.

Models Training Testing All Examples

SSG-1024 98.10 89.59 96.39
SSG-2048 97.78 88.49 95.91

procedure. This also increases the robustness of the point
sets against cases where only a portion of the points are used
as inputs.

3.5 Surface Reconstruction

After the attack, the perturbed point cloud data are further
processed to construct meaningful objects. In this work, we
choose Screened Poisson Surface Reconstruction (Kazhdan
and Hoppe 2013) as the surface reconstruction algorithm.
Given a 3D point cloud x and its corresponding normal
vectors N , the algorithm will output a watertight mesh de-
scribed by a set of vertices and faces. Since most of the
points are shifted from their original locations during attack,
we estimate their normal vectors by a simple approach. Let
Np be the normal vector of the point p in original point cloud
x, we calculate the estimated one by:

N ′
p′ =

1

k

∑

p∈kNN(p′,x)

Np (6)

where p′ is a point in perturbed point cloud x′, and N ′
p′ is its

corresponding new normal vector.
Finally, given the reconstructed meshes, the adversarial

point clouds are sampled and classified using PointNet++ to
evaluate our attack performance.

4 Experimental Results

We generate adversarial examples from various 3D models
using our proposed algorithm and evaluate the attack results
in different scenarios with PointNet++ as the victim net-
work. Additionally, existing defense mechanisms are also
tested against our examples. Several adversarial objects are
3D printed, scanned by 3D scanners, and then the result-
ing point clouds are classified by PointNet++ to demonstrate
that our attack remains effective even in physical world.

4.1 Experimental Setup

Datasets. We use the ModelNet40 dataset (Wu et al. 2015)
for our experiments, including training, testing the victim
models, and generating adversarial examples. This dataset
contains 12,311 CAD models with 40 common object cate-
gories in real world. We use the official splits, where 9,843
examples are used for training, and the remaining 2,468 ex-
amples are used for testing. For adversarial attacks, we ran-
domly choose a subset of data in both training and testing set
as the “clean” point clouds with certain conditions, which
will be described in detail later.
Victim Models. We choose PointNet++ as our target model.
The models are trained using the dataset described previ-
ously with network architectures and hyper-parameters pro-
posed by the authors of PointNet++. In our experiments, two

classification models are trained in different settings without
considering normal vectors to classify 40 categories:

• SSG-1024: SSG with 1024 input points

• SSG-2048: SSG with 2048 input points

where SSG is a grouping strategy introduced in PointNet++
called single scale grouping. The details of our trained mod-
els are described in Section 4.2.
Adversarial Settings. In this work, both targeted and un-
targeted attacks are considered. We pick a subset of classes
from ModelNet40 as target labels, which are airplane, bot-
tle, car, chair, monitor, and sofa. For each class, we ran-
domly choose 20 benign examples that can be correctly clas-
sified by PointNet++, and the surface can be correctly recon-
structed using the original point clouds and normal vectors.

For untargeted attack, we set the attack goal to misclas-
sify the point clouds to any class other than the groundtruth
(i.e., there are 39 possible targets). For targeted attack, we
consider two attack targets: most likely and random tar-
get. The former is the class predicted with probability only
less than the groundtruth’s, and the later is a randomly cho-
sen class from the 38 remaining classes (i.e., excluding the
groundtruth and most likely classes). We generate 360 ad-
versarial examples for each victim model. For all experi-
ments, the points used for classification will be a randomly
selected subset of the point clouds (e.g., randomly pick 1024
from 10,000 points, which are sampled from objects). Due
to this randomized procedure, the points will be re-chosen
for several times (16 times in our experiments) for classifi-
cation, and all the results will be averaged.
Implementation Details. In our implementation, we only
consider the Chamfer distance from the adversarial point
cloud to the original one. The distance from the original one
to the adversarial one is not considered. Similarly, only the
points selected as the input of the model (i.e., either 1024
or 2048 points in our settings) are used for kNN distance
calculation. The threshold of kNN distance is set to 1.1× σ,
which is described in (4), and only the distances greater than
the threshold are penalized during the optimization process.
Both Chamfer distance and kNN distance are calculated us-
ing the point clouds which are not normalized.
Environment and Equipment. The attack algorithm is car-
ried on a server with Intel 9900K CPU, two NVIDIA RTX
2080 Ti graphic cards and 64GB RAM. The code is written
in Python programming language with TensorFlow frame-
work. The physical adversarial objects are 3D printed by
FLASHFORGE CreaterPro 3D printer and re-scanned as
meshes by EinScan-SE 3D scanner.

4.2 Evaluation of the Trained Models

For each model, we evaluate it using training set (which
contains 9,843 point sets), testing set (which contains 2,468
point sets), and the whole dataset. The results can be found
in Table 1. The models we trained both obtain similar per-
formance with the ones proposed in the PointNet++ paper.

4.3 Adversarial Attack Evaluation

We first evaluate the adversarial examples by directly classi-
fying them using our trained models. The hyper-parameters

957



Table 2: Attack Success Rates (%) against Different PointNet++ Models with (a) Untargeted Attack (b) Most Likely Attack (c)
Random Target Attack.

SSG-1024 SSG-2048
Attack airplane bottle car chair monitor sofa airplane bottle car chair monitor sofa

(a) 100.0 100.0 100.0 99.69 100.0 100.0 100.0 99.38 100.0 98.75 100.0 100.0
(b) 100.0 97.50 97.50 93.13 95.00 100.0 99.38 97.50 84.69 94.06 98.75 100.0
(c) 95.31 16.25 86.25 72.19 78.75 81.56 90.62 13.44 82.81 87.19 64.69 59.06

Table 3: Attack Success Rates (%) against Different PointNet++ Models Using Closest Sampling Strategy with (a) Untargeted
Attack (b) Most Likely Attack (c) Random Target Attack.

SSG-1024 SSG-2048
Attack airplane bottle car chair monitor sofa airplane bottle car chair monitor sofa

(a) 100.0 100.0 95.31 97.50 79.69 99.38 99.06 99.06 88.44 88.44 37.50 79.37
(b) 100.0 95.00 83.75 87.81 86.25 100.0 96.88 90.00 54.37 80.94 48.75 86.25
(c) 94.69 14.06 73.75 55.63 66.25 60.31 72.19 7.81 49.06 58.13 23.44 21.25

we used for attack are: α = 5, β = 3, ℓ∞ = 0.1, κ = −15,
which are defined in Equations (1), (2), and (5). The hyper-
parameters are chosen to balance the kNN and Chamfer dis-
tance. The misclassification loss (i.e., the f(·) in (2)) will
be ignored if it reaches the lower bound of the attack confi-
dence, denoted as κ. Thus, it would not dominate the whole
optimization process. For targeted attack, the target is cho-
sen either by first classifying the original point cloud, and
then choosing the class with second highest probability (for
most likely), or randomly (for random target). Once the tar-
get is determined, it will not be changed during the attack
process.

The adversarial examples are generated using the trained
models, and the corresponding success rates are shown in
Table 2. We can see that the success rates vary greatly be-
tween different original-target pairs, such as the random tar-
get attack with class “bottle”. One possible reason is that in
our adversarial settings, the perturbation budget is not large
enough to make such examples be misclassified. We believe
that the success rates will increase with more flexible con-
straints. However, if the points are allowed to shift in large
distances, humans will be more likely to perceive differences
between them and the original objects. Another factor that
may affect the attack difficulty is the grouping and pool-
ing methods introduced in PointNet++ architecture. These
mechanisms could make the models more robust by training
on features in different scales, so that the model will become
less sensitive to small perturbations.

4.4 Surface Reconstruction and Re-sampling

The perturbed point clouds are further processed to recon-
struct object surfaces. We apply the Screened Poisson Sur-
face Reconstruction algorithm (Kazhdan and Hoppe 2013)
using the implementation provided by MeshLab. After the
reconstruction, isolated components will be removed if the
number of faces is less than a given threshold (1024 faces
in our experiments) to make the object more smooth. This
ensures that the constructed meshes will not contain many
awkwardly connected components, which would cause them
to stand out in real world. Lastly, the points are sampled

from the meshes according to two different strategies:

• Closest: Choose the points on the surface that have the
shortest distances to the perturbed point clouds.

• Random: Choose points from the mesh surface randomly.

For each mesh, we sample 10,000 points using above mecha-
nisms, and a subset of points will be randomly chosen as the
input to the classification models. The attack success rates
are shown in Table 3 and Table 4 with closest and random
sampling, respectively. Visualization of the adversarial point
clouds with closest sampling can be found in Figure 2.

The attack remains effective in the closest sampled point
clouds. Although some adversarial properties are lost after
the reconstruction, the majority of the attacks achieves rea-
sonable success rates. On the other hand, the success rates
occasionally drop in the randomly sampled cases. This indi-
cates that the adversarial attack may rely on the adversarial
points in particular regions or in non-uniform distributions,
which can be considered more vulnerable. Thus, if the points
are forced to be distributed uniformly along the object sur-
face, the attack will become less effective after the grouping
and pooling processes, since most of the perturbed points
have been shifted away from the vulnerable regions.

4.5 Existing Defense Mechanisms

Considering several existing defense approaches against 3D
adversarial attacks, we further evaluate our adversarial ex-
amples using the following mechanisms:

• Apply random rotations on point clouds, which is imple-
mented in the official PointNet++ codebase.

• Apply kNN outlier removal introduced in (Zhou et al.
2018). It is denoted as Statistical Outlier Removal (SOR)
in the proposed paper.

• Statistical defense through applying random Gaussian
noise, which is introduced in (Yang et al. 2019).

Note that randomized input (i.e., randomly choose a subset
of points which are sampled from the meshes as input to the
models) is considered in all our experiments. The defensive

958



Table 4: Attack Success Rates (%) against Different PointNet++ Models Using Random Sampling Strategy with (a) Untargeted
Attack (b) Most Likely Attack (c) Random Target Attack.

SSG-1024 SSG-2048
Attack airplane bottle car chair monitor sofa airplane bottle car chair monitor sofa

(a) 89.38 92.50 18.12 58.75 15.62 26.87 42.19 67.19 10.94 41.25 2.81 20.31
(b) 73.12 94.37 14.37 47.81 21.25 30.00 40.31 42.81 0.63 38.44 3.75 19.69
(c) 27.81 0.0 2.81 2.50 7.19 0.31 5.94 0.0 0.0 5.31 0.0 0.0

Figure 2: Visualization of the Adversarial Point Clouds Gen-
erated by Our Attack Algorithm.

mechanisms are evaluated using SSG-1024 model with clos-
est sampling due to the higher success rates, and we believe
that it is a better choice to evaluate the defense mechanisms
against our adversarial examples.

Voting Classification by Rotations. This mechanism is im-
plemented in official PointNet++ codebase, which applies
rotations on point clouds before they are fed into the models.
Although PointNets are designed to be invariant to point or-
dering, they are sensitive to rotations. We evaluate our exam-
ples to see whether our point clouds are robust to such data
augmentations. In our experiments, numbers of rotations
from 2 to 10 are tested, and the results are shown in Table
5. Since this procedure is not considered during our attack
process, the success rates drop by about 10–30%, especially
for the models with lower success rates originally. However,
we still achieve reasonable and stable success rates in most
test cases.

K-Nearest Neighbor Outlier Removal. This defense aims
to weaken the adversarial attacks by removing the points that
locate relatively far away from other points. It is considered

Table 5: Attack Success Rates (%) Using Voting Classifica-
tion with SSG-1024.

#Rotations 1 2 3 4 5

Untargeted 95.31 90.10 87.86 86.88 86.88
Most Likely 92.14 81.93 79.58 78.12 77.71

Random 60.78 39.53 32.92 32.29 30.36

#Rotations 6 7 8 9 10

Untargeted 86.46 85.21 86.35 86.09 86.51
Most Likely 76.04 76.93 76.56 76.15 75.73

Random 30.83 29.74 31.35 29.11 29.84

that prior adversarial attacks mostly rely on those “outlier”
points, so that this removal process should invalidate the at-
tacks. As a quick review, for each point p, its kNNs can be
found by utilizing Euclidean distances, and let the averaged
distance be dp. Then, the mean µ and standard deviation σ
of all dp are calculated. A point p will be removed if:

dp > µ+ α× σ (7)

To find the hyper-parameters in (7), we perform grid search
on both k and α. For k, we test the values 2, 4, 6, 8, 10, and
for α, we test the values 0.0, 0.2, 0.4, ..., 1.0. The results are
shown in Table 6 with untargeted, most likely, and random
target attacks. We believe that, in addition to kNN smooth-
ing, applying randomized input during attacks (i.e., use dif-
ferent subsets of points in each iteration) also helps us by-
pass this defense mechanism. Note that k greater than 10
are not evaluated because the classification accuracy using
benign examples will be dropped lower than 80%, accord-
ing to (Zhou et al. 2018) (e.g., for k = 10 and α = 0.5, the
accuracy of benign examples is lower than 0.8).
Statistical Defense Through Random Gaussian Noise. In
contrast to the previous two defenses, which try to make
the adversarial examples be correctly classified, this method
aims to “detect” whether an input is adversarial or not. In
our case, this mechanism can be considered as a “black-
box” defense as we do not take this into consideration during
our attack. As a quick review, let x be an input point cloud
(which can be benign or adversarial), we add random Gaus-
sian noise to generate a set of perturbed point clouds:

x′
i = x+ ρi s.t. ρi ∼ N(0, σ2) (8)

where the noise ρi is i.i.d. sampled from the Gaussian distri-
bution N(0, σ2). It is considered that adding non-directional
noise helps the inputs escape from the narrow adversarial
subspace, leading to unstable attack results. Then, given a
set of perturbed point clouds x′, we let o′ be the output set

959



Table 6: Attack Success Rates (%) against kNN Outlier Re-
moval Defense with SSG-1024.

Untargeted Attack

k
α

0.0 0.2 0.4 0.6 0.8 1.0

2 99.79 99.74 99.74 99.79 99.32 98.96
4 99.53 99.90 99.90 99.38 99.69 99.58
6 99.22 99.58 99.74 99.58 99.79 99.69
8 98.85 99.27 99.43 99.64 99.74 99.79
10 98.39 98.59 98.80 99.32 99.32 99.53

Most Likely Attack

k
α

0.0 0.2 0.4 0.6 0.8 1.0

2 94.84 95.57 96.04 95.68 95.83 95.52
4 92.60 94.69 95.57 95.89 95.47 95.36
6 90.31 92.08 93.02 94.48 94.90 95.05
8 85.36 89.79 91.72 92.66 94.11 95.21
10 82.45 86.82 89.90 91.56 92.40 93.65

Random Target Attack

k
α

0.0 0.2 0.4 0.6 0.8 1.0

2 65.26 67.66 67.40 67.08 68.13 67.40
4 61.88 64.74 66.56 67.55 67.40 68.54
6 56.30 60.62 63.75 66.87 67.50 65.36
8 50.31 56.35 61.67 63.65 65.10 66.09
10 43.07 50.94 58.13 60.52 62.97 64.58

of the classification model, and o′ij be the confidence of class

j of point cloud x′
i. Lastly, the Set-Indiv Variance Measure-

ment SIV (·) is defined as:

SIV (o′) =
1

Nc

Nc
∑

k=1

Vari∈1,2,...,m(o′ik) (9)

where Nc is the number of classes (40 in our case), and m
denotes the times we add random noise (10 in our case). In
our experiments, we evaluate this detection method in differ-
ent Defense Detection Rate (DDR) (t%) settings as defined
in (Yang et al. 2019), which measures how many adver-
sarial examples are detected while t% of benign examples
are incorrectly rejected. The false negative rates (FNR) (i.e.,
1.0−DDR, the success rate of adversarial examples that can
bypass the defense) are reported in Table 7 using untargeted,
most likely, and random target attacks in two different DDR
settings: t = 5 and t = 10. Only the correctly classified
benign examples in ModelNet40 dataset (11,621 examples
while using SSG-1024 model) are used to define the thresh-
old, and only the examples that are misclassified (i.e., the
attack succeeded) are considered as “adversarial”.

We can see that in different adversarial attacks, the detec-
tion rates vary greatly. For the worst case, about 30–40% of
the adversarial examples are rejected in untargeted and most
likely attack, while about 80% of them are rejected in ran-
dom targeted attack. One possible explanation is that due

Table 7: False Negative Rates (%) of Statistical Defense Us-
ing Gaussian Noise with SSG-1024 and Successful Adver-
sarial Examples.

Untargeted Attack

σ2 1e−5 5e−5 1e−4 5e−4 1e−3
FNR (5%) 87.07 93.91 86.96 88.50 85.34

FNR (10%) 76.72 84.35 76.52 71.68 76.72

σ2 5e−3 1e−2 5e−2 1e−1 5e−1
FNR (5%) 83.48 75.22 98.25 96.58 92.79

FNR (10%) 71.30 63.72 95.61 86.32 90.09

Most Likely Attack

σ2 1e−5 5e−5 1e−4 5e−4 1e−3
FNR (5%) 88.60 89.29 92.04 86.84 90.57

FNR (10%) 82.46 85.71 86.73 83.33 86.79

σ2 5e−3 1e−2 5e−2 1e−1 5e−1
FNR (5%) 87.39 77.06 93.81 95.37 98.20

FNR (10%) 83.78 70.64 89.38 87.04 93.69

Random Target Attack

σ2 1e−5 5e−5 1e−4 5e−4 1e−3
FNR (5%) 79.12 63.64 66.67 62.92 53.33

FNR (10%) 53.85 52.27 51.61 51.69 43.33

σ2 5e−3 1e−2 5e−2 1e−1 5e−1
FNR (5%) 53.49 32.22 96.70 97.59 96.43

FNR (10%) 43.02 21.11 91.21 96.39 88.10

to our adversarial constraints, there exist some attack tar-
gets that are relatively hard to succeed, as shown in previous
experiments such as Table 2 or Table 3, which lead to eas-
ily detectable attack results when subjected to random non-
directional noise. This phenomenon is demonstrated by our
attacks with lower success rates, which indicate unstable ad-
versarial examples, suggesting high susceptibility to Gaus-
sian noise, leading to high detection rates. If this is the case,
attacking with more flexible constraints (e.g., more budget
for adversarial perturbations) may increase the robustness
of the adversarial examples against this defense. However,
the attacks will become more perceptible and can be easily
distinguished by humans.

4.6 Physical Adversarial 3D Objects

We physically print 10 perturbed adversarial objects using
3D printers, and then re-scan them with 3D scanners. For
each object, we randomly sample 50,000 points from the re-
scanned mesh for further classification. Visualization of the
adversarial objects and point clouds with classification re-
sults can be found in Figure 3. We can find that the attacks
mostly fail for complex objects, where most of the points
are lost during the re-scanning process. This also happens
when the object has “inner” surfaces such as in “bowl” or
“cup” objects, because the 3D scanner cannot perfectly cap-
ture the points that are located on the interior of an object,
resulting in a loss of adversarial properties. Another chal-
lenge is the random sampling procedure, as shown in Ta-
ble 4. The re-sampling procedure has a large impact on the

960



Figure 3: Visualization of the Physical 3D Objects and Corresponding Point Clouds with Classification Results.

Table 8: Attack Success Rates against Existing Defenses Us-
ing Point Sets Sampled from Physical Objects.

Voting Outlier Removal Statistical1

86.71% 80.47% 71.43%, 42.86%
1Success rates in both t = 5 and t = 10 settings.

Table 9: Comparison of Existing 3D Adversarial Attacks.
Approach Success Rate Defense Physical

Xiang, et al. 100%
Liu, et al. 91.2–96.6% �

Ours 60.8–95.3% � �

attack performance as it forces the points to be distributed
more uniformly along the object, and many points located in
the vulnerable regions of the point cloud are lost.

We use the successful results (7 objects) to evaluate the
defense mechanisms previously mentioned using the hyper-
parameters we found. For voting classification, we apply 10
rotations. For outlier removal, we set k = 10 and α = 0.0.
For statistical defense using Gaussian noise, we let σ2 =
0.01. The results can be found in Table 8, which shows that
our attack can still achieve reasonable success rates while
considering existing defenses.

To summarize, we address the limitations that remain un-
resolved in previous works, and the major differences be-
tween our work and previous studies are shown in Table
9. Although it is difficult to compare the success rates di-
rectly due to different adversarial settings, the experiments

shown that our attack can still obtain comparable success
rates while considering existing defensive mechanisms and
physical constraints in real world.

5 Conclusion

In this paper, we presented an attack algorithm that gener-
ates adversarial 3D objects against PointNet++, a widely-
used 3D object classification model. Different metrics were
proposed to deal with the unsolved constraints in previous
work, including random sampling and surface reconstruc-
tion. In the experiments, our algorithm was tested under
several conditions and defensive mechanisms which are de-
signed especially for adversarial 3D examples, and the re-
sults showed that our attack can bypass such mechanisms
with high success rates. In addition, several physical objects
were 3D printed and evaluated. The results showed that our
attack can successfully generate physical objects while pre-
serving adversarial properties.

References
Cao, Y.; Xiao, C.; Cyr, B.; Zhou, Y.; Park, W.; Rampazzi, S.; Chen,
Q. A.; Fu, K.; and Mao, Z. M. 2019. Adversarial sensor attack
on lidar-based perception in autonomous driving. arXiv preprint
arXiv:1907.06826.

Carlini, N., and Wagner, D. 2017. Towards evaluating the robust-
ness of neural networks. In Proceedings of the Security and Privacy
(S&P) on 2017 IEEE Symposium. IEEE.

Fan, H.; Su, H.; and Guibas, L. J. 2017. A point set generation
network for 3d object reconstruction from a single image. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 605–613.

961



Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

Guo, C.; Rana, M.; Cisse, M.; and van der Maaten, L. 2017.
Countering adversarial images using input transformations. arXiv
preprint arXiv:1711.00117.

Jia, R., and Liang, P. 2017. Adversarial examples for evaluating
reading comprehension systems. arXiv preprint arXiv:1707.07328.

Kazhdan, M., and Hoppe, H. 2013. Screened poisson surface re-
construction. ACM Transactions on Graphics (ToG) 32(3):29.

Liu, D.; Yu, R.; and Su, H. 2019. Extending adversarial attacks
and defenses to deep 3d point cloud classifiers. arXiv preprint
arXiv:1901.03006.

Maturana, D., and Scherer, S. 2015. Voxnet: A 3d convolu-
tional neural network for real-time object recognition. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 922–928. IEEE.

Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016. Deep-
fool: a simple and accurate method to fool deep neural networks.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE.

Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z. B.;
and Swami, A. 2016a. The limitations of deep learning in adver-
sarial settings. In Proceedings of the Security and Privacy (S&P)
on 2016 IEEE European Symposium. IEEE.

Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A. 2016b.
Distillation as a defense to adversarial perturbations against deep
neural networks. In Security and Privacy (S&P), 2016 IEEE Sym-
posium on, 582–597. IEEE.

Qi, C. R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; and Guibas, L. J.
2016. Volumetric and multi-view cnns for object classification on
3d data. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 5648–5656.

Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Pointnet:
Deep learning on point sets for 3d classification and segmentation.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 652–660.

Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space.
In Advances in neural information processing systems, 5099–5108.

Qi, C. R.; Liu, W.; Wu, C.; Su, H.; and Guibas, L. J. 2018. Frustum
pointnets for 3d object detection from rgb-d data. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
918–927.

Shi, S.; Wang, X.; and Li, H. 2019. Pointrcnn: 3d object pro-
posal generation and detection from point cloud. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
770–779.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.;
and McDaniel, P. 2017. Ensemble adversarial training: Attacks
and defenses. arXiv preprint arXiv:1705.07204.

Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; and Xiao,
J. 2015. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 1912–1920.

Xiang, C.; Qi, C. R.; and Li, B. 2019. Generating 3d adversarial
point clouds. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 9136–9144.

Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; and Yuille, A. 2017.
Adversarial examples for semantic segmentation and object detec-
tion. In Proceedings of the IEEE International Conference on Com-
puter Vision, 1369–1378.

Yang, K.; Liu, J.; Zhang, C.; and Fang, Y. 2018. Adversarial ex-
amples against the deep learning based network intrusion detection
systems. In MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM), 559–564. IEEE.

Yang, J.; Zhang, Q.; Fang, R.; Ni, B.; Liu, J.; and Tian, Q. 2019.
Adversarial attack and defense on point sets. arXiv preprint
arXiv:1902.10899.

Yuan, X.; Chen, Y.; Zhao, Y.; Long, Y.; Liu, X.; Chen, K.; Zhang,
S.; Huang, H.; Wang, X.; and Gunter, C. A. 2018. Commander-
song: A systematic approach for practical adversarial voice recog-
nition. In 27th USENIX Security Symposium (USENIX Security
18), 49–64.

Zhou, H.; Chen, K.; Zhang, W.; Fang, H.; Zhou, W.; and Yu, N.
2018. Deflecting 3d adversarial point clouds through outlier-guided
removal. arXiv preprint arXiv:1812.11017.

962


