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Cheng-Lung Wu
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Abstract

For reasons of tractability, the airline scheduling problem has traditionally been sequentially
decomposed into various stages (eg. schedule generation, fleet assignment, aircraft routing, and crew
pairing), with the decisions from one stage imposed upon the decision making process in subsequent
stages. Whilst this approach greatly simplifies the solution process, it unfortunately fails to capture
the many dependencies between the various stages, most notably between those of aircraft routing
and crew pairing, and how these dependencies affect the propagation of delays through the flight
network. As delays are commonly transferred between late running aircraft and crew, it is important
that aircraft routing and crew pairing decisions are made together. The propagated delay may then
be accurately estimated to minimize the overall propagated delay for the network and produce a
robust solution for both aircraft and crew. In this paper we introduce a new approach to accurately
calculate and minimize the cost of propagated delay, in a framework that integrates aircraft routing
and crew pairing.

Key words: robust airline scheduling, delay propagation, airline schedule optimization.
(To appear in Transportation Science).

1 Introduction

The airline scheduling problem involves the construction of timetables for an airline’s major resources,
namely aircraft and crew. Traditionally, this has been undertaken with a view towards maximizing
an airline’s overall profit, often with limited consideration given to the stability of such a schedule, or
indeed its operational robustness. Such an approach has a tendency to generate schedules that are
highly brittle, performing poorly in practice as delays propagate rapidly throughout the network. The
Bureau of Transportation Statistics [18] states that in 2009, approximately 23% of flight legs operated
by a major US airline were delayed – with late arrivals and cancellations combined accounting for more
than 7.5% of this delay. In recent years, this has resulted in an ever increasing discrepancy between
planned costs and realised operational costs. As aircraft networks continue to grow, this trend is set
to continue with AhmadBeygi et al. [2] reporting that in 2006, it was estimated that the US airline
industry experienced a total of 116.5 million minutes of delay; translating into a $7.7 billion increase in
operating costs. Such large discrepancies have prompted airline schedule planners to shift their focus
from maximizing profit to maximizing expected profits under uncertainty, by including various types of
costs arising from unplanned events.

1.1 The airline scheduling problem

The airline scheduling problem in its entirety is very complex. The vast number of rules and regulations
associated with airports, aircraft, and crew combined with the global expanse of air traffic networks,
require the problem to be broken into manageable pieces to maintain some degree of tractability. Con-
sequently, the traditional airline scheduling problem is typically decomposed into four stages, with the
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output of one stage used as the input for the subsequent stage(s). The very first stage is known as the
schedule generation problem. In this step, an airline seeks to construct a schedule of flights where each
flight is specified by an “origin, destination, departure date, time and duration” Weide et al. [25]. The
origin and destination of each flight leg (known as an OD pair), and additionally the frequency with
which they are flown, are determined by the market demand for such pairs and availability of aircraft
resources. The second stage, known as fleet assignment assigns a particular aircraft type (or fleet) to
each flight leg, to appropriately match the size of the aircraft to the intended range (eg. long-haul vs
domestic) and the expected number of passengers. Typically, the objective is to maximize profit via
the minimization of operating expenses and number of spilled passengers. The third stage, known as
aircraft routing, is performed separately for each specific fleet type to obtain a minimal cost assignment
of aircraft to flights that ensures each flight is covered exactly once by exactly one aircraft. An aircraft
routing is assigned to each aircraft, with each routing satisfying necessary maintenance requirements.
Finally the last stage, known as crew pairing, is also performed separately for each fleet type, as crew
typically may only fly on board a specific fleet. The objective of crew pairing is to find a minimal cost
assignment of crew to flights. A set of crew pairings are constructed that satisfy union regulations (such
as the 8-in-24 rule)1, and ensure each flight is covered exactly once by exactly one crew group.

1.2 Integrated methods

The sequential solution approach, although easier to solve, may result in sub-optimal solutions as deci-
sions fixed early in the process can limit flexibility in subsequent stages. This is primarily the result of
the many interdependencies between the various stages. In a bid to more accurately model the airline
scheduling problem, various authors have recently attempted to integrate two or more of these stages.
Authors such as Desaulniers et al. [8] and Rexing et al. [19] have attempted to integrate the schedule
generation process with fleet assignment via the discretization departure time windows for each flight,
providing greater flexibility and a possibly more profitable solution. Klabjan et al. [13] and Lan et
al. [14] perform a similar integration with crew pairing and aircraft routing respectively. Sandhu and
Klabjan [21] note that the standard fleet assignment problem is solved with no consideration given to its
impact on the quality of the crew pairing solution. To capture this dependency, the authors propose a
model that integrates fleet assignment and crew pairing whilst maintaining the possibility of feasible air-
craft routings by way of plane count constraints. Barnhart et al. [3] propose an approximate integrated
model for fleet assignment and crew pairing.

Similar problems exist between the two stages of aircraft routing and crew pairing. As aircraft
routing is typically fixed first, the solution requires the crew to change aircraft many times throughout
the course of a duty period which may allow delays to propagate rapidly throughout the network. To
address this, Cordeau et al. [7] integrate aircraft routing with crew pairing, using linking constraints to
ensure that a crew does not swap aircraft if there is insufficient connection time. The problem is solved
via Benders decomposition. Klabjan et al. [13] partially integrate aircraft routing with crew pairing.
The authors solve the problem sequentially, adding plane count constraints to allow a feasible aircraft
routing to be obtained. The authors also include time windows to allow greater flexibility within the
crew pairing problem. Mercier et al. [15] improves upon the method of Cordeau et al. [7] through the
introduction of so-called restricted connections. The authors allow restricted connections, but apply a
penalty if both legs are covered in sequence by the same aircraft. The authors improve the speed of
convergence by reversing the order in which the problems are solved so that the crew pairing is instead
solved in the master problem. Mercier and Soumis [16] improve upon this further via the inclusion of time
windows, in an attempt to integrate three aspects of the scheduling problem. Papadakos [17] integrates
aircraft routing with crew pairing and re-timing (via time windows) and proposes an enhanced Benders
decomposition, making use of a heuristic to circumvent the so-called tailing off effect associated with
column generation to speed up convergence. Papadakos also notes that retaining the crew scheduling
problem within the Benders subproblem leads to greater numerical efficiency.

1The 8-in-24 rule is imposed by the FAA, and requires that crew be given additional rest should the total flying time of
a pairing exceed 8 hours in a 24 hour period. See [4] for further details.
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1.3 Robust planning

As mentioned in the introduction, airline delays have increased dramatically in the last few years, result-
ing in ever increasing revenue losses for airlines [2]. For example, the average delays per flight in Europe
increased dramatically from 12 minutes in 2006 to 28 minutes in 2009 [11]. Up until recently, the primary
focus of airline schedule planners was simply one of maximizing profit. However, since aircraft and crew
are only profitable for an airline whilst they are in the air, the schedules generated by such an approach
often contain very little slack between connecting flights for the absorption of delays. Consequently, in
networks with a large number of connecting resources, delays can propagate very rapidly throughout the
network. This in turn leads to significant recovery costs for an airline.

This ever increasing discrepancy between planned costs and realised costs has prompted airline sched-
ule planners to shift their focus from maximizing profit to maximizing expected profits that include some
costs due to unforeseen events. In contrast to airline recovery, where the objective is to achieve the best
course of action after an incident or delay has occurred, the focus of robust planning is to incorporate or
establish an in-built level of robustness to unexpected occurrences. We outline a few approaches below.
Ageeva [1] proposes a model that maximizes the number of times different aircraft routes ‘meet’. This
provides an opportunity for aircraft to swap routes and return to their original route at some point in
the future. This may prove beneficial if one aircraft is late and the other aircraft’s connection has a
greater slack. Rosenberger et al. [20] propose a robust fleet assignment and aircraft routing model that
produces a large number of short cycles with a low hub connectivity. A larger number of shorter cycles
assists in preventing one single cancellation from causing a string of cancellations throughout the course
of day. Schaefer et al. [22] solve a deterministic crew pairing problem where the costs of each pairing
are estimated via a simulation tool known as SimAir. Yen and Birge [29] extend this approach, using a
two-stage stochastic program to develop a robust crew pairing model. Their model identifies disruptions
resulting from the first stage assignment decisions and their (non-linear) recourse model reflects interac-
tions between long-range planning decisions and short-range operational results. Chebalov and Klabjan
[6] propose a model that seeks to maximize the number of opportunities for crews to be swapped during
operations. Smith et al. [23] propose a model where the number of different fleet types allowed to serve
each airport is limited; this is called “imposing station purity”. Smith et al. demonstrate that this
approach provides solutions that are robust for crew planning, maintenance planning and operations in
general; however, this approach requires significant computational time.

Lan et al. [14] develop a robust aircraft routing model to minimize the expected propagated delay
along aircraft routes. They use an approximate delay distribution to model the delay propagation along
each string and use a branch and bound technique to solve their MIP. Lan et al. calculate propagated
delay along individual strings when determining costs for the restricted master problem, but omit con-
siderations of delay when solving the subproblem. The effect of connecting resources (such as crew and
passengers) are not considered. Instead of estimating delay propagation, Wu [26] used a simulation
model to calculate random ground operational delays and airborne delays in an airline network. Wu
[26, 27] shows that delays are inherent in airline operations due to stochastic delay causes, e.g. passenger
connections and late baggage loading. By adjusting flight times without changing aircraft routing, Wu
[27] revealed that significant delay (cost) savings can be achieved via robust scheduling. Weide et al.
[25] propose an integrated aircraft routing model for which the solution is obtained iteratively. The
authors propose a non-robustness measure and initially solve the crew pairing problem without taking
into account an aircraft routing solution. Their model then seeks to maximize the number of restricted
connections contained in the aircraft solution that are also operated in the current crew pairing solution.
Once this solution has been obtained, they minimize the number of restricted aircraft changes. This pro-
cess continues iteratively, increasing the crew penalty at each iteration until the non-robustness measure
cannot be improved further. The advantage of this approach is that the computational complexity is
not increased as in other integrated models. AhmadBeygi et al. [2] make use of a propagation tree to
minimize delay propagation due to flights and crew pairs in an existing routing and crew pairing solution,
by re-timing flights so that the slack present in the network is re-allocated to where it is required most.
Their approach is limited to retiming and both under and overestimates the delay propagation in certain
cases.
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1.4 Outline of this paper

Our aim is to improve upon the following shortcomings of AhmadBeygi et al. [2], Lan et al. [14] and
Weide et al. [25]. Firstly, while Lan et al. correctly calculate propagated delay of aircraft strings in
their master problem, the selection of these new columns is carried out more crudely: new columns are
generated within the subproblem without considering the delay cost of the new column. The authors only
make use of the dual variables from the master problem when determining the minimal cost column. Once
a column has been generated they then calculate the propagated delay cost along the string and decide
whether to add it to the restricted master problem. Furthermore, they ignore the effect of connecting
resources such as crew and passengers. Secondly, while AhmadBeygi et al. [2] consider (in a re-timing
setting) the combined delay effects from crew and from aircraft, their approach imperfectly calculates
how delays are propagated, resulting in possible under or overestimates of the true propagated delay.
Their improvements are also limited to those achievable by retiming.

Finally, Weide et al. [25] treat the interactions of crew and aircraft in an iterative fashion, optimizing
a robustness measure, which is an indirect means of assessing the true cost due to total propagated
delays of aircraft and crew. The model in [25] attempts to keep aircraft and crew together over restricted
connections, to try to minimise the number of restricted aircraft changes. Although [25] takes into
account the connection time, penalising shorter restricted aircraft changes more severely, the Weide et
al. model penalties are time-of-day independent, independent of historical information for the network,
and does not quantitatively assess the propagated delay from the interactive connectivity of the routing
and crewing networks. For example, there may be relatively predictable large primary delays over certain
connections or at certain times of the day, or the effects of delays for some connections are much worse
in a propagated sense than for other connections, depending on the interactive network topology. Our
approach explicitly utilises time-of-day historical primary delays and explicitly calculates and minimises
the downstream effect of delay in the combined routing and crewing network. Solutions developed
from our approach may (for example) mismatch aircraft and crew on a restricted connection if later
connections have ample slack to absorb delays. This mismatch may free up the possibility to match
crew and aircraft on a critical connection that has tight connections further downstream. We provide a
quantitative comparison of our approach and the approach of [25] in Section 4.

The key ingredients of our approach are (i) the accurate calculation of the combined effects of propa-
gation of delay along aircraft routing strings and crew pairing strings and (ii) the use of this information
for both the calculation of the cost of columns and the dynamic selection of optimal columns.

In sections 2.1 and 2.2 we briefly outline standard column generation approaches to finding minimum
cost aircraft routings and crew pairings, respectively. In section 2.3 we describe our approach for ac-
curately calculating the propagated delay of routing and crewing strings and in section 2.5 we describe
the setup of our pricing problems. Sections 3.1 and 3.2 describe our numerical approaches for solving
the master and pricing problems, respectively. Computational results are presented in section 4 and we
conclude with suggestions for future work in section 5.

2 The Integrated Problem Formulation

In this section we describe our formulation for the integrated aircraft routing and crew pairing problem;
the objective is to minimize the total cost associated with propagated delay. We first outline the math-
ematical formulation of the aircraft routing and crew pairing problems individually and then discuss
estimation of propagated delay and the corresponding pricing problem. We concentrate solely on costs
due to delays with the understanding that in practice, the additional costs due to unplanned delays
can form part of an overall model of cost for the airline. We thus view our proposed methodology as a
potential add-on to existing connection-based optimisation models to better reflect planned costs under
uncertainty.

2.1 Aircraft Routing

The aircraft routing problem is performed separately for each specific fleet type. We seek a minimal cost
assignment of aircraft to flights where each flight is covered exactly once by exactly one aircraft. The
costs will represent the cost of the total delay incurred by the aircraft over a 24 hour period.
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In the following routing model, we calculate a one day schedule where each aircraft begins and ends
its day at a maintenance base. Maintenance feasible routings are represented as columns of an m × nR

binary matrix AR, where m is the number of flights and nR is the total number of feasible routings. The
(i, j)th element of AR takes the value 1 if flight i is contained in routing j and 0 otherwise. In practice
there may be an extremely large number of feasible columns, so column generation is used to generate
only the beneficial columns. For each flight (node) we assign a dollar cost per unit of delay arriving at
that flight, and the cost cR

j of column j is the sum of the costs of the delays along string j. The decision

variable xR
j takes the value 1 if routing j is included in the optimal solution and 0 otherwise. There is

also an upper bound on the number of aircraft N . Thus we may state the aircraft routing problem as
follows:

minimize: (cR)T xR (1)

Subject to: ARxR = e
nR
∑

i=1

xR
i ≤ N

xR ∈ {0, 1}nR

where e is an m-dimensional column vector of 1s.

2.2 Crew pairing

The crew pairing problem is also performed separately for each fleet type, as crew typically may only fly
on board a specific fleet. The objective of crew pairing is to find a minimal cost assignment of crew to
flights. As in the routing problem, the costs will represent the dollar cost of the total propagated delay
incurred by the crew. The airline from which we source our data uses both pay-and-credits (for cabin
crew) and flying hours (for pilots) as crew payment bases. For the purposes of this paper we use the
flying-hour based crew costing model, which simplifies our crew costing model. A feasible set of crew
pairings must satisfy union regulations (such as the 8-in-24 rule) and ensure each flight is covered exactly
once by exactly one crew group. In the following crew pairing model, we assume a one day schedule
where the crew are restricted to flying a total of less than eight hours in each pairing (8-in-24 rule) and
ensure that at the end of its duty, each crew pairing returns to the crew base at which it started. This
modified 8-in-24 assumption for a one-day schedule simplifies our crew pairing model. One could relax
this assumption and expand the schedule to one week during implementation. As for the aircraft routing
problem, the pairings may be represented as columns of an m × nP matrix AP , where m is the number
of flights and nP is the total number of feasible crew pairings. We use column generation to generate the
most beneficial columns. The element cP

j denotes the cost of column j and is defined as in the aircraft
routing problem above. Thus, we may state the crew pairing problem as follows:

minimize: (cP )T xP (2)

Subject to: AP xP = e
nP
∑

i=1

xP
i ≤ M

xP ∈ {0, 1}nP

where e is an m-dimensional column vector of 1s. There is typically no upper bound placed on the
number of crews in the standard crew pairing problem.

2.3 Estimation of propagated delay

The calculation of total propagated delay along an aircraft string in an aircraft connection network or
along a crew string in a crew connection network is non-trivial. The model of delay propagation we use
for individual strings is based on a simplified version of Wu [26, 27] and is similar to the calculation of
delay cost in individual strings used by Lan et al. We outline our modelling approach for calculation

5



of propagated delay in the isolated routing and crewing networks before describing how to calculate
propagated delay in a combined network in the next subsection.

Let G = (N ,A) be a directed acyclic graph with a single source node so, and a single terminal
node t. The source and terminal nodes are dummy nodes that link to both the morning and evening
flights, respectively. In this graph, nodes correspond to flights and arcs correspond to possible feasible
connections between flight nodes. For simplicity of exposition, we use the same connection network for
both aircraft and crews, although one may use different arc sets if necessary.

Each connection (i, j) ∈ A, will have associated with it two primary delays. The primary delay
for aircraft connection (i, j) is denoted pR

ij and is the sum of the expected en-route delay for flight i
(estimated from historical data), and primary delays during aircraft turnaround operations, such as
passenger connection delay, and ground handling delay. Note pR

jt = 0 for all (j, t) ∈ A. The primary

delay for crew connection (i, j) is denoted pP
ij and is the the sum of the expected en-route delay for flight

i, and other crew related primary delays during aircraft turnaround time, such as late crew boarding
and crewing procedures. Enroute delays and turnaround delays occur for a variety of reasons such as
weather conditions, air traffic flow management, passenger delays, equipment failure, and so on. These
delays and their causes are documented by airlines by using the IATA delay coding system or its in-house
variant [12]. Note pP

jt = 0 for all (j, t) ∈ A.
The flight schedule is the starting point for calculating slack for individual connections. The slack sij

for a connection (i, j) is the difference between the scheduled arrival time of flight i and the scheduled
departure time of flight j, minus the mean turn-around time for the relevant aircraft type under the
specific ground handling procedure of the airline. The value of the mean turn-around time is determined
by the standard aircraft ground operating procedures of a specific fleet by an airline. Airlines design
aircraft turn-around time based on the mean turn-around time and buffer allowance. For simplicity
we have used the same turn-around time for all connections, as all aircraft belong to the same fleet and
operate on a domestic network. It is however, straightforward to specify specific turn-around times for
individual connections should this be required for an alternative network. All slacks sso,i = 0, (so, i) ∈ A,
and sjt = 0, (j, t) ∈ A.

We now come to the propagated delay at node i, denoted di. We fix the initial delay at the source
node dso = 0 and inductively apply the formulae below to calculate propagated delay along a path in
the aircraft connection network:

dR
j = max

{

dR
i − (sij − pR

ij), 0
}

, j 6= so, (3)

and in the crew connection network:

dP
j = max

{

dP
i − (sij − pP

ij), 0
}

, j 6= so. (4)

2.4 Estimation of combined propagated delay

In the previous section we saw how to calculate propagated delay along a path from the source node
so. The delays along an aircraft string were only affected by aircraft delays in that string and not by
delays due to connecting crew. Similarly, delays along a crew pairing were only affected by crew delays
in that string and not delays due to connecting aircraft. We now describe in more detail how we model
the interaction between the routing and crewing problems and its effect on the pricing problems to be
solved.

Firstly, we consider the effects of crew delays on the aircraft connection network. We assume that
we are presented with a feasible set of crew strings and that propagated delays due to the crew have
been calculated (to initialise the procedure, we will use (4) to calculate the dP

i , i ∈ N ). To calculate the
propagated delay along an aircraft string, taking into account propagated delays from crew we inductively
apply:

dR
j = max

{

dR
i − (sij − pR

ij), d
P
k − (skj − pP

kj), 0
}

, j 6= so, (5)

where the connection (i, j) is part of the aircraft string and the connection (k, j) is part of the crew
string that includes flight j.

Thus, if flight j uses the same aircraft as flight i and the same crew as flight k, the delay propagated
to flight j is the maximum of the delays of the aircraft and crew (or zero, if both delays are negative);
see Figure 1 for an example.
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i

k

j

dR
i

sij−pR
ij

dP
k

skj−pP
kj dP

k −(skj−pP
kj)

dR
j

Figure 1: Illustration of the requirement of the maximum in equation (5). Aircraft and crew are denoted
by blue and black boxes respectively. The bold red line denotes the scheduled departure time for flight
j. Dashed lines represent the amount by which the aircraft and crew are delayed. Notice that although
flight i is delayed, there is enough slack between flights i and j to absorb this delay. However, there is
not enough slack between flights k and j for the crew on flight k to arrive in time for flight j. Thus,
dP

k − (skj − pP
kj) > 0 and dR

j > 0.

Secondly, we consider the effects of aircraft delays on the crew connection network. We assume that
we are presented with a feasible set of aircraft strings and that propagated delays due to the aircraft
have been calculated (to initialise the procedure, we will use (3) to calculate the dR

i , i ∈ N ). As above,
to calculate the propagated delay along a crew string, taking into account propagated delays from aircraft
we inductively apply:

dP
j = max

{

dP
i − (sij − pP

ij), d
R
k − (skj − pR

kj), 0
}

, j 6= so, (6)

where the connection (i, j) is part of the crew string and the connection (k, j) is part of the aircraft
string that includes flight j.

2.5 The pricing problems

We now describe the pricing problems for the routing and crewing master problems. When solving the
routing subproblem the propagated routing delays dR

i , i ∈ N will be calculated dynamically as part
of the subproblem, using fixed pre-calculated propagated crewing delays dP

i , i ∈ N . When solving the
crewing subproblem, the reverse is true; the propagated crewing delays dP

i are dynamically calculated
and the crewing delays dR

i are pre-calculated and fixed.
Each node i possesses a weight −wi, corresponding to the dual multiplier for constraint i in the

master problem; we denote by −wR
i the weights from the routing master and by −wP

i the weights from
the pairing master. We assume that for every unit of time an aircraft (resp. crew) is late at node i, a dollar
cost aR

i > 0 (resp. aP
i > 0) is incurred. These costs are combinations of costs associated with excess

fuel consumption, overtime pay for crew, and costs associated with reaccommodating misconnecting
passengers [2].

Finally, for the route pricing (resp. crew pricing) we add approximate reduced cost terms to represent
the impact of inserting a particular route (resp. crew string) on overall crew delay (resp. routing delay).
We describe these ideas for the routing pricing problem; the approach for the crew pricing problem is
completely analogous. Consider node j and suppose that our incumbent routing solution has a connection
(ℓ, j) and our incumbent crewing solution has a connection (k, j). The combined propagated routing and
crewing delays at node j are given by

dR
j = max

{

dR
ℓ − (sℓj − pR

ℓj), dP
k − (skj − pP

kj), 0
}

, (7)

dP
j = max

{

dP
k − (skj − pP

kj), dR
ℓ − (sℓj − pR

ℓj), 0
}

, (8)
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Suppose that in the current routing pricing problem we consider replacing the aircraft connection
(ℓ, j) with (i, j). We calculate dR

j along the routing string being constructed using (5). If this potential
replacement string is inserted into master problem basis, there will be an impact on the crew delays.
Using (6), at node j, the new (locally calculated) crew delay is given by

d̃P
j;i = max

{

dP
k − (skj − pP

kj), dR
i − (sij − pR

ij), 0
}

; (9)

where the tilde is used to denote a temporary calculation local to node j, using the information that i is
the prior node. We will use aP

j (d̃P
j;i − dP

j ) as an estimate of the reduced cost for crew delay attributable
to node j, for the routing string under construction.

Thus, for the aircraft routing pricing problem we wish to find a path π = {so, i1, i2, . . . , t} from so
to t that minimizes

zR = min

{

∑

i∈π

(

aR
i dR

i + wR
i + aP

i (d̃P
i;π−(i) − dP

i )
)

: π is a path from so to t

}

, (10)

where π−(i) denotes the node prior to i in path π and with the further restriction that the path π begins
and ends at a maintenance base.

For the crew pricing problem, a completely analogous procedure is used to construct the reduced
cost estimate aR

j (d̃R
j;π−(j) − dR

j ) for the routing delay, attributable to node j, from the crew string under
construction.

For the crew pairing pricing problem, we impose the additional upper limit H on the number of hours
worked.

zP = min

{

∑

i∈π

(

aP
i dP

i + wP
i + aR

i (d̃R
i;π−(i) − dR

i )
)

:
π is a path from so to t,
total hours worked ≤ H .

}

, (11)

with the further restriction that the path π begins and ends at the same crew base.
Upon obtaining a solution to (10) (resp. (11)), the minimizing path (or string) forms a column Aj of

the matrix AR (resp. AP ). A routing string is assigned a cost of

cR
j = zR −

∑

i∈π

wR
i ,

=
∑

i∈π

(

aR
i dR

i + aP
i (d̃P

i;π−(i) − dP
i )

)

. (12)

and a crew pairing string is assigned a cost of

cP
j = zP −

∑

i∈π

wP
i ,

=
∑

i∈π

(

aP
i dP

i + aR
i (d̃R

i;π−(i) − dR
i )

)

. (13)

In section 3.2 the zR and zP - minimizing paths are determined by a modified label setting algorithm
that simultaneously calculates both the reduced cost of the path and the propagated delays.

3 Computational Approach

In this section we describe our iterative approach for handling the two master problems of aircraft routing
and crew pairing, and our computational approach for solving the pricing problem.

3.1 Integrating Aircraft Routing and Crew Pairing.

We seek a minimal propagated delay cost solution to the integrated aircraft routing and crew pairing
problem. It is well known (eg. [5, 25]) that both the aircraft routing and crew pairing problems are
individually NP-hard. To avoid any additional complexity, we adopt the theme of modelling the inter-
actions between the aircraft and the crew in an iterative way from Weide et al. [25]. In the first version
of our approach, we solve the integrated problem iteratively, beginning with the aircraft routing problem,
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linked to output from a crew pairing problem and then switching to the crew pairing problem linked to
new output from the aircraft routing problem, and so on. We call this first approach Iterative Case A.
This approach is not exact, however we have carefully modelled the crew and aircraft delay interactions
and expect to obtain solutions of good quality. In Section 4 we demonstrate that we achieve significant
improvements over standard approaches and our solutions also compare well against a rigorous lower
bound. We also study Iterative Case B, where the initial iteration begins with the crew pairing problem
linked to output from an aircraft routing problem, and then proceeds to iterate as in Case A. The pricing
problem solution approach is described in the next subsection.

We begin by introducing an updating algorithm that ensures stability of the propagated delays in
the combined routing and crewing network.

Algorithm 3.1. Propagated Delay Evaluation

1. Perform a topological sorting of the flight nodes so that the flights are sorted from earliest to latest.

2. Using the strings from the incumbent routing and crew pairing solutions, update dR
j and dP

j together
by inductively applying equations (5) and (6); moving strictly forwards in time throughout the day.

Algorithm 3.2. (Iterative Case A)

1. Initialisation:

(a) Solve problems (1) and (2) respectively with the objective of determining the minimum number
of aircraft N and the minimum number of crew required M , to cover all flights exactly once.
We now have incumbent routing and crewing solutions.

(b) For each arc (i, j) ∈ A, assign expected primary delays pR
ij and pR

ij.

(c) Set dP
k = 0, dR

k = 0 for all k ∈ N and dR
so = 0, dP

so = 0. Set an iteration counter c = 0.

2. Minimum Delay Aircraft Routing:

(a) Apply Algorithm 3.1.

(b) Assign delay costs to strings using (12). Solve problem (1) via column generation with the
objective of minimizing the total delay cost to produce a new incumbent routing solution.

3. Minimum Delay Crew Pairing:

(a) Apply Algorithm 3.1.

(b) Assign delay costs to strings using (13). Solve problem (2) via column generation with the
objective of minimizing the total delay cost to produce a new incumbent crew pairing solution.

4. If either the aircraft routing or crew pairing solution has changed, increment iteration counter
c → c + 1 and return to Step 2. Otherwise, goto Step 5.

5. Return
∑N

n=1

∑

i∈πR
n

aR
i dR

i +
∑M

m=1

∑

i∈πP
m

aP
i dP

i , where πR
n is the routing string for the nth aircraft,

n = 1, . . . , N and πP
m is the crew pairing string for the mth crew, m = 1, . . . , M .

Algorithm 3.3. (Iterative Case B)
As for Algorithm 3.2, interchanging Steps 2 and 3.
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3.2 Solving the pricing problem

We describe the methodology to solve the pricing problem (10); the problem (11) requires straight-
forward modifications described at the conclusion of this section. For each i ∈ N , we are given a dual
multiplier −wR

i (−wR
so = −wR

t = 0), a per unit delay cost aR
i (aR

so = aR
t = 0), and propagated delays for

crew pairings dP
i . We wish to solve (10), where the dR

i are calculated via (5). Because the delay dR
i is

not a simple sum of delays along the path from so to i, the problem (10) is not easily cast as a minimum
cost network flow. We propose a label setting algorithm, augmented by a notion of label dominance,
modified from related problems in Desrochers and Soumis [9] and Dumitrescu et al. [10], that works
efficiently in the cases tested.

Let π be a (full) path in G (an ordered collection of nodes {so, i1, i2, . . . , iq, t} in N with (so, i1), (iq, t) ∈
A and (iℓ, iℓ+1) ∈ A for all ℓ = 1, . . . , q − 1). For i ∈ π, let π(i) denote the ordered collection of nodes
in the path π truncated so that the final node in the list is i; we will also call π(i) a path. Define

WR
π(i) =

∑

j∈π(i)

(

wR
j + aP

j (d̃R
j;π−(j) − dR

j )
)

. Denote by dR
π(i) the propagated expected routing delay at

node i, computed along path π(i) using (5), and define AR
π(i) =

∑

j∈π(i) aR
j dR

π(j).

In this terminology, we may rewrite (10) as

zR = min
{

AR
π(t) + WR

π(t) : π is a path from so to t
}

. (14)

Because of the nonlinear nature of the propagated routing delay formula (5), our labels must track
both the accumulated cost AR

π(i) + WR
π(i) at node i along path π, and the propagated delay dR

π(i). This
motivates the following dominance conditions for labels.

Definition 3.4. (Dominance condition)
The pair (or label) (AR

π(i) + WR
π(i), dR

π(i)) dominates (AR
η(i) + WR

η(i), dR
η(i)) if

AR
π(i) + WR

π(i) ≤ AR
η(i) + WR

η(i) and dR
π(i) ≤ dR

η(i)

and the labels are not identical.

Lemma 3.5. Let ̟ be a path from j to k, where (i, j) ∈ A. If (AR
π(i) + WR

π(i), dR
π(i)) dominates

(AR
η(i) +WR

η(i), dR
η(i)), then (AR

{π(i),̟}+WR
{π(i),̟}, dR

{π(i),̟}) dominates (AR
{η(i),̟}+WR

{η(i),̟}, dR
{η(i),̟}).

Proof : We show that this is true if i connects to j by a single arc (the path ̟ consists of a single node
{j}); the result then follows by induction. Recall we are given a fixed set of crew pairing strings. Let ξ
denote the crew pairing string that includes flight node j and let k be the node in ξ preceding j. Thus,

dR
{π(i),j} = max

{

dR
π(i) − (sij − pR

ij), d
P
ξ(k) − (skj − pP

kj), 0
}

, and

dR
{η(i),j} = max

{

dR
η(i) − (sij − pR

ij), d
P
ξ(k) − (skj − pP

kj), 0
}

.

Since dR
π(i) ≤ dR

η(i), one has dR
{π(i),j} ≤ dR

{η(i),j}.
Now

AR
{π(i),j} + WR

{π(i),j} = AR
π(i) + WR

π(i) + aR
j dR

{π(i),j} + wR
j + aP

j (d̃R
j;i − dR

j ) and

AR
{η(i),j} + WR

{η(i),j} = AR
η(i) + WR

η(i) + aR
j dR

{η(i),j} + wR
j + aP

j (d̃R
j;i − dR

j ),

and we are done. �

In particular, if ̟ terminates at t, the above lemma shows that AR
{π(i),̟} + WR

{π(i),̟} ≤ AR
{η(i),̟} +

WR
{η(i),̟}. In our labelling algorithm described below, we may therefore at each node only create labels

for those paths which are not dominated by any other path at that node. We call such labels efficient.

Definition 3.6. A label (AR
π(i) + WR

π(i), dR
π(i)) at node i is said to be efficient if it is not dominated by

any other label at node i. A path π(i) is said to be efficient if the label it corresponds to at node i is
efficient.
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We now describe the label setting algorithm we use to solve the problem (14). At a node i ∈ N ,
the current collection of labels are denoted Ii and the current collection of treated labels we denote by
Mi. Because the dominance condition does not allow identical labels at a node i, each label in Ii will
correspond to a unique path (say π(i)) from so to i. For brevity, we will therefore denote individual
elements of Ii and Mi as paths such as π(i).

Algorithm 3.7. Label Setting Algorithm for the Aircraft Routing Problem

1. Initialisation:
Set Iso = {so} and Ii = ∅ for all i ∈ N\{so}.
Set Mi = ∅ for each i ∈ N .

2. Selection of the label to be treated:
if

⋃

i∈N (Ii\Mi) = ∅ then go to Step 4; all efficient labels have been generated.
else choose i ∈ N and π(i) ∈ Ii\Mi so that AR

π(i) + WR
π(i) is minimal.

3. Treatment of label (AR
π(i) + WR

π(i), d
R
π(i))

forall (i, j) ∈ A
if (AR

{π(i),j} + WR
{π(i),j}, d

R
{π(i),j}) is not dominated by (AR

η(j) + WR
η(j), d

R
η(j)) for any η(j) ∈ Ij

then
set Ij = Ij ∪ {π(i), j}

end do
Set Mi := Mi ∪ {π(i)}.
Go to Step 2.

4. Return argminπ(t)∈It
AR

π(t) + WR
π(t).

We now describe the modifications required to solve the corresponding problem for the crew. Define
Tπ(i) =

∑

j∈π(i) tj , where tj is the scheduled time that crew work on flight j. We denote the allowed

upper limit of continuous scheduled crew work time by H . Equation (11) can be written as

zP = min
{

AP
π(t) + WP

π(t) : π is a path from so to t, Tπ(t) ≤ H
}

. (15)

Definition 3.8. (Dominance condition)
The pair (or label) (AR

π(i) + WR
π(i), dR

π(i), Tπ(i)) dominates (AR
η(i) + WR

η(i), dR
η(i), Tη(i)) if

AR
π(i) + WR

π(i) ≤ AR
η(i) + WR

η(i) and dR
π(i) ≤ dR

η(i) and Tπ(i) ≤ Tη(i)

and the labels are not identical.

In Algorithm 3.9 we do not propagate paths to a node i if Tπ(i) > H .

Algorithm 3.9. Label Setting Algorithm for the Crew Pairing Problem
As in Algorithm 3.7, replacing R superscripts by P superscripts throughout and replacing the if clause

in Step 3 with:

if T{π(i),j} ≤ H hours and (AP
{π(i),j} + WP

{π(i),j}, d
P
{π(i),j}, T{π(i),j}) is not dominated by

(AP
η(j) + WP

η(j), d
P
η(j), Tη(j)) for any η(j) ∈ Ij then

set Ij = Ij ∪ {π(i), j}

One could try to improve the efficiency of Algorithms 3.7 and 3.9, by for example using ideas from
[10] for Algorithm 3.9. We found the algorithms to be efficient on the instances tested and therefore have
not explored further possible improvements.

4 Numerical Results

To evaluate the effectiveness of our proposed iterative approach, we apply Algorithm 3.2 to a one-day
schedule on a real airline network consisting of 54 flights and 128 feasible connections.
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We determine that the minimum number of aircraft and crew pairs required to cover this network
are 10 and 16, respectively, by solving (1) and (2). For simplicity we assume that all aircraft, crew
and connections incur similar operating costs, and thus the minimum number of aircraft and crew pairs
solution represents a cost minimization without regard for costs due to unforeseen delays. We use the
corresponding aircraft routings and crew pairings to form our Base Case to which we apply our iterative
integrated approach to reduce total propagated delay. We use 10 aircraft and 16 crew pairs in all instances
and all algorithms tested.

The mean primary aircraft and crew pairing delays pR
ij and pP

ij are randomly sampled from four dif-
ferent probability distributions. In practice, primary aircraft and crew pairing delays rarely correspond
to a specific distribution, but are rather a composite of several causes of delays with different individual
distributions that may vary throughout different times of the day [24, 28]. It is often difficult to ex-
tract bias free, accurate historical data for the expected primary aircraft and crew delay over a specific
connection. Thus, precise delay distributions (and their means) for all connections are very difficult to
determine analytically. We therefore sample a set of delays and use the values obtained to represent a
possible mean delay for each connection. To capture the asymmetric nature of the aircraft and crew
delays, we sample from an exponential distribution E(λ) with mean 1/λ in minutes and a truncated
normal distribution (truncated to non-negative delays), denoted tN(µ, σ2) with mean µ and variance σ,
both in minutes. We test our new computational approach on 12 random instances: 3 instances from
E(1/5), 3 from E(1/10), 3 from tN(5, 100), and 3 from tN(10, 25). We use unit costs per unit delay for
all connections.

We study two simplified approaches (SSD) and (SSP) in addition to our base case (B) and pro-
posed approach (IPD). We also compare our results with the method of [25] (W) as well as a proposed
improvement to the method of [25] (WI):

1. Base (B):

- Step 1 of Algorithm 3.2, followed by Algorithm 3.1 and Step 5 of Algorithm 3.2.

2. Routing and Crewing Solved Sequentially, Simple Delay (SSD):

- Steps 1, 2, 3 of Algorithm 3.2, followed immediately by Algorithm 3.1 and Step 5 of Algorithm
3.2. In Algorithm 3.1, (5) is replaced with dR

j = dR
i − (sij − pR

ij) and (6) is replaced with

dP
j = dR

k − (skj − pR
kj). In Algorithm 3.2, (12) is replaced with cR

j =
∑

i∈π aR
i dR

i and (13) is

replaced with cP
j =

∑

i∈π aP
i dP

i .

3. Routing and Crewing Solved Sequentially, Propagated Delay (SPD):

- Steps 1, 2, 3 of Algorithm 3.2, followed immediately by Algorithm 3.1 and Step 5 of Algorithm
3.2.

4. Routing and Crewing Integrated, Propagated Delay (IPD):

- Algorithm 3.2.

5. The Algorithm of Weide et al. [25] (W)
- The algorithm as described in Weide et al.. In the absence of cost-differentation for different
crew pairings, we set the crew pairing cost to zero.

6. An Improved version of the Algorithm of Weide et al. [25] (WI)
- The algorithm W, with an attempt to incorporate a “time-of-day” aspect based on expected
primary delay. Compute restricted connections using the scheduled slack minus the expected
primary delay, instead of scheduled slack.

The SPD approach will demonstrate the value of calculating the more accurate, nonlinear, propagated
delay over the simpler, less accurate linear delay of the SSD approach. Our proposed IPD approach
will demonstrate the value of integrating routing and crewing, rather than simply performing them
sequentially as in the SPD approach. The SPD approach may be viewed as an improvement over Lan et
al. [14] because we use the correct calculation of propagated delay in column selection and also model
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interaction of aircraft and crew (see discussion in Section 1.4). The IPD approach is an improvement
over AhmadBeygi et al. [2] as we correctly calculate the combined propagated delay due to aircraft and
crew; moreover, we develop routing and crewing connections, rather than retiming existing connections.
We also view IPD as an improvement over Weide et al. [25] as our objective is in terms of a dollar cost,
which can be easily added to other operating cost terms in a more sophisticated cost model. We compare
our IPD approach with the model of Weide et al. W and also with the “improved” model WI.

For each instance and each of the approaches SSD, SPD, and IPD, we record in minutes the aircraft
delay, crew delay, total delay, and improvement in total delay relative to the total delay incurred by the
Base Case. In each approach we apply the evaluation Algorithm 3.1 to provide a consistent means of
comparison between each of the approaches. Algorithm 3.2 takes between 3 and 16 iterations for the 12
instances tested, as indicated in the tables below.

We remark that we evaluated Algorithm 3.3 on the same 12 instances and produced solutions that
were universally inferior to Algorithm 3.2. This is not unexpected, as the routing strings are larger and
less flexible than the crewing strings, and folklore suggests making decisions on less flexible items first
often produces better results. The results for Algorithm 3.3 are thus not reported.

The IP was always solved at the root node by column generation and did not require any further
branching. As the network consisted of 54 flights, the master problem consisted of 54 set partitioning
constraints for both the aircraft routing and crew pairing problems. Approximately 200 columns were
generated in an aircraft routing iteration and approximately 120 in a crew pairing iteration.

We also solved (1) and (2) separately to minimize the individual propagated delay due to aircraft and
crew, respectively. These values are tabulated below, along with their sum, which represents a rigorous
lower bound. This lower bound is unlikely to be sharp as it completely ignores the additional delays due
to the combination of aircraft and crew delay; in some instances this combined effect can be substantial.
In most instances our IPD solution is close to this lower bound; given the lack of sharpness of this bound,
the IPD solutions appear to be of high quality. When running the algorithms W and WI, we found that
as our network consists of many restricted connections, we could not achieve a non-robustness measure
(NRM) of zero; but rather terminated when the NRM could not be improved further, as stipulated in
[25]. For each instance, there were 9 restricted aircraft changes in the final solution; 8 of these may be
classified as “less severe”, as the sit time exceeded the minimum sit time by more than 15 minutes.

Our numerical results for Algorithm 3.2 are tabulated below. Individual results are given for each
instance, followed by a summary in Table 1, detailing the relative improvements in delay between the
algorithms SSD, SPD, IPD, W, and WI. All experiments were done with CPLEX12.1 on a 2.4GHz PC
with 4GB RAM.

Exponential distribution with mean λ = 5.

Instance 1:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 214 316 530 − 9.17
SSD 155 229 384 27.55 21.53
SPD 146 229 375 29.25 28.41

IPD (3 iter.) 132 229 361 31.89 47.19

Lower Bound 106 210 316 − −
W (10 iter.) 143 236 379 − 12.75
WI (8 iter.) 138 232 370 − 12.48

Instance 2:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 367 395 762 − 9.10
SSD 326 394 720 5.51 23.56
SPD 326 379 705 7.48 31.20

IPD (8 iter.) 321 347 668 12.34 68.01

Lower Bound 177 335 512 − −
W (10 iter.) 350 390 740 − 12.75
WI (9 iter.) 349 388 737 − 10.77
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Instance 3:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 158 316 474 − 10.15
SSD 164 295 459 3.16 23.41
SPD 160 297 457 3.59 28.55

IPD (7 iter.) 116 297 413 12.87 63.45

Lower Bound 104 275 379 − −
W (10. iter) 141 316 457 − 12.75
WI (10 iter.) 126 315 441 − 15.02

Exponential distribution with mean λ = 10.

Instance 4:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 341 544 885 − 8.12
SSD 312 501 813 8.14 24.21
SPD 267 478 745 15.82 29.50

IPD (4 iter.) 241 471 712 19.55 72.26

Lower Bound 185 468 653 − −
W (10 iter.) 312 501 813 − 12.75
WI (10 iter.) 304 485 789 − 16.00

Instance 5:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 999 1114 2113 − 15.53
SSD 826 1216 2042 3.36 26.22
SPD 856 1039 1895 10.32 28.16

IPD (16 iter.) 825 879 1704 19.36 214.19

Lower Bound 590 879 1469 − −
W (10 iter.) 895 1042 1937 − 12.75
WI (8 iter.) 890 1027 1917 − 11.78

Instance 6:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 1217 1846 3063 − 14.51
SSD 1117 1653 2770 9.57 22.34
SPD 1108 1516 2624 14.33 23.19

IPD (4 iter.) 1032 1500 2532 17.34 92.35

Lower Bound 994 1456 2450 − −
W (10 iter.) 1070 1589 2659 − 12.75
WI (10 iter.) 1053 1573 2626 − 11.33

Truncated Normal distribution with µ = 5, σ = 10.

Instance 7:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 438 665 1103 − 14.19
SSD 465 598 1063 3.63 22.10
SPD 441 598 1039 5.80 25.46

IPD (4 iter.) 387 573 960 12.96 39.44

Lower Bound 260 434 694 − −
W (10 iter.) 425 591 1016 − 12.75
WI (8 iter.) 416 582 998 − 10.80
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Instance 8:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 536 650 1186 − 13.31
SSD 503 689 1192 −0.51 24.75
SPD 503 652 1155 2.61 25.91

IPD (7 iter.) 505 571 1076 9.27 168.74

Lower Bound 481 562 1043 − −
W (10 iter.) 526 647 1173 − 12.75
WI (9 iter.) 524 645 1169 − 12.56

Instance 9:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 274 562 836 − 15.11
SSD 269 408 677 19.02 27.89
SPD 260 434 694 16.99 28.61

IPD (6 iter.) 227 408 635 24.04 57.98

Lower Bound 168 401 569 − −
W (10 iter.) 267 455 722 − 12.75
WI (10 iter.) 267 452 719 − 11.14

Truncated Normal distribution with µ = 10, σ = 5.

Instance 10:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 482 799 1281 − 14.91
SSD 526 780 1306 −1.95 23.66
SPD 399 731 1130 11.79 25.11

IPD (4 iter.) 366 731 1097 14.36 53.35

Lower Bound 312 703 1015 − −
W (10 iter.) 470 792 1262 − 12.75
WI (7 iter.) 470 788 1258 − 10.16

Instance 11:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 895 1134 2029 − 14.70
SSD 804 1144 1948 3.99 24.18
SPD 825 1034 1859 8.38 25.67

IPD (5 iter.) 721 944 1665 17.94 61.72

Lower Bound 682 920 1602 − −
W (10 iter.) 757 1010 1767 − 12.75
WI (8 iter) 746 976 1722 − 9.98

Instance 12:
Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 446 616 1062 − 15.04
SSD 437 604 1041 1.98 19.58
SPD 442 551 993 6.50 20.01

IPD (8 iter.) 380 544 924 12.99 72.97

Lower Bound 347 532 879 − −
W (10 iter.) 440 574 1014 − 12.75
WI (10 iter.) 440 562 1002 − 11.54
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Table 1: Relative improvements of the algorithms SPD over SSD, and IPD over SPD, SSD, W, and WI.

Instance (SSD−SPD)
SSD

(SPD−IPD)
SPD

(SSD−IPD)
SSD

(W−IPD)
W

(WI−IPD)
WI

×100% ×100% ×100% ×100% ×100%

1 2.34 3.73 5.99 4.75 2.43
2 2.08 5.25 7.22 9.73 9.36
3 0.43 9.63 10.02 9.63 6.35
4 8.36 4.43 12.42 12.42 9.76
5 7.20 10.10 16.55 12.03 11.11
6 5.27 3.51 8.59 4.78 3.58
7 2.26 7.60 9.69 5.51 3.81
8 3.10 6.84 9.73 8.27 7.96
9 −2.51 8.50 6.20 12.05 11.68
10 13.48 2.92 16.00 13.07 12.80
11 4.57 10.44 14.53 5.77 3.31
12 4.61 6.95 11.24 8.88 7.78

Average 4.27 6.67 10.68 8.91 7.49

5 Discussion and Conclusions

Our iterative integrated methodology for minimizing propagated delay in a combined routing and crewing
network has clear advantages over approaches that do not explicitly calculate propagated delay or fail
to properly integrate routing and crewing.

• The value of integrating routing and crewing, rather than sequentially minimizing propagated delay
in routing strings, then minimizing propagated delay in crew strings is clear from a comparison of
IPD and SPD delays in our 12 instances. There is universal improvement over all instances; on
average our IPD approach improves by 6.7% over the SPD approach.

• For the two sequential approaches tested, accurately calculating propagated delay is an improve-
ment over using a simpler additive delay; 11 out of the 12 instances showed an improvement. On
average over the 12 instances, the SPD approach improves over SSD by 4.3%.

• Finally, integrating routing and crew delays and accurately calculating the propagated delays (our
IPD approach) is a clear and universal improvement over SSD with an average improvement of
10.7%.

When comparing our IPD approach with the methodology of [25] on average our approach produced
schedules with 8.91% less total delay (IPD vs. W) and 7.49% less total delay (IPD vs. our “improved”
version of [25] WI). The delay reductions over Algorithms W and WI are comparable to those observed
by (i) the correct propagated delay was used in place of the simplified “summed” delay (SSD vs. SPD)
and (ii) iteration was used in place of sequential optimisation (SPD vs. IPD).

In this proof of concept work, we have limited our study to minimizing expected propagated delay,
however, our methodology allows other extensions to mitigate delay related risk. For example, it is
straightforward to limit the maximum expected propagated delay of any single flight. In Algorithm 3.7,
one may disallow the creation of a path with an unacceptably high single flight delay cost in the same
way that crew strings of duration greater than H hours are disallowed in Algorithm 3.9. Similarly, it is
easy to limit the total delay cost of either a routing or crew string.

Our new integrated framework is in principle extendable to a third aspect, such as delays due to
passengers. Future work will explore this possibility.
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