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Abstract

Distributed adaptive signal processing and communication networking are rapidly advancing research areas which

enable new and powerful signal processing tasks, e.g., distributed speech enhancement in adverse environments. An

emerging new paradigm is that of multiple devices cooperating in multiple tasks (MDMT). This is different from the

classical wireless sensor network (WSN) setup, in which multiple devices perform one single joint task. A crucial first

step in order to achieve a benefit, e.g., a better node-specific audio signal enhancement, is the common unique

labeling of all relevant sources that are observed by the network. This challenging research question can be addressed

by designing adaptive data clustering and classification rules based on a set of noisy unlabeled sensor observations. In

this paper, two robust and adaptive distributed hybrid classification algorithms are introduced. They consist of a local

clustering phase that uses a small part of the data with a subsequent, fully distributed on-line classification phase. The

classification is performed by means of distance-based similarity measures. In order to deal with the presence of

outliers, the distances are estimated robustly. An extensive simulation-based performance analysis is provided for the

proposed algorithms. The distributed hybrid classification approaches are compared to a benchmark algorithm where

the error rates are evaluated in dependence of different WSN parameters. Communication cost and computation time

are compared for all algorithms under test. Since both proposed approaches use robust estimators, they are, to a

certain degree, insensitive to outliers. Furthermore, they are designed in a way that they are applicable to on-line

classification problems.
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1 Introduction
Recent advances in distributed adaptive signal process-

ing and communication networking are currently enabling

novel paradigms for signal and parameter estimation.

Based on the principles of adaptive filtering theory [1], a

network of devices with node-specific interests adaptively

optimizes its behavior, e.g., to jointly solve a decentral-

ized least mean squares problem [2–6]. Under this new

paradigm, multiple devices cooperate in multiple tasks

(MDMT). This is different from the classical wireless sen-

sor network setup, in which multiple devices perform one

single joint task [2].

The MDMT paradigm can be beneficial, e.g., for speech

enhancement in adverse environments [7]. Consider, for

example, distributed audio signal enhancement in a public
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area, such as an airport, a train-station, etc. By cooperat-

ing with each other, various devices (e.g., smart-phones,

hearing aids, tablets) benefit in enhancing their node-

specific audio source of interest, given a received mixture

of interfering sound sources [2, 8], e.g., by suppressing

noise and interfering sound sources that are not of interest

to the user.

Note that in such scenarios, the devices must operate

under stringent power and communication constraints

and the transmission of observations to a fusion cen-

ter (FC) is, in many cases, infeasible or undesired. A

crucial first step in order to achieve a benefit, e.g., a bet-

ter node-specific audio signal enhancement, is the com-

mon unique labeling of all relevant speech sources that

are observed by the network [8]. Also in other MDMT

signal-enhancement tasks, such as image enhancement,

it is of practical importance to answer the question: who

observes what? [9].
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This challenging research question can be tackled by

designing adaptive data clustering and classification rules

where each sensor collects a set of unlabeled observa-

tions that are drawn from a known number of classes.

In particular, object or speaker labeling can be solved

by in-network adaptive classification algorithms where a

minimum amount of information is exchanged among

single-hop neighbors. Various methods have been pro-

posed that deal with distributed data clustering and

classification, e.g., [8–24]. In the last few years, sev-

eral distributed adaptive strategies, such as incremental,

consensus, and diffusion least mean squares algorithms

have been developed [25]. In [17], a distributed K-Means

(DKM) algorithm that uses the consensus strategy was

proposed.

In this paper, we provide an adaptive and robust

hybrid diffusion-based approach which extends our

previously published algorithm [21] by a robust distance

measure that improves the classification/labeling per-

formance, especially if the covariances of the clusters

differ significantly. Robust methods become necessary

whenever the distribution of the extracted features is

heavy tailed or contains outliers [26, 27] due to errors

in the feature estimation step. A scenario contain-

ing a high amount of outliers, as depicted in Fig. 1,

complicates the classification considerably. In such a

scenario, we propose to base the classification/labeling

on robust adaptive centroid estimation and data

clustering.

Contributions: Two robust in-network distributed

classification algorithms, i.e., the RDiff K-Med and the CE

RDiff K-Med, are proposed. It is shown that the perfor-

mance of the first algorithm can be approached by the sec-

ond algorithm with a considerably lower between-sensor

communication cost. Unlike the DKM, which serves as a

benchmark, the proposed algorithms are adaptive, instead
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Fig. 1 Three data clusters containing outlying feature vectors

of working with a batch of data. They are thus applica-

ble to real-time classification problems. Furthermore, they

are robust against outliers in the feature vectors and can

handle non-stationary features. An extensive simulation-

based performance analysis is provided that investigates

the error rates in dependence of different WSN parame-

ters, and also considers communication cost and compu-

tation time.

Organization: Section 2 provides the problem formula-

tion, Section 3 provides a brief introduction to the topic

of robust estimation of class centroid and covariance.

Section 4 is dedicated to the proposal and description

of two robust diffusion-based classification algorithms,

while Section 5 provides an extensive Monte-Carlo simu-

lation study. Section 6 concludes the paper and provides

future research directions.

2 Problem formulation and datamodel
Consider a network with J nodes distributed over some

geographic region (see Fig. 2). Two nodes are con-

nected if they are able to communicate directly with

each other. The set of nodes connected to node j ∈
1, . . . , J =: J is called the neighborhood of node j

and is denoted by Bj ⊆ J . The communication links

between the nodes are symmetric and a node is always

connected to itself. The number of nodes connected to

node j is called the degree of node j and is denoted

by |Bj|.
This paper is concerned with adaptive data cluster-

ing and classification/labeling when each sensor collects

Fig. 2 Sensor network showing the neighborhood of node j, denoted

by Bj
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a set of unlabeled observations that are drawn from a

known number of classes. This task should be accom-

plished in a decentralized manner by communicating

only within directly connected neighborhoods Bj, instead

of transmitting all observations to a master node or

FC. Each observation is assumed to belong to a cer-

tain class Ck with k ∈ 1, . . . ,K with k denoting the

label of the given class. The total number of classes K

is assumed to be known, or estimated a priori. Each

class is described by a number of application depen-

dent descriptive statistics (features). The feature estima-

tion process is an application-specific research area of

its own (see, e.g., [8, 9]) and is not considered in this

article, where we seek for generic adaptive robust clus-

tering and classification methods. In the following, it

is assumed that the feature extraction has already been

performed, so that the uncertainty of the feature estima-

tion within each class can be modeled by a probability

distribution, e.g., the Gaussian. Further, we account for

estimation errors in the feature extraction process that

we consider as outliers, thus arriving at the following

observation model for feature vectors at time instant

n, n = 1, . . . ,N :

djkn = wk + ejkn + ojn. (1)

Here, wk denotes the class centroid, ejkn represents the

class-specific uncertainty term with covariance matrix

�jk , ojn denotes the outlier term which models distur-

bances of an unspecified density and djkn,wk , ejkn ∈
R

q. ejkn is assumed to be temporally and spatially

independent, i.e.,

E{e∗
jnelm} = σ 2

e,j · δjl · δnm (2)

with j, l = 1, . . . , J , n,m = 1, . . . ,N and δ denot-

ing the Kronecker delta function. ejkn is assumed to

be zero mean. For reasons of clarity, we drop the

index k in the observation vectors and refer to them

as djn.

The aim of this paper is thus to enable every node j

to assign each observation to a cluster k based on an

estimated feature djn. The classification/labeling should

be real-time capable so that a new observation can be

assigned on-line without the necessity of all recorded

observations being available. Furthermore, outliers in

Eq. (1) should not have a huge effect on the labeling

performance. This will be achieved by using robust tech-

niques to estimate the class centroids and covariances, as

well as robust distance measures, as described in the next

section.

3 Robust estimation of class centroid and

covariance
The presence of even a small amount of outliers in a data

set can have a high impact on classical estimators like

the sample mean vector and sample covariance matrix.

Though these estimators are optimal under the Gaus-

sian noise assumption, they are extremely sensitive to

uncharacteristic observations in the data [26]. For this

purpose, robust estimators have been developed which

are, to a certain degree, resistant towards outliers in the

data.

In the following, a short overview of the con-

cept of M-estimation for the multivariate case is pre-

sented, as required by our methods. For a more

detailed treatment of the fundamental concepts, see,

e.g., [26, 28].

The hybrid classification approach developed in this

paper involves estimating the mean and covariance for

vector-valued data djn = (d1jn, d2jn, . . . , dqjn)
T with

djn ∈ R
q, where q is the dimension of the feature

space.

In the univariate case, it is possible to define the robust

estimates of location and dispersion separately. In the

multivariate case, In order to obtain equivariant estimates,

it is of advantage to estimate location and dispersion

simultaneously [28].

The multivariate Gaussian density is

fD(d;w,�) = 1√
| � |

hD(gD(d;w,�)) (3)

where | � | denotes the determinant of �, hX(x) =
c exp(−x/2) with c = (2π)−q/2 and gD(d;w,�) = (d −
w)T�−1(d − w).

Let dj1, . . . ,djN be an i.i.d. sample from a density of

the form (3). M-estimates of the cluster centroids and

covariance matrices are defined as solutions of the general

system equations

N
∑

n=1

φ1(gD(n))(djn − ŵk) = 0q (4)

1

N − 1

N
∑

n=1

φ2(gD(n))(djn − ŵk)(djn − ŵk)
T = �̂k , (5)

where the functions φ1 and φ2 may be chosen differ-

ently. Uniqueness of solutions of (4) and (5) requires that

gDφ2(gD) is a nondecreasing function of gD [28].

A common choice are Huber’s functions [29] with

ρ(d) =
{

d2jn , if | djn |≤ chub

2chub | djn | −c2hub , if | djn |> chub
(6)
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and

φ1,2(d) = ∂ρ(d)

∂d
(7)

with chub denoting the Huber’s tuning constant. The func-

tion ρ(d) from Eq. (6) shows quadratic behavior in the

central region while increasing linearly to infinity. Outliers

are therefore assigned less weight than data close to the

model. Note that all maximum likelihood estimators are

also M-estimators.

4 Proposedmethods
In this section, two new robust in-network distributed

classification algorithms are presented that extend our

previously published algorithm [21] by a robust distance

measure that improves the classification/labeling perfor-

mance, especially if the covariances of the clusters differ

significantly.

Since we have no training data available for the classifi-

cation process, the general idea of the methods is to split

the classification/labeling procedure into two main steps:

in a local clustering phase each node calculates a prelimi-

nary estimate of the cluster characteristics (i.e., centroids

and covariances) of each cluster using a small number

of feature vectors. These preliminary estimates serve as

an initialization for the subsequent global classification

phase. Here, based on these estimates, a new feature is

classified using a robust distance measure. The aim is

to improve the local classification result by a combina-

tion of local processing and communication between the

agents.

An advantage of this procedure is that this hybrid

approach turns into a mere classification algorithm

when the cluster characteristics are known before-

hand. In this case, the local clustering phase is not

needed.

The methods are based on the diffusion LMS strategy

that was introduced in [30]. In this way, the classifica-

tion is adaptive and can handle streaming data coming

from a distributed sensor network. Since the communi-

cation cost between the nodes should be kept as low as

possible, the second approach is designed with reduced

in-network communication. A robust design makes sure

that the proposed algorithms are, to a certain degree,

resistant towards outliers in the feature vectors. In the

following, the two proposed approaches are described in

detail.

4.1 Robust distance-based K-medians

clustering/classification over adaptive diffusion

networks (RDiff K-Med)

The first proposed hybrid classification methodology

is the “Robust Distance-Based Clustering/Classification

Algorithm over Adaptive Diffusion Networks” (RDiff K-

Med). It begins with a local initialization phase where each

node j collects a number of Nt observations and performs

K-medians clustering on these observations. In this way,

each node locally partitions its firstNt observationsDjn =
{djn, n = 1, . . . ,Nt} into k sets Ck so that the ℓ1-distance

within each cluster is minimized:

argmin
wk

K
∑

k=1

Nt
∑

n=1

‖djn − wk‖1 (8)

Each center is the component-wise median of the points

of each cluster. The features assigned to each class Ck are

stored in an initial feature matrix S0jk . Based on all ele-

ments in S0jk , local intermediate estimates of the cluster

centroidψ0
jk and covariancematrix�0

jk are determined. In

the following, the calculation steps are presented in detail.

First, as robust local initial estimate of the cluster center,

compute the column-wise median of S0jk

ψ̂
0

jk = median
(

S0jk

)

. (9)

ψ̂
0

jk is thus obtained by computing the median separately

for each spatial direction of all elements in S0jk .

Next, proceed by computing a robust local initial esti-

mate of the cluster covariances. In this paper, we compare

three estimators, i.e. the sample covariance, Huber’s M-

estimator and a computationally simple robust covariance

estimator based on themedian absolute deviation (MAD).

The sample covariance matrix estimate is given by

�̂
0

jk = 1

Nt − 1

Nt
∑

n=1

(

djn − ψ̂
0

jk

) (

djn − ψ̂
0

jk

)H
. (10)

Huber’s M-estimator, as defined in Eq. (6), is computed

via an iteratively reweighted least-squares algorithm, as

detailed in [28] with the previously computed ψ̂
0

jk as

location estimate.

In case of the MAD based covariance estimate, for each

feature djn in S0jk the difference vector

ddiff,jk = |djn − median
(

S0jk

)

| (11)

is calculated and stored in the matrix S0diff,jk . Based on the

elements in S0diff,jk , the MAD is given by

σ̂
0
jk = 1.483 · median

(

S0diff,jk

)

(12)
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and the corresponding covariance matrix is

�̂
0

jk(r, s) =
{

(

σ̂
0
jks

)2
, ∀r = s = 1, . . . , q

0, ∀r 	= s
(13)

with σ̂
0
jks denoting the standard deviation estimate in

each spatial direction of the feature space. Note that the

covariance matrix calculated in Eq. (13) is a diagonal

matrix. This computationally simple robust estimator is

only applicable when the entries of the feature vectors are

assumed to be independent of each other. The estimates of

the sample covariance matrix and the M-estimator do not

require this assumption and are, in general, not diagonal

matrices.

Since the order in which the cluster centroids are stored

by K-Medians is random, it may differ between two nodes.

Thus, it has to be assured that the data which is exchanged

by the nodes refers to the same classes. This is achieved by

a unique initial ordering of the class centroids and covari-

ance matrices among all nodes in the network: starting

with the class centroids and covariancematrices stored for

the first class of a preset reference node, all other nodes

calculate the Euclidean distance of the respective entries

corresponding to all stored classes and those of the first

class of the reference node. The data with the smallest

Euclidean distance to the reference entries are re-stored at

the position corresponding to the first class. This proce-

dure is repeated for all classes stored by the nodes in the

network.

Having obtained a consistent data structure, each node

j exchanges its own feature vectors S0jk for each class Ck
with its neighbors i ∈ Bj. All nodes store their own as

well as the features received from their neighbors in an

initial matrixV 0
jk . In the following clustering/classification

procedure, S0jk and V 0
jk are extended to Sjkn and V jkn in

every time step n by adding columns containing the new

feature vectors received at time step n.

This completes the initialization phase, which is fol-

lowed by the exchange phase, where each new observation

djn, n = Nt + 1, . . . ,N , is classified according to the

following diffusion-procedure:

1. Exchange Step: If there are new, unshared feature vec-

tors, each node j adds them to V jkn and broadcasts them

to its neighbors i ∈ Bj.

2. Adaptation Step: Each node j determines preliminary

local estimates ψ̂ jkn and �̂
∗
jkn at time n based on the fea-

ture vectors stored in V jkn analogously to –(13) with V jkn

replacing Sjkn. In order to be capable of dealing with non-

stationary time-varying signals, a window length lw is

introduced which limits the size of V jkn by only retaining

the latest lw elements which were added to V jkn.

3. Exchange Step: Each node exchanges its intermediate

estimates ψ̂ jkn and �̂
∗
jkn with its neighbors.

4. Combination Step: Each node j adapts its estimates

according to

ŵjkn = α · ψ̂ jkn + (1 − α) ·
∑

b∈Bj/{j}
abkn · ψ̂bkn (14)

and

�̂jkn = α · �̂
∗
jkn + (1 − α) ·

∑

b∈Bj/{j}
abkn · �̂

∗
bkn (15)

with α denoting an adaptation factor which determines

the weight which is given to the own estimate and the

Fig. 3 Overview of the Robust Distance-Based K-Medians Clustering/Classification over Adaptive Diffusion Networks (RDiff K-Med) algorithm



Binder et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:34 Page 6 of 13

neighborhood estimates, respectively, and abkn being a

weighting factor chosen as

abkn = 1/
[

‖ψ̂bk − median(Vjkn)‖2
]

(16)

with subsequent normalization such that
∑

b∈Bj/{j} abkn = 1.

5. Classification Step: In the next step, feature vector

djn is classified by evaluating its distance to each of the

estimated class centroids ŵjk . The considered distance

measures are the Euclidean distance and the Mahalanobis

distance given by

dEucl(djn, ŵjk) =
√

(djn − ŵjk)
T (djn − ŵjk) (17)

and

dMahal(djn, ŵjk) =
√

(djn − ŵjk)
T �̂

−1

jk (djn − ŵjk).

(18)

djn is assigned to the class Ck for which the respective

distance is minimized.

With Step 1, the processing chain then starts at the

beginning where the previously classified feature vectors

are broadcasted to the neighborhood.

An overview of the RDiff K-Med algorithm is depicted

in Fig. 3, a summary is provided in Table 1.

4.2 Communicationally Efficient Robust Distance-Based

K-Medians Clustering/Classification over Adaptive

Diffusion Networks (CE RDiff K-Med)

Since the RDiff K-Med may be demanding in terms of

communication between sensors, which is a major con-

tributor to the energy consumption of the devices [31], an

algorithm is proposed which yields similar performance

with reduced in-network communication: the “Commu-

nicationally Efficient Robust Distance-Based K-Medians

Clustering/Classification over Adaptive Diffusion Net-

works” (CE RDiff K-Med).

The general procedure is similar to the RDiff K-Med

except that there is no exchange of feature vectors

between the nodes. The steps of the CE RDiff K-Med are

the following:

1. Adaptation Step: Based on the feature vectors djn

stored in Sjkn, each node calculates its intermediate esti-

mates ψ̂ jkn and �̂
∗
jkn according to (9)–(13).

2. Exchange Step: Instead of broadcasting the entire fea-

ture vectors, the nodes share only their estimates of the

cluster centers ψ̂ jkn and the respective covariance matri-

ces �̂
∗
jkn with their neighbors.

Table 1 Summary of the RDiff K-Med algorithm

Algorithm: RDiff K-Med

Local Clustering Phase

1. for the first Nt feature vectors do

2. for all j = 1, . . . , J do

3. perform K-medians according to (8)

4. calculate ŵ0
jk and �̂

0

jk via (9)-(13)

5. store classified data in S0jk

6. end for

7. for all j = 1, . . . , J do

8. perform synchronization of cluster estimates

9. end for

10. for all j = 1, . . . , J do

11. exchange S0jk with all neighbors i ∈ Bj

12. store received data in V 0
jk

13. end for

14. end for

Distributed Classification Phase

15. for n = Nt ,Nt + 1, ..,N do

16. for all j = 1, . . . , J do

17. broadcast an update for V jkn to all neighbors

i ∈ Bj

18. end for

19. for all j = 1, . . . , J do

20. determine ψ̂ jkn and �̂
∗
jkn via (9)-(13)

21. end for

22. for all j = 1, . . . , J do

23. broadcast ψ̂ jkn and �̂
∗
jkn to all neighbors i ∈ Bj

24. end for

25. for all j = 1, . . . , J do

26. determine ŵjk(n) and �̂ jkn via (14) & (15)

27. calculate distances from feature vector djn to all

ŵjkn by evaluating (17) or (18)

28. assign djn to class Ck which minimizes (17) or (18)

29. end for

30. end for

3. Combine Step: Each sensor j combines its neighbor’s

estimates analogously to (14) and (15) in order to obtain

improved estimates ŵjkn and �̂jkn.

4. Classification Step: Based on the estimates deter-

mined in the previous step, the distance measure of the

feature vector to the estimates of the class centroids is

evaluated and djn is classified analogously to the RDiff

K-Med. Subsequently, djn is added to Sjkn.
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Fig. 4 Overview of the Communicationally Efficient Robust Distance-Based K-Medians Clustering/Classification over Adaptive Diffusion Networks

(CE RDiff K-Med) algorithm

An overview of the CE RDiff K-Med algorithm is pro-

vided in Fig. 4, a summary is given in Table 2.

5 Numerical experiments
This section evaluates the performance of the proposed

algorithm numerically in terms of the error rate in a

broad range of conditions, i.e., different distributions of

the outliers, different percentages of outliers in the feature

vectors, different dimensions of the input data, different

numbers of clusters and in terms of the adaptation speed

in case of non-stationary data. Furthermore, the com-

munication cost for different neighborhood sizes and the

computation time as a function of the data dimension is

considered. When reasonable, we compare our proposed

method to the DKM [17].

5.1 Benchmark: distributed K-means (DKM)

As a benchmark, this paper considers the Distributed K-

Means (DKM) algorithm by Forero et al., for details, see

[17]. The basic idea of the DKM is to cluster the observa-

tions into a given number of groups, such that the sum of

squared-errors is minimized, that is

arg min
wk ,μ

p
jnk

1

2

J
∑

j=1

K
∑

k=1

Nj
∑

n=1

μ
p
jnk

‖djn − wk‖2, (19)

where wk is the cluster center for class k, μjnk ∈ [ 0, 1]

is the membership coefficient of djn to class k, and

p ∈ [ 1,+∞] is a tuning parameter. The DKM iteratively

solves the surrogate augmented Lagrangian of a dis-

tributed clustering problem based on (19) while exchang-

ing the resulting parameters among neighboring nodes.

Although the DKM achieves very good performance in

many scenarios, a major drawback is that the clustering is

Table 2 Summary of the CE RDiff K-Med

Algorithm: CE RDiff K-Med

Local Clustering Phase

1. for the first Nt feature vectors do

2. for all j = 1, . . . , J do

3. perform K-medians according to (8)

4. calculate w0
jk and �̂

0

jk via (9)-(13)

5. store classified data in S0jk

6. end for

7. for all j = 1, . . . , J do

8. perform synchronization of cluster estimates

9. end for

10. end for

Distributed Classification Phase

11. for n = Nt ,Nt + 1, ..,N do

12. for all j = 1, . . . , J do

13. calculate intermediate estimates ψ̂ jkn and �̂
∗
jkn

according to (9)-(13)

14. broadcast ψ̂ jkn and �̂
∗
jkn to all neighbors i ∈ Bj

15. end for

16. for all j = 1, . . . , J do

17. determine ŵjkn and �̂ jkn via (14)

18. calculate distances from feature vector djn to all

ŵjkn by evaluating (17) or (18)

19. assign djn to class Ck which minimizes (17) or (18)

21. end for

22. end for
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performed based on all available data and that it may need

a high number of iterations until it converges to its final

solution. This property makes the DKM difficult to use in

real-time applications where an observation needs to be

classified based on streaming data, such as for example in

speaker labeling for MDMT speech enhancement [2] or

object labeling in MDMT video enhancement for camera

networks [9]. In addition to that, the performance of the

DKM is limited in scenarios where feature vectors contain

outliers.

5.2 Simulation setup

The simulations are based on a scenario with J = 10

nodes which are randomly distributed in space. Each node

is connected to the four neighboring nodes which have

the smallest Euclidean distance. Unless mentioned oth-

erwise, classification is performed on K = 3 classes

with centers w1 = (1, 1, 1)T , w2 = (1, 4, 3)T , w3 =
(3, 1, 1)T . Each sample djn is drawn at random from class

k from the density N (djn;wk ,
k) with covariance matri-

ces �1 = (1, 0.01, 0.01)T I3, �2 = (0.16, 4, 0.16)T I3 and

�3 = (0.25, 0.01, 4)T I3. Each node has NJ = 80 sam-

ples available, 20 for the initialization and 60 for real-time

classification. K-Medians is run three times, and the result

which minimizes (8) is used for the classification. The

parameters for the benchmark algorithm DKM are set

p = ν = 2, where p = 2 enables soft clustering and ν = 2

is the tuning parameter which yields the best results in the

performance tests in [17]. The result is obtained having

all NJ = 80 samples per node available. Since the perfor-

mance of the DKM depends on the number of iterations,

we provide simulation results for multiple choices of the

amount of iterations.

The generation of outliers considers a certain percent-

age of samples to be replaced by a new sample which

is drawn from a contaminating distribution (Gaussian or

chi-square). The error rate is calculated based on the

classified samples excluding any outliers. The displayed

results represent the averages that are based on 100

Monte-Carlo runs.

5.3 Simulation results

In Fig. 5, the impact of the dimension of the feature

vectors on the performance is depicted. The data is

generated by concatenating the mean values and covari-

ance matrices until they have the according dimension.

For example, w3 = (3, 1, 1)T is changed to w3 =
(3, 1, 1, 3, 1, 1)T and �3 = (0.25, 0.01, 4)T I3 becomes

�3 = (0.25, 0.01, 4, 0.25, 0.01, 4)T I6 in order to obtain

data of dimension q = 6 and so on. For increasing data

dimension, the error rates for all considered algorithms

decreases continuously.

Figure 6 depicts the error rate of the algorithms under

test as a function of the percentage of outliers in the data,

where 0% corresponds to the outlier free case. Here, the

outliers are drawn at random from a Gaussian distribu-

tion with the density N ((10, 10, 10)T , I3). The simulation

is run with the different estimators of covariance intro-

duced in Section 3, the location is estimated using the

median. The robust distance measures result in smaller

error rates than the Euclidean distance.

Since in real-world scenarios, the outliers usually do not

follow any specific distribution, the question arises how

the algorithms deal with other types of outliers, e.g., from

a skewed heavy tailed distribution. For the evaluation of

this scenario, the outliers are now generated by a chi-

square distribution with different degrees of freedom v for

each class: to a certain percentage of the feature vectors

a vector is added which is drawn at random from a chi-

square distribution where for each class, different values
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Fig. 6 Average error rate for different estimators of covariance as a function of the amount of outliers from a Gaussian distribution with the density

N ((10, 10, 10)T , I3)

for v are chosen. This is done in order to create a non-

symmetric outlier distribution instead of a constant shift

of the mean of the outlier distribution for all classes. In

this manner, for the first class C1, a randomly drawn vector

of dimension qwith v1 = 3 is added to a certain number of

data vectors, a vector with v2 = 5 is subtracted from cor-

responding feature vectors of class C2 and for C3 a different

random number is drawn for each direction in space: gen-

erated with v3,1 = 4, v3,2 = 1 and v3,3 = 7 for x, y and

z direction, respectively, whereby v3,2 = 1 is subtracted

from the y-component. For this simulation, a scenario is

chosen with more distinct clusters with centroids w1 =

(1, 1, 1)T , w2 = (0, 5, 3)T , w3 = (3, 3, 7)T . The result is

given in Fig. 7.

Figure 8 shows the error performance as a function

of the number of feature vectors which are available per

node. Both the DKM for i = 10 and i = 20 and the RDiff

K-Med and CE RDiff K-Medwith robust estimationmeth-

ods show a slightly decreasing error rate with a growing

number of feature vectors.

For the next experiment, we evaluate a more complex

scenario consisting of eight clusters of different shapes

and sizes distributed in space (see Fig. 9). The cen-

troids are chosen as w1 = (1, 0, 3)T , w2 = (1, 4, 3)T ,
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chi-square distribution
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w3 = (1, 0, 6)T , w4 = (−1, 3, 3)T , w5 = (4, 4, 4)T ,

w6 = (6, 3, 7)T , w7 = (4.5, 7, 6)T and w8 =
(2, 4, 7)T with corresponding covariance matrices �1 =
(0.1, 0.1, 1)T I3,�2 = (0.1, 0.4, 1)T I3,�3 = (2, 0.1, 0.5)T I3,

�4 = (0.4, 1.6, 0.4)T I3, �5 = (0.2, 1.2, 0.1)T I3,

�6 = (0.25, 0.3, 1.5)T I3, �7 = (0.8, 0.5, 0.2)T I3 and

�8 = (0.5, 0.5, 0.3)T I3. The outliers are drawn ran-

domly from a Gaussian distribution with the density

N ((10, 10, 10)T , I3). The results are provided in Fig. 10.

The former performance studies were based on the

assumption that the data is stationary. Next, it is examined

how the proposed algorithms perform for non-stationary

feature vectors. For this purpose the value of a single con-

sidered cluster centroid is instantly changed during the

classification process. The adaptation speed of the RDiff

K-Med and the CE RDiff K-Med is examined for different

window sizes lw and different values for α (see Eqs. (14)

and (15)) by calculating the error which is given by the
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Fig. 9 Scenario with eight clusters of different shapes and sizes

norm of the difference between the true value and the

estimate of the cluster centroid. Unlike the CE RDiff K-

Med the RDiff K-Med stores not only its own feature vec-

tors, but also the feature vectors from its neighborhood, it

has (| Bj | +1) data vectors per time step available instead

of only one. In order to make the window sizes for both

algorithms comparable, lw is chosen such that it contains

the feature vectors of lw time steps. As a consequence, the

compared window length of the RDiff K-Med corresponds

to (| Bj | +1) times the window length of the CE RDiff

K-Med. The result is shown in Fig. 11. As depicted in the

upper plot, a large window size results in a slower adap-

tation speed. The RDiff K-Med adapts faster to the true

cluster centroid than the CE RDiff K-Med since its esti-

mation is based on more available samples. However, the

CE RDiff K-Med yields a smaller error compared to the

RDiff K-Med when both have adapted to the true value.

The choice of the factor α (see lower plot) has no signifi-

cant impact on the RDiff K-Med. For the CE RDiff K-Med

a smaller value for α (and therefore a higher weighting of

the estimates of the neighboring nodes) leads to a higher

adaptation speed. Since it has only a small amount of fea-

ture vectors available, this method is dependent on the

data exchange with its neighbors.

5.4 Communication cost and computation time

Apart from the error rate, further performance mea-

sures of great importance are the communication cost

as well as computation time. Since the communication

costs contribute stronger to the energy consumption in

the wireless devices than the computational costs [31],

the former should be kept as low as possible. Figure 12

depicts the communication costs for the standard scenario

in dependence of various neighborhood cardinalities of
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each node. The communication cost displayed in Fig. 12 is

specified in data units, where one matrix entry forms one

unit. It becomes clear that the choice of the neighborhood

size has a high impact on the communication costs. For

the DKM the number of iterations is crucial. While for a

small amount of clusters few iterations may be sufficient,

the number of iterations that is necessary for a good per-

formance increases for higher cluster numbers (see [17]

for more detailed information) which results in strongly

increasing communication costs.

The computation time as a function of the dimension

of the data is provided by Fig. 13 and given in seconds

(using an Intel Core i7 5820K). Whereas the DKM has

a constant computation time independent of the data

dimension, it increases with the data dimension for the

proposed algorithms. The resulting computation time for

using the M-estimator is notably higher than for the other

approaches which makes it hardly real-time capable. The

other estimation methods take equally long for each algo-

rithm while the CE RDiff K-Med has a much shorter
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computation time due to the smaller data sets it has to

work with.

6 Conclusions
Two generic robust diffusion-based distributed hybrid

classification algorithms were proposed, which can be

adapted to various object/source labeling applications in a

decentralized MDMT network. A performance compari-

son to the DKM was provided and the proposed methods

showed promising results. Even in direct comparison with

the DKM which permanently has access to all available

samples, since it is operating in batch mode, our pro-

posed online methods provide comparable error rates to

the DKM using 50 iterations and more. Unlike the DKM,

both the RDiff K-Med and CE RDiff K-Med are potentially

real-time capable.

The choice of the distance metric has a considerable

impact on the performance of the proposed classification

algorithms. Using the Mahalanobis distance yields sig-

nificantly smaller error rates compared to the Euclidean

distance while resulting in higher communication costs

and computation time.

Future work will include the application of this

algorithm to real-world speech source labeling, object

labeling in camera networks as well as labeling of

semantic information based on occupancy grid maps for

autonomousmapping and navigation withmultiple rescue

robots [32].
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