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Online time series prediction is themainstreammethod in awide range of �elds, ranging from speech analysis and noise cancelation
to stock market analysis. However, the data o	en contains many outliers with the increasing length of time series in real world.
�ese outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this
paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory
(LSTM) to predict time series with outliers. �is method tunes the learning rate of the stochastic gradient algorithm adaptively in
the process of prediction, which reduces the adverse e
ect of outliers. It tracks the relative prediction error of the loss function with
aweighted average throughmodifyingAdam, a popular stochastic gradientmethod algorithm for training deep neural networks. In
our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. �e experiments
on both synthetic data and real time series show that our method achieves better performance compared to the existing methods
based on LSTM.

1. Introduction

A time series is a sequence of real-valued signals that are
measured at successive time intervals [1, 2]. Time series data
occur naturally in many application areas such as economics,
�nance, environment, and medicine and o	en arrives in the
form of streaming in many real-world systems. Time series
prediction has been successfully used in a wide range of
domains including speech analysis [3], noise cancelation [4],
and stock market analysis [5, 6]. �e traditional methods of
time series prediction commonly use a potential model, for
example, autoregressivemoving average (ARMA) [7], autore-
gressive integrated moving average (ARIMA) [1], and vector
autoregressive moving average (VARMA) [8], to mimic the
data. However, these methods all need to deal with the whole
dataset to identify the parameters of the model when facing
new coming data, which is not suitable for large datasets and
online time series prediction. To address this problem, online
learning methods are explored to extract the underlying
pattern representations from time series data in a sequential
manner. Compared to traditional batch learning methods,

online learning methods avoid expensive retraining cost
when handling new coming data. Due to the e�ciency and
scalability, online learningmethods includingmethods based
on linear models [9], ensemble learning [10], and kernels [11]
have been applied to time series prediction successfully.

Long short-term memory (LSTM) [12], a class of recur-
rent neural networks (RNNs) [13], is particularly designed for
sequential data. LSTM has shown promising results for time
series prediction. Its units consist of three gates: input gate,
forget gate, and output gate. It is popular due to the ability of
learning hidden long-term sequential dependencies, which
actually helps in learning the underlying representations of
time series. However, the time series data in real world o	en
contains some outliersmore or less especially in cyberattacks,
which are commonly shown as anomalies in time series data
monitoring some measurements of network tra�c. �ose
outliers mislead the learning method in extracting the true
representations of time series and reduce the performance of
prediction.

In this paper, we propose an e�cient online gradient
learning method, which we call RoAdam (Robust Adam)
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for LSTM to predict time series in the presence of outliers.
�e method modi�es Adam (Adaptive Moment Estimation)
[14], a popular algorithm for training deep neural networks
through tracking the relative prediction error of the loss
function with a weighted average. Adam is based on standard
stochastic gradient descent (SGD) method without consider-
ing the adverse e
ect of outliers.�e learning rate of RoAdam
is tuned adaptively according to the relative prediction error
of the loss function. �e large relative prediction error leads
to a smaller e
ective learning rate. Likewise, a small error
leads to a larger e
ective learning rate.�e experiments show
that our algorithm achieves the state-of-the-art performance
of prediction.

�e rest of this paper is organized as follows. Section 2
reviews related work. In Section 3, we introduce some pre-
liminaries. Section 4 presents our algorithm in detail. In
Section 5, we evaluate the performance of our proposed
algorithm on both synthetic data and real time series. Finally,
Section 6 concludes our work and discusses some future
work.

2. Related Work

In time series, a data point is identi�ed as an outlier if it is
signi�cantly di
erent from the behavior of the major points.
Outlier detection for time series data has been studied for
decades. �e main work focuses on modeling time series
in the presence of outliers. In statistics, several parametric
models have been proposed for time series prediction. �e
point that deviated from the predicted value by the summary
parametric model including ARMA [15], ARIMA [16, 17],
and VARMA [18] is identi�ed as an outlier. Vallis et al. [19]
develop a novel statistical technique using robust statistical
metrics including median, median absolute deviation, and
piecewise approximation of the underlying long-term trend
to detect outliers accurately. �ere also exist many machine
learning models for time series prediction with outliers.
�e paper [20] proposes a generic and scalable framework
for automated time series anomaly detection including two
methods: plug-inmethod and decomposition-basedmethod.
�e plug-in method applies a wide range of time series mod-
eling and forecasting models to model the normal behavior
of the time series. �e decomposition-based method �rstly
decomposes a time series into three components: trend,
seasonality, and noise and then captures the outliers through
monitoring the noise component. �e paper [21] gives a
detailed survey on outlier detection.

LSTM has shown promising results for time series pre-
diction. Lipton et al. uses LSTM to model varying length
sequences and capture long range dependencies. �e model
can e
ectively recognize patterns in multivariate time series
of clinical measurements [22]. Malhotra et al. use stacked
LSTM networks for outliers detection in time series. A pre-
dictor is used tomodel the normal behavior and the resulting
prediction errors are modeled as a multivariate Gaussian
distribution, which is used to identify the abnormal behavior
[23]. Chauhan andVig also utilize the probability distribution
of the prediction errors from the LSTM models to indicate
the abnormal and normal behaviors in ECG time series [24].

�ese methods are not suitable for online time series pre-
diction because they all need to train on time series without
outliers to model the normal behavior in advance. In this
paper, our online learning method for time series prediction
is robust to outliers through adaptively tuning the learning
rate of the stochastic gradient method to train LSTM.

3. Preliminaries and Model

In this section, we formulate our problem to be resolved and
introduce some knowledge about Adam, a popular algorithm
for training LSTM.

3.1. Online Time Series Prediction with LSTM. In the process
of online time series prediction, the desirable model learns
useful information from {�1, �2, . . . , ��−1} to give a prediction
�̃� and then compare �̃� with �� to update itself, where
{�1, �2, . . . , ��−1} is a time series, �̃� is the time series data
point forecasted at time �, and �� is the real value. LSTM
is suitable for discovering dependence relationships between
the time series data by using specialized gating and memory
mechanisms.

We give the formal de�nition of a neuron of a LSTM layer

as follows.�e jth neuron of a LSTM layer at time t, ��� consists
of input gate ��� , forget gate ��� , and output gate ��� and is
updated through forgetting the partially existingmemory and

adding a newmemory content �̃�� .�e expressions of ��� ,��� , ��� ,
and ��� are shown as follows:

��� = 	 (���� + ��ℎ�−1 + ����−1)� ,

��� = 	 (���� + ��ℎ�−1 + ����−1)
� ,

��� = 	 (���� + ��ℎ�−1 + ����−1)� ,

��� = ��� ���−1 + �
�
� �̃
�
� .

(1)

Note that��,��,��, ��, ��, and �� are the parameters
of the �th neuron of a LSTM layer at time t. 	 is a logistic
sigmoid function. ��, ��, and �� are diagonal matrices. ℎ�−1
and ��−1 are the vectorization of ℎ��−1 and �

�
�−1. �e output ℎ��

of this neuron at time � is expressed as

ℎ�� = ��� tanh (��� ) . (2)

In our model of online time series prediction, we set a
dense layer tomap the outputs to the target prediction, which
is formulated as

� = � (��ℎ� + ��) , (3)

where �(⋅) is the activation function of the dense layer, ��
is the weights, �� is the bias, and ℎ� is the vectorization of

ℎ�� . �e objection of our model at time � is to update the
parameters �� = {��,��,��,��, ��, ��, ��, ��, ��, ��, ��}.
�e standard process is

��+1 = �� − �∇� (��, �̃�) , (4)

where � is the learning rate and �(��, �̃�) is the loss function.
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RoAdam. Parameters carried over from Adam have the same default values: � = 0.001,
�1 = 0.9, �2 = 0.999, � = 10−8. For parameters speci�c to our method, we recommend
default values �3 = 0.999, � = 0.1, � = 10.
Require: �: learning rate
Require: �1, �2 ∈ [0, 1): exponential decay rates for moment estimation in Adam
Require: �3 ∈ [0, 1): exponential decay rate for computing relative prediction error
Require: �, �: lower and upper threshold for relative prediction error
Require: �: fuzz factor
Require: �(�): loss function
Require:�0: initial value for parameters

�0 = V0 = 0
 0 = 1
�(�0) = �(�−1) = 1
t = 0
while stopping condition is not reached do

�� = ∇��(��−1)
�� = �1��−1 + (1 − �1)��
�̂� = ��/(1 − ��1)
V� = �2V�−1 + (1 − �2)�2�
V̂� = V�/(1 − ��2)
if ‖�(��−1)‖ ≥ ‖�(��−2)‖ then

%� = min{max{�, ‖�(��−1)/�(��−2)‖}, �}
else

%� = min{max{1/�, ‖�(��−1)/�(��−2)‖}, 1/�}
end if

 � = �3 �−1 + (1 − �3)%�
��+1 = �� − ��̂�/( �√V̂� + �)
� = � + 1

end while
return��

Algorithm 1

3.2. Adam. Adam is a method for e�cient stochastic opti-
mization, which is o	en used to train LSTM. It computes
adaptive learning rates for individual parameters from esti-
mates of the �rst moment and the second moment of the
gradients, only requiring �rst-order gradients. Adam keeps
an exponentially decaying average of the gradient and the
squared gradient:

�� = �1��−1 + (1 − �1) ��,

V� = �2V�−1 + (1 − �2) �2� ,
(5)

where �� and V� initialized as zero are estimates of the
�rst moment and the second moment and �1 and �2 are
exponential decay rates for the moment estimates. We can
�nd that �� and V� are biased towards zero, when �1 and �2
are close to 1. So Adam counteracts these biases through bias
correction of�� and V�:

�̂� =
��

1 − ��1
,

V̂� =
V�

1 − ��2
.

(6)

�e rule of updating parameters is

��+1 = �� −
�

√V̂� + �
�̂�, (7)

where � = 0.001, �1 = 0.9, �2 = 0.999, and � = 10−8 by
default.

4. Method

In this section, we introduce our online gradient learning
method, which is called RoAdam (Robust Adam) to train
long short-term memory (LSTM) for time series prediction
in the presence of outliers. Our method does not directly
detect the outliers and adaptively tunes the learning ratewhen
facing a suspicious outlier.

In Algorithm 1, we provide the details of the RoAdam
algorithm. �e main di
erence between our algorithm and
Adam is %�, a relative prediction error term of the loss
function.�e relative prediction error term indicateswhether
the point is an outlier. �e larger value of %� means the
current point is more suspicious to be an outlier. It is
computed as %� = ‖�(��−1)/�(��−2)‖, where �(��−1) = �(��,
�̃�) and �(��−2) = �(��−1, �̃�−1). �(��, �̃�) and �(��−1, �̃�−1) are
the absolute prediction errors of �� and ��−1. In practice,
a threshold is used to scheme to ensure the stability of
relative prediction error term. � and � denote the lower and
upper thresholds for %�. We let %� = min{max{�, ‖�(��−1)/
�(��−2)‖}, �} (1), if ‖�(��−1)‖ ≥ ‖�(��−2)‖ and %� =
min{max{1/�, ‖�(��−1)/�(��−2)‖}, 1/�} (2) otherwise, which
captures both increase and decrease of relative prediction
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Figure 1: True value of data sets.

Table 1: Di
erent values of %�.

��−1
��

Outlier Normal

Outlier (1) (2)

Normal (2) (1)

error. Our settings consider di
erent situations when the
preceding point ��−1 and current point �� are at di
erent
status. �e details are listed in Table 1.

To get a smoother estimate, we compute the relative
prediction error with a weighted average. �e �nal result  �
is �3 �−1 + (1 − �3)%�. Here the e
ect of �3 is the same as �1
and �2 in Adam. In general, RoAdam is modi�ed in the basis

of Adam through multiplying the denominator √V̂� with  �.
�e large value of  � corresponds to a small learning rate, and
vice versa.

5. Experiment

In this section, we illustrate the performance of our proposed
algorithmRoAdamcompared toRLSTM, SR-LSTM, andRN-
LSTM on both synthetic data and real time series.

5.1. Experiment Setup. RLSTMmeans real time LSTM,which
updates the model using the newly coming data without
considering the e
ect of outliers. SR-LSTM stands for LSTM
with suspicious point removal. �e di
erence between SR-
LSTM and RN-LSTM is that once a suspicious point is
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Figure 2: Prediction value of di
erent algorithms on synthetic data.

detected as an outlier, SR-LSTM does not update on this
point and RN-LSTM updates using a recent normal point.
�ey both use the method proposed in [25] to detect the
outlier. In addition, all the algorithms use the same LSTM
model besides the optimizer. RLSTM, SR-LSTM, and RN-
LSTM adopt the original Adam optimizer. �e LSTM model
has 3 layers and the number of neurons in each layer is 400.
�emean squared error is chosen as the loss function and the
L2 regularization with 0.0001 penalty is used.�e parameters
of RoAdam carried from Adam have the same default values:
� = 0.001, �1 = 0.9, �2 = 0.999, and � = 10−8. For
parameters speci�c to ourmethod, we try di
erent values and
recommend default values �3 = 0.999, � = 0.1, and� = 10.

5.2. Data Sets. To examine the prediction performance, we
evaluate all the previous algorithms on synthetic data and real
time series.

5.2.1. Synthetic Data. �e synthetic data is sampled from
a Gaussian distribution with the corresponding mean ' ∈
[0, 100] and variance 	 ∈ [10, 30] plus the trend component
* ∈ [−0.5, 0.5]. �e length � is 2,500.�e outliers are injected
based on a Bernoulli distribution identi�ed by - = 0.01 and
� ⋅ - is the expected number of outliers. �e values of outliers
are also sampled from a Gaussian distribution with mean
' ∈ [0, 1000] and variance 	 ∈ [10, 30]. �e expression of
�� is

�� =
{
{
{

� + *, � ∼ 8 (', 	) , ' ∈ [0, 100] , 	 ∈ [10, 30] , * ∈ [−0.5, 0.5] , when �� is a normal point;
�, � ∼ 8 (', 	) , ' ∈ [0, 1000] , 	 ∈ [10, 30] , when �� is an outlier.

(8)
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Figure 3: Prediction value of di
erent algorithms on ECG.

5.2.2. Real Time Series. �e �rst time series data is ECG data,
which consists of 70 series of 1000 ECG measurements [26].
We choose 100 samples from ECG data set. �e second one
is HandOutlines, which is from the commonly used UCR
(http://www.cs.ucr.edu/∼eamonn/time series data/.). �e
last time series data is daily index of Dow Jones Industrial
Average (DJIA) during years 1885–1962. We randomly select
1% of each real time series as outliers, whose values are 2 or
3 times bigger than the true ones. Figure 1 presents the true
value of synthetic data and real time series.�e �-axis is time
(the number of samples) and the �-axis is true value.

5.3. Experimental Results. In this section, we test RMSEof the
algorithmsmentioned above to examine the e
ectiveness and
e�ciency.

RMSE = 1
*
	
∑
�=1

(<� − <̃�)
2 . (9)

RMSE allows us to compare errors with the number of

samples increasing. In addition, we average the results over

100 runs for stability.

Table 2 shows the RMSE of di
erent algorithms both

on synthetic data and real time series. We can �nd that

RoAdam outperforms all the other algorithms on RMSE.

Figures 2–5 visualize the prediction value of all the algorithms

on synthetic data and real time series. �e �-axis is time

(the number of samples) and the �-axis is prediction value.

We can observe that the prediction value produced by

RLSTM has oscillations around outliers. It indicates that

the prediction performance of RLSTM is indeed a
ected by

outliers. Although SR-LSTM, RN-LSTM, and RoAdam have

almost the same shape of prediction value, RoAdam has the

least RMSE.�e reasonmay be that SR-LSTM andRN-LSTM

may lose some information of the normal points when they

are mistaken outliers.

http://www.cs.ucr.edu/~eamonn/time_series_data/
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Table 2: RMSE on synthetic data and real time series.

Algorithm
Data

Synthetic ECG HandOutlines DJIA

RLSTM 0.7606 0.8505 0.9756 1.8454

SR-LSTM 0.7329 0.8323 0.9411 1.7574

RN-LSTM 0.7218 0.8217 0.9376 1.6218

RoAdam 0.4946 0.5626 0.7633 1.3875
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Figure 4: Prediction value of di
erent algorithms on HandOutlines.

6. Conclusions

In this paper, we propose an e�cient online gradient learning
method, RoAdam for LSTM, to predict time series, which is
robust to outliers. RoAdam is modi�ed on the basis of Adam,
a popular stochastic gradient algorithm for training deep
neural networks. �rough tracking the relative prediction
error of the loss function with a weighted average, this
method adaptively tunes the learning rate of the stochastic

gradient method in the presence of outliers. In the process
of prediction, the large value of the relative prediction error
corresponds to a small learning rate, and vice versa. �e
experiments on both synthetic data and real time series show
that our method achieves less prediction error compared to
the existing methods based on LSTM.

It remains for future work to study whether our approach
could be extended to time series prediction with missing
data.
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Figure 5: Prediction value of di
erent algorithms on DJIA.
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