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SUMMARY 

A minimum divergence estimation method is developed for robust parameter estimation 

and model fitting. The proposed approach uses new density-based divergences which, unlike 

existing density-based minimum divergence methods (e.g. minimum Hellinger distance es­

timation), avoid the use of nonparametric density estimation and associated complications 

such as bandwidth selection. The proposed class of 'density power divergences' is indexed 

by a single parameter a which can be varied to study the trade-off between robustness 

and efficiency. The method can be viewed as a robust extension of maximum likelihood 

estimation, since the class of divergences contains the Kullback-Leibler divergence when 

a = 0. Choices of a near zero afford robustness while retaining efficiency close to that of 

maximum likelihood. 

Some key words: Asymptotic efficiency; Divergence; Influence function; Maximum likeli­

hood; Robustness. 

1. INTRODUCTION 

In parametric estimation, density-based minimum divergence methods, i.e. methods 

which estimate the parameter through minimising a data-based estimate of some appro­

priate divergence between the assumed model density and the "true" density underlying 
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the data, have a long history. These procedures include the classical maximum likelihood 

method as well as the minimum chi-square methods based on the families of chi-square 

distances studied by several authors (e.g. Neyman, 1949, Rao, 1963, Cressie & Read, 1984, 

Lindsay, 1994). Beran (1977), using Hellinger distance, was the first to use the technique of 

density-based minimum divergence estimation in continuous models to develop parameter 

estimates with good robustness properties relative to maximum likelihood. Among others, 

Tamura & Boos (1986) and Simpson (1987) have followed up on this line of research. Un­

der some regularity conditions these methods have full asymptotic efficiency at the model. 

However, in continuous models the methods suffer from the drawback that it is necessary 

to use some nonparametric smoothing technique such as kernel density estimation to pro­

duce a continuous estimate of the true density - they therefore involve all the associated 

complications such as bandwidth selection. See also Cao, Cuevas & Fraiman (1995). Basu 

& Lindsay (1994) considered another modification of this approach where the model is 

smoothed with the same kernel as the data to reduce the dependence of the procedure on 

the smoothing method. 

The present paper introduces a new family of density-based divergence measures, to be 

called density power divergences. (Note that these measures are not closely related to the 

'power divergences' of Cressie & Read, 1984.) The family is indexed by a single parameter a 

which controls the trade-off between robustness and asymptotic efficiency of the parameter 

estimates which are the minimisers of this family of divergences. When a= 0, the density 

power divergence is the Kullback-Leibler divergence (Kullback & Leibler, 1951) and the 

method is maximum likelihood estimation; when a= 1, the divergence is the mean squared 

error, and a robust but inefficient minimum mean squared error estimator ensues. For any a, 

the estimation procedure has the considerable advantage of not requiring any nonparametric 

smoothing. Various examples are explored to investigate the interplay between robustness 

and efficiency. It is found that some of the estimators have strong robustness properties with 

little loss in asymptotic efficiency relative to maximum likelihood under model conditions. 

The rest of the paper is organised as follows. In §2 we develop the estimation proce­

dure considered in this paper, discuss some of its properties, and establish the asymptotic 

normality of the estimators. A robust model choice criterion is also suggested. In §3 we 

investigate the performance of the estimators in several common parametric families, study 

the breakdown of the methods in the normal model, and illustrate the performance of the 

method in some examples. In §4 we develop robust regression procedures utilising these 

ideas. Concluding remarks are presented in §5. Our work is related to, but different from, 

that of Windham (1995); see §2.2. 
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2. THE DENSITY POWER DIVERGENCE AND RELATED INFERENCE 

2·1. The minimum L 2 distance estimator 

Consider a parametric family of models { Ft}, indexed by the unknown parameter t E 

n c Rs, possessing densities {ft} with respect to Lebesgue measure, and let 9 be the class 

of all distributions having densities with respect to Lebesgue measure. Define the minimum 

L2 distance, or minimum mean squared error, functional T1 (·) by the requirement that for: 

every Gin 9, 

J{g(z)- fr1(G)(z)} 2 dz = minj{g(z)- ft(z)} 2 dz 
tEO 

(2.1) 

where g is the density of G. (For the sake of keeping a clear focus in our presentations we 

have defined the class of densities 9 as above, but the results hold for discrete models as 

well.) Normally T1 (G) would indeed exist and be unique, and we shall assume this to be 

the case. Suppose also that the parametric family is identifiable in the sense that t 1 =!= t 2 

implies that { z: ft 1 ( z) =!= ft 2 ( z)} is a set of positive Lebesgue measure. The minimum L2 

distance functional is then Fisher consistent in the sense that T1 ( F8 ) = e, uniquely. 

Note that the L2 distance J {g ( z) - ft ( z) P dz between g and ft can be represented as 

J fl(z) dz- 2 J ft(z) dG(z) + C; the quantity Cis independent of the parameter t, so does 

not affect the minimisation procedure. Given a random sample X 1 , ... , Xn from the true 

distribution with density g, one can actually minimise 

j ft2 (z) dz- 2 j ft(z) dGn(z) = j H(z) dz- 2n-1 t ft(Xi) 
t=l 

(2.2) 

with respect to t, where Gn is the empirical distribution function, to obtain the minimum 

L2 distance estimator of the best fitting parameter. Notice that this does not require a 

smooth nonparametric estimate of g, in contrast to the work of Cao et al. (1995). 

Under differentiability of the model and appropriate regularity conditions, the minimum 

L2 distance estimators can be obtained by solving the estimating equation 

n-1 t Ut(Xi)ft(Xi)- j Ut(z)ff(z) dz = 0, 
i=l 

(2.3) 

where Ut ( z) = a log !t ( z) I at is the maximum likelihood score function. Note that the above 

estimating equation is unbiased when g = ft. 

For the sake of illustration, let { Ft} be a location model, with location parameter t, in 

which case J fl(z) dz is independent oft, and the minimum L2 distance estimator is now 

the maximiser of 'L-i ft(Xi), with corresponding estimating equation 'L-i Ut(Xi)ft(Xi) = 0. 

This contrasts with the maximum likelihood estimator which maximises 'L-i log ft(Xi), with 
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the corresponding estimating equation being :Ei Ut(Xi) = 0. For a random variable X in 

the exponential family with t being the mean value parameter, Ut(z) equals (z- t)/CJ2 , 

where CJ2 is the variance of X; thus the sample mean is the maximum likelihood estimator 

for the mean parameter in these families, suggesting the robustness problems of maximum 

likelihood. On the other hand, for several parametric models such as the normal, Ut(z)ft(z) 

is a bounded function of z for fixed t, as is the influence function of the minimum L 2 

distance functional. This downweighting of the score function is probabilistic, rather than 

geometric, in the sense that greater downweighting is provided for observations that have 

lower probabilities of occurrence under the model, as opposed to for observations that are 

simply far from other observations. 

A few examples of the robustness of some variants of the minimum L2 distance estima­

tor in the normal model have been presented by Brown & Hwang (1993), while studying 

minimising the L 2 distance between a normal density and a histogram estimating g. Con­

sideration of the small contribution of outliers to L 2 distance based on histograms or kernel 

density estimates makes this robustness intuitively apparent. See also Terrell (1993), Hjort 

(1994) and Jones & Hjort (1994). 

Unfortunately, however, the robustness of the minimum L 2 distance estimator is achieved 

at a fairly stiff price in asymptotic efficiency, as we will see later. In order to generate robust 

estimates with better efficiencies we introduce a family of divergences, and the estimators 

obtained by minimising these divergences, bridging the gap between maximum likelihood 

and minimum L 2 . Many of these estimators combine strong robustness properties with 

high asymptotic efficiency. 

2· 2. The minimum density power divergence estimator 

Define the divergence da(g, f) between density functions g and f to be 

da(g, f) = j { fl+a(z) - ( 1 + ±) g(z)fa(z) + ~gl+a(z)} dz for a> 0. (2.4) 

When a= 0, the integrand in the expression (2.4) is undefined, and we define the divergence 

do(g, f) as 

do(g, f)= lim da(g, f)= jg(z) log(g(z)/ f(z)) dz. 
a-+0 

Notice that d0 (g, f) is a version of the Kullback-Leibler divergence. 

In the estimation procedure that we discuss in this paper, we are most interested in 

smaller values of a ~ 0, say between zero and one, although values greater than one can 

be considered too. The procedure typically becomes less and less efficient as a increases as 

we will see later. 
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THEOREM 2 ·1. The quantity da (g, f) is a divergence in that it is nonnegative for all 

g, f E Q and is equal to zero if and only if f g almost everywhere. 

Proof. Suppose a > 0. Consider the integrand at a fixed value y. Factor out the term 

gl+a(y)ja and define x = f(y)jg(y). To show that da(g, f) is nonnegative it is sufficient 

to show that the factored integrand, Ia(x) = axl+a- (1 + a)xa + 1, is nonnegative for all 

x ~ 0. Clearly Ia(1) = 0, and in fact this is the unique minimum for x ~ 0; the derivative 

of Ia is strictly negative for all x < 1, zero for x = 1 and strictly positive for all x > 1. 

Thus da(g, f) is nonnegative and is equal to zero if and only if g = f identically. 

When a = 0, it is well known that the above Kullback-Leibler divergence is nonnegative 

and is equal to zero if and only if g f. D 

The family of divergences da, as a function of a, will be called the class of density power 

divergences. Under the set-up of the previous section, the following is a simple consequence 

of Theorem 2.1: for any given a the minimum density power divergence functional at G, 

defined by the requirement da(g, fr(c)) = mintEn da(g, ft), is Fisher consistent; we will 

denote this functional by Ta (G). In addition, the minimum density power divergence 

estimator e, generated by minimising 

(2.5) 

with respect tot, is weakly consistent for()= Ta(G) as well (see Theorem 2.2). We assume 

here that Ta( G) exists and is unique, as will normally be the case. Verifying this is perhaps 

most easily done on a case by case basis, and would depend on the parameter space and 

the complexity of the {ft} family as well as on the true density g. 

Consider the functional T0 (·). Given the data, T0 (Gn) maximises flogft(z) dGn(z), and 

is therefore the maximum likelihood estimate of the parameter if it exists. On the other 

hand, the value a = 1 gives precisely the £ 2 distance between the densities discussed in 

§2.1. Thus, for 0 < a< 1, the class of density power divergences provides a smooth bridge 

between the £ 2 distance and the Kullback-Leibler divergence. 

Some motivation for the form of the divergence (2.4) can be obtained by again looking 

at the location model, where J Jl+a(z) dz is independent oft. In this case, the proposed 

estimators maximise I:i ft(Xi), with the corresponding estimating equations having the 

form 
n 

L Ut(Xi)fta(Xi) = 0. (2.6) 
i=l 

Equation (2.6) can be viewed as a weighted version of the efficient maximum likelihood score 

equation. When a > 0, (2.6) provides a relative-to-the-model downweighting for outlying 
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observations; observations that are are wildly discrepant with respect to the model will get 

nearly zero weights. In the fully efficient case a = 0, all observations, including very severe 

outliers, get weights equal to one. By choosing a value of a close to zero, one makes all 

the weights closer to 1 compared to the minimum L 2 method, improving the asymptotic 

efficiency of the procedure. The proposed estimators, therefore, represent compromises 

between efficiency and robustness, with the degree of compromise controlled by the tuning 

parameter a. 

For general families it can be checked easily that the estimating equations have the form 

Un(t) =I Ut(z)ftl+a(z) dz- n-1 t Ut(Xi)ft01 (Xi) = 0. 
i=l 

(2.7) 

Again this estimating equation is unbiased when g = ft· Notice that this has the appealing 

advantage that it does not require a smooth estimate of g which is necessary in other 

robust density-based minimum divergence approaches (e.g. Beran, 1977, Cao et al., 1995); 

thus the bandwidth selection problem and rate of convergence results for the kernel density 

estimator are no longer relevant. 

We now present the asymptotic distribution of the minimum density power divergence 

estimators, when the data are generated from the true distribution G not necessarily in the 

model. (In the following, e represents the best fitting value of the parameter, whereas t 

denotes a generic element of 0.) Let X 1 , ... , Xn be independent and identically distributed 

with distribution G with corresponding density g' Ta (G) = e = ( el' ... ' e s)' and let (j = Bn 
be the minimiser of (2.5). Let K = K(O) be the covariance matrix ofT = ff(X)ut(X) 

under G i.e. 

K =I uo(z)unz)fta(z)g(z) dz- ~o~f and ~o =I uo(z)f~(z) g(z)dz. (2.8) 

For any given a, make the following assumptions: 

Al: The distributions Ft and G have common support, so that the set A on which the 

densities are greater than zero is independent oft. 

A2: There is an open subset w of the parameter space n containing the best fitting 

parameter 0 such that for almost all z E A, and all t E w, the density ft(z) is three times 

differentiable with respect to t and the third partial derivatives are continuous with respect 

tot. 

A3: The integral J Jl+a(z) dz can be differentiated three times with respect to t, and 

the derivative can be taken under the integral sign. 

A4: The matrix J = J(t), defined by 

J(t) =I uo(z)unz)jJ+a(z) dz +I (io(z)- auo(z)uf(z))(g(z)- fo(z))f~(z) dz, (2.9) 

6 



where it(x) = -o{ut(x)}jot, the so called information function of the model, is positive 

definite for all t E w. 

AS: There exist functions Mjkl(x) such that I83Vn,t(x)j8tj8tk8tll :S Mjkl(x) for all 

t E w, where Ea[Mjkl(X)] < oo for all j, k and l, where Ea denotes expectation with 

respect to G. 

THEOREM 2·2. Under the above conditions, with probability tending to 1 as n ---+ oo, 

there exists en such that 

(i) en is consistent fore, and 

(ii) n 112 ((Jn - e) is asymptotically multivariate normal with (vector) mean zero and 

covariance matrix J-1 K J-1 . 

The proof of Theorem 2.2 follows closely the proof of Theorem 6.4.1 of Lehmann (1983) 

(which is for the maximum likelihood estimator) with appropriate modifications to cope 

with our density power divergence and the allowance of distributions outside the model. 

The proof is omitted to save space; full details may be obtained from the first author. 

For simplicity of notation, the subscript a has been dropped from the quantities e, Hn, 

Vn,t, Un, Mjkl, as well as the matrices J and K. In addition, en will revert to e in what 

follows. The simplified formulae occurring when G is in the model will be considered in §3. 

Note that the divergence given by (2.4) is close to a weighted L2 distance (Hjort, 1994) 

in the sense that, for fixed a, and f close to g, da(g, f) becomes close to 

(2.10) 

Observe how minimum L2 corresponds (exactly) to a unit weighting, maximum likelihood 

corresponds to a 1/ g weighting, and minimum density power divergence for 0 < a < 1 

corresponds to an intermediate 1/ g'Y for 0 < 1 < 1 weighting. Unlike (2.10), however, the 

beauty of (2.4) is that, ignoring the last term because it does not depend on f, g appears 

only as a multiplier of terms in f. Thus while f will be replaced by ft, g can appropriately 

be replaced by its empirical version, and there is no need to introduce any smoothing into 

the formulation. (The same holds, of course, for maximum likelihood estimation.) 

The idea of downweighting with respect to the model rather than the data is also the 

motivating principle of Windham (1995). Windham describes a fixed point algorithm that 

also uses density power weighting. Windham's procedure is equivalent to choosing t such 

that 
I:i Ut(Xi)ftOi.(Xi) 

l::i ft(Xi) 
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If ft is a location family then (2.11) reduces to (2.6), and thus for this special case Wind­

ham's procedure is identical to ours. In general (2.11) does not reduce to (2.7). Insights 

into the relationship between the two methods and practical comparisons between them 

are the subject of a further paper currently in preparation. 

2·3. Influence function and standard error 

Let G€(z) = (1 - E)G(z) + EXy(z), 0 < E < 1, where Xy(z) is the distribution function 

of the random variable which puts all its mass on y. By direct differentiation of equation 

(2. 7) (with G€ in place of the implicit Gn) with respect to E, one gets the influence function 

of the density power divergence functional to be 

and ~ 0 and J are as in (2.8) and (2.9). Assuming that J and ~ 0 are finite, this is a bounded 

function of y whenever u0(y)f0(y) is bounded. This is true, for example, for any a > 0 in the 

normal location-scale problem, unlike other density based minimum divergence procedures 

such as those based on the Hellinger distance. The influence functions for the estimation 

of the normal mean when a = 1 are plotted in Figure 1 for several values of a; note their 

redescending nature for all a > 0. 

* * * Figure 1 about here * * * 

The asymptotic variance of ( yri times) the minimum density power divergence estimator 

can be consistently estimated in a sandwich fashion by using the above influence function. 

Let Ki = u0 (Xi)f0(Xi)- ~ 0 , and~ be the corresponding quantity evaluated at 1f, with Gn 
- --T 

in place of G. Let K = (n- 1t1 I:i(KiKi ). Then the asymptotic variance of yri times 

the parameter estimates can be consistently estimated by J-1 K J-1 , where J is obtained 

from J by replacing() with 1f, with Gn in place of G. Consistent estimates of the asymptotic 

variance of the method can also be obtained by the jackknife and bootstrap techniques. 

2· 4. Equivariance 

The maximum likelihood method has two important equivariance properties; estimates 

are equivariant with respect to both reparametrisations and transformation of the data. 

Our minimum density power divergence method shares the first general property: if the 

model is reparametrised to 'ljJ = 'ljJ(()) with a one-one transformation, then the density power 

divergence estimate of 'ljJ is simply ,(jj = 'l/J(1f), in terms of the density power divergence 

estimate of(), using the same a. This follows from definition (2.5). 
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The second maximum likelihood property does not generally hold for the new estimation 

method, however. If data are transformed from Xi toY;= h(Xi), then the minimum density 

power divergence estimator, say B*, is defined as the minimiser of 

j {ft(~(y)) lf(y) I}Ha dy- n-1 (1 + a-1) t {ft(Xi) l~'(h(Xi)) IV, 
i=1 

where Xi = ~(Y;) is the inverse transformation. We see by comparison with (2.5) that B* is 

equal to 1J only if e(y) is a non-zero constant. Thus the estimation method is equivariant 

under a Y; = aXi + b type data transformation, but not under other transformations (unless 

a= 0). 

2· 5. Hypothesis testing 

As a consequence of Theorem 2.2, one can readily construct Wald and score type 

tests for the null hypothesis H0 : e = 00 . We work under model conditions although it 

is possible to test hypotheses about e outside the model too, where e = Ta(G). Un­

der the null, the asymptotic distribution of yln(1J- 00 ) is normal with mean zero and 

covariance matrix C(B) = J-1 (B0)K(B0)J-1 (B0 ). As a result the Wald type statistic 

n(e- B0fC- 1 (1J)(e- 00 ) has an asymptotic x2 (s) distribution. Similarly the score type 

statistic given by nU'!:(B0 )K-1(B0 )Un(B0 ) has, under the null, the same asymptotic x2 (s) 

distribution and is asymptotically equivalent to the Wald type statistic. 

For the composite null hypothesis, let e = ( Bf, Off where 01 lies in an s1-dimensional 

subspace of n. Consider the null hypothesis H0 : 01 = 00,1 where 02 is unspecified. Let 

{j = (Yf, B'ff and {jN = (err, g~Tf be the minimum density power divergence estimates 

of the parameter without any restriction and under the null hypothesis respectively. Let 

Cii1(B) and Kii1 (B) be the s1 X s1 blocks corresponding to e1 in c-1(0) and K-1(0). Also 

let U1 ,n be the component of the density power score function corresponding to 01 . Then 

the Wald type and the score type statistics, given by n(1J1 - B0,1fCii1 (1J)(1J1 - 00,1) and 
~ 1 ~ ~ 

nU1,n(BN )Kii (BN )U1,n(BN) are both asymptotically x2 (s1 ). 

2· 6. A robust model choice criterion 

Model choice criteria of the Akaike information variety penalise a model's achieved max­

imum log-likelihood with a term which depends suitably on the complexity of the candidate 

model. The arguments used to motivate and construct these criteria are typically asymp­

totic in nature, relying on the large-sample behaviour of maximum likelihood estimators. 

A similar route can be followed for the present type of robust estimators, working with da 

of (2.4) instead of d0 . We will in fact argue in favour of the following strategy. For each 
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candidate model M, compute the da divergence estimate eM, which by the theory above 

has an associated estimated variance matrix of the form n-1l;{RMJ-;,l. Then evaluate the 

robust information criterion 

(2.12) 

In the end choose the model with the smallest value of RIC. The limiting version of this 

as a tends to zero can be shown to be the same as maximising the achieved log-likelihood 

minus Tr(J-;}KM) (involving suitable a= 0 definitions of JM and KM, see §2.3). But this 

is quite close to the traditional Akaike method which takes the view that the models are 

(approximately) correct, in particular entailing JM = KM (with a= 0); that is, the trace 

above becomes the number of parameters in the model. 

To show how RIC evolves, agree first to put 

P = j Jf+a(y) dy- (1 + ;) E{f;(xn+l) I data}, 

which is a fixed constant away from being the distance da(g, Jo(-)) from truth to estimated 

model, and the conditional expectation operation is with respect to a new observation Xn+l, 

independent of previous data. We think of p as the predictive quality of the estimated 

model, and aim for models with as small p values as possible. Note, using (2.5), that 

Hn(e), being the minimum of an empirical process, will tend to undershoot the real p. A 

more balanced method is via cross validation, 

writing ~i) for the estimate obtained by leaving Xi out of the data set. The Px estimator 

is almost unbiased for p, and can indeed be used as a model selection criterion. 

It is fruitful to work out an approximation which is less intensive computationally. This 

can be done via influence functions. We find 

involving the leave-Xi-out version of the empirical distribution in addition to xxi as in §2.3. 

This leads to 

f~i) (Xi) · ft(1- n-1aufL), 

where h, fii and L = J-1(uJia- [),with [ = n- 1 2:::~ 1 uJ·t, are the natural empirical 

versions of fo(Xi), uo(Xi) and Ia(G, Xi)· But this yields 

n 

Px · Hn(e) + (1 +a) n-2 L ftuTL = Hn(e) + (1 +a) n-1Tr(J-1 K) 
i=l 
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after some calculations. 

There is an alternative route to establishing this RIC formula, more akin to deductions 

one may find in the literature for the AIC criterion. The derivation above, however, does not 

presume that the models worked with are actually correct, and exhibits the cross-validation 

formula as a selection criterion of separate interest. 

3. SPECIAL PARAMETRIC FAMILIES: EFFICIENCY, BREAKDOWN AND EXAMPLES 

Suppose that the true distribution g belongs to the parametric family {ft}, e being the 

true value of the parameter. Then the formulae for J, K and ~ 0 simplify to 

J =I uo(z)unz)fJ+a(z) dz, (3.1) 

K =I uo(z)unz)fJ+2a(z) dz- ~o~f and ~o =I uo(z)fJ+a(z) dz. (3.2) 

Note that in the limit a--+ 0, J and K both become equal to the classic Fisher information. 

These formulae can be used to investigate the asymptotic efficiency of the estimators, and 

in particular to judge how much is lost relative to the maximum likelihood estimator under 

model conditions. In the following subsection, some examples for particular parametric 

families are considered. We will define the asymptotic relative efficiency of an estimator to 

be the ratio of the asymptotic variance of the maximum likelihood estimator to that of the 

estimator in question. 

3·1. Efficiencies for particular families 

(a) Mean of univariate normal. For a location family ~ 0 = 0. Letting fo be the N(p,, a 2 ) 

density with known a2 and u0 the score function with respect to the mean parameter p,, 

elementary integration gives 

The asymptotic variance of n 112 times the estimator of p, is then given by 

(3.3) 

Since the asymptotic variance of n 112 times the maximum likelihood estimator is a2 , the 

asymptotic relative efficiency of the density power divergence estimator is easy to compute. 

For a= 0.25 it is 0.941, for example, already quite close to one. Results for different values 

of a are given in the first row of Table 1. 
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* * * Table 1 about here * * * 

(b) Standard deviation of univariate normal. Again, let fe be the N (J-L, a-2 ) density but 

treat both parameters as unknown. Calculations for the two 2 x 2 matrices J and K show 

that both have zeros off the diagonals, that is, the estimators fl and & are asymptotically 

independent. The limiting distribution for y'n([l- J-L) is therefore as found in case (a) even 

when a- is unknown. 

Here, we concentrate on estimation of a-. Lengthy calculations show that the asymptotic 

variance of n112 times the estimator is 

(1 + a)2 { 2Q(a) 2} 2 
...,.-----'-.:.._,:..-=-= - a a-

(2 + a 2)2 (1 + 2a)5/2 

where Q( a) = 1 + 3a + 5a2 + 7 a 3 + 6a4 + 2a5. Efficiency calculations (compare with a-2 /2) 

are presented in the second row of Table 1. Small a density power divergence estimation 

continues to retain high efficiency. The values in Table 1 clearly show that the minimum 

L2 distance estimators of J-L and a- are quite inefficient; see also Hjort (1994). 

(c) Exponential distribution. For the density fe(x) = e-l exp( -x/B), X> 0, the quanti­

ties K and J in the asymptotic variance of n112 times the minimum density power divergence 

estimator of () are given by 

K = { 1 + 4a2 - a2 } e-(2+2a) 
(1 + 2a)3 (1 + a)4 

and J = 1 + a2 e-(2+a) 
(1 + a) 3 · 

The asymptotic variance is then given by 

(1 + a) 2 P( a)B2 

(1 + a 2)2(1 + 2a)3 

where P(a) = 1+4a+9a2+14a3+13a4+8a5+4a6 . Again the asymptotic variance ofn112 

times the maximum likelihood estimator is ()2 , so the asymptotic relative efficiencies are 

easily obtained. They are given for certain a in the third row of Table 1. Again, efficiencies 

remain high for small a. 

(d) Mean of multivariate normal. The family is Np(/-L, I;). The limiting covariance 

matrix of n 112 times the minimum density power divergence estimator of J-L (whether or not 

I; is known) can be shown to be 

( 
a2 )P/2+1 

1 + 1 I;. 
+2a 

Thus one loses efficiency for increasing p if a is kept fixed. 

12 



(e) Poisson distribution. Calculation of the asymptotic variance of the estimator can 

be carried out numerically, although not via a closed-form formula. It involves an infinite 

but rapidly convergent sum. In Table 1 we also provide the asymptotic relative efficiencies 

of the estimators for two different values of the mean parameter A and several choices of 

a. Note that the Poisson results are very similar to those for normal f-t for A 2: 10. 

3· 2. Breakdown in the normal distribution 

The breakdown point of an estimator, crudely described as the proportion of bad ob­

servations that an estimator can tolerate before it becomes completely uninformative, is 

one of the descriptors of the robustness of the method. Here we determine the gross-error 

breakdown point (Hampel, Ronchetti, Rousseuw & Stahel, 1996, p.97) of the minimum 

density power divergence estimator of the parameters of the normal distribution under a 

particular contamination. 

Let a> 0 and let g be the N(~-t, a 2) density, written c/Jp,, 17 (·) = a-1¢(a-1(·- ~-t)), ft the 

N(m, s2) density and q(z) = (1 - c)g(z) + cb'x(z), where 6 is the Dirac delta function and 

x --+ oo. The data are a random sample from q and the target parameters are () = (~-t, a). 

Consider the maximiser of 

1/J(m,s) (1 +a) I q(z)fta(z) dz- a I fta+l(z) dz 

(1 + a){(1- c) I cPp,,C7(z)¢~,s(z) dz + c I 6x(z)¢~, 8 (z) dz}- a I ¢~~~(z) dz 

with respect to m and s. If location breakdown occurs, the value of m which maximises 

the above goes to oo, if scale breakdown occurs, the maximising value of s goes to 0 or oo 

(Hampel et al., 1986, p.98). 

To evaluate 1/J( m, s), the following result, provable by elementary calculations, is useful: 

l A. ( )A-.a ( )d = exp[-a(c-m)2/{2(s2+ad2)}] 
'f'c d Z 'f'm s Z Z 1/2 · 

' ' (211')a/2 8 a(1+~~ 2 ) 

Write A= ajs. It follows that 1/J1(m,A) (211')a12aa'ljJ(m,s) is given by 

1/JI(m, A) = Aa ((1 + a)(1- c) exp[-a(~-t- m)2 /{2(s2 + aa2)}] 
(1 + aA2)1/2 

+ c(1 +a) exp{ -aA2(x- m) 2 /(2a2)}- (1 + aa)l/2) . 

We now wish to maximise this quantity over A (rather than s) and m. First, 1jJ1(m, 0) = 

0. For A> 0, 1/J1(m, A) consists essentially of two ridges which have heights 

Aa{(1+a)(1-c) a } 
(1 + aA2)1/2 - (1 + a)l/2 at m = 1-t 
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and 

Aa { c(1 +a) - (1 + aa)l/2} at m = x. 

If them= x ridge height is negative, i.e. E < K a/(1 + a) 312 , A= 0 would be optimal 

if the m = p ridge height is negative for all A > 0 too. The latter happens if E > 1 - K. 

However, 1- K < E < K is impossible because K < 1/2. So, A = 0 cannot maximise 

7);1(m,A). 

However, if the m = x ridge height is positive, the value along this ridge tends to oo as 

A --+ oo. The values along the m = p ridge, however, stay finite: even if they are positive 

somewhere, they will have a finite maximum at a finite A and tend to a negative quantity 

as A --+ oo. That is, the maximum, if the m = x ridge is positive, is at m = x and s = 0. 

This makes sense because for enough bad points, the normal fit tends to match 6x with 

mean x --+ oo and variance zero. This is simultaneous location and scale breakdown in the 

sense that location "explodes" and scale "implodes" (Hampel et al., 1986, p.98). 

Breakdown therefore occurs if 

The breakdown point increases monotonically from zero when a ~ 0 (in line with the zero 

breakdown of the maximum likelihood estimator which can easily be shown separately) 

to 1/(2J2) = 0.354 when a = 1. (In fact, the breakdown continues to increase until its 

maximal value of 2/(3J3) = 0.385 at a= 2, but by then the efficiency of the estimator is 

unacceptably low.) 

3· 3. Examples 

In our first example we consider Newcomb's light speed data (Stigler, 1977). The data 

set can be found in many elementary texts, including Moore & McCabe (1993). The 

data were also analysed by Brown & Hwang (1993), who were trying to fit the "best 

approximating normal distribution" to the corresponding histogram. The limiting case of 

their approach generates the normal distribution whose mean and standard deviation are 

the minimum L 2 distance estimates of p and CJ under a normal model. This estimator, it 

was observed, quite successfully downweighted the extreme outliers in the Newcomb data. 

* * * Table 2 and Figure 2 about here * * * 

For this dataset, Table 2 gives the values of the minimum density power divergence 

estimates of p and CJ for various values of a under the normal model. These estimators 
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exhibit strong outlier resistance properties even for quite small values of a. When a is 

as small as 0.1 (for which the minimum density power divergence estimator of u has an 

efficiency loss of only 2.4% under the model) the estimate of a is 5.39, fairly close to 

the estimate obtained for a = 1. A visual representation of this is provided in Figure 2, 

where the normal densities N(P,, &2), for a= 1, 0.5, 0.25, 0.1 and 0 are superimposed on a 

histogram of the Newcomb data. Except when the maximum likelihood estimator is used, 

all the normal densities fit the main body of the histogram quite well, even the one with 

a= 0.1. 

In the second example our estimation method is applied to chemical mutagenicity data 

previously analysed by Simpson (1987) in the context of minimum Hellinger distance es­

timation. In the sex linked recessive lethal test in drosophila (fruit flies), male flies are 

exposed to different doses of a chemical to be screened. They are then mated with unex­

posed females and for each male the number of daughter flies carrying a recessive lethal 

mutation on the X chromosome is noted. One such experiment with 34 males resulted in 

23, 7, 3 and 1 males having 0, 1, 2 and 91 such daughters respectively. Note that the last 

value of 91 is a very large outlier. Simpson considered a Poisson fit for these data, and 

found that the minimum Hellinger distance estimate of the mean parameter A successfully 

downweights the large outlier, unlike the maximum likelihood method. 

* * * Table 3 about here * * * 

Here we compute the minimum density power divergence estimates for these data under 

the Poisson(.\) model. The results are presented in Table 3. As expected the more robust 

members of the family downweight the large outlier successfully. However, what is more 

interesting is that this downweighting can be observed even for very small values of a. The 

procedure apparently loses robustness for some a between 0.01 and 0.001. For comparison, 

the maximum likelihood estimate of A after deleting this outlier is 0.394, and the minimum 

Hellinger distance estimate of A for these data (with and without the outlier) is 0.364. 

The last example involves hypothesis testing in the normal model on a set of telephone 

line fault data presented in Welch (1987), which was also previously analysed by Simpson 

(1989). The data in Table 4 represent the difference of the inverse fault rates between the 

test and the control in 14 matched pairs. Here we do a parametric test under the N(p,, u2 ) 

model of the hypothesis H0 : p, = 0 versus H 1: p, > 0, where u is unspecified, using the above 

data. We perform one-sided Wald type and score type tests of the null hypothesis. 

* * * Tables 4 and 5 about here * * * 
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For a random sample X 1 , X2 , ... , Xn from the N(fJ, CJ2) distribution, letting B = (Jla, &a) 

and eN = (0, fa) be the unrestricted and the null estimates of() = ·(f-1,, 0"), the Wald and 

score type statistics Wa and Ra have the form 

n1/2n w - t-"a 

a- (1 + ~)3/4& 
1+2a a 

(1 + 2a)3/4 [ n aXl l 
and Ra = 1/2~ L xi exp( -~) . 

n Ta i=1 2Ta 

Under the null hypothesis these statistics have asymptotic N(O, 1) distributions. 

The results of our analysis of the telephone fault data using the Wald type test are 

presented in Table 5, where the statistics and their one-sided p-values are presented for 

several values of a, the p-values being calculated under a normal distribution. Because of 

the presence of the large outlier the likelihood based methods fail to detect the improvement 

of the test method over the control; the more robust methods provide a better picture of 

the comparison of the two sets of data. Similar results (not shown) arose when using the 

score type test. 

In the above examples, we successfully used a simple bisection method for the one 

parameter case and Newton-Raphson in the two parameter cases, with fast results. Com­

putational questions for larger and more difficult problems are left for future research. 

4. DENSITY POWER DIVERGENCE ESTIMATION IN REGRESSION MODELS 

It is important to extend the estimation methods to regression type situations, where 

response data y are to be explained through covariate information x. Here we propose such 

an extension. We also indicate briefly how statistical inference using the resulting robust 

regression estimators can be carried out. 

4 ·1. Estimation method 

Assume that a parametric regression model f 13 (y I x) is proposed for data ( x1 , y1 ), 

... , (xn, Yn), where the model family is smooth in its, say, p-dimensional parameter (3. 

The standard assumption in such situations is that the Y;s are conditionally independent 

given x1 , ... , Xn- The estimation methods we propose below are intended to work in all 

such cases, and inference can be carried out conditionally on the observed covariate values. 

We think of the xis as coming from a suitable covariate distribution Q in the covariate mea­

surement space X. Thus averages n-1 'Ef=1 h(xi) will under very mild ergodic conditions 

tend in probability to limits J h(x) dQ(x) = EQh(x), provided these are finite. 
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Let there be a true density g(y I x) for Y given X = x. Consider the x-conditional 

version of the divergence (2.4), 

da(g(·l x), f~(·l x)) = J {JJ+a(y I x)- ( 1 + ±) g(y I x)f$(Y I x) + ±gl+a(y I x)} dy, 

( 4.1) 

from true density g(·l x) to parametrically modelled f~(·l x). Our proposal is to use 13, the 

parameter value that minimises 

n ( 1) n 
Hn(f3) = n-1 ~ J JJ+a(y I Xi) dy- 1 +a n-1 ~ f$(li I Xi)· (4.2) 

Observe that this tends almost surely to EQJ{JJ+a(ylx)- (1 + a-1)f$(Yix)g(ylx)} 

dy. But this means that Hn(f3) plus the term a-1EQ J gl+a(y I x) dy, which is parameter-

independent, tends to the natural overall divergence measure 

Da[truth, model]= J da[g(·l x), f~(·l x)] Q(dx). ( 4.3) 

4 · 2. Large-sample behaviour 

Results from §2 can be generalised to the present setting, under mild regularity condi­

tions. The first result is that 13 tends in probability to the least false parameter j30 that 

minimises (4.3). Note that what is the 'best parametric approximation' j~ 0 (y I x) actually 

depends not only on the real g(y I x) but also on the distribution of covariates. The Q 

distribution is irrelevant only if the model is correct. 

Next consider the limit distribution of j3. This involves the model score function 

u~(y I x) which is now 8log f~(y I x)/8!3 and the model information function i~(y I x) = 

-82 log f~(y I x)/8f38j3r. The vector of first derivatives of Hn(f3), modulo a multiplicative 

constant that we remove, is 

Un(f3) = n-1 :t u~(Yi I Xi)f$(Yi I xi) - n-1 :t J u~(y I Xi)JJ+a(y I Xi) dy. 
i=1 i=1 

And the second order derivatives are 

n 

In(f3) = n-1 L { au~(Yi I xi)u~(Yi I xif- i~(Yi I Xi)} f$(Yi I xi) 
i=1 

- n-1 :t J { (1 + a)u~(y I xi)u~(y I xif- i~(y I xi)} JJ+a(y I xi) dy. 
i=1 

Of course, Un(13) = 0. Also, note that Un(f3n) has mean zero, where f3n minimises (4.3) 

when Q is the empirical distribution of the covariates. Consider the variance matrix of 

17 



yn Un(f3n), conditionally on the x/s. This is Kn(f3n), where 

Kn(f3) = n-1 :f: I u13(y I xi)uf3(Y I xi)T g(y I xi)f$a(y I xi) dy- n-1 :f: ~i~T 
~1 ~1 

and ~i = I u13(y I xi)g(y I xi)f';J(Y I xi) dy. To save space, we shall not be explicit about 

regularity conditions in this section, but we shall assume sufficient conditions to be in force 

to ensure (i) that -In(iJn) tends in probability to a positive definite J, for each sequence iJn 

such that iJn- f3n goes to zero in probability; (ii) that the matrix Kn(f3n) tends in probability 

to a positive definite K; and (iii) that yn Un(f3n) tends in distribution to N(O, K). It then 

follows that 

( 4.4) 

These regularity requirements are not strict. The first and second essentially involve the 

law of large numbers, with some extra continuity and/ or uniformity required for the first, 

while the third holds under Lindeberg type circumstances. 

The matrices in ( 4.4) can be expressed in terms of expectations with respect to the 

covariate. In fact 

and 

J = EQ I Uf3o(Y I x)uf3o(Y I xf JJ:a(y I x) dy 

+a EQ I Uf3o(Y I x)uf3o(Y I xf {JJ:a(y I x) - g(y I x)f$0 (y I x)} dy 

- EQ I if30 (Y I x){JJ:a(y I x)- g(y I x)f$0 (Y I x)} dy 

K = EQ I Uf3o(Y I x)uf30 (Y I x)T g(y I x)f$~(y I x) dy- EQ~~T. 

where~= I Uf30 (y I x)g(y I x)f';J0 (Y I x) dy. 

For small a the ( 4.3) divergence is close to a Q-weighted version of x-conditional 

Kullback-Leibler divergence, which corresponds to ordinary maximum likelihood analy­

sis. With a = 1 the method would correspond to a form of L2 regression analysis. Also 

note that when all covariates are equal the estimation methods and performance results of 

Section 2 are essentially retrieved. 

Estimators are necessary for J and K in order to carry out inference, and such are 

readily constructed. Considering K first, estimate integrals with respect to g(y I x) using 

averaging over Yj 's. For example, 
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where~= n-1 'Lj=1 ufj(Yj I xi)f;(Yj I Xi)· For J there are a couple of natural possibilities. 

One proposal stems from looking at J as the limit in probability of -Eln(80 ). Note that 

these estimators are nonparametric and model-robust; their construction does not require 

the parametric model to hold. The important point is that J-1 K J-1 will converge in 

probability to the real limiting variance matrix for yfii{J, even outside parametric model 

conditions. Again, there are also other ways of estimating the variance via jackknifing and 

bootstrapping. 

The simplifications under model conditions are that 

while 

K = EQ I u~o(Y I x)u~ 0 (Y I xf JJ: 2a(y I x) dy- EQ~~T, 

where~= J U~ 0 (y I x)JJ:a(y I x) dy. 

4·3. Example: robust linear regression 

Take the standard linear regression model Yi = xf f3 + aei, where f3 and the xi's are 

p-dimensional and the e/s are independent standard normals. The minimum da method is 

to solve the p + 1 equations 

n 

n-1 L q/}!(ei)eiXi = 0, 

i=1 

n-1 t ¢;a(ei)(e~- 1) =I (v2 - 1)¢1+a(v) dv 
i=1 

where ei = (yi-x!fJ)/& and¢;= ¢0,1 . A suitably engineered iterative computational scheme 

will find the solutions ({J, &). 

Using the large-sample results above we may derive the approximate distribution of 

the estimators. For illustrational purposes we are content here to give the results under 

the model conditions of linearity and normality. Calculations, not given, show that the 

variance matrix in the approximating normal distribution for 7J is 

This is the natural analogue of the result for the normal location parameter in (3.3). The 

efficiency relative to the maximum likelihood estimator is the same as discussed there (see, 

in particular, Table 1). Likewise, for a, we find the same efficiency figures as in the normal 

scale model as in (c) of §3.1; again, see Table 1. 
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The density power divergence methodology also extends directly to, for example, robust 

Poisson regression. The model choice methodology of §2.6 can also with some effort be 

generalised to the present framework with covariates, resulting in a version of (2.12). 

5. CONCLUDING REMARKS 

This paper has introduced a general family of divergences, indexed by a parameter 

a, which generates a corresponding family of estimators. This family includes maximum 

likelihood estimation as the limiting case of a = 0. It is shown that increasing a leads to 

estimators which are far more robust than the maximum likelihood estimators, and have 

little loss in efficiency. Several examples suggest that an a of between 0.1 and 0.25 will 

work well. The method can be applied to any parametric family, and also to models with 

covariates, as the extension to regression situations shows. One of the main advantages 

of this family of divergences over other proposed families such as the Hellinger distance 

is that no smoothing of the empirical density function is needed in the case of continuous 

densities. 

There can be no universal way of selecting an appropriate a parameter when applying 

our estimation methods. It specifies the underlying distance measure and typically dictates 

to what extent the resulting methods become more statistically robust than the maximum 

likelihood methods, and should be thought of as an algorithmic parameter. One way of 

selecting it is to fix the efficiency loss, at the ideal parametric model employed, at some low 

level, like five or ten percent. A related idea is to fix the maximum level of the influence 

curve at some acceptable level. Other ways could in some practical applications involve 

prior notions of the extent of contamination of the model. 
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FIGURE LEGENDS 

Fig. 1. Influence functions for estimation of a normal mean (known variance) for various 

choices of a. 

Fig. 2. A histogram of the Newcomb data with superimposed normal densities fitted 

using density power divergence parameter estimation with various values of a. 

Table 1: Asymptotic relative efficiencies of the density power divergence estimators. 

Model a: 0.00 0.02 0.05 0.10 0.25 0.50 1.00 

Normal f.L 1.000 0.999 0.997 0.988 0.941 0.838 0.650 

Normal a 1.000 0.999 0.993 0.976 0.888 0.731 0.541 

Exponential (B) 1.000 0.998 0.991 0.968 0.858 0.684 0.509 

Poisson(.\= 3) 1.000 0.999 0.997 0.988 0.944 0.850 0.679 

Poisson(.\ = 10) 1.000 0.999 0.997 0.988 0.941 0.840 0.656 

Table 2: Estimated parameters for the Newcomb data under the normal model. 

a 0.00 0.02 0.05 0.10 0.25 0.50 1.00 

/1 26.21 26.74 27.44 27.60 27.64 27.52 27.29 

(j 10.66 8.92 5.99 5.39 5.04 4.90 4.67 
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Table 3: Estimated parameters for the drosophila data under the Poisson model. 

0.00 0.001 0.01 0.02 0.05 0.10 0.25 0.50 1.00 

~ (all observations) 3.059 2.056 0.447 0.394 0.393 0.392 0.386 0.374 0.365 

~ (outlier deleted) 0.394 0.394 0.394 0.393 0.392 0.390 0.382 0.366 0.349 

Table 4: The telephone line fault data. The observations represent the inverse fault rate 

differences in 14 pairs of areas ( (test - control) x 105 ). 

-988 -135 -78 3 59 83 93 110 189 197 204 229 269 310 

Table 5: Test statistics and p-values for the Wald type test for the telephone fault data. 

0.01 0.10 0.25 0.50 1.00 

p 42.8 96.0 124.7 131.1 142.2 

a 305.6 209.2 133.4 136.9 139.5 

statistic 0.52 1.65 3.24 3.20 3.30 

p-value(normal) x 105 30085 4960 60 68 48 
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