
2936 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006

Robust and Efficient Image Alignment
Based on Relative Gradient Matching
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Abstract—In this paper, we present a robust image alignment

algorithm based on matching of relative gradient maps. This algo-

rithm consists of two stages; namely, a learning-based approximate

pattern search and an iterative energy-minimization procedure for

matching relative image gradient. The first stage finds some can-

didate poses of the pattern from the image through a fast nearest-

neighbor search of the best match of the relative gradient features

computed from training database of feature vectors, which are ob-

tained from the synthesis of the geometrically transformed template

image with the transformation parameters uniformly sampled from

a given transformation parameter space. Subsequently, the candi-

date poses are further verified and refined by matching the relative

gradient images through an iterative energy- minimization proce-

dure. This approach based on the matching of relative gradients is

robust against nonuniform illumination variations. Experimental

results on both simulated and real images are shown to demonstrate

superior efficiency and robustness of the proposed algorithm over

the conventional normalized correlation method.

Index Terms—Energy minimization, illumination variations,
image alignment, image matching, industrial inspection, nearest-
neighbor search, robust image matching.

I. INTRODUCTION

I
MAGE alignment is a fundamental problem to a number

of computer vision and image processing applications, in-

cluding object recognition, image search, pose estimation, in-

dustrial inspection, target tracking, image motion estimation,

medical image registration, etc. The requirements for image

alignment vary from applications to applications. For example,

image alignment with a two-dimensional (2-D) rigid transfor-

mation is usually sufficient for many applications in industrial

inspection under controlled environment. The main concerns for

these applications are high accuracy, fast speed, and robustness

against different lighting conditions [1], [2]. For example, fast

image alignment with subpixel accuracy is normally required in

the first step of many industrial inspection tasks. In addition, the

inspection system needs to be robust enough to work under var-

ious environments, so the image alignment algorithm should be

able to accommodate variations in illumination conditions.

There are two main approaches for image matching; namely,

the intensity-based matching [2], [3] and the feature-based (or

Manuscript received April 4, 2005; revised December 23, 2005. This work
was supported in part by the MOEA and in part by the National Science Council
of Taiwan, R.O.C. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Thierry Blu.

The authors are with Department of Computer Science, National Tsing-Hua
University, Hsinchu 300, Taiwan (e-mail: dr918308@cs.nthu.edu.tw; lai@cs.
nthu.edu.tw).

Color versions of Figs. 5, 6, and 8 are available online at http://ieeexplore.
ieee.org.

Digital Object Identifier 10.1109/TIP.2006.877500

geometry-based) matching approach [4], [5]. The intensity-

based matching has been very popular in the past due to its

ease of implementation. Among the intensity-based matching

methods, the normalized cross-correlation technique [2], [3] has

been used intensively in industrial inspection since it is robust

against uniform illumination changes. Considerable efforts have

been made to reduce the high computational cost involved in the

cross-correlation method when rotation or scaling is required

in the search. The coarse-to-fine strategy has been widely em-

ployed to improve the search speed of image alignment. In [11],

a coarse-to-fine pruning algorithm is presented with the pruning

threshold determined from the lower-resolution search space.

This search algorithm can be proved to provide the globally

optimal image registration. To achieve robustness of image

registration under different illumination conditions or partial oc-

clusion, Kaneko et al. [12] proposed a selective cross-correlation

method that used a mask to exclude the pixels in occlusion and

saturation regions from the computation of cross-correlation.

Note that this selection mask is determined from the consistency

of intensity increase signs at the corresponding locations in

the template and search images [12]. Recently, the rotationally

invariant moment features have been employed for aligning

images with rotation [13]. For example, Choi and Kim proposed

a two-stage image matching method that first finds candidates

by comparing the vector sums of circular projections, and then

these candidates are further matched based on the rotationally

invariant Zernike moments. In addition, Wolberg and Zokai

[14] presented a hierarchical image registration method. In this

method, a log-polar registration module was developed to re-

cover large scale changes and arbitrary rotation angles, followed

by a Levenberg-Marquadt nonlinear least squares optimization

procedure to achieve subpixel registration accuracy. The mutual

information approach [16] is a popular method for multimodal

image registration, but the mutual information approach requires

to solve a nonconvex minimization problem which normally

contains many local minima. To relieve this problem, Haber and

Modersitzki [17] proposed to use the normalized gradient in

the distance measure between images of different modalities,

thus leading to a simpler optimization problem.

In the feature-based approach [4], [5], a geometric feature

extraction process is required at the first step to extract some

types of geometric features, such as corners or line segments.

The performance of the feature-based matching process heavily

depends on the consistency of the feature extraction process for

the images of the same object acquired under different condi-

tions [4]. Fortunately, a robust feature-matching procedure [5]

can relieve this feature extraction inconsistency problem to a

certain degree.
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Fig. 1. Flow diagram of the proposed image alignment algorithm.

In this paper, we propose a new and reliable image-matching

algorithm under nonuniform illumination variations based on

the relative image gradient matching. The proposed algorithm

belongs to the intensity-based matching approach. The main

contribution of this paper is the improvement of the robustness

of the intensity-based matching approach by matching the corre-

sponding relative gradient maps. In addition, we also proposed a

fast two-stage algorithm for accomplishing this image-matching

problem. Our image-matching algorithm consists of two stages.

Both stages perform image matching based on relative gradi-

ents. In the first stage, a fast nearest-neighbor pattern search

technique is applied to find a small number of the best candi-

date poses of the pattern in the image. In the second stage, an

iterative energy-minimization procedure is used to refine the

candidate poses obtained from the first stage by optimizing the

matching between the corresponding relative gradient maps.

Experimental results show the robustness of the proposed

algorithm under a wide range of illumination variations.

The rest of this paper is organized as follows. We present an

overview of the proposed robust image alignment algorithm in

Section II. Then, the fast nearest-neighbor pattern search tech-

nique is described in Section III. Next, the iterative energy-

minimization process for pose refinement is given in Section IV.

In Section V, we show some experimental results obtained by

applying the proposed new alignment algorithm. Finally, we

conclude this paper in Section VI.

II. PROPOSED IMAGE-MATCHING ALGORITHM

The proposed robust image alignment algorithm consists of

a fast nearest-neighbor pattern search procedure and an itera-

tive energy-minimization process. The nearest-neighbor pattern

search procedure finds a small number of candidate poses in the

image by searching the most similar relative gradient features

from a database of such feature vectors corresponding to dif-

ferent sampling in the transformation parameter space. Then,

these approximate candidate poses are verified and refined by

using an iterative optimization process that minimizes the sum

of squared differences between the relative gradient maps.

The flow diagram of the proposed image alignment algorithm

is shown in Fig. 1. Note that the solid part is the flow of the

execution phase of the proposed image alignment algorithm.

The dashed lines in the figure denote the training part of the

algorithm.

The novelty of the proposed image alignment is the use of rel-

ative image gradient in the matching. This new matching con-

Fig. 2. Images of a remote control acquired under two different lighting con-
ditions are shown in (a) and (b). The corresponding relative gradient images are
shown in (c) and (d) with c = 100 and (e) and (f) with c = 1000, respectively.

cept is used in both stages of this algorithm. Now, we define the

relative image gradient as follows:

(1)

where is the image intensity function, the notation de-

notes the gradient operator that takes the partial differentiation

along and directions, is a local window centered

at the location , and is a positive constant used not only

to avoid dividing by zero but also to suppress noise effect. To

compensate for the effect of lighting variation, we divide the

gradient magnitude by its local maximum.

To illustrate the concept of matching the relative gradient

function instead of the image brightness function, we show two

images of an object acquired under different lighting conditions

and the corresponding relative gradient images with different

value for the constant in Fig. 2. From the images, we can see

the relative gradient images are very similar for the two differ-

ently illuminated images. An appropriate choice for the constant

can suppress noise effect in flat areas and nicely preserve the

relative gradient. value under different lighting conditions.

III. EFFICIENT NEAREST-NEIGHBOR PATTERN SEARCH

An efficient nearest-neighbor pattern search procedure is

used at the first stage of our image alignment algorithm for ap-
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proximate pattern pose estimation. The results of this procedure

provide rough initial guesses for the iterative energy-mini-

mization pose refinement process. This method is based on

the learning-from-examples principle [6]. A training database

is constructed from synthesizing geometrically transformed

images from the reference image with the transformation pa-

rameters uniformly sampled from the parameter search space.

During the pattern search, the transformation parameter vector

of the nearest-neighbor samples searched from the database

provides the approximate pose estimates. To improve the effi-

ciency of the search algorithm, we find the best match based

on the comparisons between feature vectors computed from the

images, instead of comparing directly between images.

There are two phases in this nearest-neighbor pattern search

algorithm, i.e., the training phase and execution phase. The

training phase involves the generation of image templates from

the reference image under different transformation parameter

vectors, computation of feature vectors for all the transformed

reference images, and training of a fast nearest-neighbor search

method. The execution phase consists of the feature generation

from the input image and a fast nearest-neighbor search of this

feature vector among the training database.

The feature vector used in this procedure is a collection

of down-sampled relative gradient maps computed from the

image inside a fixed template window. Due to the use of relative

gradient feature, this pattern search procedure is insensitive to

lighting changes. The feature generation involves the following

steps. At first, the relative gradient map is computed from the

image inside the template window. Then the relative gradient

map within the template window is down-sampled to be the

feature vector in the pattern search. The down-sampling of the

template window to an appropriate size can significantly reduce

the computational cost in feature comparisons.

To further reduce the computational complexity in the

nearest-neighbor pattern search procedure, we apply a fast

nearest-neighbor search algorithm [6]–[8]. This is very useful

when the size of the training database is very large. The size

of training database depends on the range of search parameter

space and the sampling frequency in the parameter space for

generating the training samples.

Our fast nearest-neighbor pattern search is a modification of

Nene and Nayar’s method [8]. Here, we briefly describe their

approximate nearest-neighbor search method in the following.

They formulate the problem to find the points in the dataset that

are within a distance of a query point in each dimension.

They first find the points that are sandwiched between a pair of

parallel planes and , where and

is the unit vector along dimension , and put them into a can-

didate list. Then, they recursively trim the candidate list by dis-

carding points that are not located between the other pairs of par-

allel planes along other dimensions. After the trimming for all

dimensions, the remaining points are bounded by a small hyper-

cube. Then, an approximate nearest neighbor to the query can be

determined by exhaustive search in the final set of candidates.

Note that this is an approximate nearest-neighbor search method

because it cannot guarantee the true nearest neighbor can al-

ways stay in the candidate list during the trimming process.

This problem is more pronounced when the dimension of the

feature vector is large. Therefore, this algorithm is suitable for

nearest-neighbor search in a lower dimensional space.

Although Nene and Nayar’s approximate nearest neighbor

search algorithm [8] is conceptually very simple, there are two

critical issues related to this method. One is the order of the trim-

ming sequence and the other is the determination of the trim-

ming boundary parameter . For the first problem, the authors

argued that the optimal trimming sequence is dependent on the

number within the range of the query point in each dimen-

sion. Therefore, the trimming sequence is determined when the

query point is given. Our modified nearest-neighbor search al-

gorithm provides a way to determine the trimming sequence in

the training stage and resolve the aforementioned problem of the

nearest-neighbor search in a high-dimensional space. To resolve

these two problems, we apply the principal component analysis

(PCA) on the feature vectors of the search database to reduce

the dimension of feature vector, and then the trimming can be

done in the PCA space with the trimming sequence directly de-

termined by the order of the associated eigenvalues. This is be-

cause the eigenvalue is directly related to the variance of the

projections of all the feature vectors in the database on the as-

sociated principle component. Thus, by using PCA, we reduce

the dimension of the trimming space and determine the order of

trimming in the training stage.

The other issue with Nene and Nayar’s nearest-neighbor

search approach [8] is how to determine an appropriate trimming

parameter . This parameter is very critical to the efficiency of the

search algorithm. Setting too large may result in a large set of

final remaining vectors, while setting too small may result in an

empty set of remaining vectors after trimming. Nene and Nayar

showed that if the distribution of the point set of the search data-

base around the query point is given, then the best value for

can be determined. They justify it through experiments on search

databases with uniform and normal distributions. However, it

may not be feasible to approximate the distribution of the search

database by some simple parametric distribution functions in

many applications. In this work, we assume that the query point

is close to its nearest neighbor in the search database and the

samples in the database are well representative such that the dis-

tance of the query vector to the nearest neighbor along a principal

component direction is less than the maximum of those of all the

samples in the database to their nearest-neighbor samples. Thus,

we can compute a suitable value for the trimming parameter in

each principal component direction during the training phase.

To be more specific, we determine the parameter for each

trimming principal component direction during the training

stage with the following procedure. First, we find the nearest

neighbor sample of each sample in the database to obtain

the pairs , where all the s, for

, form the database and is the nearest

neighbor of , i.e.,

(2)

The difference vector for each nearest-neighbor pair

is computed as follows:

(3)
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Then, we compute the maximum value of all the displacement

vectors projected onto the most dominant principal component

direction to be the trimming parameter for this direction,

i.e.,

(4)

The proposed nearest-neighbor search algorithm via im-

proved PCA-based trimming is given as follows.

Algorithm 1: The fast nearest-neighbor search algorithm via

improved PCA-based trimming

• is the search dataset.

• is a query vector.

• The goal is to find the nearest vector of in

Training Stage:

1) Apply PCA on all the vectors in to find the most dominant

PC vectors . Note that the PC vectors

are ordered such that the corresponding eigenvalues are in

a nonincreasing order.

2) Find the nearest neighbor sample for each sample

and compute their difference vector , for .

3) Determine the trimming parameter for the PC direction

to be the maximal absolute projection of all the difference

vectors onto this PC vector.

4. Build the necessary data structure of the PCA subspace

projected search database for the trimming-based

nearest-neighbor search, i.e., the order lists for all the PC

directions.

Execute Stage:

1) Set and candidate list to be the set of all search

samples.

2) Project the query vector onto the PC direction, i.e.,

.

3) Perform a binary search on the order list associated with the

PC such that the corresponding PC projection values inside

the interval remain in the candidate list.

4) Set . If not converged, return to step 2).

5) Perform exhaustive search of the nearest neighbor of from

the final candidate list.

Note that the convergence criterion of the proposed algorithm

is chosen such that the iteration number is greater than a fixed

number, which can be determined from the eigenvalue distri-

bution in the PCA computation, or the cardinal number in the

candidate list is less than a threshold.

IV. ENERGY-MINIMIZATION-BASED MATCHING

After the proposed nearest-neighbor search algorithm pro-

vides an approximate image alignment result, we refine the

image alignment by using an iterative energy-minimization

procedure. Without loss of generality, we consider 2-D rigid

transformation with size changes in the following derivation of

this energy minimization algorithm. The scaled rigid transfor-

mation transforms the location to the new

location as follows:

(5)

where is the translation vector, is the rotation angle,

is the size scaling factor, and is the center of rotation.

Since there are infinitely possible combinations of the transla-

tion vector, rotation angle and rotation center for any 2-D rigid

transformation, we choose the rotation center to be the same as

the center of the template throughout this paper without loss of

generality.

The energy function to be minimized in this algorithm is a

sum of squared differences between the corresponding relative

gradient values given as follows:

(6)

where the location is related to by a scaled 2-D

rigid transformation as given in (5), and is the weight associ-

ated with the constraint. Note that the weight is determined

from the image grayscale to assign small weights for

very dark or very bright grayscales. The selection of the weight

function is similar to that described in [9]. This is used to alle-

viate the problem of relative gradient matching in the shadow or

brightness saturation regions.

When the transformation is small, we can take the first-order

Taylor series approximation for the function to ob-

tain the following new energy function:

(7)

where and are the partial derivatives of the

at the location along and directions

respectively, , and

. This energy minimiza-

tion is a nonlinear least square minimization problem. When a

good initial guess is available, we can employ Newton method

to solve this minimization problem very efficiently [9], [10]. In

general, when an initial guess for the transformation parame-

ters is given as , we can update the

transformation parameters by minimizing the following energy

function:

(8)
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Note that the inverse transformation can be proved

to be given by

(9)

with , where is a

rotation matrix with rotation angle . When applying Newton

method to minimize the dynamic twice-differentiable energy

function in (8) with respect to the transformation parameters,

we need to compute the function values , , and their partial

derivatives at subpixel image coordinates. This is accomplished

by using the bilinear interpolation technique and central differ-

ence method.

After the minimum solution is obtained

from minimizing the energy function in (8), we can update the

transformation parameters as follows:

(10)

An iterative energy minimization algorithm that includes

Newton update has been used to obtain the least square solu-

tion for minimizing the dynamic energy function in (8) very

efficiently, followed by updating the transformation parame-

ters with (10). This process is repeated until the solution is

converged.

V. EXPERIMENTAL RESULTS

Our experimental results contain two parts. The first part

of experiments is to show the quantitative accuracy and the

robustness of the proposed image alignment algorithm under

different simulated illumination conditions and different noisy

level. In the second part of our experiments, we use real im-

ages acquired from a CCD camera with lighting variations

to validate the robustness of the proposed algorithm through

visual inspection. In both parts of our experiments, we compare

our image alignment algorithm with the standard normalized

correlation method to demonstrate its superior performance

under illumination variations.

A. Testing on Synthesized Images

To demonstrate the robustness of the proposed image align-

ment algorithm, we tested it on images synthesized with random

translation and rotation as well as different lighting conditions.

The testing platform is a normal PC equipped with P4–2.4 G

CPU and 512 mb RAM. In the following experiments, we ap-

plied our alignment algorithm on several image datasets synthe-

sized from real images with geometrical transformation param-

eters and different illumination variations. Each dataset contains

125 images for testing the image alignment algorithms to pro-

vide the corresponding quantitative accuracies.

We used a simple lighting model that is similar to the Phong

model [15] in computer graphics to synthesize images under dif-

ferent lighting conditions from a real image. The lighting syn-

thesis model contains diffuse and specular components of the

Phong model. As depicted in Fig. 3, the radiance for the spec-

ular component at each pixel is determined by the angle be-

tween the light direction and the local surface, i.e., the specular

radiance is propotional to .

Fig. 3. Simple lighting synthesis model used to synthesize testing images with
different illumination conditions in our experiments.

Fig. 4. Example images simulated from a real image with different lighting
model parameters associated with the datasets with the parameter settings given
in Table I.

The lighting simulation model used for image synthesis with

different illumination conditions is given by

(11)

where is the image brightness function under normal

ambient lighing condition, is a simulated illumination

function, and is the simulated image function under

nonuniform illumination condition. In our experiment, we em-

ploy the following illumination function to simulate images with

different lighting conditions for image alignment

(12)

where is the position of the spot light, is the

specular reflectance due to spot light, and is the diffuse re-

flectance due to ambient light. Different reflectance parameter

values are used to synthesize images under a wide range of dif-

ferent lighting conditions from a real image.

In this experiment, we synthesized five datasets from a re-

mote controller image based on different parameter values in

the above lighting model each with an example image depicted

in Fig. 4. The lighting synthesis parameters for all the testing
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TABLE I
PARAMETER VALUES OF THE LIGHTING MODEL FOR THE TESTING DATASETS

Fig. 5. Training image with the inner dash window representing the template
window and the outer one being the search window that specifies the search
range. The cross sign denotes the reference location of the template.

TABLE II
RESULTS OF APPLYING OUR ALIGNMENT METHOD

ON THE SYNTHESIZED DATASET

datasets are shown in Table I. For each dataset, we simulate 125

images with different translation and rotation parameter values.

Fig. 5 shows a training image that contains two dash win-

dows. The inner window is the template of size 150 150, and

the outer one is the search window of size 250 250.

The results of applying the proposed algorithm on all the

datasets synthesized from the remote control image are shown

in Table II. It is obvious that the proposed algorithm can provide

very accurate image alignment under a wide variety of illumi-

nation variations. For comparison, we also applied the normal-

ized correlation method and the image gradient matching on the

same datasets. The results of the normalized correlation method

and the image gradient-matching method are shown in Tables III

and IV, respectively. It is evident that the proposed algorithm

significantly outperforms these two methods in this experiment

of image alignment on different datasets with different illumi-

nation variations. In this experiment, the average time of image

alignment by our algorithm takes about 50 ms.

To demonstrate the efficiency of the proposed nearest-

neighbor search in the first stage of the proposed image align-

ment algorithm, we compare the execution time required in the

nearest neighbor search at the first stage of the proposed image

alignment approach by using the proposed PCA-based trim-

ming method, Nene and Nayar’s method [8], exhaustive search

and the kd-tree method, respectively. The average time required

for the nearest-neighbor searches by using these different

methods in one image alignment task from the experiments on

TABLE III
RESULTS OF APPLYING NORMALIZED CORRELATION

ON THE SYNTHESIZED DATASET

TABLE IV
RESULTS OF APPLYING GRADIENT MATCHING

ON THE SYNTHESIZED DATASET

TABLE V
AVERAGE TIME (IN MSEC) IN THE FIRST STAGE OF THE PROPOSED

IMAGE ALIGNMENT HIERARCHY WITH DIFFERENT

NEAREST-NEIGHBOR SEARCH METHODS

dataset 1 is given in Table V. It is obvious that the proposed

PCA-based trimming method is much more efficient than the

other two standard nearest-neighbor search methods and it is

as efficient as Nene and Nayar’e method with the optimal trim-

ming parameter setting. The efficiency of the kd-tree method is

poor because kd-tree is suitable only for the nearest-neighbor

search in a low-dimensional space.

As shown in Table V, Nene and Nayar’s nearest neighbor

search method [8] is very efficient if the trimming parameter is

selected appropriately, but it is still a big problem how to auto-

matically determine an appropriate trimming parameter for each

image alignment task. Fig. 6 shows the result of applying Nene

and Nayar’s nearest neighbor search method in the first stage

of our image alignment system with different trimming param-

eter values on the dataset 1. We can see that the optimal pa-

rameter value is 0.1 from Fig. 6. Our proposed nearest neighbor

search method can achieve similar accuracy and speed to those

of Nene and Nayer’s method with optimal parameter setting, but

our method does not require human intervention for optimal pa-

rameter selection.

In the following, we show the performance of the proposed

image alignment method under different levels of random addi-

tive Gaussian noises. Some examples of noisy image are shown

in Fig. 7(a) and (b) with different noise standard deviations. The

constant can be used to suppress the noise effect, but it is hard

to determine the optimal value for . In this experiment, we se-

lect empirically. The results of applying the proposed

image alignment algorithm on these noisy datasets are given in

Table VI. It is evident that the proposed algorithm with appro-

priate choice of the parameter value is quite robust to random
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Fig. 6. Accuracy and speed of applying Nene and Nayar’s nearest neighbor
search method [8] in the first stage of the proposed image alignment system on
dataset 1 with different trimming parameter values are shown in (a) and (b),
respectively. We can see the optimal parameter value for this image alignment
task is 0.1.

Fig. 7. Examples of noisy images with additive Gaussian noises with zero mean
and standard deviation (a) 18 and (b) 31, respectively, and the corresponding
relative gradient maps computed with c = 1500 are given in (c) and (d), re-
spectively.

noises. Fig. 7(c) and (d) depicts the corresponding relative gra-

dient maps.

TABLE VI
RESULTS OF APPLYING THE PROPOSED IMAGE ALIGNMENT

METHOD ON THE NOISY IMAGES. THE NOISE TYPE IS

ADDITIVE GUASSION NOISE WITH ZERO MEAN

Fig. 8. (a) Example of image alignment on real images acquired under different
lighting conditions by using the proposed algorithm. The cross signs indicate the
estimated results. (b) The results of image alignment on the same images as (a)
by using the normalized correlation method.

B. Real Image Alignment Experiment

We also tested our image alignment algorithm on real images

acquired from a CCD camera with different lighting condition.

Since we cannot compute the accuracy of the image alignment

without knowing the ground truth in this experiment, we show

some results of image alignment in Fig. 8. The reference image

is shown in Fig. 5 with the template and search windows illus-

trated in the same figure. The cross sign in this figure specifies

the reference location of the template window. Fig. 8(a) depicts

the image of the translated and rotated remote control acquired

under different lighting conditions. The position and orientation

of the template window estimated by the proposed algorithm is

represented by the reference cross sign for each of these three

examples as shown in the figure. The proposed image align-

ment algorithm can accurately locate the template from these

real images acquired under different lighting conditions. For

comparison, we also show the image alignment results of the

normalized correlation method on the same images in Fig. 8(b).

Obviously, the normalized correlation method fails to provide

satisfactory image alignment in these two examples.

VI. CONCLUSION

In this paper, we presented a new robust image alignment

algorithm based on matching of relative image gradients. This

image alignment algorithm consists of a fast nearest-neighbor

pattern search procedure and an iterative energy minimization

alignment process. Both of these two procedures are based

on the new concept of matching relative image gradients. The

fast nearest-neighbor pattern search finds approximate nearest-

neighbor examples from a database of training samples ob-

tained by synthesizing transformed images from a reference

template image. The poses of the searched nearest-neighbor

examples are verified and refined through the iterative energy

minimization process. Experimental results on synthetic and
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real images with different illumination variations were shown

to demonstrate the superior accuracy and robustness of the

proposed alignment algorithm over the traditional normalized

correlation method.
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